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Black Boxes or Unflattering Mirrors?

Comparative Bias in the Science of Machine Behaviour

Cameron Buckner

Abstract
The last five years have seen a series of remarkable achievements in deep-neural-
network-based artificial intelligence (Al) research, and some modellers have argued that
their performance compares favourably to human cognition. Critics, however, have ar-
gued that processing in deep neural networks is unlike human cognition for four reasons:
they are (i) data-hungry, (ii) brittle, and (iii) inscrutable black boxes that merely (iv) re-
ward-hack rather than learn real solutions to problems. This article rebuts these criticisms
by exposing comparative bias within them, in the process extracting some more general

lessons that may also be useful for future debates.
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2.2 Adversarial examples expose deep learning as a fraud
2.3 Deep neural nets are not interpretable
2.4 Deep neural nets trained by reinforcement learn to ‘reward hack’ rather than solve
problems
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5.2 Deep neural net’s verdicts on adversarial examples may be correct
5.3 Human decision-making is also opaque
5.4 Humans are also notorious reward-hackers

6 General Lessons



This is the authot’s accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of
The British Journal for the Philosophy of Science, published by The University of Chicago Press on behalf of The British Society for the Philosophy of Science.
Include the DOI when citing or quoting: https://doi.org/10.1086/714960 Copyright 2021 The British Society for the Philosophy of Science.

Cameron Buckner

1 Introduction

The last five years have seen a series of remarkable achievements in neural-network-based artifi-
cial intelligence (Al) research. For example, systems based on deep neural networks (DNNs) can
now classify natural images as well as or better than humans, defeat human masters of strategy
games as complex as chess, Go, or Starcraft II, navigate autonomous vehicles across thousands
of miles of mixed terrain, and compose essays that are often indistinguishable from human writ-
ing. In the short history of Al, engineering breakthroughs have swung the pendulum in our theo-
retical approach to intelligence and rationality—from top-down tactics that emphasize structured
representations, explicit, domain-specific knowledge, and rule-based problem solving (Newell
and Simon [1976]), to bottom-up methods that locate intelligence in non-representational sen-
sorimotor abilities and skilful coping (Brooks [1991]). The success of DNNs on the kinds of
tasks touted by both extremes suggests a revival in the fortunes of connectionist approaches
(McClelland et al. [1986]; Clark [1989], [2003]; Rogers and McClelland [2014]), a midway posi-
tion that explains intelligence in terms of the ability of domain-general learning processes to ac-
quire abstract representations of the environment from low-level perceptual input (Botvinick et
al. [2017]; Hassabis et al. [2017]; Buckner [2018]).

However, the DNNs behind these marquee achievements are staggeringly complex and sub-
ject to puzzling vulnerabilities, which has led critics to dismiss them as ‘black boxes’ exhibiting
intelligence that is merely ersatz or alien. To cope with this complexity, neural network research-
ers have suggested that we should engage their behaviour directly with experimental paradigms
and data analysis methods derived from the sciences of human and animal behaviour. Such en-
gagement has led neuroscientists to conclude that DNNs are currently the most promising artifi-

cial models of perceptual similarity judgements in primates (Khaligh-Razavi and Kriegeskorte
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[2014]; Lake et al. [2015a]; Hong et al. [2016]; Kubilius et al. [2016]; Yamins and DiCarlo
[2016]; Guest and Love [unpublished]). Another area of research aims to extend psychometric
methods for intelligence testing in humans to rank the intelligence of artificial computational
models (Herndndez-Orallo [2017]). Taking the idea that neural networks can be approached with
the tools of animal psychology even further, the ‘Animal-Al Olympics’ has created a testbed ap-
plication that assesses Al systems on dozens of benchmarks derived from animal cognition re-
search (Crosby et al. [2019]; Crosby [2020]). An interdisciplinary coalition of influential scien-
tists has even called for the development of a new scientific field called ‘machine behaviour’ that
would study Al agents in a more contextual and historically informed way, using methods de-
rived from behavioural ecology and ethology (Rahwan et al. [2019]).

In short, comparisons between natural and artificial intelligences have never been so varied
and ambitious—nor, as we will see below, so fraught. The capacity of DNNs to produce new
forms of potentially intelligent behaviour and the development of new methods to evaluate their
performance has outpaced our reflection on whether these comparisons are fair or meaningful
(Guidotti et al. [2019]; Serre [2019]; Zednik [2019]; Zerilli et al. [2019]). Moreover, philoso-
phers of science have pointed out that biases plague human evaluation of nonhuman behaviours,
and methodological subtlety is required to temper them (Keeley [2004]; Buckner [2013]; Watson
[2019]). These difficulties are exacerbated when the other end of the comparison is an artificial
system, which are often intended to reproduce only parts or idealized aspects of a cognitive agent
(Stinson [2020]). In his defence of his famous imitation game test, Turing himself wrestled with
these issues; and commentators have reflected on how to avoid being unwittingly convinced by

artificial systems that present the superficial trappings of human-like behaviour (such as human-
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like facial expressions or gestures) without the same underlying competences (Block [1981];
Proudfoot [2011]; Ztotowski et al. [2015]; Shevlin and Halina [2019]).

This article suggests that this debate about fair comparisons in Al could be expedited by tak-
ing the lead from a century of reflection on similar questions in comparative psychology and
ethology. While these fields dedicated much effort to developing rigorous empirical methods to
avoid anthropomorphism-driven false positives, they have also recently come to grips with the
danger of anthropocentrism-driven false negatives. In Al, by contrast, very little of this critical
scepticism has yet been directed towards scoring the human behaviours to which Al performance
is compared (though for recent exceptions, see Zerilli ef al. [2019]; Firestone [forthcoming]; Ca-
naan et al. [unpublished]).

To illustrate the effect of bias on the evaluation of machine behaviour, Section 2 reviews four
popular arguments to the effect that deep learning is fundamentally unlike human learning, all
focused on ways in which DNNs allegedly underperform humans. We will see in Sections 3—5
that a bias called ‘anthropofabulation’ (Buckner [2013])—which scores nonhuman performance
against an inflated conception of human competence—threatens the validity of these compari-
sons. When the same degree of critical scrutiny is directed towards the human side of these com-
parisons, our minds are also revealed to be black boxes plagued by many of the same vulnerabili-
ties. To sum up, a more apt metaphor for DNNs might be an unflattering if revealing mirror, one
which raises new questions about our own intelligence and allows us to see our own blemishes

with unprecedented clarity.

2 Four Popular Criticisms of Deep Learning Research
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This article canvasses and rebuts four criticisms that have been commonly offered against claims
that processing in DNNs bears similarity to human cognition: that deep learning is (i) too data-
hungry, (ii) vulnerable to adversarial examples, (iii) not interpretable, and (iv) merely reward-
hacks rather than learns real solutions to problems. These arguments feature prominently in in-
fluential critical reviews of deep learning, such as Lake et al. ([2017a]) and/or Marcus ([2018]).
To be clear, this is not a complete survey of arguments against the similarity between human
cognition and the processing of DNNs. My aim here is not to positively establish a deep similari-
ty between human cognition and DNNs by rebutting all such lines of attack, but rather to redirect
attention to the subset of those empirical questions that are more likely to produce fruitful re-
search, and to extract some general lessons about conducting fair comparisons between humans
and artificial agents.

