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CrossMark
Abstract
In this paper, we present a center manifold reduction theorem for quasilin-
ear elliptic equations posed on infinite cylinders that is done without a phase
space in the sense that we avoid explicitly reformulating the PDE as an evolu-
tion problem. Under suitable hypotheses, the resulting center manifold is finite
dimensional and captures all sufficiently small bounded solutions. Compared
with classical methods, the reduced ODE on the manifold is more directly
related to the original physical problem and also easier to compute. The analy-
sis is conducted directly in Holder spaces, which is often desirable for elliptic
equations. We then use this machinery to construct small bounded solutions to
a variety of systems. These include heteroclinic and homoclinic solutions of the
anti-plane shear problem from nonlinear elasticity; exact slow moving invasion
fronts in a two-dimensional Fisher—KPP equation; and hydrodynamic bores
with vorticity in a channel. The last example is particularly interesting in that
we find solutions with critical layers and distinctive ‘half cat’s eye’ streamline
patterns.
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1. Introduction

Our basic objective in this paper relates to a classical problem: characterizing small bounded
solutions of a quasilinear elliptic PDE posed on an unbounded cylinder 2 = R x . The base
of the cylinder €' € R"! is a bounded and connected C>*** domain for some a € (0, 1), and
the dimension n > 2. For simplicity, say that 0 € €.

As a fairly representative example, we initially focus on the following quasilinear PDE:

{V-.A(y,u,Vu,)\)—i—B(y,u,Vu,)\):O in Q 0

GOy, u,Vu,\) =0 on 09,

where spatial coordinates in §2 are written (x, y) for x € Rand y € . Here, A € R is a param-
eter, while u = u(x,y) € C2+“(§) is the unknown. We ask that the functions A = A(y, z, p, A),
B = B(y,z,p,\),and G = G(y, z, p, \) are uniformly CY*+* in their arguments4 for a fixed inte-
ger M > 2. Moreover, we assume that the interior equation is uniformly elliptic in the sense
that there exists 6 > 0 such that

> 0, A, 2.0 Naig; = 0lg* forally € Y, pgeR", ZXER.  (12)

ij
The boundary condition is taken to be uniformly oblique in that there exists x > 0 such that
—N») - V,G(,z,p,N) = x forallye @, peR", z, A €R, (1.3)

where N = (0, N') € R" denotes the outward unit normal to 2 on 9Q = R x 9. Note that
since the coefficients in (1.1) are independent of x, the full nonlinear problem is invariant under
axial translation. We also extend this to include nonlinear transmission problems, Dirichlet
conditions, and diagonal elliptic systems in section 3.

Borrowing terminology from dynamical systems, we say a solution (u, \) of (1.1) is homo-
clinic if u limits to a fixed function as |x| — oo, and we call it heteroclinic provided u has
distinct limits as x — 4-co. Beyond their intrinsic mathematical importance, equations of
the form (1.1) arise in a surprisingly diverse array of physical settings. Of particular interest
to us is their connection to traveling waves in nonlinear elasticity, mathematical biology, and
especially hydrodynamics. In those contexts, homoclinic solutions are referred to variously as
pulses, solitons, or solitary waves, and heteroclinics correspond to fronts or bores. Although the
techniques we develop are equally well-suited to both these types of solutions, our emphasis
will be on fronts because they are more difficult to construct. An ulterior motive for this choice
is that, in a companion paper [8, 9], we present a global bifurcation theory for heteroclinics.

The unboundedness of ) seriously complicates the task of finding these solutions. For
example, it is well-known that the relevant linearized operators fail to be Fredholm in
unweighted Holder spaces, which precludes the direct application of bifurcation theoretic
techniques. For semilinear problems, monotonicity methods have proven to be effective; see,
for example, Berestycki and Nirenberg [6], A Volpert, V Volpert, and V Volpert [51], and
the references therein. By contrast, in the quasilinear setting, the predominant approach is to

#Throughout the paper, we use the convention that V denotes the full gradient with respect to (x,y) unless indicated
otherwise via a subscript. In particular, (y,z, p, \) € ' x R x R" x R. We reserve D for Fréchet derivatives or total
derivatives. For a function v = v(x), we will often write v’ as a shorthand for 9,v.
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reformulate (1.1) as a spatial dynamical system (that is, treating x as an evolution variable),
and use infinite-dimensional invariant manifold theory. Seeking small bounded solutions, we
might hope to construct a finite-dimensional center manifold and study the bounded orbits of a
reduced equation there. Beginning with the pioneering work of Kirchgéssner [28] and Mielke
[39, 40] in the 1980s, this basic strategy has been built upon and applied to great effect by
many authors; see, for example, the book of Haragus and Iooss [20] for historical overview or
[12] for applications to water waves.

While the Mielke—Kirchgissner approach is quite general and very powerful, the way it
is traditionally phrased is not perfectly suited to all applications. For many systems, such as
(1.1), the process of recasting it as an evolution equation contorts the PDE in an inconve-
nient way. In particular, accommodating nonlinear boundary conditions requires one or more
implicit changes of dependent variables. This is certainly possible to do, but it adds an addi-
tional layer of complexity to the already involved process of computing the reduced ODE. More
importantly, it obscures the relationship between the equation on the center manifold and the
physical problem, complicating for instance the task of establishing properties such as symme-
try and monotonicity. When using the center manifold reduction as a preparatory step towards
an existence theory for large solutions, being able to efficiently deduce this type of qualitative
information is extremely desirable. Lastly, the Mielke—Kirchgéssner machinery is formulated
in relatively weak Sobolev spaces in the transversal variable y due to its reliance on so-called
maximal regularity estimates. When studying elliptic PDEs, it is sometimes preferable to work
directly in spaces of Holder continuous functions. An extension of Mielke—Kirchgissner to this
setting was given by Kirrmann [29] in his unpublished PhD thesis.

Recently, Faye and Scheel [15] introduced an alternative technique that ameliorates some
of the issues with the spatial dynamics approach. Rather than reformulate the problem as
an evolution equation, they instead perform a delicate fixed point argument in exponentially
weighted Sobolev spaces. This furnishes what they call a center manifold ‘without a phase
space.” Indeed, the manifold is parameterized by the components of the solution in the kernel
of the linearized operator rather than initial data. This permits them to treat certain non-local
problems—which was their original intent—and also greatly simplifies the arduous task of
computing the reduced equation. Unfortunately, the Faye—Scheel method is fundamentally
restricted to semilinear problems, and it appears to be ill-adapted to Holder spaces.

As one contribution of this paper, we present a new variant of the center manifold reduction
theorem that is specialized to treat quasilinear elliptic problems of the form (1.1), though it
can be extended to more general ones. The analysis is conducted entirely in Holder spaces
and, like Faye—Scheel, the reduced equation can be computed with comparatively elementary
methods. For heteroclinic solutions, one must expand the reduction function to cubic order, and
so these differences in complexity are especially salient. We deliberately choose the projection
involved in the definition of the center manifold so that one obtains an ODE for the restriction
v(x) = u(x, 0). For instance, when we study surface water waves, we arrange for the reduced
equation to directly govern the free boundary. In this way, the physical context remains in
view even as we restrict to the center manifold. One substantial advantage of this choice is
that we are able to prove monotonicity properties of the solutions relatively easily, laying the
groundwork for subsequent global bifurcation theoretic analysis. Indeed, the authors [8, 10]
and Hogancamp [24] use exactly this strategy to construct large solutions for two of the three
applications considered in this paper; these works all rely in an essential way on the qualitative
information garnered from the local theory.

The most technically challenging part of constructing a center manifold invariably involves
solving a fixed point problem in weighted spaces and then verifying that the solution depends
smoothly on the parameters. For this, we rely on the work of Amick and Turner [3], where
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bounds and Fréchet differentiability of superposition operators in exponentially weighted
Holder spaces is painstakingly worked out. In fact, these authors developed their own cen-
ter manifold reduction based on the above estimates and a point-wise in x spectral splitting
approach. We use their ideas to construct a preliminary center manifold, and then reconfigure
it in the style of Faye and Scheel, thereby obtaining the simplified expansion procedure and
freedom of projection choice.

The second part of the present paper consists of three nontrivial applications of our center
manifold reduction theorem. These problems were selected both for their physical relevance
and to illustrate different aspects of the methodology. First, we prove the existence of homo-
clinic and heteroclinic solutions to the anti-plane shear equations from nonlinear elasticity.
While this model has been studied extensively, the class of front-type equilibria that we exhibit
appear to be completely new. Second, we verify the existence of slow moving fronts in a two-
dimensional Fisher—KPP system with absorbing boundary conditions. The one-dimensional
Fisher—KPP system is classical and thoroughly studied; the model we consider was recently
formulated in [42] as an explanation for experimental data suggesting that the presence of
obstacles may reduce the speed of invasion fronts in certain biological systems. We give the
first rigorous existence theory for traveling wave solutions to this equation.

Finally, and most significantly, we construct small rotational bores in a channel. These are
heteroclinic solutions of the full two-dimensional incompressible Euler equations, with two
immiscible layers of constant density fluid separated by a free boundary. A major novelty is
that we allow for constant vorticity as well as critical layers.

Notation. Here we record some notational conventions followed throughout the rest of the
paper. Let > C R” be a cylinderin dimensionn > 2,k € N, and o € (0, 1). We define the usual
Holder norm

|f(x1, 1) — f(x2, y2)]
I lciasy = D _N10°flcosy + sup
) 92<:k ) (x1.91),(x2,2)€X |(.X1 — X2, V1 — y2)‘a
s (r1yD#E(2.2)

and denote by C; (%) the Banach space of f € CX(X) for which || f|| ck+acs, < 00. On the
other hand we say that f € CKT(X) if o f € CET(X) for any smooth function ¢ with support
compactly contained in 3. We call functions in Cf (%) uniformly Hélder continuous, and
functions in C**t*(X) locally Holder continuous up to the boundary.

We will also have occasion to work with exponentially weighted Holder spaces. For k € N,
a €(0,1), 4 € R, and a function f € CX(X), we define the exponentially weighted Holder
norm

1 llctrogsy = D 1w fllcos) + D 1wl flallcosys

1Bl<k =

where w,,(x) :=sech(ux) is an exponential weight function and |f|, is the local Holder
seminorm

FlaGoyy=  sup HEFHYE = fx))
l(rs)<1 (7, s)|
(x+ry+s)eS

We denote by

D = {f € CH D) 1|l groy, < o0}
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Note that C{;J”“(f) = Cﬁi‘g(i). For k > 1, and p and «v as above, we also define the seminorm

oy T Iz o) i’ : allco(x)»
et w0, Fllcogsy + D w0l

1<IBI<k =

and say f € é‘ff“(i) provided that | f| Heagsy < 00 Finally, we may append a subscript of ‘e’
m

to any of these spaces to indicate that we are restricting to the subspace of functions that are

even in the x-variable, and a subscript ‘c’ when the functions have support that is a compact

subset of the stated domain.

1.1. Statement of results

Written as an abstract operator equation, the elliptic problem (1.1) takes the form

Fu,\) =0, (1.4)
where

F =(F,F): ;T (Q) x R — )T (Q) x T (09).

By this convention, % represents the equation in the interior, whereas .%, corresponds to the
boundary condition.

It is well-known that families of ‘long waves’ can be found bifurcating from ‘trivial’ x-
independent solutions at certain critical parameter values (often connected to so-called dis-
persion relations). This intuition motivates the following structural assumptions on .%. First,
suppose that there exists a family of trivial solutions parameterized by \; for simplicity, this
can be stated as

F(0,\)=0 forall A € R. (1.5)

We will study solutions near (u, \) = (0, 0), which leads us to consider the linearized operator
L:=D,%(0,0). We make two hypotheses on L. First,

L is formally self-adjoint and commutes with reflections in x (1.6)

Explicitly, this means that L takes the form (2.1). Second, we make a spectral assumption on
the transversal linearized operator
L= gpay,: Q) — COTMUY) x CH O,

which results from restricting L to acting on x-independent functions. As is typical for PDE
operators, we say that v is an eigenvalue of L’ provided there exists a nontrivial solution ¢ €
C*(QY) to the spectral problem L'¢ = (v, 0). Because ' is a bounded and smooth domain
in R"~!, standard elliptic theory ensures that L’ has a (unique) principal eigenvalue v € R for
which the corresponding eigenfunction ¢, is strictly positive on €. In fact, v must be simple
and it lies strictly to the right of all other eigenvalues of L’; see, for example, [1, theorem 12.1]
or [36]. Our final assumption is that

vy = 0 is the principal eigenvalue of L. (1.7)
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This is the sense in which the parameter value A = 0 is critical. As we will see in lemma 2.1,
hypothesis (1.7) is equivalent to asking that ker L is spanned by ¢,.

Theorem 1.1 (Center manifold reduction).  Consider the quasilinear elliptic PDE
(1.1) posed on the infinite cylinder Q). Assume that it has a family of trivial solutions (1.5), its
linearization satisfies (1.6), and that A = 0 is a critical parameter value in that the correspond-
ing transversal linearized problem has the spectral behavior (1.7). There exists @ > O such that
forany fixed p € (0, 1) and integer M > 2, there exist neighborhoods U C Cﬁ*a(ﬁ) x Rand
V C R3 of the origin and a coordinate map U = W(A, B, \) satisfying

e O (RG CEPNQ),  W(0,00) =0 forall A,
Vup¥(0,0,0) = (0,0), (1.8)

and such that the following hold.
(a) Suppose that (u, \) € U solves (1.1). Then v(x) := u(x, 0) solves the second-order ODE

V" = f(u,v,\) (1.9)

where f: R> — R is the CM™! mapping

2
f(A,B,\) = d—z W(A, B, \)(x,0). (1.10)
dx*| _,

(b) Conversely, if v: R — R satisfies the ODE (1.9) and (v(x),v'(x), \) € V for all x, then
v = u(-,0) for a solution (u, \) € U of the PDE (1.1). Moreover,

o) V()
T = 0P T 0

To(y) + T(v(x), v'(x), \)(T, ),
(1.11)

forall T € R. Here, recall that @, generates the kernel of L.

Remark 1.2. Setting 7 = 0 in (1.11) and normalizing ¢, so that ¢,(0) = 1, we obtain

u(x, y) = v(xX)po(y) + Pv(x), v'(x), A, ),
where ® € C*T*(R* R) is given by

(A, B, A, y) =U(A, B,N)(0,y) = O ((|A[ + [BD(A| + [B] +[AD) . (1.12)
Remark 1.3. It is useful to note that the reduction function also satisfies

W(A, B, A\)(0,0) = 0,V(A, B, \)(0,0) = 0.

Remark 1.4. 1If the PDE (1.1) exhibits symmetries, then one expects that they will be inher-
ited in some form by the coordinate map ¥ and hence the ODE (1.9). In section 3.1, we prove
that this does indeed hold for a class of discrete symmetries that includes the important case
of reflections in x, sometimes called ‘reversibility.’

Remark 1.5. Through a straightforward modification of the proof, versions of theorem 1.1
can be obtained that treat more general spectral behavior than (1.7). For instance, it is natural
to consider scenarios where L' has finitely many positive eigenvalues or 0 is an eigenvalue of
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higher multiplicity. In the interest of keeping the presentation concise, we will focus here on
the simpler situation in (1.7).

Let us draw attention again to the fact that the ODE (1.9) relates in a transparent way to
the original PDE (1.1). For example, when studying free boundary problems, we may pick
coordinates on €’ so that the graph of v parametrizes the interface.

Another advantage of our approach—which it inherits from Faye—Scheel—is the compara-
tive simplicity of deriving the reduced equation. This can be seen in the next result, which says
essentially that ¥ in (1.8) and f in (1.9) can be determined through a naive formal asymptotic
expansion.

Theorem 1.6 (Reduced equation). [In the setting of theorem 1.1, the coordinate map ¥
admits the Taylor expansion

UAB,N= > UuABN +0((Al+ [BD(A| + [B| + [A)Y) in CIF(Q),

2<it A<M
i1

(1.13)

where the coefficients W are the unique functions in Cff“(ﬁ) that satisfy

(@) U;i#(0,0) = 0,¥,4(0,0) = 0.
(b) Foralli+ j+ k < M, the formal Gateaux derivative

A B

9919k 9( +
A (A.BN=0 ‘PO(O)(p0 ©0(0)

xpo + U(A, B, A)) =0. (1.14)

Remark 1.7. By introducing an appropriate cut-off function, we may consider the Gateaux
derivative of % in (1.14) as the Fréchet derivative of a modified .%. In practice, however, this
distinction is unimportant when using (1.14) to calculate the W, ;. Further details can be found
in lemma 2.4 and section 4.

