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Abstract 

The last five years have seen a series of remarkable achievements in deep-neural-

network-based artificial intelligence (AI) research, and some modellers have argued that 

their performance compares favourably to human cognition. Critics, however, have ar-

gued that processing in deep neural networks is unlike human cognition for four reasons: 

they are (i) data-hungry, (ii) brittle, and (iii) inscrutable black boxes that merely (iv) re-

ward-hack rather than learn real solutions to problems. This article rebuts these criticisms 

by exposing comparative bias within them, in the process extracting some more general 

lessons that may also be useful for future debates. 
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1 Introduction 

The last five years have seen a series of remarkable achievements in neural-network-based artifi-

cial intelligence (AI) research. For example, systems based on deep neural networks (DNNs) can 

now classify natural images as well as or better than humans, defeat human masters of strategy 

games as complex as chess, Go, or Starcraft II, navigate autonomous vehicles across thousands 

of miles of mixed terrain, and compose essays that are often indistinguishable from human writ-

ing.  In the short history of AI, engineering breakthroughs have swung the pendulum in our theo-

retical approach to intelligence and rationality—from top-down tactics that emphasize structured 

representations, explicit, domain-specific knowledge, and rule-based problem solving (Newell 

and Simon [1976]), to bottom-up methods that locate intelligence in non-representational sen-

sorimotor abilities and skilful coping (Brooks [1991]). The success of DNNs on the kinds of 

tasks touted by both extremes suggests a revival in the fortunes of connectionist approaches 

(McClelland et al. [1986]; Clark [1989], [2003]; Rogers and McClelland [2014]), a midway posi-

tion that explains intelligence in terms of the ability of domain-general learning processes to ac-

quire abstract representations of the environment from low-level perceptual input (Botvinick et 

al. [2017]; Hassabis et al. [2017]; Buckner [2018]).  

However, the DNNs behind these marquee achievements are staggeringly complex and sub-

ject to puzzling vulnerabilities, which has led critics to dismiss them as ‘black boxes’ exhibiting 

intelligence that is merely ersatz or alien. To cope with this complexity, neural network research-

ers have suggested that we should engage their behaviour directly with experimental paradigms 

and data analysis methods derived from the sciences of human and animal behaviour. Such en-

gagement has led neuroscientists to conclude that DNNs are currently the most promising artifi-

cial models of perceptual similarity judgements in primates (Khaligh-Razavi and Kriegeskorte 
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[2014]; Lake et al. [2015a]; Hong et al. [2016]; Kubilius et al. [2016]; Yamins and DiCarlo 

[2016]; Guest and Love [unpublished]). Another area of research aims to extend psychometric 

methods for intelligence testing in humans to rank the intelligence of artificial computational 

models (Hernández-Orallo [2017]). Taking the idea that neural networks can be approached with 

the tools of animal psychology even further, the ‘Animal-AI Olympics’ has created a testbed ap-

plication that assesses AI systems on dozens of benchmarks derived from animal cognition re-

search (Crosby et al. [2019]; Crosby [2020]). An interdisciplinary coalition of influential scien-

tists has even called for the development of a new scientific field called ‘machine behaviour’ that 

would study AI agents in a more contextual and historically informed way, using methods de-

rived from behavioural ecology and ethology (Rahwan et al. [2019]). 

In short, comparisons between natural and artificial intelligences have never been so varied 

and ambitious—nor, as we will see below, so fraught. The capacity of DNNs to produce new 

forms of potentially intelligent behaviour and the development of new methods to evaluate their 

performance has outpaced our reflection on whether these comparisons are fair or meaningful 

(Guidotti et al. [2019]; Serre [2019]; Zednik [2019]; Zerilli et al. [2019]). Moreover, philoso-

phers of science have pointed out that biases plague human evaluation of nonhuman behaviours, 

and methodological subtlety is required to temper them (Keeley [2004]; Buckner [2013]; Watson 

[2019]). These difficulties are exacerbated when the other end of the comparison is an artificial 

system, which are often intended to reproduce only parts or idealized aspects of a cognitive agent 

(Stinson [2020]). In his defence of his famous imitation game test, Turing himself wrestled with 

these issues; and commentators have reflected on how to avoid being unwittingly convinced by 

artificial systems that present the superficial trappings of human-like behaviour (such as human-
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like facial expressions or gestures) without the same underlying competences (Block [1981]; 

Proudfoot [2011]; Złotowski et al. [2015]; Shevlin and Halina [2019]).  

This article suggests that this debate about fair comparisons in AI could be expedited by tak-

ing the lead from a century of reflection on similar questions in comparative psychology and 

ethology. While these fields dedicated much effort to developing rigorous empirical methods to 

avoid anthropomorphism-driven false positives, they have also recently come to grips with the 

danger of anthropocentrism-driven false negatives. In AI, by contrast, very little of this critical 

scepticism has yet been directed towards scoring the human behaviours to which AI performance 

is compared (though for recent exceptions, see Zerilli et al. [2019]; Firestone [forthcoming]; Ca-

naan et al. [unpublished]). 

To illustrate the effect of bias on the evaluation of machine behaviour, Section 2 reviews four 

popular arguments to the effect that deep learning is fundamentally unlike human learning, all 

focused on ways in which DNNs allegedly underperform humans. We will see in Sections 3–5 

that a bias called ‘anthropofabulation’ (Buckner [2013])—which scores nonhuman performance 

against an inflated conception of human competence—threatens the validity of these compari-

sons. When the same degree of critical scrutiny is directed towards the human side of these com-

parisons, our minds are also revealed to be black boxes plagued by many of the same vulnerabili-

ties. To sum up, a more apt metaphor for DNNs might be an unflattering if revealing mirror, one 

which raises new questions about our own intelligence and allows us to see our own blemishes 

with unprecedented clarity.  

 

2 Four Popular Criticisms of Deep Learning Research 
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This article canvasses and rebuts four criticisms that have been commonly offered against claims 

that processing in DNNs bears similarity to human cognition:  that deep learning is (i) too data-

hungry, (ii) vulnerable to adversarial examples, (iii) not interpretable, and (iv) merely reward-

hacks rather than learns real solutions to problems. These arguments feature prominently in in-

fluential critical reviews of deep learning, such as Lake et al. ([2017a]) and/or Marcus ([2018]). 

To be clear, this is not a complete survey of arguments against the similarity between human 

cognition and the processing of DNNs. My aim here is not to positively establish a deep similari-

ty between human cognition and DNNs by rebutting all such lines of attack, but rather to redirect 

attention to the subset of those empirical questions that are more likely to produce fruitful re-

search, and to extract some general lessons about conducting fair comparisons between humans 

and artificial agents.  

Three clarifications on these aims will be useful at the outset (readers wanting to jump 

straight to the criticisms can skip ahead to Section 2.1). First, though the criticisms and rebuttals 

discussed here will generalize to many other techniques in machine learning (for a relevant dis-

cussion, see Watson [2019]), for ease of exposition we here focus here on deep learning systems, 

which will be briefly characterized now. DNNs comprise a diverse family of network-based ma-

chine learning techniques. As with earlier neural network designs, they consist of layers of sim-

ple processing nodes transmitting activation to one another along weighted links, usually intend-

ed to model the activity of neurons and synapses at some level of abstraction. In contrast to earli-

er, shallower neural network architectures, ‘deep’ neural networks can have anywhere from five 

to hundreds of layers in-between input and output. Depth itself appears to have profound compu-

tational implications; it allows these networks to compose features hierarchically and enjoy ex-
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ponential growth (relative to the number of layers) in their representational capacity and compu-

tational power (for a review of evidence for this claim, see Buckner [2019a], Section 2.1). 