Three clarifications on these aims will be useful at the outset (readers wanting to jump
straight to the criticisms can skip ahead to Section 2.1). First, though the criticisms and rebuttals
discussed here will generalize to many other techniques in machine learning (for a relevant dis-
cussion, see Watson [2019]), for ease of exposition we here focus here on deep learning systems,
which will be briefly characterized now. DNNs comprise a diverse family of network-based ma-
chine learning techniques. As with earlier neural network designs, they consist of layers of sim-
ple processing nodes transmitting activation to one another along weighted links, usually intend-
ed to model the activity of neurons and synapses at some level of abstraction. In contrast to earli-
er, shallower neural network architectures, ‘deep’ neural networks can have anywhere from five
to hundreds of layers in-between input and output. Depth itself appears to have profound compu-

tational implications; it allows these networks to compose features hierarchically and enjoy ex-



This is the authot’s accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of
The British Journal for the Philosophy of Science, published by The University of Chicago Press on behalf of The British Society for the Philosophy of Science.
Include the DOI when citing or quoting: https://doi.org/10.1086/714960 Copyright 2021 The British Society for the Philosophy of Science.

Cameron Buckner

ponential growth (relative to the number of layers) in their representational capacity and compu-
tational power (for a review of evidence for this claim, see Buckner [2019a], Section 2.1).

Such network depth is perhaps the only feature that unites all ‘deep’ learning systems, and
there are many other ways in which their architectures vary. Specifically, they can vary in: the
activation functions of their nodes; the connectivity patterns between their layers and number of
nodes in each layer (esp. decreasing the numbers in successive layers to impose ‘bottlenecks’ in
processing); their learning rules or training regimes (such as backpropagation, reinforcement, or
predictive learning); whether they feature recurrent links connecting later layers back to earlier
ones; the use of components or multiple networks to simulate the modulatory effects of memory
buffers or attentional control; and the ways in which their processing is tweaked (‘regularized’)
to avoid overfitting spurious correlations in the training set (Schmidhuber [2015]).

To briefly canvass some of the most popular architecture combinations, deep convolutional
neural networks (DCNNs) have perhaps featured most prominently in marquee achievements;
they leverage a sequence of different activation functions (convolution, pooling, and rectifica-
tion) to perform hierarchical feature detection, and deploy mostly local connectivity between
layers (LeCun et al. [2015]; Buckner [2018]). Deep autoencoders impose a bottleneck in the
middle of a deep layer hierarchy, with an architecture resembling an ‘hourglass’ shape with few-
er and fewer nodes in the central layers, forcing the network to learn compressed representations
that condense categories to their ‘gist’ (Hinton and Salakhutdinov [2006]). Generative Adversar-
ial Networks (GANs) have also captured the public’s attention; they involve tasking a second
generative network to fool a primary discriminative network (often a DCNN), with the genera-
tive network’s nodes performing activation functions akin to the inverse of convolution and

pooling (‘deconvolution’ and ‘unpooling’) to produce highly detailed and realistic ‘deepfakes’
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and ‘adversarial examples’ that can pose a security risk to discriminative networks (Goodfellow
et al. [unpublished]). Variational autoencoders (VAEs) combine features of GANs and deep au-
toencoders; they attempt to learn hidden relationships between latent variables that could be used
to reconstruct its training data (Kingma and Welling [unpublished]). Long short-term memory
networks (LSTMs) deploy recurrent connections in memory cells to simulate a memory for con-
text, and can excel at processing complex sequences in input like grammatical structures
(Hochreiter and Schmidhuber [1996]). Transformers—the most sophisticated language-
production deep learning architecture to date, exhibited in systems like BERT, GPT-2, and GPT-
3—modulate relatively homogeneous deep neural networks using a complex form of hierarchical
attention to represent multiple channels of complex syntactic and semantic information relevant
to predicting word placement in language production and automated translation (Vaswani et al.
[2017]).

As a second introductory clarification, we consider three other prominent criticisms that
readers might be anticipating, in order to set them aside for the remainder of the article. Specifi-
cally, this article will not engage with claims that (a) DNNs cannot create new compositional
representations on-the-fly, (b) strategies learned by DNNs do not transfer well to radically differ-
ent tasks or stimuli, and (c) that DNNs cannot learn to distinguish causal relationships from mere
correlations. Whether current or future DNN architectures can achieve such compositionality,
radical transfer, and causal inference remain open empirical questions ( Lake [2014]; Battaglia et
al. [unpublished]; Russin et al. [unpublished]), ones that will hopefully receive more attention in
future research. The ability to learn and reason about causal relationships in particular might be
thought a distinguishing feature of human cognition and a key goal for more human-like Al

(Penn and Povinelli [2007a]; Hespos and VanMarle [2012]; Pearl [2019]). Granted, most neural
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networks are not trained to diagnose causal relationships, and many humans confuse correlation
for causation (Lassiter ef al. [2002]). When neural networks are trained to diagnose causal rela-
tionships, they have shown some successes, especially generative architectures like variational
autoencoders (Kusner et al. [unpublished]; Zhang et al. [2019]) and models that use deep rein-
forcement learning (Zhu et al. [unpublished]). That said, comparative biases will surely affect
these debates too, and we may hope that the four rebuttals canvassed here will suggest how to
mitigate them when they do.

Finally, in what follows, we will not here discuss linguistic behaviour or cognition. The like-
liest default position is that compositional recursive grammar is a uniquely human capacity
amongst animals, and some classical criticisms of the neural network approach take this to be
essential for intelligent behaviour (Fodor and Pylyshyn [1988]). Furthermore, this capacity is en-
gaged by many classic assessments of artificial intelligence like the Turing Test, and deep learn-
ing models—especially massive transformers like GPT-3—have recently achieved impressive
results on tasks like automated translation, question answering, and text production. However,
this capacity is closely related to the other three that we have already set aside, and the way that
the brain enables linguistic production remains contentious in developmental linguistics and
cognitive neuroscience (Fitch [2014]; Scott-Phillips et al. [2015]; Berwick and Chomsky [2017];
Moore [2017]). Again, the goal of this article is not to positively establish that DNNs are intelli-
gent by rebutting all comers, so we leave the question of whether current or future DNN archi-
tectures can implement compositional recursive grammar open (Russin et al. [unpublished];
though see Lake [2019]). The kinds of biases that will be described for perceptual decision-
making and strategy game-play also appear in the linguistic domain (including the Turing test),

so this may seem an odd omission given the article’s aims. The reason for it is simply that the
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evaluation of linguistic behaviour from deep learning systems (especially transformers like GPT-

3) deserves its own specialized article- (or book-)length treatment, whereas issues of compara-

tive bias are already complex enough in the simpler systems and applications to occupy us here.
With these clarifications in place, we now proceed to review the four popular criticisms

that will be considered here.