Remark 1.8. As mentioned in the introduction, we actually have considerable freedom in
choosing the linear relationship v = Vu between the original unknown u and the quantity v
governed by the reduced ODE (1.9) in theorem 1.1. Like Faye and Scheel [15], we have found
pointwise evaluation Vu(x) := u(x, 0) to be the most convenient for calculations, but our proofs
also apply to, for instance,

x+1

Vu(x)::/ u(x,y)dy or Vu(x) ::l/ /u(s,y)dyds. (1.15)
Q 2 X Q'

-1

Besides slightly altering the very final step in the proof of theorem 1.6 in section 2.5, the only
other modification is that theorem 1.6(a) becomes QV, ;. = 0, where the operator

Vu(0) VO, u(0)

Qu(x,y) = m@o()’) + WXSOO

(6))

is a bounded projection from C3**(2) onto the kernel of L, here thought of as a mapping
between weighted Holder spaces.
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We also obtain the following theorem relating the linearized problem at any small non-trivial
solution of the PDE (1.1) to the linearization of the reduced ODE (1.9).

Theorem 1.9 (Linearization and reduction). In the setting of theorem 1.1(b), if it €
C%Jr“(Q) is a solution to the linearized PDE’

D, F(u, Vi =0,
then v :=u( -, 0) satisfies the linearized reduced ODE

V" = Vg f(0,0, ) (0,7 (1.16)

The above theorem allows us to, among other things, calculate the dimension of the kernel
of D, % (u, \) using only information about the planar system (1.16). Indeed, theorem 1.9 tells
us that the linearizations of the PDE and reduced ODE are compatible in that uniqueness of
bounded solutions to the latter implies invertibility properties for the former.

Analogous results to theorem 1.9 can be found in [54, theorem 4.1(ii)] and
[7, theorem 5.1(ii)], for example. There the authors must carefully linearize each step in the
center manifold construction. By contrast, our proof of theorem 1.9 relies on a soft analysis
argument that avoids this rather tedious process through an extension of theorem 1.1 to diagonal
elliptic systems.

While the Amick—Turner theory [3] seems particularly well-suited for our purposes, we note
that one should in principle be able to prove versions of theorems 1.1, 1.6, and 1.9 through the
classical Mielke—Kirchgissner theory [28, 39, 40] or its variant due to Kirrmann [29]. This
would involve the implicit change of dependent variable mentioned above in order to absorb
the nonlinear boundary conditions, a further change of coordinates to achieve the desired pro-
jection, the reinterpretation of the center manifold in the spirit of Faye and Scheel, and finally
the application of embedding theorems to obtain a result in Holder spaces. To our knowledge,
no results of this type appear in the literature. Another intention of the present paper is to
rekindle interest in the Amick—Turner theory, as it has unfortunately received little attention
in recent years. On the other hand, this choice does force us to make the additional stipulation
in (1.6) that the linearized operator commutes with reflections. A spatial dynamics approach
would not necessarily require this.

In the remainder of the paper, we use theorems 1.1 and 1.6 to construct homoclinic and
heteroclinic solutions to three quasilinear elliptic problems arising in quite different physi-
cal settings. This includes anti-plane shear equilibria for a nonlinear elastic model with live
body forces, and slow-moving invasion fronts for a two-dimensional Fisher—KPP equation
with reactive boundary conditions. To keep the presentation here compact, we defer stating
these results and discussing the relevant history until later.

Our last application is to water waves. Specifically, we study a system consisting of two
incompressible fluids at constant density governed by the Euler equations. They are separated
by a free boundary and confined to an infinitely long horizontal channel. Steady traveling solu-
tions to this problem are often referred to as internal waves, and they are observed frequently
in coastal flows [44]. We prove the existence of several families of front-type internal waves,
which in hydrodynamics are known as (smooth) bores. From a physical standpoint, bores are
interesting because they are a genuinely stratified phenomenon: one can show that no bores
exist in constant density fluids [54]. As heteroclinic connections, they also require considerably
more finesse to construct.

5 Here and elsewhere in the paper, we use a dot to denote a variation. This should not be mistaken for a time derivative.
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Figure 1. A smooth bore with a ‘half cat’s eye’ streamline pattern. The two fluid regions
are bounded above and below by rigid walls and separated by a sharp interface (shown in
bold). The dashed curve is the critical layer, above which particles move to the right and
below which they move to the left (in the moving frame). Inside the shaded region (the
‘eye’), the streamlines are bounded from the left and unbounded to the right, whereas
outside they are unbounded in both directions.

Numerical studies of bores have been carried out by a number of authors [19, 35, 50],
but very few rigorous results are currently available. The earliest work is due to Amick
and Turner [2], who used a precursor to the center manifold reduction in [3] to character-
ize all small bounded solutions to the system assuming the flow in each layer is irrotational.
Later, Mielke [41] obtained an analogous result by applying traditional spatial dynamics tech-
niques. Using direct fixed point arguments, Makarenko [37] gave an alternative construction
for small-amplitude bores in the same setting, and later studied the continuously stratified case
[38].

‘We not only prove the existence of irrotational bores, but in addition allow constant vorticity
in the upper layer. In the latter case, many of these waves will have critical layers—curves in
the fluid where particles move with the same horizontal velocity as the wave itself. It is well-
known that this can create interesting streamline patterns, such as the famous cat’s eyes in the
periodic setting [11, 14, 46, 53]. We find many families of waves feature a striking ‘half cat’s
eye’; see figure 1 and theorem 7.8. To the best of our knowledge, this configuration has never
been observed before. Indeed, it is commonly thought that surface solitary waves in constant
density water can never have unbounded critical layers (but see [32]). Our results show that
this heuristic does not extend to internal fronts.

The analysis required for the water wave problem is several orders of magnitude more
involved than the previous two examples. It is here that the elegance of the expansion in theorem
1.6 and the choice of projection in the definition of the manifold are exploited most fully.
For instance, we are able to give a very simple proof that the free surface is monotonically
decreasing and the streamlines have the expected pattern.

An essential part of each of the above problems is identifying a parameter regime that admits
front-type solutions. For elasticity, we are able to exploit symmetry properties of the equation,
whereas for the Fisher—KPP we take advantage of the robustness of the well-studied one-
dimensional model. Neither of these simplifications are available for water waves. Instead, we
make strong use of the theory of conjugate flows; see section 7.3.

1.2. Plan of the article

The proofs of theorem 1.1 and 1.6 are carried out in section 2. First, in section 2.1, we establish
some basic facts regarding the linear elliptic operator L = D,.%(0, 0). Then, in section 2.2, the
PDE is rewritten as a fixed point problem in the style of Amick—Turner. Over the course of
sections 2.3 and 2.4, we verify the hypotheses of that general theory, which yields a center
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manifold, but does not directly furnish the reduced equation for v in (1.9). In section 2.5,
we complete the proof using a near-identity change of variables to convert locally to the
Faye—Scheel formulation, which gives us the liberty to choose the projection in the definition
of the manifold, and also leads to the Taylor expansion (1.13).

In section 3, we consider a number of extensions of theorems 1.1 and 1.6 to other types of
elliptic equations. We also provide the proof of theorem 1.9.

For the benefit of the reader, section 4 contains a gentle explanation of the general strategy
for actually computing the reduced equation and finding heteroclinic or homoclinic solutions.
While this is in principle deducible from (1.9) and (1.13), there are certain choices that are
not immediately obvious but greatly simplify the process. Readers who are more interested in
applying the theory than the specifics of its proof are encouraged to read this section first.

The application to nonlinear elasticity can be found in section 5, while section 6 contains
our results on invasion fronts in two-dimensional Fisher—KPP. We devote section 7 to proving
the existence of internal bores with vorticity.

Finally, two appendices are included. Appendix A provides a brief statement of Amick and
Turner’s fixed point theory that is sufficient for proving theorem 1.1. In appendix B, we collect
some details regarding the calculation of the reduced equations for the elasticity problem.

2. Center manifolds for quasilinear elliptic PDE on a cylinder

In this section we prove the general results theorems 1.1 and 1.6. The main tool is the
fixed-point theory of Amick—Turner [3], which is recalled in appendix A for the reader’s
convenience.

Let us begin by fixing some notation. Recalling that o € (0, 1) is the Holder exponent
introduced earlier, we set

= CH(Q), Y = x Wyi=CQ) x C1TUON).

Recall that these are spaces of functions that are only locally Holder up to the boundary; the
corresponding spaces of uniformly bounded functions are designated with a subscript b. Like-
wise, for u > 0, we write 2, and ¢, to indicate the associated exponentially weighted Holder
spaces.

2.1 Linear theory

Recall that

Fi1u,\) =V - Ay, u, Vu, \) + B(y,u, Vu, \),
LQ.Z(l'ta >\) = (g(ya u, VU, )‘)) ‘0Q'

Direct computation yields that the linearized operator of . at (u, \) is given by
D, F (u,\Nv=V- [VP.AVU + (32.,4 + VPB) v] + [@B -V- VPB] v,

where the coefficients are all of class Cﬁ4 +3(Q) and their arguments are being suppressed for
readability. Invoking assumption (1.6), the self-adjointness of L forces

O.A+V,B=0 at(y0,0,0).
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Writing A = (A;, A') with A, taking values in R and A’ taking values in R"~!, and likewise
denoting p = (p1, p') € R x R""!, we then have

V- (VpAVY) = 8, A107v + Vy Ay - V'O + V' - (8, A'Ov)
LV (VAT

where V' and V' indicate the gradient and divergence in y, respectively. The reflection
symmetry in (1.6) implies that

VyA =08, A =0 at(y,0,0,0).

From the above we conclude that the linearized operator at (1, A\) = (0, 0) takes the form
D, Z1(0,00v = an(md;v + V' (dM)V'0) + v,
D, 750,000 = (=N'() - (V') + g0v)lger-

As required by assumption (1.6), the linearized boundary condition is co-normal. The coeffi-
cients are all of class Cﬁ’l +3(Q’), and related to the nonlinear problem via

2.1)

an(y) =V, A41(»,0,0,0), d(y)=V,yAy,0,0,0),
c(y):= (80.B—V-V,B)(1,0,0,0), g0 :=0.6(0,0,0).

From (2.1), we also see that the transversal linear operator L' = (L}, L)) has the explicit
form

Liw:=V"- (d»)V'w) + cyw,

2.2)
Lyw = (—N’(y)~ (a’(y)V’w) + g(y)w)\ag/,

for all w = w(y) € C7F ().

Projections. The uniform ellipticity assumption implies that a;y, 1/a;; € CY*3()). For
integers k > 0, let H*(Q') denote the weighted L?-based Sobolev space corresponding to the
inner product

(U, V) gy = Z/Q/(Bfu)(afv)a“ dy.

|B|<k
As usual, we denote L2(€) :=H(Y) and (-, - 2y = (5 oy, Observe that

L= LL'
ary
is an elliptic PDE operator that is symmetric with respect to the L>(£') inner product. Moreover,
by the spectral assumption (1.7), its kernel is spanned by ,,, which recall is strictly positive on
. It follows that 0 is also the principal eigenvalue of L', and hence the spectrum of L’ consists
of a sequence of finite-multiplicity eigenvalues {v4}2, such that vy =0 > vy > vy > ...,
and v N\, —o0.

1937



Nonlinearity 35 (2022) 1927 R M Chen et al

Let the corresponding eigenfunctions be {(, }, so that
L/@k = (Vk@k,o), ||@k||L2(Q/) = 1, and
(()0], (Pk)LZ(Q/) - O fOI‘ ] # k.

In particular, we assume here and in the rest of this section that [|¢ol| 2, = 1. As it is not
, itself but the ratio ¢,/¢,(0) which appears in theorems 1.1 and 1.6, this assumption can
be made without loss of generality. Let P, denote the continuous orthogonal projection onto
the eigenspace corresponding to ¢,. It is also important to mention that there is a variational
characterization of our spectral assumption (1.7) in terms of the Rayleigh quotient defined by

R i J2 (CEOV W - Vwt copu?) dy + o 80)u?dSG)
' Jowan@) dy ’

for all w € H'()\{0} when n > 3. For the case n = 2, we have 92 = {V,in» Vmax} fOT
some Points y,;, < Ymax» and so the boundary integral above is replaced by g(¥,,)W> Vimax) +
O mi)W* Vi) It is easy to verify that any critical point of R is in the kernel of L’ (which is
also the kernel of L'). By classical elliptic theory, we have further that

max R(w)=1y=0, max R(w) =1, <0, 2.3)
weH () weP’>1Q1(Q’)
w#0 ;/,%0

where P;l :=1— P;. Likewise, a standard argument shows that (2.3) implies there exists
k > 0 such that

/Q (d»V'w - V'w— cy)yw?) dy — /0 Q/g(y)wz dSO) = wllwlfigy 24

forall w € PL H' ().
We can therefore introduce the projection P, point-wise in x onto the 0 eigenvalue for the
transverse problem. For functions u = u(x, y), it is defined by

(Pou)(x, y) = Pyu(x, -).

One can confirm that Py is a bounded projection on &', for any ;¢ > 0. Continuing the above
convention, set

P>1 =1- P().

Boundedness of the partial Green’s function. In this section, we seek to understand the
solvability properties of the linearized problem Lu = f when the data flies in an exponentially
weighted Holder space. We begin by characterizing the kernel of L| 2, when p € (0, \/|v1]).

Lemma 2.1 (Kernel). Forall i € (0, +/|11]),

ker L‘gg” = {(x,y) = Apo(y) + Bxpo(y) : A,B € R} .

Proof. Suppose that Lu = 0 for some u € Z’,,. It follows that u can be represented via the
eigenfunctions (for the homogeneous boundary condition) as

w(x,y) =Y i()pe(y)

k=0
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where the series above converges in C2(R; L2(€?)). Thus, it satisfies the ODE
iy, = —wyiyy,, forall k > 0. (2.5)

Recalling that v, < O for k > 1, this ensures that i, grows exponentially as x — oo with rate
v/ |vk|. Thus, when p € (0, 1/|v1]), it must be that iy = 0 for k > 1, and hence the kernel of
L|%M must lie in Py 2. Setting k = 0 in (2.5) then gives

u(x,y) = Apo(y) + Bxpo(y),
for some A, B € R. O

One consequence of the above lemma is that composing with the projection P eliminates
the kernel of L| o, . Before considering the inhomogeneous problem for L, it will therefore be
useful to define a projection on ¢ (which is then inherited by ¢,) that agrees in a natural way
with Py. More precisely, we will need to normalize again by dividing by the coefficient a;;.
Let

and for v = (v, 1) € %, define
(Qov)(x,y) = ((POUI)(an) + o(y) /d Q,vz(x, $)po(s)ari(s) dS(s), 0) :

Thus Q0% C (Po?/1) x {0} C ¢, and, for any u € %,

QoL — (@o()’) ( /Q (L, )pols) ds + /d (Lt ) dS<s>> ,0> -
But,
(Liu, 002y = (Ozu, ‘PO)E(Q/) + (Liu, g[)(’)LZ(Q’)
= (0fu, @O)LQ(Q/) — (Lau, 9o)r2(o0)»

and so combining this with the line above yields

QoLu = (goo(y)/gy(ﬁgu)(x, $)po(s)ari(s) ds, O) = LPyu. (2.6)

In keeping with the notation above, let Q> : % — %/ be defined by
O>1v=(1—-Qpv forallve .

With Qy and Q- in hand, we now establish the following elementary fact about the
solvability of Lu = f when the data f € 0%/ ,.

Proposition 2.2 (Partial Green’s function).  For any p€[0,+/|11|/2) and [ =
(f1, f2) € &, such that Quof =0, there exists a unique u € P> %, such that Lu = f.
Moreover,

HMH%[I S ||fHW/I’
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with the implied constant above uniform in p as p — 0. Equivalently, for all p €
[0, \/[1]/2),

L‘PZV%I‘ IP>1%N — Q}Igu

is invertible with bounded inverse G : 0>1%, — P> &, that we call the partial Green’s
function.

Proof. Fix pasaboveandlet f € %/, be given with Qy f = 0. Following the general strategy
of [2, theorem 3.1], we introduce a smooth partition of unity {¢"™},,cz on R such that

(e C®R), supp(C[-2,2], ¢(=1lon[-1,1], C( even,
1 3
¢— 3 odd about x = 3 on [1,2],

and taking ¢ .= (- — 3m).
For each m € Z, consider the cut-off problem

Lu™ = ="y (2.7)
Observe that, because the projectors are pointwise in x,
Qof(m) — C(m)QOf =0.