Such network depth is perhaps the only feature that unites all ‘deep’ learning systems, and 

there are many other ways in which their architectures vary. Specifically, they can vary in: the 

activation functions of their nodes; the connectivity patterns between their layers and number of 

nodes in each layer (esp. decreasing the numbers in successive layers to impose ‘bottlenecks’ in 

processing); their learning rules or training regimes (such as backpropagation, reinforcement, or 

predictive learning); whether they feature recurrent links connecting later layers back to earlier 

ones; the use of components or multiple networks to simulate the modulatory effects of memory 

buffers or attentional control; and the ways in which their processing is tweaked (‘regularized’) 

to avoid overfitting spurious correlations in the training set (Schmidhuber [2015]).  

To briefly canvass some of the most popular architecture combinations, deep convolutional 

neural networks (DCNNs) have perhaps featured most prominently in marquee achievements; 

they leverage a sequence of different activation functions (convolution, pooling, and rectifica-

tion) to perform hierarchical feature detection, and deploy mostly local connectivity between 

layers (LeCun et al. [2015]; Buckner [2018]). Deep autoencoders impose a bottleneck in the 

middle of a deep layer hierarchy, with an architecture resembling an ‘hourglass’ shape with few-

er and fewer nodes in the central layers, forcing the network to learn compressed representations 

that condense categories to their ‘gist’ (Hinton and Salakhutdinov [2006]). Generative Adversar-

ial Networks (GANs) have also captured the public’s attention; they involve tasking a second 

generative network to fool a primary discriminative network (often a DCNN), with the genera-

tive network’s nodes performing activation functions akin to the inverse of convolution and 

pooling (‘deconvolution’ and ‘unpooling’) to produce highly detailed and realistic ‘deepfakes’ 

This is the author’s accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of  
The British Journal for the Philosophy of Science, published by The University of Chicago Press on behalf of The British Society for the Philosophy of Science. 

Include the DOI when citing or quoting: https://doi.org/10.1086/714960  Copyright 2021 The British Society for the Philosophy of Science. 



Comparative Bias in the Science of Machine Behaviour 
 
	

 

7 

and ‘adversarial examples’ that can pose a security risk to discriminative networks (Goodfellow 

et al. [unpublished]). Variational autoencoders (VAEs) combine features of GANs and deep au-

toencoders; they attempt to learn hidden relationships between latent variables that could be used 

to reconstruct its training data (Kingma and Welling [unpublished]).  Long short-term memory 

networks (LSTMs) deploy recurrent connections in memory cells to simulate a memory for con-

text, and can excel at processing complex sequences in input like grammatical structures 

(Hochreiter and Schmidhuber [1996]). Transformers—the most sophisticated language-

production deep learning architecture to date, exhibited in systems like BERT, GPT-2, and GPT-

3—modulate relatively homogeneous deep neural networks using a complex form of hierarchical 

attention to represent multiple channels of complex syntactic and semantic information relevant 

to predicting word placement in language production and automated translation (Vaswani et al. 

[2017]).  

As a second introductory clarification, we consider three other prominent criticisms that 

readers might be anticipating, in order to set them aside for the remainder of the article. Specifi-

cally, this article will not engage with claims that (a) DNNs cannot create new compositional 

representations on-the-fly, (b) strategies learned by DNNs do not transfer well to radically differ-

ent tasks or stimuli, and (c) that DNNs cannot learn to distinguish causal relationships from mere 

correlations. Whether current or future DNN architectures can achieve such compositionality, 

radical transfer, and causal inference remain open empirical questions ( Lake [2014]; Battaglia et 

al. [unpublished]; Russin et al. [unpublished]), ones that will hopefully receive more attention in 

future research. The ability to learn and reason about causal relationships in particular might be 

thought a distinguishing feature of human cognition and a key goal for more human-like AI 

(Penn and Povinelli [2007a]; Hespos and VanMarle [2012]; Pearl [2019]). Granted, most neural 
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networks are not trained to diagnose causal relationships, and many humans confuse correlation 

for causation (Lassiter et al. [2002]). When neural networks are trained to diagnose causal rela-

tionships, they have shown some successes, especially generative architectures like variational 

autoencoders (Kusner et al. [unpublished]; Zhang et al. [2019]) and models that use deep rein-

forcement learning (Zhu et al. [unpublished]). That said, comparative biases will surely affect 

these debates too, and we may hope that the four rebuttals canvassed here will suggest how to 

mitigate them when they do.  

Finally, in what follows, we will not here discuss linguistic behaviour or cognition. The like-

liest default position is that compositional recursive grammar is a uniquely human capacity 

amongst animals, and some classical criticisms of the neural network approach take this to be 

essential for intelligent behaviour (Fodor and Pylyshyn [1988]). Furthermore, this capacity is en-

gaged by many classic assessments of artificial intelligence like the Turing Test, and deep learn-

ing models—especially massive transformers like GPT-3—have recently achieved impressive 

results on tasks like automated translation, question answering, and text production. However, 

this capacity is closely related to the other three that we have already set aside, and the way that 

the brain enables linguistic production remains contentious in developmental linguistics and 

cognitive neuroscience (Fitch [2014]; Scott-Phillips et al. [2015]; Berwick and Chomsky [2017]; 

Moore [2017]). Again, the goal of this article is not to positively establish that DNNs are intelli-

gent by rebutting all comers, so we leave the question of whether current or future DNN archi-

tectures can implement compositional recursive grammar open (Russin et al. [unpublished]; 

though see Lake [2019]). The kinds of biases that will be described for perceptual decision-

making and strategy game-play also appear in the linguistic domain (including the Turing test), 

so this may seem an odd omission given the article’s aims. The reason for it is simply that the 
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evaluation of linguistic behaviour from deep learning systems (especially transformers like GPT-

3) deserves its own specialized article- (or book-)length treatment, whereas issues of compara-

tive bias are already complex enough in the simpler systems and applications to occupy us here.  

 With these clarifications in place, we now proceed to review the four popular criticisms 

that will be considered here. 

 

2.1 Deep learning is too data-hungry 

One of the most common critical refrains is that DNNs require far more training data than hu-

mans to achieve equivalent performance. The standard methods of training image-labelling 

DNNs, for example, involves supervised backpropagation learning on the ImageNet database, 

which contains 14 million images that are hand-annotated with labels from more than 20,000 ob-

ject categories. To consider another example, AlphaGo’s networks were trained on over 160,000 

stored Go games recorded from human grandmaster play, and then further trained by playing 

millions of games against iteratively stronger versions of itself (over 100 million matches in to-

tal); by contrast, AlphaGo’s human opponent Lee Sedol could not have played more than 50,000 

matches in his entire life. In the human case, critics emphasize the phenomena of ‘fast mapping’ 

and ‘one-shot learning’, which seem to allow humans and animals to learn from a single exem-

plar. For example, Lake et al. ([2015b]) argue that humans can learn to recognize and draw the 

components of new handwritten characters, even from just a single example (Fig. 1). Sceptics 

thus wonder whether DNNs will ever be able to learn comparatively rich category information 

from smaller, more human-like amounts of experience. 
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Figure 1. The decomposition of a novel handwritten figure into three individual pen strokes, which humans can 
purportedly learn from a single exemplar (reproduced from Lake et al. [2015b]). 