2.1 Deep learning is too data-hungry
One of the most common critical refrains is that DNNs require far more training data than hu-
mans to achieve equivalent performance. The standard methods of training image-labelling
DNNs, for example, involves supervised backpropagation learning on the ImageNet database,
which contains 14 million images that are hand-annotated with labels from more than 20,000 ob-
ject categories. To consider another example, AlphaGo’s networks were trained on over 160,000
stored Go games recorded from human grandmaster play, and then further trained by playing
millions of games against iteratively stronger versions of itself (over 100 million matches in to-
tal); by contrast, AlphaGo’s human opponent Lee Sedol could not have played more than 50,000
matches in his entire life. In the human case, critics emphasize the phenomena of ‘fast mapping’
and ‘one-shot learning’, which seem to allow humans and animals to learn from a single exem-
plar. For example, Lake et al. ([2015b]) argue that humans can learn to recognize and draw the
components of new handwritten characters, even from just a single example (Fig. 1). Sceptics
thus wonder whether DNNs will ever be able to learn comparatively rich category information

from smaller, more human-like amounts of experience.
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Figure 1. The decomposition of a novel handwritten figure into three individual pen strokes, which humans can
purportedly learn from a single exemplar (reproduced from Lake et al. [2015b]).

2.2 Adversarial examples expose deep learning as a fraud
‘Adversarial examples’ are unusual stimuli that are generated by one ‘adversarial’ DNN to fool
another. The original adversarial examples were ‘perturbed images’ that were created by a gen-
erative adversarial network (GAN) by slightly modifying an easily classifiable exemplar in a
way that was imperceptible to humans, but which could cause dramatic misclassification by
DNNSs targeted for attack (Goodfellow et al. [unpublished]; and see Fig. 2). Perturbation methods
most commonly modify many pixels across an entire image, but they can be as focused as a sin-
gle-pixel attack (Su et al. [2019]). The pixel vectors used to perturb images are usually discov-
ered by training the adversarial DNN on a discriminative DNN’s response to specific images, but
some methods can also create ‘universal perturbations’ that disrupt classifiers on any natural im-

age (Moosavi-Dezfooli et al. [2017]).
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Figure 2. An adversarial perturbed image, reproduced from (Goodfellow et al. [unpublished]). After the ‘panda’
image was modified slightly by the addition of a small noise vector (itself classified with low confidence as a
nematode), it was classified as a gibbon with high confidence, despite the modification being imperceptible to
humans.

It was soon discovered that many perturbation attacks can be disrupted with simple pre-
processing techniques, such as systematic geometric transformations of images like rotation, re-
scaling, smoothing, and/or de-noising (a family of interventions called ‘feature squeezing’—Xu
et al. [2017]). A reasonable interpretation of this phenomenon is that DNNs are vulnerable to
image perturbations because their perceptual acuity is too keen; the attack exploits their sensitivi-
ty to precise pixel locations across an entire image, so it can be disrupted by slightly altering the
pixel locations across the entire input image.

However, another family of adversarial example generation methods—involving the
creation or discovery of ‘rubbish images’ that are supposed to be meaningless to humans but
confidently classified by DNNs—were found to be more resistant to such default countermeas-
ures (Nguyen et al. [2015]). Subsequent research has found that these (and other) adversarial ex-
amples exhibit many counterintuitive properties: they can transfer with (incorrect) labels to other
DNNs with different architectures and training sets, they are difficult to distinguish from real ex-
emplars using pre-processing methods, and they can be created without ‘god’s-eye’ access to
model parameters or training data. Rather than being an easily overcome quirk of particular

models or training sets, they appear to highlight a core characteristic of current DNN methods.

11
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Much of the interest in adversarial examples derives from the assumption that humans do
not see them as DNNs do. For practical purposes, this would entail that hackers and other mali-
cious agents could use adversarial examples to fool automated vision systems—for example, by
placing a decal on a stop sign that caused an automated vehicle to classify it as a speed limit sign
(Eykholt ef al. [2018])—and human observers might not know that anything was awry until it
was too late. For modelling purposes, however, they might also show that despite categorizing
naturally occurring images as well or better than human adults, DNNs do not really acquire the
same kind of category knowledge that humans do—perhaps instead building ‘a Potemkin village
that works well on naturally occurring data, but is exposed as fake when one visits points in [da-

ta] space that do not have a high probability’ (Goodfellow et al. [unpublished]).

2.3 Deep neural nets are not interpretable
Another common lament holds that DNNs are ‘black boxes’ that are not ‘interpretable’ (Lipton
[unpublished]) or not ‘sufficiently transparent’ (Marcus [2018]). State-of-the-art DNNs can con-
tain hundreds of layers and billions of individual parameters, making it difficult to understand
the significance of specific aspects of their internal processing. However, key questions in this
charge remain unanswered (Zednik [2019]), such as: What kind of interpretability needs to be
provided, to whom should the interpretation be provided, what is the purpose of interpretability,
and how would we know whether we had succeeded in providing it? At any rate, these concerns
should only be counted against deep learning models if some obvious alternative systems per-
form better on them. While DNNs are often compared to linear models (which are—probably
incorrectly—thought to be more interpretable), usually the comparison class is adult humans.

Recent governmental initiatives such as DARPA’s eXplainable Al (XAI) challenge (Fig. 3) and

12
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Figure 3. The DARPA XAI concept; figure created by DARPA for public release (Turek [unpublished]).

the EU’s General Data Protection Regulation—which provides users with a ‘right to explanation’
for decisions made by algorithms that operate on their data—have quickened the challenge and
provided it with some practical goals, if not always conceptual clarity (Goodman and Flaxman

[2017]; Turek [unpublished]).

2.4 Deep neural nets trained by reinforcement learn to ‘reward hack’ rather than solve
problems
Many of the most impressive achievements by DNNs highlighted above were produced by rein-
forcement learning (for an overview of this area, see Sutton and Barto [2018]). This method
trains networks using a general reward signal that is designed by the network’s programmers and
tells the network whether it succeeded or failed on its last decision. Many of the high-profile
achievements of DNNs involved games like Go, chess, or Starcraft Il because game score pro-
vides an easily quantifiable reward signal. In other areas of research such as artificial locomo-
tion, creating an effective reward signal is more difficult. Many reward an agent for simply mov-

ing forward in an artificial environment, perhaps with minimal energy expenditure by its digital
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avatar. For example, one deep reinforcement model trained in the ‘Half-Cheetah’ testbed envi-
ronment—in which models learn to move an idealized, two-dimensional cheetah avatar forward
by manipulating several points of freedom in its two legs—Iearned that it could locomote the
cheetah by falling forward and then flailing the legs in the air so as to flop the avatar forward on
its back (Irpan [unpublished]). In another widely shared blog post written by the research group
OpenAl, the researchers recount how their DNN learned to play the boat racing Atari game
‘Coast Runners’ by endlessly turn the boat in tight, off-course circles without ever completing
the race, because doing so allowed it to continually collect replenishing ‘turbo’ bonus widgets
that provided a rapid, never-ending boost to its game score (Amodei and Clark [unpublished]).
Critics worry that these examples show that the models lack the ‘common sense’ that humans
would bring to bear on these tasks, and that the solutions they learn are brittle ‘reward hacks’ that
optimize the reinforcement signal without any real understanding of the problems they are

trained to solve.