Thus, f™ € Q% 11> and the commutation identity (2.6) implies that any solution u™ of (2.7)
necessarily lies in P>, 2", © ker L|p a7,

As a starting point, we show that there exists weak solutions to (2.7) by introducing the
Hilbert space ¢ := P> H (). Let 2 be the bilinear form associated to (2.7),

Blu, v] ::/ (—aVu-Vv+ cuv)dxdy + / guvds,
Q aQ
for all u,v € 5%, and where a = a(y) := V,.A(»,0, 0, 0). The weak formulation of (2.7) is

B, 91 = (", V)i + 5" P)p2pq,  forall € H.

Notice that, because £ is compactly supported, the right-hand side above does indeed repre-
sent an element of .7 acting on 1. As the coefficients are Cﬁ” 3 % is bounded. On the other
hand,

—PBlu,u] = /6111(3x14)2d?€d}’+/
Q

(a'V'u-V'u— cu’) dxdy — / gu?ds
Q o9

o Ly N A

where we have used (2.4) to derive the inequality on the second line. It follows that — 22 is
coercive on 7, and thus Lax—Milgram implies that there exists a weak solution u™ € 3 to
the cut-off problem (2.7) for each m € Z.

We must now improve this to classical solutions and estimate their norm in 2. Let an
integer ¢ € Z be given and put

=0+ 1] x Q),
YD = P[0+ 11 x Q) x CLF([0 £+ 1] x 99Y).
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The next stage of the argument involves deriving a priori estimates for u™ in %’ ff) This
will follow by elliptic regularity theory, but first we must expand the class of admissible test
functions to all of H'(Q). In particular, observe that if ¢» € C!(Q), we may use the splitting
above to write

1 = Yo(X)po(y) + z1 € PoCL(Q) @ P CHQD).
It is easy to verify that Z8[u", -] extends to a bounded linear functional on CC1 (Q), and indeed

Blu™ ., p] = Blu™ P11 = (A =020 + 15" V2D 200,
= (A" )2 + S Vo0 — I Yovo) 2 — (£ Povo) 2o
= (f(lm), /(/))Lz(Q) + (f(zm)’ ¢)L2(QQ),

since Qg f M — 0, by hypothesis. Thus 1™ is a weak solution of (2.7) in the H'(f2) sense.

Let Q0 :=[¢ — 1/4,0+4 5/4] x Q', which is a slight enlargement of the domain associ-
ated to & ff) There are precisely two integers m for which supp ¢ and Q' have non-empty
intersection; as they are consecutive, let us call them m and m + 1. Conjugating (2.7) with
the exponential weight sech(ux), and applying standard elliptic regularity theory on bounded
domains (see, for example, [18, chapter 8]), we infer that 4™ ¢ 2" Ef). Moreover, it obeys the
bound

e_,,w||u<m>HL2(Q<m) for m € Z\{m,m+ 1}
Hu(m)H%(p < ¢ TN e
: e ™ g, + 1Nl form =i, i+ 1.

Here, the constants are uniform in u, ¢, and m. In order to complete the argument we must
justify the convergence of the series Y, u™ in 2. Looking at (2.8), it is apparent that this
hinges on having sufficiently refined bounds on the L>(Q“) norm of ™.

First, suppose that m < 7, so that Lu®™ = 0 on Q. In fact, this holds on the semi-infinite
strip (3m + 2, 00) x ', and so we may apply elliptic regularity again to conclude that ™ €
Cf,*“ on this set. By construction, u™ is also in H 1(Q), so in particular this also ensures that
u™ and Vu™ decay to 0 as x — +00.

We are therefore justified in taking the equation Lu® = 0, multiplying by u", and then
integrating over the strip (x, 00) x §'. This procedure yields the identity

1 R . , .
S, / 1, ) Pan(y) dy = / / AV U (s,3) - Vu(s,y) dyds
Q x JQ

- [ ] ol ayas
x JQ

- / / 8O (s, y)* dS(y) ds,
x JOQ

which holds for all x > 3m + 2. Using the Rayleigh—Ritz characterization of v, in (2.3), this
furnishes the integro-differential inequality

1 o0
Eax”“(m)(x’ ')sz(ﬂ’) < 1/1/ u™s, ')sz(ﬂ’) ds forall x > 3m 4 2.
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From this, we may further estimate that
o0 o0
2 V2 2- 2
_/ ||u(’”)(s, ')HLZ(Q’) ds<e [v1]Bm+ x)/ ||u(m)(s, ')HLZ(Q/) ds,
X B 3m+-2 -

for all x > 3m + 2. Thus,

" 12
1] 20y = / G5, 172, ds
L ) 1 -

4
< e /|v1]/2(3m—0) ”u(m) Hy(ﬂ)’ 2.9)

where recall we have assumed m < 7. Now, u™ is bounded in L>(€2) in terms of the data £
via Lax—Milgram. Relating this back to f, we find that

4| 20y S €| fllay, forall m € Z.
Combining this with (2.9) yields
Hu(m)”Lg(Qu)) < eV/Inl/2Gm=O3ulmi | flle, forall m < .

The same type of reasoning applied to the case m > m + 1 gives a similar bound. For the
exceptional values m = m, m + 1, we may use (2.8), so that in total

|l 20y S € VIV Fllgy, - forall m € Z.

Returning to the preliminary a priori estimate (2.8), we can now conclude that

M
Z u™ —su in ,%ff) as M — oo forall £ € Z,
m=—M

and

el o < Clfls,.
with a constant C that depends only on +/|v1]|/2 — . As £ on the left-hand side above is
arbitrary, this gives the desired bounds on G. (]

In applications, it will often be convenient to use alternative projections onto the kernel of
L. For instance, looking at the statement of theorem 1.1, we see that the coefficients A and B are
found by evaluating # and O,u at (0, 0). With that in mind, suppose that Q is a given bounded
projection from 2, to ker L which is independent of 4. As in the partial Green’s function
analysis, we expect that L is invertible on the kernel of Q. To make this precise, we adopt the
approach of Faye—Scheel [15] and consider a so-called ‘bordered’ operator where one appends
Q to L. The result is the following.

Lemma 2.3 (Bordered operator). The bordered operator
(L,Q): &) — ¥, xkerL, u+— (Lu, Qu)

is invertible with a bounded inverse.
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Proof. From lemma 2.1 and proposition 2.2, we see that L: %', — %/, has a two-
dimensional kernel and its range includes 0%/ ,. If f € Qy%/,, then it must take the form
J = (v, 0) for some v = v(x) € C2+“(R). Since w fo( ‘ )w(s) ds is a bounded linear map-
ping C;H*(R) — CiH!+2(R) forany k > 0, we may let V € C;7(R) be given so that V"' = v.
It follows that u(x,y) = V(x)py(y) satisfies Lu = f. Thus L is surjective, and so it must be
Fredholm index 2.

A standard dimension counting argument shows that the bordered operator has Fredholm
index 0; see, for example, [48, lemma 4.4]. Now, if u € 2, satisfies (Lu, Qu) = 0, then in par-
ticular u € ker L. On the other hand, Qu = 0, and so it must be that ¥ = 0. Thus, the bordered
operator is injective and Fredholm index 0. It follows that it is invertible, and the boundedness
of its inverse is a consequence of proposition 2.2. (]

2.2. Reformulation as a fixed point

Now, let us return to the full nonlinear problem. The abstract operator equation (1.4) can be
rewritten as

Lw = N(w, \), (2.10)
where ' = (N}, \>) is defined by

N(w, \):=Lw — iﬂ‘(w, A).
apg

Thus, NV is ‘flat’ in the sense that A'(0,0) = 0, D,/N(0,0) = 0, and O\ N (0, 0) = 0. The com-
mutation identity (2.6) permits us to perform a spectral decomposition in both the domain and
codomain to rewrite (2.10) as the system

L(Pou) = QoN (Pou + P> u, \)
{ L(P>1u) = Q=1 N(Pou + P>yu, N).
Applying the partial Green’s function G of proposition 2.2 to the second equation then gives
Psiu = GO N(Pou + P>iu, N),
while, recalling the explicit form of Py and L, we see that
D*Pou = QoN (Pou + P 1u, N). (2.11)

Integrating (2.11) twice we get the full system

Pou = 100 + / (OxPou)(s, y)ds
0

PoOsu = &0 + / QoN (Pou + Px1u, N)(s, y)ds
0

Piu= (;£2>1J\[(1)0u 4—])>1lt,A).

for some constants £, & € R (the ‘initial data’). Introducing a parameter 3 (representing a
rescaling of the axial variable), defining

(Pou)(x,y) = Ui(x)po(y),  (PoOsu)(x,y) = BU2(xX)po(y), ~ R:=Pxu, (2.12)
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and scaling &,, we finally obtain the following integro-differential fixed-point equation in the
spirit of Amick and Turner [3]:

Ui = & + 8 / Un(s)ds
0

1 X
Un) = & + ~ / / G0N (Urpo + B A)(s, v)an ()dy ds
B JoJor (2.13)

1 X
+ *// CoMN2(Urpo + R, A)(s, y)ari(y)dS(y)ds
B JoJ ooy

R =GO N(Uipo+ R, N).
In terms of regularity, we ultimately seek solutions of (2.13) with
(U1, Uy, R) € CFF*(R) x CLT(R) x CFF(€) = Xy,

Unraveling definitions, this will imply that u € 2. In view of proposition 2.2, define
7i:=1+/|v1|/2. In order to obtain a fixed point, we cannot work directly in X, but must
instead consider the problem posed in the corresponding exponentially weighted space X,
for n € (0, 7).

2.3. Analysis of the nonlinear term

We wish to eventually apply the fixed-point theorem for systems of the type (2.13) given by
Amick and Turner, which is recalled in appendix A. Towards that end, it is necessary to look
more closely at the form of the nonlinear terms A

Splitting into bulk and boundary operators as usual, we have N = (N}, N>) where

1
Nifu ) = =58 - (AG. i, Vit ) = VA2 0,0.0) V)
- (B, u, Vu, X) — 0.8(»,0,0,0)u — V,B(y,0,0,0)Vu),
an(y)
No(u, \) = %(y) (GG, u, Vi, N) — 9,G(y,0,0,00u — V,G(y,0,0,0)Vu).
11

Substituting

u="Upy+R, Ot = BUspy + Ry, V'u=UV'gy+ V'R,
we can rewrite this as

anNy =V - AU, VR B) + By, U.R, VR, B),

anNa> = QO’, U,R, VR, A, ),

for some functions A, B, G that are C¥** in all of their arguments. Moreover, they are flat with
respect to (U, R, VR, )) in that their Taylor expansions in these variables at the origin contain
only quadratic and higher-order terms. Note that here, and in the sequel, we write U := (U}, U»)
to shorten the equations.

With this in mind, let us analyze the terms in the fixed-point equation (2.13) and ensure they
take the required form (A.2) for theorem A.1.
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Equation for U;. Looking at (2.13), we see the right-hand side of the equation for U, is
BL1(U,R) where £,(U,R) = [; U, dx. Since the operator f — [ f ds is bounded and linear
C,t* — Ct* and cite — (E‘ﬁ*“, £, satisfies the first component of (A.3). In particular,
F; in (A.1) has the form (A.2) with H; = 0.

Equation for U,. In the equation for U, € C 1+ in (2.13), consider the term

l// 0 (v~]t(y,U,VR,A,ﬂ)+B(y,U,R,VR,A,5)) dy ds.
B 0J

The boundary ~integral can be handled in a similar fashion. Writing A= (.211, A ), the contri-
bution due to A; can be rewritten as

X

l// @oaxill (v, U,VR, \, B)dyds = l/ cpo]h O, U,VR,A,ﬁ)dy'.
B 0J B Q

0

Stripping away the evaluations bars, we recognize this as having the form
1

where
DWU,R):=(U,VR), If:= /Qlwo(y)f( - y)dy,

and S, is the superposition operator defined by (A.6) for the function

gx,y,u,r, \, B) ::.;ll(y, u,r,\, 3).
As D only evaluates derivatives in the R variables, it is easy to confirm that
D bounded and linear X,, — C, " (R; R?) x C, 7" (R} =Y,

for any p > 0, with bounds uniform in z on compact subsets of [0, ). Clearly, then, D satisfies
(A.5). The function g is C¥ ™3 and flat as required by (A.7) in light of the regularity assumed
on the coefficients and the presence of the trivial solution family in (1.5). Finally, Z simply
integrates in the transversal direction, and hence

7 bounded and linear Y,, — C},*“(R) and Yy, — CLT(R),

with bounds uniform in p on compact subsets of (0, z). In particular, the structural assumption
(A.8) is satisfied. _
Now let us move on to the contribution of A’ to the U, equation:

1 [ ~
—// ooV’ - A" (y,U, VR, X\, 3)dy ds.
B JoJor

Stripping off the 1/ and integrating by parts in y, we get
— / / Ve - A (y,U, VR, \, B)dyds
0/

+ / / ©oN' - A' (v, U, VR, \, B)dS(y)ds.
0J oY
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These are analogous to the contribution of ]ll considered above, except that the operator
T is post-composed with f — f(f f ds. While this is not a bounded map from Cé+”(R) —
ClT(R), it is bounded C}T*(R) — CL**(R), which is all that is required in (A.8). The con-
tribution from B is treated in exactly the same manner; indeed, it is even simpler since no
integration by parts is needed.

Equation for R. The work for the R equation has mostly been done through the study of the
operator G. We know in particular that G, and hence the composition Z := GQ> 1, are bounded
%, — P> ', forany p € [0,77) by proposition 2.2. The argument of GQ-,, is the interior
and boundary components of N'(U; o + R, \), each of which can be written as

S¢(U,0,Us, R, VR, D*R; \, B)

for some suitably flat g that is independent of x. Thus for D we can take
D(U,R) :=(U,d,Uy,R,VR,D’R),

which satisfies
D isbounded and linear X, — C2(R;R?) x CO@ELR!F"+7)

for any p € [0, 7z) with bounds uniform on compact subsets of this interval. This will certainly
satisfy (A.5), and we have

(U,R) — So(D(U,R); A\, B) bounded X, — C;j(ﬁ),

for all i € [0, 7x) and uniformly on compact subsets. Applying proposition 2.2, we conclude
that Z will then satisfy (A.8):

T is bounded and linear C;; () — C,"*(Q) and Cy(Q) — Gy (),
for all p € (0, 7).

2.4. Truncation and fixed point mapping

We have verified all of the hypotheses of theorem A.l. As it stands, however, this only tells
us about solutions to a truncated version of (2.13) where the nonlinear terms have been pre-
composed with cutoff functions. Undoing the various changes of variable, this leads us to a
cut-off version %" (in the sense of (A.9)) of the nonlinear elliptic operator ., where r > 0
measures the scale of the cut-off function. An advantage of Z" is that it is defined as a
mapping £, x R — &, between weighted spaces. If we increase the weight on the tar-
get space relative to the domain, then we can arrange for %" to have any finite degree of
smoothness: .F" € CMH3( u % R; % (w46),)- This rather technical fact is a consequence of
[3, theorem 2.1]. A slight complication is that the operator .%" is no longer local, since it is
defined with reference to the spectral splitting (2.12). But this splitting only occurs in the trans-
verse variable y, and so " is local in x. Moreover, .% and %" agree in a sufficiently small
ball in Z.

Lemma 2.4. In the setting of theorem 1.1, suppose that ||u|| 2= < r. Then

(@) F'(u,\) = Fu,\).
(b) D, F'(u, N)| 22, = DuF (u, N).
(¢) DLDAF (u, M| a0 = DyDKF (u, ).
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Proof. Part (a) is obvious by the definition of %" in the sense of (A.9). For (b), we know that
for any v € % and for ||u|| 2 < r one can find ¢ sufficiently small so that ||u + ev| 2 < r.
Thus

d d
D, wu,Nv=—| F(u+ev,N)=—| Fu+ev,\)=D,Fu,\v.
de e=0 de e=0

It is also easy to see that DX F (u, \) = D .F"(u, \) for ||u|| 2~ < r and k < M. Repeatedly
differentiating with respect to u, (c) then follows by induction on /. (]

In terms of .#", the result of applying theorem A.1 is recorded in the following lemma.

Lemma 2.5 (Existence of a fixed point).  For any integer M > 2, there exists
pe 0,7, r>0,p5¢e(0,1],and a C"" mapping

WiR*xR—X, (&,& N+ (U, Us,R) (2.14)
so that, for all (&1, &5, M), the functionu € X, defined by
u(x,y) = Ur(x)@o(y) + R(x, y) (2.15)

is the unique solution to the truncated problem " (u, \) = 0 that satisfies the initial conditions

1
& =U100)= /Q u(0, »)po(y) dy, & =0 = 3 /Q 0:u(0,y)po(y) dy.

2.5. Proof of main results

We are now ready to prove the main results of this section.