	

2.2 Adversarial examples expose deep learning as a fraud 

‘Adversarial examples’ are unusual stimuli that are generated by one ‘adversarial’ DNN to fool 

another. The original adversarial examples were ‘perturbed images’ that were created by a gen-

erative adversarial network (GAN) by slightly modifying an easily classifiable exemplar in a 

way that was imperceptible to humans, but which could cause dramatic misclassification by 

DNNs targeted for attack (Goodfellow et al. [unpublished]; and see Fig. 2). Perturbation methods 

most commonly modify many pixels across an entire image, but they can be as focused as a sin-

gle-pixel attack (Su et al. [2019]). The pixel vectors used to perturb images are usually discov-

ered by training the adversarial DNN on a discriminative DNN’s response to specific images, but 

some methods can also create ‘universal perturbations’ that disrupt classifiers on any natural im-

age (Moosavi-Dezfooli et al. [2017]).  
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It was soon discovered that many perturbation attacks can be disrupted with simple pre-

processing techniques, such as systematic geometric transformations of images like rotation, re-

scaling, smoothing, and/or de-noising (a family of interventions called ‘feature squeezing’—Xu 

et al. [2017]). A reasonable interpretation of this phenomenon is that DNNs are vulnerable to 

image perturbations because their perceptual acuity is too keen; the attack exploits their sensitivi-

ty to precise pixel locations across an entire image, so it can be disrupted by slightly altering the 

pixel locations across the entire input image.	

 However, another family of adversarial example generation methods—involving the 

creation or discovery of ‘rubbish images’ that are supposed to be meaningless to humans but 

confidently classified by DNNs—were found to be more resistant to such default countermeas-

ures (Nguyen et al. [2015]). Subsequent research has found that these (and other) adversarial ex-

amples exhibit many counterintuitive properties: they can transfer with (incorrect) labels to other 

DNNs with different architectures and training sets, they are difficult to distinguish from real ex-

emplars using pre-processing methods, and they can be created without ‘god’s-eye’ access to 

model parameters or training data. Rather than being an easily overcome quirk of particular 

models or training sets, they appear to highlight a core characteristic of current DNN methods. 

 ‘panda’    ‘nematode’  ‘gibbon’ 

57.7% confidence  8.2% confidence  99.3% confidence 

Figure 2. An adversarial perturbed image, reproduced from (Goodfellow et al. [unpublished]). After the ‘panda’ 
image was modified slightly by the addition of a small noise vector (itself classified with low confidence as a 
nematode), it was classified as a gibbon with high confidence, despite the modification being imperceptible to 
humans. 
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Much of the interest in adversarial examples derives from the assumption that humans do 

not see them as DNNs do. For practical purposes, this would entail that hackers and other mali-

cious agents could use adversarial examples to fool automated vision systems—for example, by 

placing a decal on a stop sign that caused an automated vehicle to classify it as a speed limit sign 

(Eykholt et al. [2018])—and human observers might not know that anything was awry until it 

was too late. For modelling purposes, however, they might also show that despite categorizing 

naturally occurring images as well or better than human adults, DNNs do not really acquire the 

same kind of category knowledge that humans do—perhaps instead building ‘a Potemkin village 

that works well on naturally occurring data, but is exposed as fake when one visits points in [da-

ta] space that do not have a high probability’ (Goodfellow et al. [unpublished]). 

 

2.3 Deep neural nets are not interpretable 

Another common lament holds that DNNs are ‘black boxes’ that are not ‘interpretable’ (Lipton 

[unpublished]) or not ‘sufficiently transparent’ (Marcus [2018]). State-of-the-art DNNs can con-

tain hundreds of layers and billions of individual parameters, making it difficult to understand 

the significance of specific aspects of their internal processing. However, key questions in this 

charge remain unanswered (Zednik [2019]), such as: What kind of interpretability needs to be 

provided, to whom should the interpretation be provided, what is the purpose of interpretability, 

and how would we know whether we had succeeded in providing it? At any rate, these concerns 

should only be counted against deep learning models if some obvious alternative systems per-

form better on them. While DNNs are often compared to linear models (which are—probably 

incorrectly—thought to be more interpretable), usually the comparison class is adult humans. 

Recent governmental initiatives such as DARPA’s eXplainable AI (XAI) challenge (Fig. 3) and 
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the EU’s General Data Protection Regulation—which provides users with a ‘right to explanation’ 

for decisions made by algorithms that operate on their data—have quickened the challenge and 

provided it with some practical goals, if not always conceptual clarity (Goodman and Flaxman 

[2017]; Turek [unpublished]). 

 

2.4 Deep neural nets trained by reinforcement learn to ‘reward hack’ rather than solve 

problems 

Many of the most impressive achievements by DNNs highlighted above were produced by rein-

forcement learning (for an overview of this area, see Sutton and Barto [2018]). This method 

trains networks using a general reward signal that is designed by the network’s programmers and 

tells the network whether it succeeded or failed on its last decision. Many of the high-profile 

achievements of DNNs involved games like Go, chess, or Starcraft II because game score pro-

vides an easily quantifiable reward signal. In other areas of research such as artificial locomo-

tion, creating an effective reward signal is more difficult. Many reward an agent for simply mov-

ing forward in an artificial environment, perhaps with minimal energy expenditure by its digital 

Figure 3. The DARPA XAI concept; figure created by DARPA for public release (Turek [unpublished]). 
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avatar. For example, one deep reinforcement model trained in the ‘Half-Cheetah’ testbed envi-

ronment—in which models learn to move an idealized, two-dimensional cheetah avatar forward 

by manipulating several points of freedom in its two legs—learned that it could locomote the 

cheetah by falling forward and then flailing the legs in the air so as to flop the avatar forward on 

its back (Irpan [unpublished]). In another widely shared blog post written by the research group 

OpenAI, the researchers recount how their DNN learned to play the boat racing Atari game 

‘Coast Runners’ by endlessly turn the boat in tight, off-course circles without ever completing 

the race, because doing so allowed it to continually collect replenishing ‘turbo’ bonus widgets 

that provided a rapid, never-ending boost to its game score (Amodei and Clark [unpublished]). 

Critics worry that these examples show that the models lack the ‘common sense’ that humans 

would bring to bear on these tasks, and that the solutions they learn are brittle ‘reward hacks’ that 

optimize the reinforcement signal without any real understanding of the problems they are 

trained to solve.  