3 Purposes, Interests, and Fair Comparisons
There are many reasons why we might want to compare different kinds of agents in terms of
their intelligence, rationality, or other mental abilities. For one, such comparisons can serve met-
aphysical goals: we may want to learn about the different ways that intelligence can be realized
in nature or artefacts—as has been traditionally explored in the literature on ‘multiple realizabil-
ity’ (Polger and Shapiro [2016]). Second, such investigations can serve semantic projects, by
helping us clarify these concepts, which are often vaguely defined or equivocal (Akagi [2018];
Miracchi [2019]). Third, they can serve more practical goals: we may be interested in the epis-

temic, ethical, or legal status of other kinds of agents, and the possession of specific mental abili-
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ties may be relevant to those statuses ( Allen [2006]; Andrews et al. [unpublished]). Fourth, they
can be used for scientific modelling purposes in human cognitive psychology, to better under-
stand and explain how intelligent behaviour is produced in our own case, by engineering systems
based on different hypotheses and comparing their performance to human behaviour or their
structure to that of the human brain (Stinson [2020]). Fifth, comparisons can serve a variety of
engineering or medical projects: we may want to establish the suitability of artificial models to
predict the results of medical interventions on human brains before conducting human trials, or
as alternatives for human labour in a variety of different applications (Hassabis et al. [2017]).

Though some of these purposes have been more frequently discussed in the context of animal
psychology, they will become increasingly relevant to artificial intelligence as our computational
models are able to successfully replicate more and more aspects of human and animal behaviour.
Though this list is not exhaustive, we can already see that there are many competing pressures
underlying such comparisons, even and especially when the goals of the comparisons are not
made explicit. All of the aims, however, should focus on the degree of relevant underlying simi-
larity that holds between the two systems to determine whether they succeed. From a philosophy
of science perspective, we should accept that these models often only need to reproduce parts or
idealized aspects of these phenomena to serve their purpose; as Stinson ([2020]) puts it, quoting
Winsberg ([2010]), the right relationship is often something far more complicated and subtle
than ‘mere mimicry’.

So, how similar, or in what way, must a DNN’s processing be to a target system or mental
ability to serve as an artificial implementation of it that is useful for these purposes? Obviously,
some aspects of a DNN’s implementation will be irrelevant to all of these goals; we should not

fault artificial systems because they require external electricity sources to perform their pro-
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cessing any more than we should reward them for being able to function better than humans in
low-oxygen environments. One way to pose this question emphasizes the traditional distinction
in cognitive science between competence and performance (Firestone [forthcoming]); artificial
models should engage the same underlying competence that humans do when performing some
task, but do not need to reproduce all the performance factors. One concern about this strategy,
however, is that competences can be construed in different ways, inviting evaluative differences
to masquerade as empirical ones. To review a topically relevant example, one diagnosis of the
famous disagreement between classicists Fodor and Pylyshyn ([1988]) and the connectionists
(such as Smolensky [1988]) is that Fodor and Pylyshyn were only interested in a particular sort
of explanation of compositionality and systematicity, whereas the connectionists were interested
in many other phenomena that were better (or only) explained by connectionist representations
(Matthews [1994]). Differences of explanatory interest are common in debates in cognitive sci-
ence, which perhaps explains why they are often difficult to resolve by empirical means (for an-
other case study of such an impasse in comparative social psychology, see Penn and Povinelli
[2007b]; Call and Tomasello [2008]; Buckner [2013]).

One should be wary that one has been invited to such a masquerade whenever critics argue
that only systems meeting certain restrictive criteria count as ‘genuine’, ‘real’, ‘strong’, or ‘bona
fide’ examples of mental capacities like intelligence, learning, rationality, cognition, and so on.
Despite the formal ornament gilding these critiques, these adjectives are not natural kind terms
with empirical content; they are rather baldly honorific, and their evaluative criteria can be stipu-
lated arbitrarily from one moment to the next to suit the critics’ whims. Indeed, such honorifics
are beginning to show up in the appraisals of deep learning critics such as (Bringsjord et al.

[2018]), who allege that deep neural networks are not capable of ‘real’ learning—which these
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authors hold is instantiated only in cases where agents can provide demonstrations for what they
have learned adverting to formal definitions of key terms involved, as (to use an example sug-
gested by an anonymous reviewer) a math student may produce in a proof of the fundamental
theorem of algebra. This benchmark produces the surprising verdict that children do not really
learn how to walk, talk, or recognize objects, when it is sensible to suppose that artificial intelli-
gence should aim to solve these basic competences on the road to more ambitious ones. A diag-
nosis of this debate is that these critics are only interested in a special kind of learning that is
paradigmatically instantiated in mathematical education, but which is hardly as central to other
characteristically human cognitive competences as they suppose.

While it is usually otiose to belabour such matters of taste or terminology, there are some
practical disadvantages to indulging such restrictionism when it comes to such general terms as
‘intelligence’, ‘learning’, ‘rationality’, or ‘cognition’ (Akagi [2018]). First, there is worry that
such critiques would confine Al to blind alleys that had already been explored in earlier stages of
research. Starting out by attempting to build systems that can solve pinnacle human achieve-
ments using declarative knowledge derived from human verbal justifications has repeatedly pro-
duced fragile systems that can mimic human behaviour only in limited applications involving
pre-digested input for which they were explicitly programmed, but which can do little else, and
whose behaviour fails to generalize to situations even slightly outside of their programming
(Hofstadter [1985]; Brooks [1991]). Though IBM’s DeepBlue defeated world champion Garry
Kasparov in chess in 1997—perhaps the highest-profile achievement of this top-down approach
to Al—it would have to be completely reprogrammed to play another game. Reinforcement-

learning-based DNNSs, by contrast, have by now shown an impressive ability to learn their own
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solutions to dozens of different games without changing their algorithms (Mnih et al. [2015];
Silver et al. [2018]; Lyre [2020]).

Second, such stipulations can close off questions that ought to be settled by empirical rather
than terminological methods (Allen [2017]; Ramsey [2017]). For example, even if mathematical
cognition were our primary interest, empirical investigation of mathematical demonstration
shows that low-level perceptual and pattern-matching abilities are more involved in the reliable
manifestation of these competences in typical math students than we would have presumed from
the armchair (Landy ef al. [2014]). And finally, reliance on such honorifics has a way of leading
to constantly shifting goalposts; every time an animal or artificial system satisfies a previously
specified benchmark, the critic can simply endorse a yet more restrictive interpretation of ‘real’
or ‘genuine’ and push the borderline ever-closer to the uppermost limits of human perfor-
mance—and possibly even beyond. For example, these interests led the same critics to conclude
controversially that human cognition is hypercomputational, without providing any empirical
evidence that humans reliably hypercompute or ethological investigation into the conditions in
which they do so that would be required to conduct fair comparisons (Chalmers [1995];

Bringsjord and Arkoudas [2004]; Davis [2004]; Govindarajulu and Bringsjord [2012]).