Proof of theorem 1.1.  Our first step is to change variables from the initial data ¢ = (£,,&,)
in lemma 2.5 to

u(0,0) 0,u(0,0)
a=(a,a) = ( 7>

©0(0) " Bipo(0)

Towards that end, fix (£, &) € R, and suppose that u is given by (2.14) and (2.15) in lemma
2.5. Then we calculate
u(0,0) 1 1

= U1(0) + ——=—R(0,0) = ——W3(£1, 6, M)(0,0),
200) 1()+%(0)( ) £1+(p0(0) 3(€1, €2, A)(0,0)

and, similarly,

9.u(0,0) 1 1
= - = *BXU 0 78)(R OaO
oo VO 50RO

1
= ——— O H3(&1, £, 0)(0,0).
&+ o) 3(61, 62, M)(0,0)
Thanks to the estimates in lemma A.2, the mapping & — a is a C¥*! near-identity change
of variables. In particular, it has a CY ! inverse £ = a + g(a, \) for some function g € C**!
which is flat in that g(0, A) = 0 for all A and 0,g(0,0) = 0. Introducing the scaled variables
A= ¢y(0)a; and B = [py(0)ay, we further rewrite this as

a

A
51 =—+ GI(A7B7 )\)a 52 -

G>(A,B, \), 2.16
70(0) B T HAEN (2.16)
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for some Gy, G, that are flat with respect to (A, B) in that G;(0,0, \) = G,(0,0, \) = 0 for all
A, while V(A,B)GI and V(A,B)Gz vanish at (0, 0, 0).
The Faye—Scheel reduction function ¥ can now be explicitly defined by

_ B
©0(0)  wo(0)
+ 756,60 (x,),

W(A, B, N)(x,y) = (Wl(&, &, M(x) — X> ©o(y)

with (£, &,) the functions of (A, B, \) given by (2.16). All of its properties are straightforward
to check, and we obtain the formula (1.11) with x # 0 by appealing to the translation invariance
of the problem.

It remains to derive the ODE (1.9) for v :=u(-, 0). Differentiating (1.11) twice with respect
to x we obtain

Q2ulx + 1,y) = 2V (v(x), v'(x), \)(T, ).

Setting y = 0 and 7 = 0 this becomes

2

d
v (x) = O?u(x,0) = s

(v(x), v (), (T, 0) = f(0(x), v'(x), ),
=0

T

as desired. O

Proof of theorem 1.6.  Our proof of theorem 1.1 ensures the existence of the Faye—Scheel
reduction function ¥ which is uniquely determined by Q¥ = 0 and

A B
F + X —l—\I/A,B,)\,)\) =0. 2.17
(900(0) ot oo tYABY @.17)

Recall that here we are using

M(O, 0) BXU(O, O)
200 0

but this argument can be repeated for any choice of projection onto ker L| 2, From the reg-
ularity and flatness properties (1.8) of ¥, we know that U admits an expansion of the form
(1.13), and (a) follows from applying Q to it. Next we differentiate (2.17) to obtain

(Qu)(x,y) = xpo(y),

00RO

A B
F' | ——=po + ——=xpo + V(A, B, N, A) =0 (2.18)
(4.BN=0 <<P0(0) 7 ©0(0) o

for i+ j+ k < M. Since the implied partials of .%" are all being evaluated at (u, \) = (0, 0),
we can then use lemma 2.4 to replace them with the desired partials of %, proving (b).

It remains to show that the W; ; are uniquely determined by these properties. Plugging (1.13)
into (1.14) and recalling that L = %Duﬁ(o, 0), we find that

LU+ = 0, (2.19)

where Z;; depends on W, for i <i,j < j,K <k and i'+j+k <i+j+k—1.
Lemma 2.3 then allows one to solve U, uniquely from {¥; 7 g O
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3. Extensions to other types of elliptic problems

3.1. Symmetries

Unsurprisingly, symmetries of the nonlinear operator .% are reflected in the reduction function
U in theorem 1.1, and hence in the ODE (1.9). For example, the elasticity application studied
in section 5 leads us to consider PDEs of the general form

Au+V - (|Vul’Vu) +u—Au=0  inQ
u=0 on 0f)

where 2 :=R x (—m/2,7/2) and a number of constants have been set to 1 for expositional
purposes. Observe that this problem is invariant with respect to the reversal transformation
u(x,y) — u(—x,y), which can be stated abstractly as

FuoT,\)=Fwu,\)oT forT:= <_01 ?)

Intuitively, this invariance should mean that many terms in the expansion of ¥ must vanish.
Knowing this in advance greatly simplifies the task of computing the reduced equation.

We will consider only a slightly larger class of symmetries than the above example, as this
will permit us to give a fairly simple argument. Let T € R"*" be a diagonal matrix with T2 = id,
and let €, €, 63 € {+1, —1}. Suppose that T2 = (2, and that

Fi(eouoT,\) = Fi(u,\)oT 3.1

for all u € & and X\ € R. One can then check that the cutoff operator %" introduced in
section 2.4 satisfies the same identity, where here the key facts are that the splitting of « into
U\, U,, R respects these linear reflections, and that the even cutoff function 7, is ultimately
applied component-wise to Uj, U,, R and their partials.

Fix A,B,A € R and let u = Ay, + Bxpy + Y(A, B, \). Then by the construction of ¥
we have % (u, \) = 0, and hence also F# (egu o T, \) = 0 by the above argument. By the
simplicity of the eigenvalue 0 of L', ¢, o T = ¢, and so we calculate

eo(uo T)(x,y) = €0Awo(y) + oTooBxwo(y) + €o(W(A, B, X) o T)(x, ).
Applying Q and appealing to the uniqueness of ¥, we deduce that

W(eoA, €gTooB, \) = eoVU(A,B,\) o T, (3.2)
and hence that

f(€()A, 6()TooB, )\) = €0f(A, B, )\) (33)

3.2. Other boundary conditions

In formulating theorems 1.1 and 1.6, we chose to focus on problems that linearize to co-normal
boundary conditions. This is not essential: looking at the proof, it is clear that one can just as
easily impose nonlinear Dirichlet conditions of the form

G(y,u,\) =0 on 01, 3.4)
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for G that is CM** in its arguments. Naturally, for this case the codomain of % should be
redefined to be

% = 0T x CPTO0),

and likewise for ¢/, and /4. In place of the obliqueness assumption (1.3), we now require
that

9.G(y,0,0) £ 0 forall y € €.

By assumption (1.5), we must have G(y, 0, \) = Oforall y € Q' and A\ € R. The above hypoth-
esis on G justifies using the implicit function theorem to recast (3.4) as u = 0 on 9. Then the
proof of proposition 2.2 proceeds as before, only using a priori estimates for linear elliptic PDE
with homogeneous Dirichlet conditions. The fixed point argument is essentially unchanged.
One small modification is that eigenfunction (o, can now vanish on 92, and hence we must
assume that 0 € €' or else choose a different projection Q.

Likewise, if 02 has two or more connected components, one can freely impose either
Dirichlet or co-normal conditions on each, adjusting the regularity of % accordingly.

3.3. Internal interfaces and free boundaries

We can also expand the scope of the reduction theorem to treat nonlinear transmission
problems. Suppose that n = 2 and the base §2' is the union of two open intervals:

Q' =000, )= (—1,0), Q)= 0, 1).

Let Q:=R x ' be the (slitted) cylinder, and say €; = R x ;.

Physically, one can for instance imagine this as representing two immiscible fluids confined
to a channel with rigid walls; the interface between them is the line I':=R x {0}. Of course
this interface is only flat once we have performed a change of variables, and this may intro-
duce terms in the interior equation relating to traces (or derivatives of traces) of quantities on
the boundary. With that in mind, we consider the following quite general quasilinear elliptic
problem:

V- A, u, Vu,ulr,uelr, ) =0 in ©
G(uy,uz, Vuy, Vi, ) =0 on T
K(uy,u,\) =0 onT

u=0 on{y==l},

(3.5)

where A;, Ay, G, K are CM* in their arguments. Here, we are breaking convention slightly
by writing u; := u|g, and likewise for A. As before, assume that .4; is uniformly elliptic (1.2).
In place of obliqueness (1.3), we now ask that

NQ) - (vplg(zl’z%l’l’l@ - Vmg(ZhZz,Phpz)) >y forallye (Y,
pLp €RY 71,20, € R.

The elliptic problem (3.5) can be rewritten as an operator equation % (u, \) = 0, with
F = (F, F,, F3) corresponding to the first three equations and the homogeneous Dirichlet
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condition incorporated into the definition of the space. The main restriction is that the linearized
problem is of transmission type, that is,

F1u(0,0v:=V - (a(y)Vv),
F2(0,0)v:= — [NY) - a(y)Vv] + g1(0)v1 + g2(y)va, (3.6)
F3.0,0)v:= [[v].

Here [-] :=(-)> — ()1 denotes the jump of a quantity over I', and the coefficients a, g; are
obtained from A; and G in the obvious way.

In typical applications, one asks for solutions whose restriction to €2; is smooth up to the
boundary. We therefore set

Z = {u:ulg € C* (), uly—11 = 0}, (3.7)
and take as the codomain for the corresponding nonlinear mapping % the space
Y = {w:wlg, € "M Q) } x CHTT) x CHD). (3.8)

While the jump conditions on I' in (3.6) are somewhat exotic, there is a well-established
literature regarding them, including the Schauder estimates [33] that we require. It is then quite
straightforward to generalize theorems 1.1 and 1.6 to the setting of (3.5). Indeed, Amick and
Turner explicitly mention how their fixed point theory accommodates spaces similar to (3.7)
and (3.8) (see, [3, remark 2.2, remark 3.2]), and in [2] they apply it to a transmission problem
in hydrodynamics that is a special case of what we consider in section 7.

Corollary 3.1. Consider the quasilinear elliptic problem (3.5). Assume that the correspond-
ing linearized operator L is of transmission type (3.6) and the transversal linearized operator
L satisfies the spectral hypothesis (1.7). Fix p € (0,+/|v1|/2) and an integer M > 2. Then
there exist neighborhoods U C & x R and V C R? of the origin and a coordinate map
U = W(A, B, \) exhibiting all the properties claimed in theorem 1.1, 1.6, and 1.9.

3.4. Diagonal elliptic systems

Another possibility is to study systems of quasilinear elliptic PDE. To do this in complete
generality is beyond the scope of this paper, but, with just a minor modification, the above
argument can treat a special class of systems that are important for the proof of theorem 1.9.
Letting ) again be any connected cylinder as in section 1, we consider solutions u = (u', u?)
to
V- Ay, Vi, \) + B'(y,u, Vi, \) =0 in Q
A , A (3.9)
—N@) - Ay, Vu', \) + G'(y,u, \) =0 on 09,

for i = 1,2. We assume that the coefficients A’, B, G/ are CM** in their arguments, and also
that uniform ellipticity (1.2) and obliqueness (1.3) hold. Suppose further that the linearized
problem at (u, \) = (0, 0) is diagonal in the sense that (3.9) can be rewritten as

Lu' = N, u?, \)
(3.10)
Lu? = N2, u?, N,

where L : 2", — %, is abounded linear operator, and each N is a divergence form nonlinear
operator that is (1) C¥ 1 as a mapping 27 x 2, x R — %, and (ii) satisfies N7(0, \) = 0
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and N(0,0) = 0. Arguing exactly as in section 2.2, this problem can be reformulated as a
fixed-point equation of the form (2.13) but with six components—three each for u! and
u?. While in appendix A we only state Amick and Turner fixed-point theorem for a two-
dimensional center manifold, the theory as originally formulated in [3, section 3] applies to
systems of arbitrary dimension. Using it as before allows us to recover theorems 1.1 and 1.6,
with the reduction function now taking values in the product space 2, x Z',,.

3.5. Commuting linearization and reduction

With the above center manifold theory for diagonal systems at our disposal, we are now
prepared to prove theorem 1.9.

Proof of theorem 1.9.  Suppose that we are in the setting of theorem 1.1. Throughout the
argument, we will work with a fixed value of ) that is taken sufficiently small. For convenience,
it will therefore be suppressed.

Consider the following (truncated) augmented problem

G (u, it) = (ﬂ’(u), Dufi’(u)u) —0. 3.11)

Recall that %" denotes the truncated nonlinear mapping in the sense of lemma 2.4. Naturally,
(3.11) is a (truncated) diagonal system satisfying (3.9) and (3.10), and so we may apply the
modified version of theorem 1.1 to classify its small bounded solutions. In particular, there exist
neighborhoods U C &, X Zp and V C R* of the origin, and a reduction function (®, Y) €
CMTIRY, 2\, x Z,) so that (w, 1) € U solves (3.11) if and only if

{ w = (A + Bx)po(y) + ®(A, B, A, B)

L .. (3.12)
W = (A + Bx)po(y) + T(A,B,A,B),

for some (A, B,A, B) € V. We are recycling notation here somewhat, as ® above is not the same
as the one occurring in remark 1.2. Let us now define

V(A,B) =P(A,B,0,0).

Itis easy to check that this function has all the properties of the reduction function furnished by
theorem 1.1 to the original (truncated) problem. In particular, this means that any sufficiently
small w € 2, satisfying %" (w) = 0 can be written

w(x,y) = (A + Bx) po(y) + V(A, B)(x,y) in £, (3.13)

for some A, B € R. Moreover, v := w(-, 0) solves the reduced ODE (1.9), with f defined by
(1.10). For simplicity, let us also normalize ,(0) = 1, which implies A = v(0) and B = v'(0).
Note also that, by construction, the range of ® and Y lie in the kernel of the projection Q onto
ker L. Consequently, the coefficients A and B in (3.12) and (3.13) must indeed coincide.

Fix a small solution u € X', to F(u) = F (1) =0, and let i € 2, be a solution of the
linearized problem as in the statement of theorem 1.9. Even though we do not assume that
||it|| 2~ is small, the structure of the augmented problem ensures that, for all § > 0 sufficiently
small, («, dir) lies in U and

G (u, i) = 9" (u, o) = 0.
In that case, we can use (3.12) with (u, diz) in place of (w, w) to see that

Sit(x,y) = 6(A + Bx)po(y) + Y(A, B, 0A, 0B).
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As Y is CY*! an expansion of the right-hand side above in § yields
it = (A + Bx)@o(y) + Dy 3, Y (A, B,0,0) - (A, B). (3.14)
We claim further that
D ¥(A, B) = Dy Y(A, B,0,0). (3.15)

To see this, first observe that the construction of the reduction functions ¥, and (®, T) ensure
that

T ((A + Bx)po + @(A,B,A,B)) —0,
9" ((A+ Bx)go + ©(A BAB), A+ Bogo + T4, B.AB) =0,

for all (A, B,A, B) € V. Note that Z" is C* as a mapping &, — #4,. This permits us to
differentiate the first equation with respect to (A, B), and upon evaluating at (A, B, 0, 0) we find
that

D, F'(u) [po + Da¥(A,B)] = 0, Dy F" (u) [xpo + Dp¥(A, B)] = 0.

Likewise, the second component of €¢” is (u, it) — &, (u)it, which is C !as a mapping 2 0 X
X', — #4,. Taking its derivative with respect to (A,B) and evaluating at (A, B, 0,0) leads
to the identities

D,F'(u) [0 + D;Y(A,B,0,0)] =0,

D, F'(u) [xpo + Dz Y(A, B,0,0)] = 0.
Combining the two identities above we conclude

D, F"(u) [DaV(A,B) — D;Y(A,B,0,0)] =0,

D, F"(u) [DgV(A, B) — D;Y(A, B,0,0)] =0.
On the other hand, by construction

Q [D4¥(A,B) — D;Y(A,B,0,0)] =0,

Q [Dp¥(A,B) — DY (A, B,0,0)] = 0.

We know from lemma 2.3 that the bordered operator w — (D,.Z"(0)w, Qw) is invertible
X, — ¥, x ker L. Moreover, if u € &', has ||u|| o~ sufficiently small, the same is true
for w — (D, F" (u)w, Quw) by a perturbation argument. Hence we have proved the key iden-
tity (3.15), at least when A = v(0) and B = v/(0) correspond to a sufficiently small solution
u € Z'v. The uniform smallness of u in particular means that, say by lemma 2.4, we do not
have to worry about the cut-off functions when performing this perturbative argument.