 

3 Purposes, Interests, and Fair Comparisons 

There are many reasons why we might want to compare different kinds of agents in terms of 

their intelligence, rationality, or other mental abilities. For one, such comparisons can serve met-

aphysical goals: we may want to learn about the different ways that intelligence can be realized 

in nature or artefacts—as has been traditionally explored in the literature on ‘multiple realizabil-

ity’ (Polger and Shapiro [2016]). Second, such investigations can serve semantic projects, by 

helping us clarify these concepts, which are often vaguely defined or equivocal (Akagi [2018]; 

Miracchi [2019]). Third, they can serve more practical goals: we may be interested in the epis-

temic, ethical, or legal status of other kinds of agents, and the possession of specific mental abili-
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ties may be relevant to those statuses ( Allen [2006]; Andrews et al. [unpublished]). Fourth, they 

can be used for scientific modelling purposes in human cognitive psychology, to better under-

stand and explain how intelligent behaviour is produced in our own case, by engineering systems 

based on different hypotheses and comparing their performance to human behaviour or their 

structure to that of the human brain (Stinson [2020]). Fifth, comparisons can serve a variety of 

engineering or medical projects: we may want to establish the suitability of artificial models to 

predict the results of medical interventions on human brains before conducting human trials, or 

as alternatives for human labour in a variety of different applications (Hassabis et al. [2017]).  

Though some of these purposes have been more frequently discussed in the context of animal 

psychology, they will become increasingly relevant to artificial intelligence as our computational 

models are able to successfully replicate more and more aspects of human and animal behaviour. 

Though this list is not exhaustive, we can already see that there are many competing pressures 

underlying such comparisons, even and especially when the goals of the comparisons are not 

made explicit. All of the aims, however, should focus on the degree of relevant underlying simi-

larity that holds between the two systems to determine whether they succeed. From a philosophy 

of science perspective, we should accept that these models often only need to reproduce parts or 

idealized aspects of these phenomena to serve their purpose; as Stinson ([2020]) puts it, quoting 

Winsberg ([2010]), the right relationship is often something far more complicated and subtle 

than ‘mere mimicry’.  

So, how similar, or in what way, must a DNN’s processing be to a target system or mental 

ability to serve as an artificial implementation of it that is useful for these purposes? Obviously, 

some aspects of a DNN’s implementation will be irrelevant to all of these goals; we should not 

fault artificial systems because they require external electricity sources to perform their pro-
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cessing any more than we should reward them for being able to function better than humans in 

low-oxygen environments. One way to pose this question emphasizes the traditional distinction 

in cognitive science between competence and performance (Firestone [forthcoming]); artificial 

models should engage the same underlying competence that humans do when performing some 

task, but do not need to reproduce all the performance factors. One concern about this strategy, 

however, is that competences can be construed in different ways, inviting evaluative differences 

to masquerade as empirical ones. To review a topically relevant example, one diagnosis of the 

famous disagreement between classicists Fodor and Pylyshyn ([1988]) and the connectionists 

(such as Smolensky [1988]) is that Fodor and Pylyshyn were only interested in a particular sort 

of explanation of compositionality and systematicity, whereas the connectionists were interested 

in many other phenomena that were better (or only) explained by connectionist representations 

(Matthews [1994]). Differences of explanatory interest are common in debates in cognitive sci-

ence, which perhaps explains why they are often difficult to resolve by empirical means (for an-

other case study of such an impasse in comparative social psychology, see Penn and Povinelli 

[2007b]; Call and Tomasello [2008]; Buckner [2013]). 

One should be wary that one has been invited to such a masquerade whenever critics argue 

that only systems meeting certain restrictive criteria count as ‘genuine’, ‘real’, ‘strong’, or ‘bona 

fide’ examples of mental capacities like intelligence, learning, rationality, cognition, and so on. 

Despite the formal ornament gilding these critiques, these adjectives are not natural kind terms 

with empirical content; they are rather baldly honorific, and their evaluative criteria can be stipu-

lated arbitrarily from one moment to the next to suit the critics’ whims. Indeed, such honorifics 

are beginning to show up in the appraisals of deep learning critics such as (Bringsjord et al. 

[2018]), who allege that deep neural networks are not capable of ‘real’ learning—which these 
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authors hold is instantiated only in cases where agents can provide demonstrations for what they 

have learned adverting to formal definitions of key terms involved, as (to use an example sug-

gested by an anonymous reviewer) a math student may produce in a proof of the fundamental 

theorem of algebra. This benchmark produces the surprising verdict that children do not really 

learn how to walk, talk, or recognize objects, when it is sensible to suppose that artificial intelli-

gence should aim to solve these basic competences on the road to more ambitious ones. A diag-

nosis of this debate is that these critics are only interested in a special kind of learning that is 

paradigmatically instantiated in mathematical education, but which is hardly as central to other 

characteristically human cognitive competences as they suppose.  

While it is usually otiose to belabour such matters of taste or terminology, there are some 

practical disadvantages to indulging such restrictionism when it comes to such general terms as 

‘intelligence’, ‘learning’, ‘rationality’, or ‘cognition’ (Akagi [2018]). First, there is worry that 

such critiques would confine AI to blind alleys that had already been explored in earlier stages of 

research. Starting out by attempting to build systems that can solve pinnacle human achieve-

ments using declarative knowledge derived from human verbal justifications has repeatedly pro-

duced fragile systems that can mimic human behaviour only in limited applications involving 

pre-digested input for which they were explicitly programmed, but which can do little else, and 

whose behaviour fails to generalize to situations even slightly outside of their programming 

(Hofstadter [1985]; Brooks [1991]). Though IBM’s DeepBlue defeated world champion Garry 

Kasparov in chess in 1997—perhaps the highest-profile achievement of this top-down approach 

to AI—it would have to be completely reprogrammed to play another game. Reinforcement-

learning-based DNNs, by contrast, have by now shown an impressive ability to learn their own 
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solutions to dozens of different games without changing their algorithms (Mnih et al. [2015]; 

Silver et al. [2018]; Lyre [2020]).  

Second, such stipulations can close off questions that ought to be settled by empirical rather 

than terminological methods (Allen [2017]; Ramsey [2017]). For example, even if mathematical 

cognition were our primary interest, empirical investigation of mathematical demonstration 

shows that low-level perceptual and pattern-matching abilities are more involved in the reliable 

manifestation of these competences in typical math students than we would have presumed from 

the armchair (Landy et al. [2014]). And finally, reliance on such honorifics has a way of leading 

to constantly shifting goalposts; every time an animal or artificial system satisfies a previously 

specified benchmark, the critic can simply endorse a yet more restrictive interpretation of ‘real’ 

or ‘genuine’ and push the borderline ever-closer to the uppermost limits of human perfor-

mance—and possibly even beyond. For example, these interests led the same critics to conclude 

controversially that human cognition is hypercomputational, without providing any empirical 

evidence that humans reliably hypercompute or ethological investigation into the conditions in 

which they do so that would be required to conduct fair comparisons (Chalmers [1995]; 

Bringsjord and Arkoudas [2004]; Davis [2004]; Govindarajulu and Bringsjord [2012]). 