4 A Crash Course on Comparative Bias
In this section, we extract a general lesson that can help us avoid these pitfalls by looking to oth-
er sciences that have faced similar pressures. Comparative psychology and cognitive ethology
have struggled to fairly align different kinds of intelligences for more than a century, and have
by now come to appreciate that human researchers are vulnerable to systematic biases that can

distort such comparisons by causing us to rush to judgement without properly evaluating the rel-
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evant underlying similarities. To counter these biases, the study of machine behaviour should
adopt similar methodological correctives, such as Morgan’s canon and Hume’s dictum (Buckner
[2013]; Rahwan et al. [2019]). One bias that has already been well studied by philosophy of
comparative psychology and artificial intelligence is anthropomorphism (de Waal [2000];
Wynne [2004]; Proudfoot [2011]). A sizeable literature in comparative psychology explores cor-
rectives for anthropomorphism and their proper application (Sober [1998]; Karin-D’Arcy [2005];
Buckner [2017]). On the other hand, there are also a variety of anthropocentric biases that can
thumb down the scales against nonhumans. Anthropocentrism can cause us to assume that only
behaviours with the superficial trappings of human performance are valuable or intelligent—
such as supposing that only animals that navigate by sight could possess cognitive mapping,
when bats or dolphins might create maps of their environment using echolocation. Semantic an-
thropocentrism is usually a mistake, but not always; in cases where traits really are uniquely hu-
man—as again is probably the case with semantically compositional language with recursive
grammar (Fitch [2010]; Berwick and Chomsky [2017])—semantic anthropocentrism may be un-
avoidable.

One form of anthropocentrism is guaranteed to be a mistake, however: the bias of ‘an-
thropofabulation’ (Buckner [2013]). Anthropofabulation combines semantic anthropocentrism
with an exaggerated view of human cognitive performance. Anthropofabulation results from an
empirically uninformed picture of human cognitive processing derived from introspection or cul-
tural traditions. Common sense in some cultures tells us that our thought processes are rational—
derived from a dispassionate processing of the situation, a direct introspective access to our actu-
al beliefs and motivations, and independence from subtle environmental scaffolding, historical

associations, or emotional reactions. A great deal of human social psychology and philosophy of
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psychology, however, has cast this picture of human cognition into doubt (Nisbett and Ross
[1980]; Kahneman and Frederick [2002]; Samuels et al. [2002]; Carruthers [2011]).

In practice, anthropofabulation has caused sceptics to compare human and animal perfor-
mance in situations that are crucially disanalogous, such as when humans are tested with conspe-
cifics but chimpanzees with heterospecifics, humans tested in a known caregiver’s lap while
chimpanzees are tested with strangers behind Plexiglas, or humans are tested on culturally famil-
iar stimuli while chimpanzees are tested on unfamiliar artificial stimuli (Boesch [2007]). An-
thropofabulation’s rosy vision of human cognition causes us to implicitly assume that human
performance could not possibly depend upon such environmental scaffolding, leading us to over-
look or downplay these disanalogies. While these disanalogies are generally now seen as mis-
takes in comparative psychology, we are only beginning to appreciate their analogues in artificial
intelligence (Zerilli et al. [2019]; Firestone [forthcoming]; Canaan et al. [unpublished]). The re-
mainder of the article argues that critics of DNNs are similarly evaluated in unfairly disanalo-
gous situations or by assessing penalties to DNNSs for factors that apply equally well to adult hu-
man cognition. Once the anthropofabulation in these critiques is exposed, they no longer clearly
support the conclusion that deep learning systems and human brains are performing fundamen-
tally different kinds of processing—and indeed, might teach us hard lessons about our own cog-

nition as well.

5 Four Rebuttals
This final section illustrates and rebuts anthropofabulation in the four criticisms of deep learning
on which we focused above. This story is as much or more about humans than about machines;

indeed, the story’s moral is that artificial intelligence researchers need to draw less upon intro-
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spection and more on an unbiased, empirically grounded appraisals of human intelligence—
warts and all—to fairly evaluate machine behaviour. In many cases, when we do this systemati-
cally, we will find that the machines have not been given the same kinds of tasks or provided
with the same kind of training as the humans, even when it is possible to do so (Firestone [forth-

coming]).

5.1 Human learning involves more trainable exemplars than common sense supposes
One way that anthropofabulation might bias us against DNNs is by causing us to undercount the
number of trainable instances that should be scored to adult human performance. Two factors are
often neglected in counting the number of exemplars that humans should be scored as having
been exposed to in learning: 1) that many different vantages of the same object can provide dis-
tinct training exemplars for cortical learning, and 2) that offline memory consolidation during
sleep and daydreaming can replay the same exemplars—and even simulated novel exemplars
generated from those same experiences—many thousands of times in offline repetitions. Ignor-
ing these factors, common sense might score an infant’s ten-minute interaction with a new toy as
a single exemplar.

It is difficult to decide exactly which features of human perceptual learning are relevant to
the comparison in order to devise a proper accounting system for humans, but we can review
some results in the neighbourhood. Studies of motion-picture perception have suggested that
human vision has a frame rate of about ten to twelve images per second (below this rate, we can-
not perceive motion as continuous). We can also consider how long it takes us to become con-
sciously aware of or be affected by a stimulus; while it takes 200-400 ms for us to become con-

sciously aware of a perceptual stimulus, attentional shifting to a new stimulus begins in as little
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as twenty milliseconds, and category structure can be implicitly influenced by nonconscious ex-
posures to stimuli as brief as one millisecond (Kunst-Wilson and Zajonc [1980]; Schacter
[1987]; Murphy and Zajonc [1993]). Moreover, perceptual memories may be repeatedly recon-
solidated by theta rhythm in the medial temporal lobes during sleep and daydreaming many
times over a period of months and years (Stickgold [2005]; Walker and Stickgold [2010]). We
also know that in mammals, these consolidation exposures can train the cortex on novel experi-
ences synthesized from combinations or transformations of previous training information—as
revealed by cell recordings that show rats mentally exploring novel maze routes during sleep that
they never actually traversed when awake (Gupta et al. [2010]). Taking all these factors into ac-
count, an infant’s ten-minute interaction with a new toy might be fairly scored as providing tens
of thousands of trainable exemplars, rather than a single one, as common sense might suppose. In
this sense, Herbert Simon’s classic quip that ‘everything of interest in cognition happens above
the 100-millisecond level’ is classic anthropofabulation, focusing attention on only the introspec-
tively available surface features of human categorization while ignoring a vast iceberg below
(Hofstadter [1985]).!

Neither is this merely idle nit-picking; neural network models that attempt to replicate these
nonconscious aspects of human learning can make more efficient use of smaller, more human-
like training sets. For example, when deep learning models are trained on successive frames of
video rather than static exemplars, many different vantage points on the same object can be treat-
ed as independent training instances that improve model performance (Luc et al. [2017]; Lotter

et al. [unpublished]; Orhan et al. [unpublished]). When DNNs are supplemented with ‘episodic

! Granted, useful information can be obtained from the first-person perspective; Ericsson and Simon ([1984]) em-
phasized speak-aloud protocols, which can provide useful information about the information attended to by a sub-
ject, but which are quite different than the kind of rationalization considered in Section 5.3.
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replay’ buffers that are inspired by declarative memory faculties in mammals, a network’s per-
formance can continue to benefit from repeatedly replaying exposure to the same training in-
stances numerous times (Mnih et al. [2015]; Blundell et al. [2016]; Vinyals et al. [2016]). Pre-
dictive, ‘self-supervised’ networks—which attempt to learn by predicting the future from the
past, the past from the present, occluded aspects of objects from the seen aspects, and so on—are
championed as the future of the field by DNN pioneers like LeCun ([2018]). There is little evi-
dence that the efficiency gains that can be obtained from such biologically inspired innovations
have already plateaued.