Theorem 1.9 follows almost immediately. From (1.9), (3.14), and (3.15) we see that
v:=u(-,0) solves the reduced equation

,II)N = g(’U3 'U/, /[)a /[)/)3
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for

.. d2
A,B,A,B):= ——
g(, b ,) dxz

[(A, B) - Dusy (A, B)(x, 0| .
x=0

But, recalling the definition of f (1.10), this becomes exactly the claimed ODE (1.16). O

4. General strategy to apply the reduction procedure

In the course of proving theorem 1.6, we have shown that each term ;. can indeed be uniquely
determined by iteratively solving a hierarchy of equations of the form (2.19), where the terms
of the right-hand side involve information about various Fréchet derivatives of % at (0, 0).
In this section, we briefly illustrate how this process is carried out in practice, and also how
the reduced equation (1.9) can be rescaled to obtain homoclinic or heteroclinic solutions. To
simplify the presentation, we will assume that a;; = V,, A(-,0,0,0) = 1, and hence L = L.

4.1. lteration

The smoothness of %" and lemma 2.4 allow us to write

FuN= > A"DﬁD’;y’(0,0)[u,u,...,u]+0( > Iulfézﬂl"> 4.1)

1<0+k<K (+k=K+1

in % x4y, for any integer K < M, where the D, DX .%"(0, 0) are symmetric bounded /-linear
mappings (2 /,,)[ — % (k4. For i + j+ k < K, the remainder terms in (4.1) do not con-
tribute to %, in (2.19). Therefore, when solving (2.19), it is sufficient to work with the
truncated version of (4.1) that results from simply setting these remainder terms to zero.

For an integer K > 1 and a smooth function g = g(A, B, ), we define Txg to be the Kth
order Taylor expansion of g at 0, that is,

Tkg(A.B, )= Y 0,04048(0,0,0)A BN\,
i+ j+h<K
Plugging (4.1) and (1.13) into (2.17) we see that, for | < K < M,
Te Y. MDLDAZ0.00u®,.. . .u®] =0, 4.2)
| <O+h<K
where
u®(x,y;A,B, ) = T [Apo(y) + Bxpo(y) + U(A, B, \)(x, )]
=Apo) + Bxgo) + D> Wi, ABIN
2<itj+h<K
i1
More explicitly, at K = 1, the definition of u'® reads simply uV(x, y) = Apy(y) + Bxpy(y).
For K > 2, we may use the facts that

DAF(0,0)=0, and u® =u® D4 " W nABN 4.3)

i+ j+k=K
i+j=1
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to derive the equations for W;; when i + j+ k = K. Below we give two example calcula-
tions for K = 2, 3. As all of the derivatives of .% are evaluated at (0, 0), the base point will be
suppressed for notational convenience.

When K = 2, (4.2) and (4.3) imply that

L > WuABX [ = -AD,D\F u” — DLZD, u],

i+ j+k=2
i+j>1

from which {¥; : i+ j+ k = 2}, and hence u'®, can be uniquely solved by applying lemma
2.3. At K = 3, a similar calculation gives

L| Y UuABX | = —Lu® = \D,D\Fu® — DLZ[u®,u®]
i+ j+k=3
i+)21
— AD, D3 Fu'V — \D2Dy F[u'), u"]

— D3V, D, u M.

The right-hand side is explicit. Grouping like terms and applying lemma 2.3 we may determine
u®.

This process repeats at each stage: we have to iteratively solve linear equations of the form
LY,y = Fij, OV, =0, (4.4)

where i + j+ k = K and F;j depends only on u* 1.

In summary the procedure for calculating W; 4 can be explained in the following way. First,
one Taylor expands the terms in .% to order M to obtain a Taylor-truncated operator that is natu-
rally defined on weighted spaces. The composition of the Kth order Taylor-truncated operator
with «®) is a polynomial in A, B, A\ whose %, coefficients depend on the W, ;. Setting the
coefficients of A’B/)\F for i + Jj+ k < K equal to zero, we obtain a series of equations for the
W, x. Working in order of increasing i + j + k, this becomes a sequence of linear problems of
the form (4.4) where F;j is known. Lemma 2.3 ensures that these equations can be solved
uniquely.

4.2. Anticipated scaling

The reduced ODE (1.9) always admits two degrees of freedom: we may select a length scale for
the x-variable as well as an amplitude scale for the unknown. Making intelligent choices can
vastly simplify the expansion procedure. For example, if we hope to find a heteroclinic solution,
the reduced ODE must have a certain structure, and this leads to an anticipated scaling.

By design, (1.9) always has an equilibrium at the origin. In applications we are interested in
cases where the linearized problem there is nondegenerate in that D g (0, 0, A) has no zero
eigenvalue for 0 < |A| < 1. Treating \ as fixed and performing a double expansion in (A, B)
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we have
f(A,B,\) = 04f(0,0, A + 0pf(0,0,\)B + %Bif(o, 0, MA?

+ 940pf(0,0, NAB + %aﬁ £(0,0, \)B? + %aj £(0,0, 043 45

+ 0 ((|A] + [B])*|B]) .

Note that the nondegeneracy condition forces d4 f(0,0, A) # 0. For nontrivial heteroclincic
or homoclinic solutions, we need a second rest point, which in terms of the above expansion
translates to the right-hand side of (4.5) being nonlinear in A. Therefore, let us assume that
there is a least integer m > 2 such that 97 (0,0, \) # 0.

Now, we introduce a rescaling of the axial variable X = xx and amplitude v = aV. Given
the above discussion, we want v”, v, and v™ to appear as O(1) terms in the corresponding
rescaled version of the reduced ODE (1.9). This balancing forces the inverse length scale
and the amplitude scale a to satisfy

ar? ~ adaf(0,0,\) ~ a3y £(0,0,\) as A\ — 0. (4.6)

Clearly, then, x and a involve roots of f, and 07'f. To avoid this inconvenience, we may
reparameterize A = \(¢), and consider

A= A\e?, K=kae",  a=az? 4.7

for some p,n, g € N. It then follows from (4.6) that
2 ~ 0af(0,0,27) ~ 3T £(0,0,eN)e™ V1 as e — 0. (4.8)

In particular, this implies that when we carry out the iteration procedure of section 4.1, A, B,
and ) have differing orders of magnitude. It therefore suffices to compute the W, for i, j, k in
the index set

T={GLeN": gi+(g+nj+k<qg+2n i+j+k=2i+j>1}.

Notice that we have not taken into account the contribution of dz (0,0, A)B in the expan-
sion (4.5). This can be justified, for instance, when the system has the reversal symmetry
(v(x), V' (x)) = (v(—x), —v'(—x)). However, if 95 f(0,0, \) # 0, the length scale will be over-
determined since there is a linear term in B in (4.5) which also suggests a choice of «. For this
to be compatible with (4.6), we must therefore have

|04 £(0,0, V)| ~ [05f(0,0,\)|*> as A — 0. (4.9)
With enough parameters in the problem, one can always arrange for this to hold; see, for

example, section 6.

5. Anti-plane shear

Consider a homogeneous, incompressible, isotropic elastic cylinder D = 2 x R with genera-
tors parallel to z-axis and cross section @ C R? in the (x, y)-plane. Anti-plane shear describes
the situation where the deformation takes the form

id 4u(x, y)es, 5.1)
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where e is the standard basis vector (0,0, 1). That is, the displacement of each particle is
parallel to the generators of the cylinder and independent of its axial position.

For an isotropic elastic solid, the strain energy density )V is a function of the three principal
invariants /1, I,, I3 of the Cauchy—Green tensor. In this section, we will consider a polynomial
rubber elastic model, which corresponds to the case where }V is a polynomial in /| and 7, [47].

Thus we can write
N

W, )= Cijly = 3)(Il, = 3Y.
i+j=1

Note that when N = 1, Cy; = 0, this reduces to the standard neo-Hookean solid model [49].
Values of N > 2 are rarely used in practice because it is difficult to fit such a large number of
material properties to experimental data. Therefore, we restrict our attention to the quadratic
case N = 2; this will result in a quasilinear PDE with a four-Laplacian term, cf (5.8).
Assuming incompressibility, it is shown in [30] that under an ‘ellipticity condition’

d

ow ow
R (a—ll(ll,lz) + 8—12(11,12)>

>0 forallR>0,
Ij=L=3+R?

the energy function W is admissible if and only if there exists some constant k € R such that
ow ow
k—(1, 1 k—1)—=—(,h)=0.
811(1 2) +( )812(1 2)

For this reason, we will consider a class of quadratic neo-Hookean materials whose strain
energy density takes the form

W1, L) = Cio(I; — 3) + Ca(I; — 3)* (5.2)

Imposing the anti-plane shear ansatz (5.1), we know that the principal invariants satisfy
Iy =1, =3+ |Vu|?>=:1, and I5 = 1. Hence, we may identify ¥V with the function W(I) =
W@ + |Vul?); see, for example, [25, 30]. At infinitesimal deformations, the shear modulus is
given by 2WW'(3) which is supposed to be positive. For simplicity, we normalize W' (3) = 1.
Then the quadratic neo-Hookean model (5.2) becomes

W) = (I —3) +w (I —3)%, WG+ |Vul?) = 142w |[Vu)?,  (5.3)

where w; :=W"(3)/2 is a material constant.

While there has been an extensive literature on the sustainability of anti-plane shear defor-
mation in various constitutive settings [26, 45], the analytical results concerning the existence
of nontrivial equilibria are mostly restricted to the variational construction of Sobolev solutions
[17, 52]. Our contribution in this section is the construction of a new class of solutions on an
unbounded cylinder which limit to distinct limits as x — —oo and x — 4-0o0. We call these
equilibria anti-plane shear fronts.

Following Healey and Simpson [22], we suppose that the body is subjected to a parameter-
dependent ‘live’ body force b = b(u, \). As in, e.g., [25, 27], we consider the geometrical
setting where 2 = R x (—/2,7/2) is an infinite strip and homogeneous Dirichlet boundary
conditions are imposed on {y = +m/2}.

A static equilibrium then satisfies

{v W@+ |VuP)Vu) —bw,\)=0  inQ
(5.4)
=0 on Of).
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The system (5.4) carries a variational structure with the energy
E(u) = / [W@3 + |Vul*) + B(u, N)] dx dy,
Q

where B, = %b. Note that (5.4) is invariant under the ‘reversibility’ reflection u(x,y) —
u(—x,y) about the (y, z)-plane. We will assume in addition that it is invariant under the reflection
u — —u, which forces

b(-, ) isodd,andhence B(-, \)iseven. (5.5)

The eigenvalue problem for the linearized transversal operator corresponding to (5.4) is
simple to compute:

Wy — by (0,0)w=rw in (—7/2,7/2)
w=0 on{y=-n/2,7/2}.
If the body force b satisfies
bu(oa 0) - _1, (5.6)

then v = 0 is a simple eigenvalue, and the rest of the spectrum is negative. The kernel of the
linearized operator is generated by

@o(y) == cos y.
To make things concrete, we introduce a specific ansatz for the body force:
b(u, \) = —u+ \byu + by’ (5.7)

Note that this satisfies both (5.5) and (5.6). One can of course add higher-order terms in u if
desired; see appendix B. Following (4.7), we reparametrize A = \,e? (see section 5.1 for more
details). The model (5.4) then becomes

{ Au+ 2wV - (|Vul’Vu) +u—bihoeu=0 in Q 5.8)

u=0 on 0f.

Theorem 5.1 (Fronts in anti-plane shear deformation).  Consider the anti-plane
shear problem (5.8) with strain energy W given by (5.3) and a live body force b of the form
(5.7) with b, = 0.

(a) When by\y < 0, w; > 0, there exists €y > 0 and a family of front-type solutions
{W,e)e GG @) xR: —gg < e < 5}
bifurcating from the unforced state (u,e) = (0, 0). It exhibits the asymptotics:

u*(x,y) = aje tanh (kiex) cos(y) + O(e*) in C;T(Q), (5.9)

where ay = / %ZII’\Z =4/ b‘AQ
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Figure 2. Leading-order approximation of the front-type solutions in theorem 5.1(a).
The graph z = u(x, y) is the image of the strip {z = 0, |y| < 7w/2} under the anti-plane
deformation (5.1).
(b) Whenbi Xy > 0and wy < 0, there exists €y > 0 and a family of homoclinic-type solutions
{W.e)e T (@) xR: —gg < e < &}

bifurcating from the unforced state (u,e) = (0, 0). It exhibits the asymptotics:

u*(x,y) = aje sech (k1ex) cos(y) + O(e?) in C2 (), (5.10)
where a; = 7‘3‘];}1’\2, k1 = Vb1

See figure 2 for an illustration of the solutions in case (a).

Remark 5.2. It is worth emphasizing that more detailed information about u° can be
obtained by combining remark 1.2 and the form of the reduced ODE (1.9) found in section 5.2
below. For instance, it is possible to check that #° inherits the monotonicity properties (in the
axial variable x) of its leading-order approximation in (5.9) or (5.10).

Remark 5.3. Including the cubic term in (5.7) for the body force allows one to treat more
general rubber elastic material. In that setting, there exist families of front-type solutions (5.9)
when b; A\, < 0and b, + 2w; > 0, and homoclinic solutions of the form (5.10) when by A\, > 0
and b, + 2w, < 0; see appendix B.
5.1. Center manifold reduction
The linearized operator of (5.4) at (u, ) = (0, 0) with assumptions (5.3) and (5.6) is simply
L.:1+A %# —>@#3
where
X={ueCrQ):ulpo =0}, Y, =Cr Q).

Here, we are exploiting the fact that the boundary conditions are linear by including them in
the definition of 2. The kernel of L is the two-dimensional space

ker L = {u(x,y) = (A4 Bx)po(y): A,B € R}.

The bounds for the partial Green’s function follow exactly from proposition 2.2. As for the
projection Q onto the kernel in remark 1.8, we choose it to be

Qu:= (v(0) + v'(0)x) @o(y) where v(x):=u(x,0).
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Applying theorem 1.1, we find that all small solutions (u, ) of (5.8) are of the form
u(x, y) = v(0)po + v'(0)xpo 4+ ¥(v(0), v'(0), £)(x, )

fora CM*' coordinate map ¥ : R® — C>™. The function v then satisfies the reduced ODE

2

V" = f(v,v',e), where f(A,B,¢) ::% W(A, B, ¢)(x, 0). (5.11)
0

x=

From section 3.1 we see that the reversibility symmetry u(x, y) — u(—x,y) of (5.8) implies
VU(A, —B,e)(—x,y) = V(A, B, e)(x,y), (5.12a)
while the additional symmetry u — —u implies that
U(—A, —B,e)(x,y) = —V(A, B,e)(x, ). (5.12b)
Plugging (5.12) into (5.11), we find that f has the symmetries
f(A,—B,e) = f(A,B,¢), f(—=A,—B,e) = —f(A,B,¢). (5.13)

We now use theorem 1.6 to expand the coordinate map ¥ and hence the function f. That
is, we seek solutions u € 2, with the Faye—Scheel ansatz

u(x,y) = (A+ Bx)po(y) + Y Uin(x, YA'BE + R, (5.14)
J

where the index set 7 can be determined from the anticipated scaling described in section 4.2.
In fact from (5.8) we have

Lu = bi\u — 2w,V - (|Vu|*Vu).

Expanding f asin (4.5), we see that (0,0, A) ~ \. Since w; # 0, then the right-hand side of
the above is indeed cubic in u so that @3\ f(0,0, \) ~ 1. Recalling (4.8), this predicts a balancing
g2 ~ P ~ g%, We therefore take n = g = 1 and p = 2, which explains the reparametrization

A = \e? in (5.8), and leads to the index set 7 given by
T={GjeN: i+2j+k<3, i+j+k>2 i+j>1}, (5.15)

and the error term R is of the order O ((|A| + [B|'/? + |¢|)*) in 2. This truncation anticipates
a scaling where A ~ ¢, B ~ 2. Recall from theorem 1.6 that U;x(0,0) = 0, ¥;%(0,0) = 0.
Plugging (5.14) into the nonlinear term in (5.8), we obtain

V - (|Vu*Vu) = —A*V - ( 9

1/2 4 .
sm3y>+0((|A|+|B| +eh) i 2

Therefore, for each (i, j, k) € J, the equation for W, is
Z L(U;1)A'B/e* = bj \ye*(A + Bx)cos y + blz W, 1A' B2 + 6w, A% sin’y cos y

J J
QUi = 0.
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By lemma 2.3, the above problem has a unique solution, and indeed we find:
Wip1 = Wor1 = W0 = W0 = 0,

bi A\
\11102 = ITZXZ COoS Yy,

3
Ws00 = % (4x* cos y — cos y + cos(3y)) .

5.2. Reduced ODE and truncation

From theorem 1.1 we know that a small solution u of (5.8) solves the reduced ODE of the form
(1.9) where v(x) = u(x, 0). Using the computed values of U, ;. we see that

2
W, 1 (x,0)A'BI* + r(A, B, ¢)
x=0

fA.Be)=>" d

.2
G dx
) 3’LU1 3
= b])\QAE + TA + V(A,B, E)
where the error term r € CY ! and
H(AB,2) = O (IA(A| + B2 + )" + BI(A| + B'2 + |e])?) -
Setting » = 0, we obtain the truncated reduced ODE
3
00 = b he?’ + %(v0)3.