   

4 A Crash Course on Comparative Bias 

In this section, we extract a general lesson that can help us avoid these pitfalls by looking to oth-

er sciences that have faced similar pressures. Comparative psychology and cognitive ethology 

have struggled to fairly align different kinds of intelligences for more than a century, and have 

by now come to appreciate that human researchers are vulnerable to systematic biases that can 

distort such comparisons by causing us to rush to judgement without properly evaluating the rel-
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evant underlying similarities. To counter these biases, the study of machine behaviour should 

adopt similar methodological correctives, such as Morgan’s canon and Hume’s dictum (Buckner 

[2013]; Rahwan et al. [2019]). One bias that has already been well studied by philosophy of 

comparative psychology and artificial intelligence is anthropomorphism (de Waal [2000]; 

Wynne [2004]; Proudfoot [2011]). A sizeable literature in comparative psychology explores cor-

rectives for anthropomorphism and their proper application (Sober [1998]; Karin-D’Arcy [2005]; 

Buckner [2017]). On the other hand, there are also a variety of anthropocentric biases that can 

thumb down the scales against nonhumans. Anthropocentrism can cause us to assume that only 

behaviours with the superficial trappings of human performance are valuable or intelligent—

such as supposing that only animals that navigate by sight could possess cognitive mapping, 

when bats or dolphins might create maps of their environment using echolocation. Semantic an-

thropocentrism is usually a mistake, but not always; in cases where traits really are uniquely hu-

man—as again is probably the case with semantically compositional language with recursive 

grammar (Fitch [2010]; Berwick and Chomsky [2017])—semantic anthropocentrism may be un-

avoidable.  

One form of anthropocentrism is guaranteed to be a mistake, however: the bias of ‘an-

thropofabulation’ (Buckner [2013]). Anthropofabulation combines semantic anthropocentrism 

with an exaggerated view of human cognitive performance. Anthropofabulation results from an 

empirically uninformed picture of human cognitive processing derived from introspection or cul-

tural traditions. Common sense in some cultures tells us that our thought processes are rational—

derived from a dispassionate processing of the situation, a direct introspective access to our actu-

al beliefs and motivations, and independence from subtle environmental scaffolding, historical 

associations, or emotional reactions. A great deal of human social psychology and philosophy of 
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psychology, however, has cast this picture of human cognition into doubt (Nisbett and Ross 

[1980]; Kahneman and Frederick [2002]; Samuels et al. [2002]; Carruthers [2011]).  

In practice, anthropofabulation has caused sceptics to compare human and animal perfor-

mance in situations that are crucially disanalogous, such as when humans are tested with conspe-

cifics but chimpanzees with heterospecifics, humans tested in a known caregiver’s lap while 

chimpanzees are tested with strangers behind Plexiglas, or humans are tested on culturally famil-

iar stimuli while chimpanzees are tested on unfamiliar artificial stimuli (Boesch [2007]). An-

thropofabulation’s rosy vision of human cognition causes us to implicitly assume that human 

performance could not possibly depend upon such environmental scaffolding, leading us to over-

look or downplay these disanalogies. While these disanalogies are generally now seen as mis-

takes in comparative psychology, we are only beginning to appreciate their analogues in artificial 

intelligence (Zerilli et al. [2019]; Firestone [forthcoming]; Canaan et al. [unpublished]). The re-

mainder of the article argues that critics of DNNs are similarly evaluated in unfairly disanalo-

gous situations or by assessing penalties to DNNs for factors that apply equally well to adult hu-

man cognition. Once the anthropofabulation in these critiques is exposed, they no longer clearly 

support the conclusion that deep learning systems and human brains are performing fundamen-

tally different kinds of processing—and indeed, might teach us hard lessons about our own cog-

nition as well.  

 

5 Four Rebuttals 

This final section illustrates and rebuts anthropofabulation in the four criticisms of deep learning 

on which we focused above. This story is as much or more about humans than about machines; 

indeed, the story’s moral is that artificial intelligence researchers need to draw less upon intro-
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spection and more on an unbiased, empirically grounded appraisals of human intelligence—

warts and all—to fairly evaluate machine behaviour. In many cases, when we do this systemati-

cally, we will find that the machines have not been given the same kinds of tasks or provided 

with the same kind of training as the humans, even when it is possible to do so (Firestone [forth-

coming]).   

 

5.1 Human learning involves more trainable exemplars than common sense supposes 

One way that anthropofabulation might bias us against DNNs is by causing us to undercount the 

number of trainable instances that should be scored to adult human performance. Two factors are 

often neglected in counting the number of exemplars that humans should be scored as having 

been exposed to in learning: 1) that many different vantages of the same object can provide dis-

tinct training exemplars for cortical learning, and 2) that offline memory consolidation during 

sleep and daydreaming can replay the same exemplars—and even simulated novel exemplars 

generated from those same experiences—many thousands of times in offline repetitions. Ignor-

ing these factors, common sense might score an infant’s ten-minute interaction with a new toy as 

a single exemplar.   

It is difficult to decide exactly which features of human perceptual learning are relevant to 

the comparison in order to devise a proper accounting system for humans, but we can review 

some results in the neighbourhood. Studies of motion-picture perception have suggested that 

human vision has a frame rate of about ten to twelve images per second (below this rate, we can-

not perceive motion as continuous). We can also consider how long it takes us to become con-

sciously aware of or be affected by a stimulus; while it takes 200-400 ms for us to become con-

sciously aware of a perceptual stimulus, attentional shifting to a new stimulus begins in as little 
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as twenty milliseconds, and category structure can be implicitly influenced by nonconscious ex-

posures to stimuli as brief as one millisecond (Kunst-Wilson and Zajonc [1980]; Schacter 

[1987]; Murphy and Zajonc [1993]). Moreover, perceptual memories may be repeatedly recon-

solidated by theta rhythm in the medial temporal lobes during sleep and daydreaming many 

times over a period of months and years (Stickgold [2005]; Walker and Stickgold [2010]). We 

also know that in mammals, these consolidation exposures can train the cortex on novel experi-

ences synthesized from combinations or transformations of previous training information—as 

revealed by cell recordings that show rats mentally exploring novel maze routes during sleep that 

they never actually traversed when awake (Gupta et al. [2010]). Taking all these factors into ac-

count, an infant’s ten-minute interaction with a new toy might be fairly scored as providing tens 

of thousands of trainable exemplars, rather than a single one, as common sense might suppose. In 

this sense, Herbert Simon’s classic quip that ‘everything of interest in cognition happens above 

the 100-millisecond level’ is classic anthropofabulation, focusing attention on only the introspec-

tively available surface features of human categorization while ignoring a vast iceberg below 

(Hofstadter [1985]).1  

Neither is this merely idle nit-picking; neural network models that attempt to replicate these 

nonconscious aspects of human learning can make more efficient use of smaller, more human-

like training sets. For example, when deep learning models are trained on successive frames of 

video rather than static exemplars, many different vantage points on the same object can be treat-

ed as independent training instances that improve model performance (Luc et al. [2017]; Lotter 

et al. [unpublished]; Orhan et al. [unpublished]). When DNNs are supplemented with ‘episodic 

																																																													
1 Granted, useful information can be obtained from the first-person perspective; Ericsson and Simon ([1984]) em-

phasized speak-aloud protocols, which can provide useful information about the information attended to by a sub-

ject, but which are quite different than the kind of rationalization considered in Section 5.3. 
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replay’ buffers that are inspired by declarative memory faculties in mammals, a network’s per-

formance can continue to benefit from repeatedly replaying exposure to the same training in-

stances numerous times (Mnih et al. [2015]; Blundell et al. [2016]; Vinyals et al. [2016]). Pre-

dictive, ‘self-supervised’ networks—which attempt to learn by predicting the future from the 

past, the past from the present, occluded aspects of objects from the seen aspects, and so on—are 

championed as the future of the field by DNN pioneers like LeCun ([2018]). There is little evi-

dence that the efficiency gains that can be obtained from such biologically inspired innovations 

have already plateaued.   