Still, critics hold that this all falls short of the kind of one-shot learning of novel digits and
their construction emphasized by some critics, which has purportedly been modelled in some
Bayesian systems (see Section 2.1 above). While numerous DNN systems produce one-shot or
even zero-shot learning on related tasks (Socher et al. [2013]; Rezende et al. [2016]; Brown et
al. [unpublished]), critics note that they do so only with extensive pre-training. Nevertheless,
there remain significant questions about the fairness of this response. Humans are capable of
such one-shot learning only after extensive practice in recognizing and generating a variety of
different handwritten figures, experience that has occurred outside the purview of any laboratory
experiment. The Bayesian programs that are purported to model this one-shot learning must in-
corporate significant amounts of high-level knowledge and representational structures that are
manually encoded by their programmers (Botvinick ef al. [2017]). These Bayesian modellers on
some occasions profess agnosticism as to the origins of this knowledge, and on others wave their
hands at genetically programmed innate mechanisms (Lake et al. [2017b], p. 53). Such specific
forms of knowledge are not plausibly encoded directly in the genome, however, which likely on-

ly contains enough storage space to specify very general wiring principles of the sort that already
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make DNNs especially good at things like translation invariance and which were inspired by
neuroanatomical observations (Zador [2019]). In short, until the cognitive provenance of this
knowledge is accounted for in humans—specifically, until we know the nature and number of
training exposures adult humans require to scaffold such one-shot learning, and how their genetic
scaffolding expresses itself in the human brain—these concerns cannot fairly be scored against

DNNis in this debate.

5.2 Deep neural net’s verdicts on adversarial examples may be correct
Recent investigations have challenged the assumption that a DNN’s take on adversarial examples
is really so alien to human perception. One still-controversial way to challenge this assumption is
by using perturbation methods to produce artificial stimuli that can fool humans (Elsayed et al.
[2018]). Even more interestingly, however, Zhou and Firestone ([2019]) showed that humans can
easily ‘adopt the machine perspective’ and, when forced to choose between a predetermined list
of candidate labels, predict a DNN’s labels for rubbish images with high accuracy (Fig. 5). These
authors suggest that the behaviour of DNNs in these cases that initially appeared to be an error
might have been due to the fact that during training and testing, the DNNs were always forced to
choose amongst a list of candidate labels, even when images were very different from previously

classified exemplars. Humans, by contrast, can typically reject stimuli as unusual or ambiguous.
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Figure 4. A perturbed image that can purportedly fool human subjects, with the original image of a cat on the left,
and the perturbed image (often classified as a dog) on the right. Image reproduced from (Elsayed ef al. [2018]).
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Figure 5. Examples of two different types of rubbish images tested by Zhou and Firestone ([2019]) with preferred
DNN labels. In a forced-choice task, humans were able to guess a DNN’s preferred labels for these images with high

accuracy. (Image reproduced from Zhou and Firestone [2019]).

This difference marks a crucial disanalogy in many comparisons between natural and artifi-
cial judgements on adversarial examples, a difference that may be obscured by anthropofabula-
tion. Specifically, Zhou and Firestone’s results suggest that DNNs do appear to capture some as-

pects of lower-level perceptual categorization in humans; many rubbish images do look like
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members of the purportedly incorrect label class, even if humans do not ultimately think that
they look like they are members of that class (the way an intrinsically meaningless inkblot in a
Rorschach test may look like a duck without looking like it is a duck). DNNs may thus be cor-
rectly delivering human perceptual similarity judgements, but not yet have the resources to draw
a distinction between an exemplar superficially resembling something and actually looking like a
member of the class.” This kind of distinction is difficult for even human children and adult
chimpanzees to master (Flavell et al. [1983]; Krachun et al. [2016]), and the DNN modellers did
not even attempt to train their networks to perform this kind of discrimination. Perhaps it remains
an open question how to model the latter kind of judgement in DNNs (Smith [2019]), but cur-
rently available comparisons do not yet demonstrate that a DNN’s processing is hopelessly alien
to human perception.

Even more recently, commentators have begun explicitly calling out the foundational anthro-
pocentrism of the debate over adversarial examples, by questioning whether the verdicts DNNs
issue on these unusual stimuli should be considered mistaken or unintelligent in the first place. A
ground-breaking series of empirical studies by Ilyas et al. (Junpublished]) recently suggested that
vulnerability to adversarial examples may be a feature and not a bug of DNNs. These authors
discovered two surprising things: first, that when DNNs were trained exclusively on a diet of ad-
versarial examples, their classification behaviour transferred well to novel natural images, and
second, that when their training sets were altered to remove the features that caused them to be
susceptible to adversarial examples, their discrimination performance on natural stimuli was also

significantly diminished. Combined, these two findings suggest that the features to which DNNs

% One residual concern here, pointed out by an anonymous reviewer, is that the kinds of errors made by these net-
works may evince what Watson ([2019]) calls ‘myopia’, or a tendency to ignore structural relationships that seem
obvious to humans.
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respond in adversarial examples are well-generalizing aspects of naturally occurring data: they
are predictively valid in naturally distributed data, and humans may only fail to deploy them in
their own categorizations due to comparatively inferior perceptual or cognitive acuity. While this
does not diminish the practical significance of the phenomenon as a security threat, it raises phil-
osophical questions as to which features ought to be relevant to assessing intelligence in catego-
rization tasks.

These questions may soon become especially pressing, for the detection of such features may
have enabled some DNNs to make dramatic leaps beyond the limits of human intuition on prob-
lems characterized by high complexity and holistic nonlinear interactions—such as the predic-
tion of stable end states for folding proteins, a problem on which the DNN-based AlphaFold sys-
tem recently outperformed human modellers who had devoted their professional lives to solving
this kind of task (AlQuraishi [2019]). Perhaps the DNNs can discover intricate, high-frequency
‘interaction fingerprints’—similar in form to the features that cause them to be vulnerable to ad-
versarial perturbations—that point the way to new discoveries in disease diagnosis and drug de-
velopment, but which are beyond human ken (Gainza et al. [2019]). It is difficult to justify the
conclusion that science should eschew such features without simply relying on a flat-footed form
of anthropocentrism; and pragmatic philosophers of science would have little grounds for turning
down this more fecund future science, even if its course is driven by inscrutable DNNs. If these
categorizations are not necessarily blunders, then the ability of deep nets to detect the features on
which they are based should no more be counted against their candidacy for intelligence than the
ability of Einstein to see things others did not in the equations describing gravity and black holes.
Though we have here raised more questions than we have answered, we can already reject the

common, anthropofabulous conclusion that the DNNs’ verdicts on adversarial examples expose
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them as exhibiting merely ersatz intelligence; from there, we must leave the full investigation of

adversarial examples and their implications to other work (Buckner [unpublished]).