When b\, < 0 and w; > 0, this has an explicit heteroclinic orbit,

—2b1>\2 _b1>\2

vo(x) = ay¢ tanh (k1ex), where a; = K= >

3’LU1 ’

On the other hand, when b1 \» > 0 and w; < 0, there is a homoclinic solution

—4bi \
v2(x) = ay& sech (k1ex), where a; == 3 ! 2, K1 =\bi\s.
wi

5.3. Proof of existence

It remains now to confirm that the homoclinic and heteroclinic orbits above persist for the
full reduced ODE (that is, when r is reintroduced). For the heteroclinic case, it is often useful
to examine invariant quantities. Here, however, the symmetry properties in (5.13) are strong
enough that a simpler argument is possible.

Proof of theorem 5.1. Introducing the scaled variables
x=¢e¢'X, v(x) = eV(X),
the reduced equation (5.11) can be written as the planar system
Vx =W

3
Wy = biA,V + %W LRV, W,e),
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where the rescaled error term R(V, W, £) = O (|e|(|V| + [W])). At e = 0, this corresponds to
a rescaling of the truncated equation.

Consider the situation in part (a), where b; A, < 0, w; > 0. At € = 0, the explicit solu-
tion V = a; tanh(x;X) crosses the W-axis transversely. As usual, this implies that for small
nonzero ¢, the unstable manifold of the negative equilibrium will transversely intersect the
W-axis. Combining the reversibility symmetry (V(X), W(X)) — (V(—X), —W(—X)) with the
reflection symmetry (V(X), W(X)) — (—V(X), —W(X)), we obtain existence of a (reversible)
heteroclinic orbit connecting the two nontrivial equilibria.

A similar argument works for part (b), where b; A, > 0, w; < 0. When € = 0, the explicit
solution V = a; sech(x;X) crosses the V-axis transversely. This intersection persists for small
e, and reversibility then guarantees the existence of a (reversible) homoclinic orbit to the
origin. |

6. Fronts in 2D Fisher—KPP

As a second application of our general theory, we consider a reaction diffusion equation arising
in mathematical biology. The classical Fisher—KPP equation [16, 31] is the one-dimensional
problem

v = Ve + ov(p? — ), 6.1)

where v = v(f,x) : Ry x R — R. This models the propagation of an allele within a pop-
ulation; o > 0 measures the advantageousness of the mutant gene, while p? > 0 describes
the carrying capacity. It is well known that Fisher—KPP supports traveling fronts moving at
any wave speed greater than 2p+/o. However, it has been observed experimentally by Mobius
et al [43] that, in the presence of obstacles, invasion fronts may slow down and display two-
dimensional characteristics. Recently, Minors and Dawes [42] proposed a two-dimensional
version of Fisher—KPP with certain ‘reactive’ boundary conditions as a possible explanation
for this phenomenon. For traveling waves, it takes the form

Au+duy +u(p> —u)=0 inR x (0,1)
uy,=0 on{y=0} (6.2)
uy+Pu=0 on{y=1}.

Here the unknown u = u(x,y), S > 0 is an absorption constant, A is the wave speed, and
p* > 0 is the carrying capacity of the allele. Note that Minors and Dawes discuss a slightly
more general problem. For instance, we scaled the domain to be the infinite strip of unit
height Q :=R x (0, 1). Also, they allow Robin or Neumann conditions to be imposed on either
boundary.

In [42], numerical evidence is given that the two-dimensional Fisher—KPP equation (6.2)
does indeed have fronts that move arbitrarily slowly in certain regimes. As the main contribu-
tion of this section, we give the first rigorous proof of the existence of these waves.

Theorem 6.1 (2D Fisher—KPP fronts). Fix 8 > 0, let p, > 0 be the unique solution to
potan(py) = B on (0,7/2), and choose a positive constant \y > 2. There exists 0 < g < 1,
and a family of front solutions (u, \, p*) to the two-dimensional Fisher—KPP equation,

{@ X\ p") =@ e, pf+e) e i) x RxR:—gp < £ < g}
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with
U (x,y) = £2Ve(ex) cos(poy) + O(®) in C2T(Q).
Here, V© is to leading order a front for the one-dimensional Fisher—KPP equation (6.1) with
carrying capacity 1 /o and o given by (6.9).
6.1. Center manifold reduction

The first step is to choose parameters so that the spectral condition (1.7) is satisfied. The
eigenvalue problem for the transversal linearized operator at (1, \) = (0, 0) is simply

Wyy +p2w: vw in (0,1)
wy,=0 on{y=0}
wy + pw =0 on {y=1}.

An elementary calculation shows that there are no eigenvalues v > p?, and v < p? is in the
spectrum if and only if

tan(y/p7 —p) = DV =V (6.3)

p*—v

Taking 8 > 0 to be fixed, the critical value for the parameter p is defined to be the unique
po so that the only nonnegative solution of (6.3) is v = 0. Clearly, this occurs precisely when
tan(p,) = 3/ py, and in that case the kernel is generated by

wo(y) := cos(poy)-

Now, we reconsider the full problem posed on €2. As in the previous application, we take
advantage of the linearity of the boundary conditions by encoding them directly into the
definition of the space: let

X = {ue D uyly—0 = 0, (Bu+uy) |y=1 =0}, % = 0.

with the exponentially weighted counterparts 2, and %/, respectively. The linearized
operator at (#, \) = (0, 0) is thus

L=A+p5: X — Y, (6.4)
and its kernel is the two-dimensional subspace
ker L = {u(x,y) = (A4 Bx)po(y) : A,B € R}.

We have some freedom to choose a projection Q onto ker L. As the boundary condition the
bottom of the strip is simplest, a reasonable option is to take

Qu:= (v(0) + v'(0)x) @o(y) where v(x):=u(x,0).

Applying theorem 1.1, we infer the existence of a center manifold that must contain any suffi-
ciently small solution to (6.2). To find the corresponding reduced equation, we will use theorem
1.6 and follow the general procedure outlined in section 4.
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As in section 5.1, we write the PDE as
Lu = —M\u, — (p2 — p%)u +u?,
where L is the linearized operator (6.4). From this we do not immediately see a length scale
unless we assume certain parameter dependence on p> — p3. The u, term imposes a compatibil-

ity condition (4.9), which, in the FKPP case, reads £4(0,0, ) ~ |p* — p3| ~ A\2. The quadratic

term in the PDE suggests that m = 2 and f,4(0, 0, A\) ~ 1. Plugging this in (4.8) we see that

g2 ~ g% ~ g%, and hence one can pick n = p = 1 and g = 2. This choice corresponds to the

reparametrization
A=A, PP =g+ pae’,
and the index set J given by
T={Gj,k) e N :2i+3j+k<4 i+j+k>2 i+j>1}. (6.5)
Expressed in the new parameter regime, the PDE becomes
Lu = —pgszu — \euy + u’. (6.6)

Seek solutions u € 2, with the Faye—Scheel ansatz

u(x,y) = (A + B)po(y) + > Wi(x, A'BIE" +R(x,y), (6.7)
J

where the error term
R=0 ((|A|1/2 + B3 + \5\)5) in 2,

Note that, in contrast to the previous section, the truncation condition anticipates an eventual
scaling where A ~ 2, B ~ 3. As in the previous section, computing the coefficients ¥ can
be performed according to the general strategy. Substituting (6.7) to (6.6) it follows that

L (Z \IlijkAiBjsk> = —pgcpoAs2 — AipoBe — pg)ccpoBs2
J

— pzz \I/ijkAiBjEk+2 - )\12 ax\I/ijkAiBjEk+l
J J

2
+ ((A +Bx)go+ Y jkAfoe"> :
J

which results in four equations

LUy =0, L¥g;=—Nigo, L¥i00=—papo— MV, LW = ¢
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augmented with QW;; = 0. The unique solvability of each of these problems is ensured by
lemma 2.3. In particular, one can verify immediately that W9, = 0 and hence LU 1gp = —p,py.
Therefore

A
oy = —Elxz cos(poy), Wi = —%xz cos(poy).

Solving for W, is much more complicated. Differentiating the equations for U,y with respect
to x, we know that L(0,W200) = 0. Hence 0, V200 = (c1 + c2x)¢y(y) for some constants ¢; and
c;. Antidifferentiating, this means that

1
Wog = <C1x + 202)62) cos(poy) + g(y),

for some function g. The constants c;,c; and the function g will be determined from the
projection condition and the PDE. Combining these, we obtain

{g” + pg + 2 cos(poy) = cos’(ppy) in (0, 1)
g0) =g (1) +Bg(1)=0, g0)=c =0.

This is an elementary ODE that can be solved explicitly, resulting in a somewhat compli-
cated expression for W,y. However in the reduced ODE we only need to find

2

dx?

4 sin(po)(3 — sin(po))
Waoo(x,0) = ¢y = :
oD =T T Gin g0 + 200

Finally, this gives the expansion

4 sin(po)(3 — sin*(po))
3(sin(2po) + 2po)

f(A,B,g) = —prAc? — \|Be + A? + r(A,B,¢).
6.2. Reduced ODE and truncation
Having the coefficients W ;; in hand, we may then apply theorem 1.1(a) to calculate the reduced

ODE. Letting v :=u(-,0), we see it is given by (1.9) with

W, 1 (x, 0)A'B/e* + r(A, B, ),
x=0

d2
f(A,B,e) = Z@
J

where the remainder term r € CY ! satisfies
rA.B.2) = O (1AI0A" + 1B + [e])’ + 1BI(A[ + 18 + |21
in some neighborhood of (0, 0, 0). Inserting the computed values of W, reveals that
2_ 2

V' =ov* — e v — A\ev +r(, v, e), (6.8)

where

. 4sin(po)3 — sin*(po))

- > 0, 6.9
3 2po + sin(2po) ©3)
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because p, € (0,7/2). Rearranging (6.8) slightly and truncating the remainder term, this
becomes the following one-dimensional Fisher—KPP equation:

2
€
v+ Mer? + o’ (; - vo> =0.

6.3. Proof of existence

In contrast to the elasticity problem in section 5, the 2D Fisher—KPP system (6.2) lacks
reversibility and reflection symmetry. In their place, we make use of the robustness of the
heteroclinic solutions to the 1D Fisher—KPP equation.

Proof of theorem 6.1. Working in the scaled variables,
x=¢e¢'X, 0(x) = 2V (X),

we see that VO solves
1
~\ VY= Vo +aV° (U - V0> .

In the usual way, this can be converted to a first-order planar system

V=W’

1 (6.10)
Wy = —aV® (— - V0> — MW,

g
which has rest points (V, W9):=(0,0) and (V°, W?) :=(1/0,0). A quick calculation shows
that, for any \; > 2, (V, W) is a sink while (V°, W?) is a saddle. Following the classical
argument of Kolmogorov er al [31], one can show that there exists a triangular region

T ={(V.W)eR*:W <0, Wt+c;V>0, W—c(V—V") >0},

for some explicit ¢y, ¢, > 0, so that (i) the vector field for (6.10) enters g0 transversally along
each of the boundary components, and (ii) the unstable manifold at (V°, W°) enters 7° non-
tangentially there. As a result, 7 is positively invariant, and one can conclude that there exists
a heteroclinic orbit (V°, W°) contained in .7° and satisfying VO(X) — V as X — Fo0.

Finally, we must show that this orbit persists for the full reduced equation (6.8). Applying
the same rescaling x — X and v — V gives the planar system

Vx =W

1 6.11)
Wy = —oV (— - v) — MW +R(V,W,e),

g
where the remainder term R(V, W, e) = O(e(|V| 4+ |W])). At e = 0, this is precisely the trun-
cated problem (6.10). Moreover, for each ¢ > 0 sufficiently small, (6.11) has two rest points,
(VL, W), with (V5 , W) = (0,0),and (VE, We) = (V° + O(e), 0). It follows from the robust-
ness of transversal intersections that there is a positively invariant triangular region 7 for
(6.11) that limits to .7 as ¢ — 0; see figure 3. By the same reasoning as above, we have that
J° contains a heteroclinic orbit (V¢, W¢) satisfying V¢ — V¢ as X — £o0. The theorem
now follows by undoing the scaling. (|
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w

(Ve W) =

Ve, we
Te ( - —)

Figure 3. The positively invariant triangular region &~

7. Rotational bores in a channel

Our final application, and our initial motivation for writing this paper, pertains to water waves.
Like the anti-plane shear problem in section 5, it has a reflection symmetry in x, and so we
expect to have to expand f(A, B, ¢) to third order in A to obtain fronts. Unlike the anti-plane
shear problem, however, there is no additional reflection symmetry in u. Thus the existence and
persistence of heteroclinic orbits can no longer be described in terms of a transverse intersection
in the plane, and we must instead introduce a second physical parameter. To solve for this
auxiliary parameter in terms of ¢, we will make heavy use of a conserved quantity called the
flow force [5]. In particular, we will investigate the so-called conjugate flow equations which
give a necessary condition for the existence of a front connecting two x-independent solutions
[4]. This analysis is quite involved, so much so, in fact, that the expressions for the Taylor
coefficients of the coordinate map W in theorems 1.1 and 1.6 are too large to reproduce here. For
this reason we will also highlight several important special cases where the formulas simplify
drastically.

71. Statement of the problem

Working in dimensionless variables, we consider an infinite channel bounded by horizontal
wallsat Y = 0and Y = 1. Inside the channel there is a lower layer of fluid with density normal-
ized to 1, and an upper layer of lighter fluid with density 0 < p < 1. There is a sharp interface
between the two layers at the height Y = h + n(x) where i € (0, 1) is a reference height to be
chosen later. See figure 4 for an illustration.

This physical setting is sometimes called channel flow. It is widely used as a model in
geophysics, for example, where the dynamics in the upper atmosphere are not expected to
have much relevance for the motion of the interface. It is interesting to note, however, that if
we instead allow the upper boundary to be free, then monotone bores of the type we construct
here do not exist; see [7, corollary 4.12]. A survey of the literature on both channel flow and
the two free boundary case can be found in [21, section 7], for example.

Suppose that there is no surface tension along the interface and hence that the pressure is
continuous across it. For water, it is reasonable to assume that the particle velocity field is
incompressible (that is, divergence free) in each fluid region. Thus there are so-called stream
functions, 1, in the lower fluid and ), in the upper fluid, so that the velocity field in the ith fluid
is V4, .= (—0y;, 0,1),). Lastly, we suppose that the curl of the velocity field is some constant
w € R in the upper layer, but 0 in the lower layer. Standard arguments involving Bernoulli’s
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downstream

-

h+n(x)

I

upstream
Z
A =
1 A fluid 2
h fluid 1
\
-
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7

Figure 4. The class of bores under consideration. There are superposed fluid layers
bounded by rigid plates at ¥ = 0 and Y = 1. The upper layer has constant density p
and constant vorticity w, while the bottom layer has unit density and zero vorticity. In
the ‘upstream limit’ x — —oo, the lower layer has thickness A, while in the down-
stream limit this thickness is 4 . At intermediate values of x, the layers are separated by
a sharp interface a height ¥ = h 4 n(x). In the moving frame, the upstream velocity in
the lower layer is —c. Finally, the upstream velocity is continuous across the interface,

but the downstream velocity may not be.

law then lead to the following free boundary problem for the functions v, ¢, :

—A,ytpy =0 forO<Y <h+n,
Ayt =w forh+n<¥Y <l
’1/12 = —ny onY = 1,

Yr=1=0 onY =

h+mn,

1 1
EP|VX,Y¢2|2 - E\Vx,ywﬂz +(p—-Dn=0 onY=~h+n.

(7.12)

(7.1b)

(7.1¢)

(7.1d)

(7.1e)

(7.11)

The boundary conditions (7.1c) and (7.1d) are called kinematic boundary conditions, while
(7.19) is called the dynamic boundary condition. The constants my, m, are the mass fluxes in
each layer, while Q is a Bernoulli constant. We will always consider classical solutions where
the functions v, ¥, 7 are all Cﬁ*“ on (the closures of) their respective domains.

While our methods can also be used to construct solitary wave solutions of (7.1), we will
focus on the much more difficult case of fronts, sometimes called bores in the literature. That is,
we will seek solutions where 1|, ¥,, 1) have well-defined limits as x — —oo (‘upstream’) and
as x —> +oo (‘downstream’) that do not coincide. For simplicity, and because this is the case
of most interest in applications, we assume that the velocity in the upstream state is continuous.
The upstream limit is then uniquely determined by requiring

7/’1Y(X, 0)’ ’IZJZY(X’ 0) — —C,

1968

n(x) — 0

asx —r —o0.