Still, critics hold that this all falls short of the kind of one-shot learning of novel digits and 

their construction emphasized by some critics, which has purportedly been modelled in some 

Bayesian systems (see Section 2.1 above). While numerous DNN systems produce one-shot or 

even zero-shot learning on related tasks (Socher et al. [2013]; Rezende et al. [2016]; Brown et 

al. [unpublished]), critics note that they do so only with extensive pre-training. Nevertheless, 

there remain significant questions about the fairness of this response. Humans are capable of 

such one-shot learning only after extensive practice in recognizing and generating a variety of 

different handwritten figures, experience that has occurred outside the purview of any laboratory 

experiment. The Bayesian programs that are purported to model this one-shot learning must in-

corporate significant amounts of high-level knowledge and representational structures that are 

manually encoded by their programmers (Botvinick et al. [2017]). These Bayesian modellers on 

some occasions profess agnosticism as to the origins of this knowledge, and on others wave their 

hands at genetically programmed innate mechanisms (Lake et al. [2017b], p. 53). Such specific 

forms of knowledge are not plausibly encoded directly in the genome, however, which likely on-

ly contains enough storage space to specify very general wiring principles of the sort that already 
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make DNNs especially good at things like translation invariance and which were inspired by 

neuroanatomical observations (Zador [2019]). In short, until the cognitive provenance of this 

knowledge is accounted for in humans—specifically, until we know the nature and number of 

training exposures adult humans require to scaffold such one-shot learning, and how their genetic 

scaffolding expresses itself in the human brain—these concerns cannot fairly be scored against 

DNNs in this debate.  

 

5.2 Deep neural net’s verdicts on adversarial examples may be correct 

Recent investigations have challenged the assumption that a DNN’s take on adversarial examples 

is really so alien to human perception. One still-controversial way to challenge this assumption is 

by using perturbation methods to produce artificial stimuli that can fool humans (Elsayed et al. 

[2018]). Even more interestingly, however, Zhou and Firestone ([2019]) showed that humans can 

easily ‘adopt the machine perspective’ and, when forced to choose between a predetermined list 

of candidate labels, predict a DNN’s labels for rubbish images with high accuracy (Fig. 5). These 

authors suggest that the behaviour of DNNs in these cases that initially appeared to be an error 

might have been due to the fact that during training and testing, the DNNs were always forced to 

choose amongst a list of candidate labels, even when images were very different from previously 

classified exemplars. Humans, by contrast, can typically reject stimuli as unusual or ambiguous.  
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Figure 4. A perturbed image that can purportedly fool human subjects, with the original image of a cat on the left, 
and the perturbed image (often classified as a dog) on the right. Image reproduced from (Elsayed et al. [2018]). 

 

Figure 5. Examples of two different types of rubbish images tested by Zhou and Firestone ([2019]) with preferred 

DNN labels. In a forced-choice task, humans were able to guess a DNN’s preferred labels for these images with high 

accuracy. (Image reproduced from Zhou and Firestone [2019]). 

 

This difference marks a crucial disanalogy in many comparisons between natural and artifi-

cial judgements on adversarial examples, a difference that may be obscured by anthropofabula-

tion. Specifically, Zhou and Firestone’s results suggest that DNNs do appear to capture some as-

pects of lower-level perceptual categorization in humans; many rubbish images do look like 
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members of the purportedly incorrect label class, even if humans do not ultimately think that 

they look like they are members of that class (the way an intrinsically meaningless inkblot in a 

Rorschach test may look like a duck without looking like it is a duck). DNNs may thus be cor-

rectly delivering human perceptual similarity judgements, but not yet have the resources to draw 

a distinction between an exemplar superficially resembling something and actually looking like a 

member of the class.2 This kind of distinction is difficult for even human children and adult 

chimpanzees to master (Flavell et al. [1983]; Krachun et al. [2016]), and the DNN modellers did 

not even attempt to train their networks to perform this kind of discrimination. Perhaps it remains 

an open question how to model the latter kind of judgement in DNNs (Smith [2019]), but cur-

rently available comparisons do not yet demonstrate that a DNN’s processing is hopelessly alien 

to human perception.  

Even more recently, commentators have begun explicitly calling out the foundational anthro-

pocentrism of the debate over adversarial examples, by questioning whether the verdicts DNNs 

issue on these unusual stimuli should be considered mistaken or unintelligent in the first place. A 

ground-breaking series of empirical studies by Ilyas et al. ([unpublished]) recently suggested that 

vulnerability to adversarial examples may be a feature and not a bug of DNNs. These authors 

discovered two surprising things: first, that when DNNs were trained exclusively on a diet of ad-

versarial examples, their classification behaviour transferred well to novel natural images, and 

second, that when their training sets were altered to remove the features that caused them to be 

susceptible to adversarial examples, their discrimination performance on natural stimuli was also 

significantly diminished. Combined, these two findings suggest that the features to which DNNs 

																																																													
2 One residual concern here, pointed out by an anonymous reviewer, is that the kinds of errors made by these net-

works may evince what Watson ([2019]) calls ‘myopia’, or a tendency to ignore structural relationships that seem 

obvious to humans.  
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respond in adversarial examples are well-generalizing aspects of naturally occurring data: they 

are predictively valid in naturally distributed data, and humans may only fail to deploy them in 

their own categorizations due to comparatively inferior perceptual or cognitive acuity. While this 

does not diminish the practical significance of the phenomenon as a security threat, it raises phil-

osophical questions as to which features ought to be relevant to assessing intelligence in catego-

rization tasks.  

These questions may soon become especially pressing, for the detection of such features may 

have enabled some DNNs to make dramatic leaps beyond the limits of human intuition on prob-

lems characterized by high complexity and holistic nonlinear interactions—such as the predic-

tion of stable end states for folding proteins, a problem on which the DNN-based AlphaFold sys-

tem recently outperformed human modellers who had devoted their professional lives to solving 

this kind of task (AlQuraishi [2019]). Perhaps the DNNs can discover intricate, high-frequency 

‘interaction fingerprints’—similar in form to the features that cause them to be vulnerable to ad-

versarial perturbations—that point the way to new discoveries in disease diagnosis and drug de-

velopment, but which are beyond human ken (Gainza et al. [2019]). It is difficult to justify the 

conclusion that science should eschew such features without simply relying on a flat-footed form 

of anthropocentrism; and pragmatic philosophers of science would have little grounds for turning 

down this more fecund future science, even if its course is driven by inscrutable DNNs.  If these 

categorizations are not necessarily blunders, then the ability of deep nets to detect the features on 

which they are based should no more be counted against their candidacy for intelligence than the 

ability of Einstein to see things others did not in the equations describing gravity and black holes. 

Though we have here raised more questions than we have answered, we can already reject the 

common, anthropofabulous conclusion that the DNNs’ verdicts on adversarial examples expose 
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them as exhibiting merely ersatz intelligence; from there, we must leave the full investigation of 

adversarial examples and their implications to other work (Buckner [unpublished]). 