5.3 Human decision-making is also opaque
As noted above and in several critical analyses, the interpretability challenge conflates several
different concerns that are probably best separated. To make a start at disentangling them, the
distinction between explanatory rationality and justificatory rationality may be useful here
(Buckner [2019b]). Questions of explanatory rationality concern the causal history of agent’s
decision-making in terms of its internal reasons for acting—that is, the evidence or grounds that
it acted upon when producing the output that it did in that situation. In the XAl challenge, for
example, the questions “Why did the model do that?’, ‘Why not something else?’, and ‘How do I
correct an error?’ concern dimensions of explanatory rationality. Justificatory rationality, on the
other hand, involves the correctness or trustworthiness of the model’s decisions, which may or
may not cite causally determinative factors. In the XAI challenge, this covers the questions,
‘When do you succeed or fail?’, “When can I trust you?’, and especially “Why was that the cor-
rect thing to do?’. A key concern here is that we should not expect a single approach to the inter-
pretability challenge to simultaneously address both dimensions of rationality; it is possible that
causal explanations of the nets’ behaviours may not cite factors that provide intelligible justifica-
tions to humans, and justifications may not cite causally determinative factors. Anthropofabula-
tion causes us to conflate these two kinds of concern, however, because common sense supposes
that the justifications humans produce through introspection have direct, non-inferential access to
the causal antecedents of the behaviours so justified. However, a significant amount of cognitive

science suggests that this picture of human introspection is mistaken.
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To provide some examples, one of the reasons that people have supposed the internal
processing of DNNs to be opaque is that popular visualization methods that have been developed
to determine the representational functions of their hidden nodes have produced strange, chimer-
ical images. Activity maximization is perhaps the most popular method; it tweaks input images
using further machine learning until they maximally activate some particular node in a DNN’s
internal layers. This is supposed to show us the feature that node detects in input images when it
activates. A widely circulated paper from Google’s Al research group noted that their popular
Inception network seemed to detect a variety of chimerical features in images, such as ‘pig-
snails’, ‘admiral-dogs’, and ‘camel-birds’ which resemble no intuitively available features in
conscious human perception (Mordvintsev et al. [unpublished]; and see Fig. 6).

However, activity maximization is a new visualization technique that is poorly understood
and very unlike introspection in humans; directly comparing introspectible features to its results
is like comparing apples to resequenced orange DNA. There is little reason to suppose that we
have the ability to introspectively generate images that maximally activate particular neurons
somewhere in our visual cortex. It is also likely that representation in visual cortex is highly dis-
tributed across many neurons, so individual neurons in primate brains probably lack intelligible
representational functions to begin with (Plaut and McClelland [2010]). In fact, when activity
maximization is applied to neurons in a live monkey’s brain, the synthesized images are similar-
ly chimerical (Ponce ef al. [2019]; and see Fig. 7). In short, these methods may have some useful
role in addressing explanatory questions—telling us why, causally, the DNN (or monkey) react-
ed in that way to that exemplar; but we should not expect the images produced by these meth-

ods—either in DNNs or biological brains—to provide intuitively interpretable justifications.
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Figure 6. Results of running an activity maximization algorithm on a picture of clouds in a trained-up version of
Google’s Inception image-classifying DNN. Reproduced from (Mordvintsev et al. [2015]).
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Figure 7. Results of running an activity maximization algorithm on an electrode implanted to detect the firing rate
of a live monkey neuron, reproduced from (Ponce ef al. [2019]).

On the side of justificatory rationality, methods have been designed to generate justifica-
tions for DNN behaviour that humans find intuitively satisfying, but they have been criticized for
failing to highlight causally determinative factors. Many of these methods rely on producing ver-
bal justifications for a network’s decisions that are the result of further machine learning. For ex-
ample, the ‘Al Rationalization’ system collects a series of verbal justifications from humans
while playing the Atari game ‘Frogger’, and then uses further machine learning to correlate those
verbal justifications with cases where a DNN made similar decisions in similar circumstances

(Ehsan et al. [2018]; and see Fig. 8). The system can then deliver those justifications to human
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Figure 8. The ‘Rationalizing Robot’ from (Ehsan ez al. [2018]) providing an example rationalization
of its decisions.
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Figure 9. Favourability rank-orderings from human subjects who were asked to rank their preferences for three
different policies, as reported by Ehsan ez al. ([2018]). The ‘Rationalizing robot’ provided the human-correlated
justifications for its actions; the ‘action-declaring robot’ simply stated the action it was going to perform as it did
it; and the numerical robot provided its calculated confidence values for the actions it had just performed (which is
perhaps the most causally accurate explanation for the robot’s decision-making).

observers to support its decisions after they have been made. The researchers who developed this
system obtained user-satisfaction ratings from three different justification policies. Human sub-
jects reported finding the human-derived rationalizations more satisfying than more causally ac-
curate alternatives (in fact, the more causally accurate a justification was, the less subjects liked
it; see Fig. 9). The authors conceded that there is no direct causal link in this case between the

features that actually caused the system to make the decision and the features cited in the verbal
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justification. However, these authors note that social psychology similarly finds a disconnect
between human rationalizations and the factors that actually caused the actions so rationalized. In
fact, the best empirical theories of these systems in humans construe them as interpretive and in-
ferential, generated post-hoc to promote social acceptance, coherent self-identity, positive self-
esteem, and future-oriented control rather than out of a concern for backward-looking causal ac-
curacy. This conclusion derives from many different lines of evidence (for reviews, see Car-
ruthers [2011]; Cushman [2018]).

For one, there is research from split-brain patients, who have had the connections between
their brain hemispheres severed (often to mitigate seizures—and similar symptoms can be caused
by stroke, tumours, or arterial ruptures). Such patients cannot integrate visual information ob-
tained only by one hemisphere of the brain with verbal justifications generated by the other; as a
result, an instruction (such as ‘get up and walk’) can be visually presented to the right hemi-
sphere (via the left eye), causing the patients to initiate an appropriate behaviour (Gazzaniga
[2000]). The patients can then be asked to explain their behaviour, and their left hemispheres
(which are responsible for most of the linguistic processing) can use contextual information to
produce justifications that are plausible but completely confabulated (such as ‘I wanted to go into
the kitchen to get a Coke’). For another, the phenomena of choice blindness further demonstrates
that even neurotypical individuals can readily confabulate plausible justifications for choices
they did not actually make, justifications that could not possibly be causally accurate but are in-
distinguishable from normal cases of introspection (Johansson et al. [2006]). In a choice blind-
ness experimental design, subjects are asked to make a choice, then distracted, and finally given

an option other than the one they actually selected. When they are then asked to justify having
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selected this option, most subjects readily do so, often without any awareness that the item they
were provided is different from the one they actually chose.

There are many other sources of evidence impugning the causal accuracy of human intro-
spective justifications, and illustrating the readiness with which we confabulate when we lack
causally accurate information. While there may be good reasons to demand more from deep
learning systems than we could expect from humans, at present we are merely considering fair
comparisons. In that respect, so long as we do not conflate explanatory and justificatory ration-
ality, it does not seem that DNNs have a fundamental problem with interpretability that is not

also exhibited by human minds.