(7.19)
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Here the Froude number c is a dimensionless wavespeed as measured in a reference frame
where the fluid particles on the bed are stationary in the upstream limit; this is in keeping with
typical conventions for periodic and solitary waves without vorticity. The second requirement
that n — 0 as x — —oo means that / is the upstream thickness of the lower fluid region.

Throughout this section we will view p, w as fixed and treat ¢, i as parameters. This is in
part motivated by the fact that p and w are both constants of motion for the time-dependent
problem.

72. Main results

Our main existence result is informally described in theorem 7.1 below. A crucial part of
the proof is an understanding of the so-called conjugate flow equations which constrain the
upstream and downstream depths £, i of the lower layer and the Froude number c. To stream-
line the presentation, we defer a detailed discussion of these equations to section 7.3 below.
There, we also prove lemma 7.7, which gives sufficient conditions for the conjugate flow
equations to be locally solvable for ¢ and A4 in terms of A.

Theorem 7.1 (Existence of rotational bores). Consider the water wave problem (7.1)

with fixed density ratio 0 < p < 1 and (constant) vorticity w, and suppose that the height

ho € (0, 1) and Froude number cy satisfy the hypotheses (7.12) of lemma 7.7 as well as (7.19)

below. Then, for 0 < |e| < 1, there is a family of bore-type solutions of (7.1) with upstream

depths h® = hy + ¢, Froude numbers ¢ = ¢y + O(¢), and

1 + tanh(k, |e|x)
2

(0, Y) = = (Y — h°) + ¢ (0)(1 = Y) + O(e), (7.2)

7 (x) = aje + 0(eY),

VoY) =—c"(Y =) — %W(Y — B + 1+ Y) + 0@ED),

in Cﬁ‘m of their respective domains, for some constants a; # 0 and k1 > 0.

Remark 7.2. The characterization of 7° as a solution of a second-order ODE actually fur-
nishes much more detailed information. In particular, we can check that n° inherits the strict
monotonicity properties of its leading order approximation. Combining this with a maximum
principle argument yields monotonicity of the full solutions; see theorem 7.8.

The various assumptions in theorem 7.1, as well as the explicit formulas for the parameters
ay, k1 in (7.2), can all be stated explicitly in terms of Ay, cg, p, w. Sadly, the formulas are quite
lengthy, and so it is perhaps more instructive to look at special cases. The most classical and
well-studied of these is the irrotational regime where w = 0.

Corollary 7.3 (Irrotational bores).  The hypotheses of theorem 1.1 are satisfied if we set

1 V1-—
w = 0, ho = , Cco = + p.
1+ ./p 1+./p
The relevant family of conjugate flows (h°, h%,, c) and constants ay, 1 in (7.2) are given by
3 *
CE:CO, hi:ho, ap :—l, K%_ (\/ﬁ+ )

Ao — o+ 1)
This is the case treated by Mielke [41]. Notice that, in particular, the solutions (4°, hi’ %)

have exact formulas and that 4%, and ¢ are actually constants [34]. This simplifies the analysis
enormously.
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When w # 0, interesting new phenomena can occur. For example, the upper fluid may con-
tain critical layers, curves along which ¥, = 0. In the setting of theorem 7.1, there will always
be such a critical layer provided cy, hg, and w satisfy the inequality

colco + (1 — ho)w) < 0. (7.3)

The upstream height of the critical layer is then h° — ¢©/w. Perhaps the simplest situation where
this arises is when p = 1 so that the fluid density is homogeneous.

Corollary 7.4 (Homogeneous-density bores). The hypotheses of theorem 7.1 are
satisfied if we set

2w
=1, ho = = =——#0.
4 0 3 Co 975

The relevant family of conjugate flows (h°, h%_, ¢*) and constants ai, k1 in (7.2) are given by

€ w < 243
C’:CO+§5, h+=ho—&‘, a = -2 /@%:E

In particular, there is an upstream critical layer at height 8 /9 + 2¢/3.

As with the irrotational case, we can solve the conjugate flow equations explicitly, this time
with A%, ¢© both linear functions of ¢.

For general but fixed p < 1 and w # 0, even the necessary condition (7.12a) for g, ¢y cannot
be solved explicitly, let alone the full conjugate flow equation (7.11) for A, h, ¢, and a compre-
hensive analysis of these systems of polynomial equations is beyond the scope of the present
paper. On the other hand, for fixed A, ¢y, one can solve (7.12a) for p and w. The resulting for-
mulas are long and not particularly informative, and one must of course additionally check that
p lies in the physical range (0, 1]. Provided the remaining nondegeneracy hypothesis (7.12b)
in lemma 7.7 holds, one then obtains the existence of a family of conjugate flows which can be
expanded in the small parameter €. We content ourselves with two concrete examples obtained
in this way, whose parameter values were carefully chosen so as to avoid a profusion of nested
radicals.

Example 7.5 (An example without critical layers). The hypotheses of theorem 7.1 are
satisfied if we set

“s YT

The relevant family of conjugate flows (h°, i, ¢*) and constants ay, 1 in (7.2) are given by

904

6 179
¢ =co— e+ 0EY, hy=hy— .e+0E), a = e

29 725
. [226)\°243
ki=|—2) —.
: 145) 43
None of these solutions have critical layers.

Example 7.6 (An example with critical layers). The hypotheses of theorem 7.1 are
satisfied if we set

p=—, w=—18, hy = =, co=1.
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The relevant family of conjugate flows (4%, A, ¢°) and constants a, ; in (7.2) are given by

_ 3 _ 11 1 243
£ — Ze+0ED, K.o=hy+ —e+ 0@ED), =—, K=_—.
c Co+46+ () 5 o+108+ ), a o = 3000

In particular, there is a critical layer upstream at height 13/18 4 (25/24)e + 0(£?).

73. Conjugate flows

This subsection is devoted to the statement and proof of lemma 7.7 on the existence of con-
jugate flows. Interesting in its own right, it is also one of main tools in proving theorem
7.1.

Upstream limit and downstream limits. Under mild regularity assumptions, the existence of
the downstream and upstream limits

GE)= lim iy, ()= lim (e ), pt= lim )

forces (Y7, zi, nT) to each be x-independent solutions of (7.1). In particular, wli are linear in
Y while %i are quadratic. We will generally eliminate 1™ in favor of the upstream thickness
and downstream thickness i, :=h + 1" of the lower fluid.

Upstream, we have the additional restrictions (7.1g), as well as the continuity assumption
Y1y (h) = 15, (h) at the interface. Thus the upstream state is completely determined by the
parameters c, h, w:

1
Up =—e =h), =Y —h) = Sw(Y =) (74)

Sending x — —oo in (7.1) we recover similarly explicit formulas for the fluxes m;, m, and
Bernoulli constant Q:

my = ch, my = c(1—h)+ %w(l — h)?, 0=(p— 1)%& (7.5)

Now we turn to the downstream limit. In general, we cannot require it to also have a
continuous velocity field, and hence the two constants

cf = ¢f§(h+), o = ¢jy(h+)
may differ. In terms of ¢;” and ¢, the analogues of (7.4) and (7.5) are
U == (¥ = hy),
Y = —cy (Y —hy) — %w(Y — hy)?,
m; = cfrh,

1
my =cy (1 —hy)+ Ew(l —hy)?

1
0=3 (p(c3)? = (¢ )?) + (p — D(hy — h). (7.6)
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Eliminating ; and m, between (7.4) and (7.5), we can easily solve for ¢;” and c; in terms of
the other parameters. Further eliminating Q we obtain a single equation relating the remaining
parameters i, hy, c, p, w. Eventually, this equation simplifies to

hy—h

1 1 2.2 (h’h 56)20’ (7.7)
(1 — hp2r2 P00

where p = p(h, h4, c) is a polynomial its arguments (as well as p, w),

pi=whi(hy — )2 —hy —h)’p+ 4% 21, — Phy — 4hy — *h+2¢* +2)p
(7.8)
+4dcw(l — WRE(2 — hy — h)p — 4(1 — hy )’ Qh% — *hy — Ph).

Since we are only interested in configurations where A # h and neither 4 nor Ay is O or 1,
(7.7) reduces to the polynomial equation p(h, h4,c) = 0.

Flow force. To obtain a second constraint on the parameters A, hy, ¢, w, p, we introduce a
quantity called the flow force, which is related to the conservation of momentum [5]. In our
variables, it takes the form

o 1 2 2 1 2
stw= [ (30— v - v 3 n)av
U . (7.9)
+p/h <§(¢§Y—¢§X)—Y—w¢2+§c2+h) dy.

+n

For solutions of (7.1), one can check that this quantity is independent of x. In particular, sending
x — o0 and simplifying we eventually obtain the polynomial equation

0=g(h,hy,c)=w?hy(hy —h)hy +3h —4)p+ 12k (hy —c* — 1)p
+ 12cw(h — Dhyp — 12(hy — D(hy — ).
Here as above we have used our assumptions that 44 # h and h,hy # 0,1 to drop some
nonzero factors.
Constructing conjugate flows. The equations p = g = 0 are called the conjugate flow

equations for our problem [4]. Because of a degeneracy in this system when i = h, it will be
easier to work with an equivalent system where the polynomial ¢ is replaced by

2(h— Dh g(h, h,c)
hhyc)y=——— A
qi ey == p(h, b, )

which one can verify is also a polynomial in its arguments (as well as w, p). We denote this
‘desingularized’ set of conjugate flow equations by

P(h,hy,c):= (p(h, hy,c),q(h, h+,c)) =0, (7.11)

(Z](h, hy,c)— pth, hy, c)) , (7.10)

where p and ¢q are defined in (7.8) and (7.10) above.

Using the implicit function theorem, it is now straightforward to give conditions guarantee-
ing the existence of a one-parameter families of conjugate flows, that is, solutions (4, A4, c) of
(7.11). We record one such result in the following lemma.

Lemma 7.7 (Existence of conjugate flows). For a fixed density p and vorticity w,
suppose that the depth hy € (0, 1) and Froude number cy # 0 satisfy

P(ho, ho, co) = 0 (7.12a)
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as well as the nondegeneracy conditions
det Pes,y(ho ho.co) #0,  det (Py + Pu, Pe) (ho, ho, co) # 0. (7.12b)

Then there exists a family of solutions {(h, h%_, ¢®)} to the conjugate flow equation (7.11) for
le] < eo < 1 that depends analytically on € and satisfies

h° =hy+e,
B = ho + hy € + hine® + O(),
¢ =co+cre + e? + 0(E).

Moreover, hy; # 1 so that, perhaps after shrinking €y, h® # h7_ for € # 0. Thus these
conjugate flows are nontrivial in that the upstream and downstream states are distinct.

74. Reformulating the problem

In this subsection we reformulate (7.1) as the elliptic transmission problem (7.4) in a fixed
domain. From now on we assume that the hypotheses of lemma 7.7 are satisfied so that
h®, hi, c* are all defined.

Flattening the interface. Our problem (7.1) is a free boundary problem in that the interface
Y = h® + 1 between the two regions is itself an unknown. As usual, it is helpful to switch to
new coordinates where this boundary is fixed. In the absence of critical layers, one can use
an elegant partial hodograph transformation in which |, ¥, are thought of as independent
variables and Y the dependent variable [13]. We are interested in bores with critical layers, and
therefore must allow for v, to be a multivalued function of Y. This leads us to instead make a
simple piecewise-linear change of coordinates in the vertical variable Y:

1
_1+h5+ Y for0 <Y <h®+n
yi= 1’7 | (7.13)
1-— Y for h* Y <1.
1—h5—77+1—h5—77 ori +n <Y<

Thus the lower layer 0 < Y < h° + 7 is mapped onto the strip —1 < y < 0 while the upper
layer h* + 1 < Y < 1 is mapped onto the strip 0 < y < 1. Using subscripts Y1, Y2,y;,y, to
denote the vertical variables in the two layers, we have the chain rules

1+y 1—y
3x1 =0k — mﬁxayl, 3)(2 =0, — mﬁxayz, (7.14)
1 1
3y1 (7.14)

= a,: 3,
h5+7’] p 1—h5+7’] Y2

where the partials on the left-hand side are with respect to the original (x, Y) variables and those
on the right are with respect to the transformed (x, y) variables.

Subtracting off the trivial solution. The upstream flow itself obviously solves (7.1), and so
we work with normalized differences u;, u, between our stream functions and these ‘trivial’
ones:

Vi(x, Y) = (¥)
S E—

9

D~ (@)
C

- (7.15)

ui(x,y) = up(x, y):
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Note that the 1), terms on the right-hand side of (7.15) are functions of the original vari-
able Y and not the transformed variable y. It is straightforward to obtain the corresponding
functions of y by first solving (7.13) for Y and then plugging into the explicit formulas (7.4).
Neither this choice nor the normalizing factor of ¢ are essential, but both are convenient in
later calculations.

Final form of the equations. We now plug (7.15) into (7.1) and use (7.14) to obtain a system
of the form (3.5) for u:= (u;,u,) alone. We use one of the kinematic boundary conditions,
(7.1d), in order to write 7 as the trace of uy,

n(x) = ui(x,0),

thus eliminating it from the problem. Abusing notation slightly, we will nevertheless continue
to write 7 instead of u; | whenever convenient. The transformed problem is then

V- Ai(y,ur, Vuy, uy|p,ulr,e) =0 inQ =R x (—1,0), (7.16a)
V - Ay (y, up, Vg, uy|p, uiy|r,e) =0 in€y =R x (0, 1), (7.16b)
G(uy,uz, Vuy, Vua,e) =0 onT':=R x {0}, (7.16¢)
K(uy,uz,e)=0 onl, (7.16d)
uy=0 onR x {-1}, (7.16e)
u =0 onR x {1}, (7.16f)

where the functions A, G, K are given by

(ha + n)ulx -+ l)nxul' )
A1y, uy, Vuy, ui|r, i, €) = . _ y
10 Vi et €) ((h £ N+ 922+ Duny — ey + D
(1= A — uzy — (1 — y)neutay )
Ao (v, 2, Vo, ut|r, uixlr, €) i= . _ Y
2()’ 2 2 1‘1‘ 1 |F ) ((l_h _77) 1((1+y)277§+1)u2v_(1_y)77xu2x

2

w
Ky, ui,uz, ) =ur —uy — =—uj
2c¢

2\,,2 -
P 2 20Uzl A +nm)uz,  2(c® + wnuyy
5 s V s V N == — ) _
gt Vi Vi 2<u2" I—hi—n Ak -n? 1-h—n
1 2 20ty xltty (I+ U%)M%y 2ccuy,
A R

cwptp—1_  Wp ,
(Cs)z n+ Z(Cg)zn !

(7.17)

We write (7.4) as F(uy, uz,€) = O where & : & x R — % with 2, % defined in (3.7) and
(3.9).

1974



Nonlinearity 35 (2022) 1927 R M Chen et al

75. Center manifold reduction

The linearized operator at (1, ) = (0, 0) is

& (h()ul_x, haluly)
V- (1 = ho)uzy, (1 — ho) uay
Lu = 4 (( 0)“2 ( 1 0) uf;) s L: .X‘/, — y/I
hy uty — p(1 — ho)™ uay + ¢y “(cowp + p — Duy
Uy — Uy
which has the desired form (3.6). Moreover, straightforward calculations using the assumption
p(ho, ho, co) = 0 in lemma 7.7 show that the spectral hypothesis (1.7) is satisfied, and that

ker L = {u(x,y) = (A + Bx)po(y) : A, B € R},

where

I+y —1<
wo(y) =
1—y 0<

For the projection Q we choose
Qu = (v(0) + v'(0)x)po(y), where v(x) :=u;(x,0) = n(x).

Applying corollary 3.1, we obtain that all small solutions (i, £) € 2", x R of (7.4) are of the
form

u(x,y) = v(0)po + v'(0)xpp + ¥(v(0), v'(0), £)(x, )
fora C¥ coordinate map W : R — 2. In this case the function v satisfies the reduced ODE

d2
V" = f(v,v',e), where f(A,B,¢) =12 U(A,B,)(x,0). (7.18)
X x=0
Remarkably, this is an ODE for the free surface elevation 7 alone. From the analysis in
section 3.1—specifically (3.2) and (3.3)—we see that the reversibility symmetry u(x,y) —
u(—x,y) of (7.4) implies that U(A, —B, ¢)(x,y) = W(A, B, €)(—x, y) and hence that fis even in
B.
Corollary 3.1 moreover allows to expand ¥ (and thereby f) as in theorem 1.6, leading to the
ansatz

u(x,y) = (A + Bx)po(y) + > Win(x, A'BE* + R.
J

Anticipating a scaling where A ~ ¢ and B ~ €2, we work with the index set
T={j e N 1i+2j+k<3, i+ j+k=2i+j>1},

so that R is O ((|A| + [B|'/? + [e])*) in Z..