 

5.3 Human decision-making is also opaque 

As noted above and in several critical analyses, the interpretability challenge conflates several 

different concerns that are probably best separated. To make a start at disentangling them, the 

distinction between explanatory rationality and justificatory rationality may be useful here 

(Buckner [2019b]). Questions of explanatory rationality concern the causal history of agent’s 

decision-making in terms of its internal reasons for acting—that is, the evidence or grounds that 

it acted upon when producing the output that it did in that situation. In the XAI challenge, for 

example, the questions ‘Why did the model do that?’, ‘Why not something else?’, and ‘How do I 

correct an error?’ concern dimensions of explanatory rationality. Justificatory rationality, on the 

other hand, involves the correctness or trustworthiness of the model’s decisions, which may or 

may not cite causally determinative factors. In the XAI challenge, this covers the questions, 

‘When do you succeed or fail?’, ‘When can I trust you?’, and especially ‘Why was that the cor-

rect thing to do?’. A key concern here is that we should not expect a single approach to the inter-

pretability challenge to simultaneously address both dimensions of rationality; it is possible that 

causal explanations of the nets’ behaviours may not cite factors that provide intelligible justifica-

tions to humans, and justifications may not cite causally determinative factors. Anthropofabula-

tion causes us to conflate these two kinds of concern, however, because common sense supposes 

that the justifications humans produce through introspection have direct, non-inferential access to 

the causal antecedents of the behaviours so justified. However, a significant amount of cognitive 

science suggests that this picture of human introspection is mistaken.  
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 To provide some examples, one of the reasons that people have supposed the internal 

processing of DNNs to be opaque is that popular visualization methods that have been developed 

to determine the representational functions of their hidden nodes have produced strange, chimer-

ical images. Activity maximization is perhaps the most popular method; it tweaks input images 

using further machine learning until they maximally activate some particular node in a DNN’s 

internal layers. This is supposed to show us the feature that node detects in input images when it 

activates. A widely circulated paper from Google’s AI research group noted that their popular 

Inception network seemed to detect a variety of chimerical features in images, such as ‘pig-

snails’, ‘admiral-dogs’, and ‘camel-birds’ which resemble no intuitively available features in 

conscious human perception (Mordvintsev et al. [unpublished]; and see Fig. 6).  

However, activity maximization is a new visualization technique that is poorly understood 

and very unlike introspection in humans; directly comparing introspectible features to its results 

is like comparing apples to resequenced orange DNA. There is little reason to suppose that we 

have the ability to introspectively generate images that maximally activate particular neurons 

somewhere in our visual cortex. It is also likely that representation in visual cortex is highly dis-

tributed across many neurons, so individual neurons in primate brains probably lack intelligible 

representational functions to begin with (Plaut and McClelland [2010]). In fact, when activity 

maximization is applied to neurons in a live monkey’s brain, the synthesized images are similar-

ly chimerical (Ponce et al. [2019]; and see Fig. 7). In short, these methods may have some useful 

role in addressing explanatory questions—telling us why, causally, the DNN (or monkey) react-

ed in that way to that exemplar; but we should not expect the images produced by these meth-

ods—either in DNNs or biological brains—to provide intuitively interpretable justifications.  
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Figure 6. Results of running an activity maximization algorithm on a picture of clouds in a trained-up version of 
Google’s Inception image-classifying DNN. Reproduced from (Mordvintsev et al. [2015]). 

 

	

Figure 7. Results of running an activity maximization algorithm on an electrode implanted to detect the firing rate 
of a live monkey neuron, reproduced from (Ponce et al. [2019]). 

 

 On the side of justificatory rationality, methods have been designed to generate justifica-

tions for DNN behaviour that humans find intuitively satisfying, but they have been criticized for 

failing to highlight causally determinative factors. Many of these methods rely on producing ver-

bal justifications for a network’s decisions that are the result of further machine learning. For ex-

ample, the ‘AI Rationalization’ system collects a series of verbal justifications from humans 

while playing the Atari game ‘Frogger’, and then uses further machine learning to correlate those 

verbal justifications with cases where a DNN made similar decisions in similar circumstances 

(Ehsan et al. [2018]; and see Fig. 8). The system can then deliver those justifications to human 
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observers to support its decisions after they have been made. The researchers who developed this 

system obtained user-satisfaction ratings from three different justification policies. Human sub-

jects reported finding the human-derived rationalizations more satisfying than more causally ac-

curate alternatives (in fact, the more causally accurate a justification was, the less subjects liked 

it; see Fig. 9). The authors conceded that there is no direct causal link in this case between the 

features that actually caused the system to make the decision and the features cited in the verbal 

Figure 8. The ‘Rationalizing Robot’ from (Ehsan et al. [2018]) providing an example rationalization 
of its decisions. 

 

Figure 9. Favourability rank-orderings from human subjects who were asked to rank their preferences for three 
different policies, as reported by Ehsan et al. ([2018]). The ‘Rationalizing robot’ provided the human-correlated 
justifications for its actions; the ‘action-declaring robot’ simply stated the action it was going to perform as it did 
it; and the numerical robot provided its calculated confidence values for the actions it had just performed (which is 
perhaps the most causally accurate explanation for the robot’s decision-making). 
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justification.  However, these authors note that social psychology similarly finds a disconnect 

between human rationalizations and the factors that actually caused the actions so rationalized. In 

fact, the best empirical theories of these systems in humans construe them as interpretive and in-

ferential, generated post-hoc to promote social acceptance, coherent self-identity, positive self-

esteem, and future-oriented control rather than out of a concern for backward-looking causal ac-

curacy. This conclusion derives from many different lines of evidence (for reviews, see Car-

ruthers [2011]; Cushman [2018]).  

For one, there is research from split-brain patients, who have had the connections between 

their brain hemispheres severed (often to mitigate seizures—and similar symptoms can be caused 

by stroke, tumours, or arterial ruptures). Such patients cannot integrate visual information ob-

tained only by one hemisphere of the brain with verbal justifications generated by the other; as a 

result, an instruction (such as ‘get up and walk’) can be visually presented to the right hemi-

sphere (via the left eye), causing the patients to initiate an appropriate behaviour (Gazzaniga 

[2000]). The patients can then be asked to explain their behaviour, and their left hemispheres 

(which are responsible for most of the linguistic processing) can use contextual information to 

produce justifications that are plausible but completely confabulated (such as ‘I wanted to go into 

the kitchen to get a Coke’). For another, the phenomena of choice blindness further demonstrates 

that even neurotypical individuals can readily confabulate plausible justifications for choices 

they did not actually make, justifications that could not possibly be causally accurate but are in-

distinguishable from normal cases of introspection (Johansson et al. [2006]). In a choice blind-

ness experimental design, subjects are asked to make a choice, then distracted, and finally given 

an option other than the one they actually selected. When they are then asked to justify having 
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selected this option, most subjects readily do so, often without any awareness that the item they 

were provided is different from the one they actually chose.  

There are many other sources of evidence impugning the causal accuracy of human intro-

spective justifications, and illustrating the readiness with which we confabulate when we lack 

causally accurate information. While there may be good reasons to demand more from deep 

learning systems than we could expect from humans, at present we are merely considering fair 

comparisons. In that respect, so long as we do not conflate explanatory and justificatory ration-

ality, it does not seem that DNNs have a fundamental problem with interpretability that is not 

also exhibited by human minds. 

 

5.4 Humans are also notorious reward-hackers 

The final criticism to rebut is the concern that DNNs trained by reinforcement signals merely 

learn to ‘reward hack’ rather than learn real solutions to the problems on which they are trained. 