5.4 Humans are also notorious reward-hackers
The final criticism to rebut is the concern that DNNs trained by reinforcement signals merely
learn to ‘reward hack’ rather than learn real solutions to the problems on which they are trained.
The response here is to note that humans are also notorious reward-hackers when placed in badly
designed environments. One of the most obvious and directly comparable situations involves
humans playing video games that are ‘imbalanced’ in their reward structure. This is a very com-
mon concern in online roleplaying games that offer many different routes to advance one’s char-
acter. In these games, experience points and in-game currency are typically obtained by defeat-
ing foes or completing skilful actions. Game designers work exhaustively to create a homeostatic
economy of experience and currency within the game; different methods to obtain these re-
sources should all be perceived as roughly as difficult, time-consuming, and enjoyable as one

another to support diverse routes to advance within the game. Proper balancing enhances playa-
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bility and perceived fairness, in order to keep players coming back for further character en-
hancement.

Humans, however, are highly adept at discovering the most efficient ways to obtain resources
within a competitive game, and even slight imbalances will be found if present. These opportuni-
ties are often called ‘exploits’. Game exploits are discussed and shared in online message boards,
and tens of thousands of game players can quickly flock to repeating an exploit for days on end.
Viewed with the same kind of detachment as the OpenAlI’s endlessly spinning boat, these human
behaviours look just as pathological. One exploit in the game Fallout 4, for example, involves
repeatedly building and disassembling tens of thousands of copper statues of a baseball player
(which provides a small boost to experience) for twelve hours straight until they fill an entire
abandoned town. For present purposes, the important point is that we do not conclude that these
players have fundamentally misunderstood the point of their activities. Instead, we conclude that
the game environment is badly designed, and the human players are ingenious at seeking out and
taking advantage of these imbalances. The solution to an exploit is not to lecture players about
lacking ‘genuine’ rationality or ‘real’ learning; it is to patch the game to change its reward struc-
ture, to restore balance to its reinforcement ecosystem—which can sometimes take teams of ex-
perienced programmers dozens of patches to achieve through trial-and-error.

Indeed, the difficulty of engineering artificial environments in which humans do not reward
hack can make us wonder how the problem was ever solved in natural environments. The glib
answer is that we did not solve it; natural selection solved it, by applying a trial-and-error ap-
proach to millions upon millions of our striving and starving ancestors. There is little reason to
suppose that the product of this tinkering is a simple, transparent set of learning principles that

could be captured in symbolic, rule-based form. It is, instead, a highly complex physical body
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whose kinematics makes some motions more natural than others, a nervous system that reads its
status in real time via a set of rich, multi-modal sensory inputs, a set of specialized sensory input
organs that are more receptive to certain stimuli than others, and a highly constrained brain
whose operation can be subtly modified by a symphony of hormones, neurotransmitters, and
neuromodulators whose levels are dynamically controlled by these bodily inputs. Thus, rather
than seeking out the optimal, intuitively satisfying Bayesian meta-learning rule, biologically in-
spired progress in reinforcement learning is more likely to be achieved by evolutionary search
algorithms exploring combinations of bodily parameters for richer, more multi-dimensional rein-
forcement learning. DNN researchers should be trying to supplement models with additional and
more multi-dimensional reward signals like fatigue, digestion, anxiety, surprise, tissue damage,
emotional reactions, and social cues like accolade or embarrassment, rather than monolithic new
learning rules or innate domain-specific knowledge.

Even worse, there is little reason to think that reinforcement learning in humans is as success-
ful as anthropofabulation might have us believe. In sociology and psychology, there is an entire
research area investigating the ways that simple, quantified evaluation systems distort human
decision-making (Merry [2016]; Nguyen [2020]). Obvious examples occur when more natural
reward systems—Iike food or social cues—become co-opted by new, more readily available
stimuli. Simple examples of this phenomenon involve normally self-limiting reinforcers like
sugar or alcohol suddenly becoming available in purer forms and unlimited amounts, leading to
pathologically unhealthy behaviour. Subtler are the cases where reward policies are co-opted by
entirely new kinds of stimuli that decouple the reward signal from the goals that evolution
tweaked them to indicate. These hijackings can be good or bad; whether the ability of artificial

sweeteners to decouple sweetness from caloric content is a good thing depends upon the balance
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of relevant dietary science. Those working in this area, however, worry especially about cases
where symbolic or numerical stimuli are used as proxies for more difficult-to-assess rewards.
Examples of such proxies are endemic in modern life: credit scores, Fitbit counts, social media
likes, grade point averages, h-index, university rankings, and so on. One does not need to look
hard to find many examples where whole organizations or societies pathologically chase the
maximization of reward proxies, often to the detriment of the more basic goals that they were
initially designed to track.

In short, reward-hacking is not just some curious problem that confronts badly designed
DNNSs and their ‘alien’ ability to game a reward signal; it is a characteristically human pathology
that plagues our own ability to play video games, succeed in business or academia, and generally
not render the world unliveable. Anthropofabulation suggests that humans have some uncanny
innate ability to flexibly pursue intrinsically valuable goals in highly diverse environments; but a
fair appraisal of modern life would suggest that humanity is not currently doing so well at this
particular balancing act. Perhaps for both humans and DNNs, the needed solution is to improve
the structure of the environments in which we learn, rather than to fault the learning agents that

seek solutions within them.

6 General Lessons
The goal of this article has been to advocate for fairer comparisons between DNN and human
behaviour along four of the most popular criteria deployed by sceptics to argue that the kind of
processing that occurs in DNNs is fundamentally different from human cognition, and explore
general morals that can be applied to more productive future debates. Section 5 argued that unbi-

ased assessments would score humans similarly to DNNs along all four criteria. The assumption
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that humans are not vulnerable to these criticisms is not supported by empirical data, perhaps in-
stead propped up by the bias of anthropofabulation. Where modelling human cognition is our
goal, we should not aim to create DNNs that learn only from very few training examples without
significant scaffolding, are immune to adversarial examples, use decision-making mechanisms
that are completely transparent, or fail to exploit reward imbalances when placed in poorly de-
signed environments.

Some unifying threads of the preceding discussion can now be drawn out as promising topics
for future research. Critical discussions about artificial intelligence should feature more explicit
reflection on how to properly align human and machine performance when conducting compari-
sons, especially by bringing in empirical research from human psychology, neuroscience, and
biology. In particular, we need to be sure that our evaluation of human behaviour comes from a
sceptical appraisal of empirical data, undistorted by the rose-tinted hue of anthropofabulation. In
some cases, the relevant empirical work on humans remains inchoate; in particular, we need
more research on the provenance of scaffolded learning in humans and on the implications of
adversarial examples in perceptual psychology. And finally, we need more research on how to
properly structure bodies and environments so as to obviate pathological reward-hacking behav-
iour in both humans and artificial agents. Regarding DNNs not as black boxes but rather as un-
flattering mirrors might help us accept hard lessons about ourselves, and in so doing take steps

toward addressing some of the most pressing problems of our day.
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