The response here is to note that humans are also notorious reward-hackers when placed in badly 

designed environments. One of the most obvious and directly comparable situations involves 

humans playing video games that are ‘imbalanced’ in their reward structure. This is a very com-

mon concern in online roleplaying games that offer many different routes to advance one’s char-

acter. In these games, experience points and in-game currency are typically obtained by defeat-

ing foes or completing skilful actions. Game designers work exhaustively to create a homeostatic 

economy of experience and currency within the game; different methods to obtain these re-

sources should all be perceived as roughly as difficult, time-consuming, and enjoyable as one 

another to support diverse routes to advance within the game. Proper balancing enhances playa-

This is the author’s accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of  
The British Journal for the Philosophy of Science, published by The University of Chicago Press on behalf of The British Society for the Philosophy of Science. 

Include the DOI when citing or quoting: https://doi.org/10.1086/714960  Copyright 2021 The British Society for the Philosophy of Science. 



Cameron Buckner 
 

	

 

34 

bility and perceived fairness, in order to keep players coming back for further character en-

hancement.  

Humans, however, are highly adept at discovering the most efficient ways to obtain resources 

within a competitive game, and even slight imbalances will be found if present. These opportuni-

ties are often called ‘exploits’. Game exploits are discussed and shared in online message boards, 

and tens of thousands of game players can quickly flock to repeating an exploit for days on end. 

Viewed with the same kind of detachment as the OpenAI’s endlessly spinning boat, these human 

behaviours look just as pathological. One exploit in the game Fallout 4, for example, involves 

repeatedly building and disassembling tens of thousands of copper statues of a baseball player 

(which provides a small boost to experience) for twelve hours straight until they fill an entire 

abandoned town. For present purposes, the important point is that we do not conclude that these 

players have fundamentally misunderstood the point of their activities. Instead, we conclude that 

the game environment is badly designed, and the human players are ingenious at seeking out and 

taking advantage of these imbalances. The solution to an exploit is not to lecture players about 

lacking ‘genuine’ rationality or ‘real’ learning; it is to patch the game to change its reward struc-

ture, to restore balance to its reinforcement ecosystem—which can sometimes take teams of ex-

perienced programmers dozens of patches to achieve through trial-and-error. 

Indeed, the difficulty of engineering artificial environments in which humans do not reward 

hack can make us wonder how the problem was ever solved in natural environments. The glib 

answer is that we did not solve it; natural selection solved it, by applying a trial-and-error ap-

proach to millions upon millions of our striving and starving ancestors. There is little reason to 

suppose that the product of this tinkering is a simple, transparent set of learning principles that 

could be captured in symbolic, rule-based form. It is, instead, a highly complex physical body 
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whose kinematics makes some motions more natural than others, a nervous system that reads its 

status in real time via a set of rich, multi-modal sensory inputs, a set of specialized sensory input 

organs that are more receptive to certain stimuli than others, and a highly constrained brain 

whose operation can be subtly modified by a symphony of hormones, neurotransmitters, and 

neuromodulators whose levels are dynamically controlled by these bodily inputs. Thus, rather 

than seeking out the optimal, intuitively satisfying Bayesian meta-learning rule, biologically in-

spired progress in reinforcement learning is more likely to be achieved by evolutionary search 

algorithms exploring combinations of bodily parameters for richer, more multi-dimensional rein-

forcement learning. DNN researchers should be trying to supplement models with additional and 

more multi-dimensional reward signals like fatigue, digestion, anxiety, surprise, tissue damage, 

emotional reactions, and social cues like accolade or embarrassment, rather than monolithic new 

learning rules or innate domain-specific knowledge.  

Even worse, there is little reason to think that reinforcement learning in humans is as success-

ful as anthropofabulation might have us believe. In sociology and psychology, there is an entire 

research area investigating the ways that simple, quantified evaluation systems distort human 

decision-making (Merry [2016]; Nguyen [2020]). Obvious examples occur when more natural 

reward systems—like food or social cues—become co-opted by new, more readily available 

stimuli. Simple examples of this phenomenon involve normally self-limiting reinforcers like 

sugar or alcohol suddenly becoming available in purer forms and unlimited amounts, leading to 

pathologically unhealthy behaviour. Subtler are the cases where reward policies are co-opted by 

entirely new kinds of stimuli that decouple the reward signal from the goals that evolution 

tweaked them to indicate. These hijackings can be good or bad; whether the ability of artificial 

sweeteners to decouple sweetness from caloric content is a good thing depends upon the balance 
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of relevant dietary science. Those working in this area, however, worry especially about cases 

where symbolic or numerical stimuli are used as proxies for more difficult-to-assess rewards. 

Examples of such proxies are endemic in modern life: credit scores, Fitbit counts, social media 

likes, grade point averages, h-index, university rankings, and so on. One does not need to look 

hard to find many examples where whole organizations or societies pathologically chase the 

maximization of reward proxies, often to the detriment of the more basic goals that they were 

initially designed to track.  

In short, reward-hacking is not just some curious problem that confronts badly designed 

DNNs and their ‘alien’ ability to game a reward signal; it is a characteristically human pathology 

that plagues our own ability to play video games, succeed in business or academia, and generally 

not render the world unliveable. Anthropofabulation suggests that humans have some uncanny 

innate ability to flexibly pursue intrinsically valuable goals in highly diverse environments; but a 

fair appraisal of modern life would suggest that humanity is not currently doing so well at this 

particular balancing act. Perhaps for both humans and DNNs, the needed solution is to improve 

the structure of the environments in which we learn, rather than to fault the learning agents that 

seek solutions within them.   

 

6 General Lessons 

The goal of this article has been to advocate for fairer comparisons between DNN and human 

behaviour along four of the most popular criteria deployed by sceptics to argue that the kind of 

processing that occurs in DNNs is fundamentally different from human cognition, and explore 

general morals that can be applied to more productive future debates. Section 5 argued that unbi-

ased assessments would score humans similarly to DNNs along all four criteria. The assumption 
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that humans are not vulnerable to these criticisms is not supported by empirical data, perhaps in-

stead propped up by the bias of anthropofabulation. Where modelling human cognition is our 

goal, we should not aim to create DNNs that learn only from very few training examples without 

significant scaffolding, are immune to adversarial examples, use decision-making mechanisms 

that are completely transparent, or fail to exploit reward imbalances when placed in poorly de-

signed environments.  

 Some unifying threads of the preceding discussion can now be drawn out as promising topics 

for future research. Critical discussions about artificial intelligence should feature more explicit 

reflection on how to properly align human and machine performance when conducting compari-

sons, especially by bringing in empirical research from human psychology, neuroscience, and 

biology. In particular, we need to be sure that our evaluation of human behaviour comes from a 

sceptical appraisal of empirical data, undistorted by the rose-tinted hue of anthropofabulation. In 

some cases, the relevant empirical work on humans remains inchoate; in particular, we need 

more research on the provenance of scaffolded learning in humans and on the implications of 

adversarial examples in perceptual psychology. And finally, we need more research on how to 

properly structure bodies and environments so as to obviate pathological reward-hacking behav-

iour in both humans and artificial agents. Regarding DNNs not as black boxes but rather as un-

flattering mirrors might help us accept hard lessons about ourselves, and in so doing take steps 

toward addressing some of the most pressing problems of our day. 
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