In principle, it is now straightforward to expand (7.4) and find the relevant W by collecting
like terms and solving a sequence of linear equations of the form (4.4). In practice, however,
these calculations are extremely tedious, partly due to the unwieldy form of the water wave
problem (7.17) but more seriously because of the lengthy expressions for the coefficients ¢y, ¢;
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in the expansion of ¢® inlemma 7.7. Lastly, in order to check if complicated rational functions of
hy, co are in fact zero, we must appeal to the highly nonlinear system of polynomial conjugate-
flow equations P(ho, ho, co) = 0. We accomplished this latter task by transforming P into a
Grobner basis and performing reductions using a computer algebra system. In certain situa-
tions, for instance the irrotational regime treated in corollary 7.3 and the homogeneous-density
case considered in corollary 7.4, the conjugate flow equations have simple exact solutions, and
so the analysis is substantially easier.

76. Reduced ODE and truncation

In the general case, we eventually find that f{A, B, €) has the form

d2
fABe=) 5
J

= f102e?A + fr016A* + f300A” + (A, B, €)

W, 1 (x,0)A'Bi* + 1(A, B, ¢)
x=0

where the error term » € C” and
(A, B.2) = O (|AI(A| + B + |])’ + BI(A| + B2 + ])?) .
The coefficients are given by

3 (1= p)hd + (4 — Shy)
23131 — ho)*(p + (1 — phy)’

f300 =

fao1 = g (¢ (1= ho —2p+ hi(1 — p)* + hi(4p — 1))
— (1 — ho)*(3h§ — 3hg +2)(1 — p))
+ (coho(1 = hoY*(p + (1 = p)ho) (co (cGhg
+ (1 = ho)(cZho + 2o — 3¢3)) — w(l — ho)*ho(hy — )~

_ 2f3n
fio2 = 9f300

Using the assumptions (7.12) of lemma 7.7, one can show that none of the above denominators
vanish, and that f3, /5, 102 are all nonzero. We additionally assume that f3,, > 0, which is
equivalent to requiring that

h3(1 — p) + 4ci(1 — ho) > ciho. (7.19)
The truncated version of (7.18) is then

02 = f10260" + fr01e(”)* + fr00(0°)’, (7.20)
which has the explicit solution

1 + tanh(kex)

(%) = aje 5 , (7.21)
where
4 = _ o > S
3f300° ' 18300
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We note that (7.20) is the extended Korteweg—de Vries equation, more widely known as the
Gardner equation, specialized to traveling waves. This is a common model for long internal
waves [23].

7.7 Flow force on the center manifold

Arguing as in section 5, we can show that many features of the phase portrait of the truncated
ODE (7.20) persist in the full equation (7.18). In particular, there are three equilibria: saddles
at0 and a;e + O(£?) and a center in between. Unfortunately, this is not enough information for
the persistence of the heteroclinic orbit connecting the two saddles. For this we take advantage
of the flow force S defined in (7.9).

Performing the various changes of variable, we can think of the flow force at a fixed x as
a functional of (i, £): S = S(u, ; x). Subtracting off its (constant) value at the trivial solution
u = 0 and setting x = 0, we consider the difference

S(u,e) = S(u, e;0) — S(0, ;0).

Since S only involves the values of # and Vu at x =0, it is a smooth function both
Xy xR — Rand &', x R — R. We record the useful formula

S0, )it = p(c) (i — in)(0, 0) (7.22)

for its Fréchet derivative at u = 0.
When (i, €) corresponds to a solution on the center manifold, we can write

S(u, €) = s(v(0),'(0), £),
where s(A, B,¢) =8 ((A 4+ Bx)po + ¥(A, B,¢),¢).

Moreover, s(v, v, ) will be constant for solutions of (7.18). We now claim that s has the
expansion

S(A, B, €) = sa00A* + 53014 + $2004%% + F(A, B, €)

1 (7.23)
— 25000 (232 - %A“ - %A% - f1202A252> + #A, B, ¢),
where
1
5020 = —gcg(p + (1 —=phy) <0 (7.24)

and the CY error term 7 satisfies
FAB,2) = O (IAI(A] + B2 + e])* + BI(A| + B2+ |e])*) -

In particular, up to the nonzero factor 2s(;, the truncation of s is precisely the Hamiltonian for
the truncated ODE (7.20).
Using the reversibility symmetry, we check that s is even in B, and so the smoothness of s
implies
sg(A,B, e
% — 2500 + OA| + |B| + o), (7.25)
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where sgp0 = %SBB(O, 0,0). Determining sy in principle requires the coefficient Wy in the
expansion of . When we actually go about calculating this coefficient and plugging it into
(7.22), however, we see that it actually does not contribute, and that (7.24) holds. It is then
straightforward to obtain (7.23) by combining spo # 0, (7.25), and the fact that s is a conserved
quantity.

7.8. Proof of existence

Combining the previous subsection with section 7.3, we are now in a position to prove theorem
7.1.

Proof of theorem 7.1.  Introducing the scaled variables
x=le|7'X, wx) =eV(X), v (x) =ele|W(X), (v, vy, €) = 2*s020S(V, W, £),

the reduced ODE (7.18) can be written as the planar system

{ Vx =W
Wy = fiaV + fo01V> + f300V> + R(V, W, €)
with conserved quantity

1 ~
S(V,W,e) = EW2 - %Vz - %W — %V“ +R(V,W,e),

and where the error terms satisfy
RV, W,e) = O(le|([V| + W), R(V,W,e) = O(e|([V] +[W]).

When ¢ = 0, we have the explicit heteroclinic solution V = a;(1 + tanh(x;X))/2 connecting
(V, W) = (0,0) with (V, W) = (a,,0). This is the scaled version of v° in (7.21). Both of these
equilibrium have same value, namely 0, of the conserved quantity S. For € # 0, the equilibria
at (0, 0) remains fixed while the equilibrium at (a;, 0) persists but is perturbed. From lemma
7.7 on conjugate flows, we in fact know that its exact location is (s’lhir — 1,0) and moreover
that it continues to have § = 0. The persistence of the full heteroclinic orbit then follows from
its characterization as a nondegenerate level curve of the conserved quantity S. |

79. Critical layers and streamline pattern

Finally, in this section, we explore some qualitative features of the waves constructed above.
As we have seen, there are certain parameter regimes for which a streamline in the unperturbed
flow is a critical layer. For small bores, that streamline will split either upstream or downstream,
opening into a ‘half cat’s eye’ with its pupil at infinity.

Theorem 7.8 (Streamlines). In the setting of theorem 7.1, suppose that (7.3) holds so that
there is a critical layer, and suppose for concreteness that w < 0 (so that co > 0) and a;e < 0.
Perhaps shrinking € further, the streamlines of the corresponding solution (17, V5, m°) have the
qualitative features of figure 1. Specifically,

(a) (Monotonicity) The interface is strictly monotone with n. < 0. Moreover, {5 < 0 for Y #
0, 1 so that the vertical velocity is positive.
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(b) (Critical layer) There is a unique C' curve C* in the interior of the upper fluid where
5y = 0. Above this curve, 15, > 0, and below it 15, < 0. There are two streamlines,
one above C¢ and one below, that both limit to C° upstream. In the region they enclose
(the eye), every streamline is a horizontally unbounded curve that opens to the right and
has a unique turning point which is located on C¢. Outside the eye region, all streamlines
extend from upstream to downstream.

Remark 7.9. 1In (7.26) below we will see that the vertical extent of the eye is O(|¢|'/?). In
particular, for the specific parameter values from example 7.6, we see that the width of the eye is
1/330[e|/90 + O(e), while the downstream width of the upper layer is 1/3 4+ O(¢). Changing
the sign of w (and hence c() changes the sign of the horizontal velocity throughout the fluid
but preserves the streamline pattern. Changing the sign of a,e changes the signs of n, and ¢,
reflecting the streamline pattern in figure 1 but preserving the sign of the horizontal velocity.

Proof. We start by confirming monotonicity (a). From the proof of theorem 7.1, our

assumption that a1 < 0, and remark 7.2, we know that v" = 1% < 0. The asymptotics (7.2)

also give 95, < 0 along Y = h® 4 7°. Differentiating the kinematic condition (7.1d), we see

that this implies 15, = —n51)5, < 0 there as well. But, 95, is harmonic and vanishes on the

upper boundary {y = 1} and at infinity. The maximum principle therefore implies that ¢)5, < 0

in the interior of the upper fluid. Similarly, we find that ¢, < 0 in the interior of the lower fluid.
Now we turn to the more detailed claims in (b). Setting ¢ = 0, we have

1
PI(x, Y) = pI(Y) = —co(Y — hg) — 5w(Y — ho)>.

Differentiating, we find that wgy = 0 at the unique height Y? = hy — ¢o/w, which lies in (hg, 1)
by (7.3). Since 19y, = —w > 0and 15 = 1 + O(¢) in C; 7 by (7.2), the existence of C* now
follows from the implicit function theorem. Indeed, it is the graph of a single-valued function
of x. Moreover, 15,, > 0 for 0 < € < 1 so that 5, > 0 above C* and %5, < 0 below. From
(7.2) we also have 7, < 0 in the lower fluid.

Examining the explicit formula for the upstream state (7.4), we see that for 0 < —ca; < 1,
the critical upstream height perturbs to Y::=h° — ¢*/w with the stream function value
(c)?/2w. There are exactly two heights downstream at which the stream function takes on
this value; the corresponding streamlines bound the eye region. Looking at (7.6), we see that
these heights are given by

1
) gl
w

\/260(60 el Zho), 4 oqe). (7.26)

1 —hy
From the assumptions a;e < 0 and (7.3), we have that the radicand is strictly positive and
O(le)).

Pick any point inside the eye region. Applying the implicit function theorem, we see that
the streamline through this point is globally parameterized as a graph {x = &(¥)} for some
C' function ¢. Moreover, the discussion above shows that £, = 0 only on C%, and &y, > 0
there. The desired qualitative features of the streamline pattern inside the eye now follow. On
the other hand, outside this region, 1§ # 0, so all streamlines must extend from x = —oo to
X = 4o00. O
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Appendix A. Amick—Turner fixed point theory

In this section, we present a highly abbreviated version of Amick and Turner’s fixed point
theorems in [2, 3]. Rather than state those results in full generality, we have specialized to the
case most relevant to our needs. An effort has also been made to simplify and standardize the
notation.

Following the procedure in section 2.2 leads us to study equations of the general form

U =&+ FiUL UL R\ By
U =&+ Fo(Un, U, R B (A.1)
R = F3(Uy, Uy, R; A, B).

Here, (U, U,, R) are the unknowns. Motivated by (2.13), where U, arises as a scaled derivative
of U;, we work in the space
W:=(U1,Us,R) € C;T(R) x Ci'T(R) x CF () =X,

for some i € [0, ), integer k > 1, and v € (0, 1). As before, let Sogu denote the corresponding
homogeneous space, and X}, := Xj.

In (A.1), there are three types of parameters: £ = (£, &,) is ‘initial data’ for U = (Uy, Uy);
A € R is the main parameter of bifurcation; and 5 € (0, 1] is, essentially, a rescaling of time
needed to obtain a fixed point.

Next, we impose some conditions on the nonlinear mappings in (A.1). Assume that

F(W; A, B) = BEW + H(W; A, B), (A.2)
where £ = (£, £, 0) is a zeroth order linear mapping in the sense that
£ is linear and bounded X, — X,, and X, — X, (A3)

with bounds uniform in p on compact subsets of (0, f).
Finally, suppose that each component of the nonlinear function H = (H,, H,, H3) takes the
general form

1
B

Here, p > 0 corresponds roughly to the homogeneity of the nonlinearity created by S,. Intu-
itively, we think of D as losing some number of derivatives, while Z is smoothing. Between

Hi(W; A\, B) = —=LS,(DW; A, ). (A4)
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them is the mapping S,, a general (parameter dependent) superposition operator. Note that p,
D, S, and Z can vary for each component, but we will suppress this dependence to simplify
notation. Also, one can assume more generally that H; consists of a finite sum of terms of the
form (A.4).

To state things more precisely, we introduce two (lower regularity) spaces:

Y, = CIT R RY) x CIF* (U R™),  Z,:=C (),

for some integers j > 0, /,m > 1 (again, each of these will in principle vary in i). Now, assume
that

D islinear and bounded X, — Y, and X;, — Y} (A.S5)

with bounds uniform in . on compact subsets of (0, 77). The superposition map S, is defined
by

Se(Y5 X\, B)(x,y) =g, y, Yi(x), ..., Ye(x), Yoq1 (2, ), - ., Yoqm (X, 905 A, ),
(A.6)

forall Y € Y, and (x,y) € Q. Here, the function g is assumed to satisfy
g = glx,y,w;\, B) € CY (@ x R™ x R x (0,1];R),
g(x,y,0;0,8) =0, guw(x,¥,0,0,8) =0, gx(x,,0;0,8) = 0.

One can show that (A.5)—(A.7) together ensure that

(A7)

W = S(DW; A, 8) isbounded X,, — Z,, and X, — Zy,.
Finally, 7 is supposed to be smoothing in that it satisfies
7 islinear and bounded Z,, — X, and Z, — fi,-,b, (A.8)

with bounds uniform in y on compact subsets of (0, z).
As is always the case with center-manifold constructions, Amick and Turner do not treat
(A.1) directly but rather a truncated problem where each function g in (A.7) is replaced by

gy, wi, . Wy A, B) = g(x, y, me(wi), - o e (Wegm)s A, B) (A.9)

for an appropriate cutoff function 7,, which we will always take to be even. We write the
resulting fixed-point equations as

Uy =& + F{(U;, Uy, R\, By
Uy = & + Fy(Up, Up, RN, By (A.10)
R = F5(Uy, Us, R A\, B).

From [3, lemma 4.1, theorem 4.1] we know that, for each M € N, we can choose 3, r, ;1 > 0
sufficiently small so that F" has M + 1 Lipschitz-continuous derivatives acting from X, x
Rz XRxR— X(k+M+3)/L'

Theorem A.1 (Fixed point). Consider the truncated fixed-point equation (A.10) under
the structural assumptions (A.2)—(A.8) enumerated above. Then, for any integer M, there
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exists i € (0, ), r > 0, and 8 € (0, 1] so that the unique solution to (A.10) is given by
W = (U,,U,,R)=: W(fl,fg, PYRS X#
where the mapping # : R?> x R — X, is Y.

Proof. This result is found by combining theorems 3.1, 3.3, 4.1 and remark 3.2 of [3]. [

The coordinate mapping % has flatness properties analogous to (1.8). A particular instance
of this which we will need is the following.

Lemma A.2. Under the assumptions of theorem A.1, we have

[#/3(5, MO, 0)] + [0 #/3(€, M0, 0)] < [€]([] + [AD- (A.1T)

Proof. From the uniqueness of # we have #/(0, \) = 0 for all \. Moreover, differentiating
the third equation in (A.10) with respect to £ we discover

DWW s = DyF5(W)DH .
At (&, \) = (0,0), this becomes simply
D #5(0,0) = BL€3D:#(0,0),

where £ is the operator in (A.3). But we have assumed that the third component £3 of this oper-
ator vanishes, and so we simply obtain D¢ #/3(0, 0) = 0. Thus || #/3(5, V|lx, < ][] + [AD,
which in particular implies (A.11). |

Appendix B. Iteration for anti-plane shear with a general body force

In this section, we revisit the center manifold reduction of the anti-plane shear problem where
the live body force b takes a more general form. Recall the problem (5.4) with the original
parameter \. Plugging in the ansatz (5.3) for the strain energy we can write the problem as

Au+ 2wV - (|Vul*Vu) — b(u, ) = 0. (B.1)
Taylor expanding b and using (5.5) and (5.6) we obtain
DX =~ 4 biXe+ 3bas 00N + oz’ +0 (A + <)
where
b1 =0.)(0,0), by = ébm(o, 0).
Because of the cubic term in (B.1), we would like to expand the reduced ODE (1.9) to third

order. Following the general strategy in section 4.1, we can replace (B.1) by its truncation at
order K = 3,

1
Lu = bi u+ 5bm(o, ONu + by’ — 2w, V - (|Vul*Vu) . (B.2)

From a similar argument as in section 5.1 we find the appropriate reparametrization A = &2
and the index set 7 given by (5.15) as before.
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With the scaling settled, we make the ansatz (A + Bx)go + > ;¥i3A'B/e* for u in (B.2),
obtaining

L (Z\I/ijkAiBjek> = b MHAe? cos y+ brA3 cos? y+ 2w A3 (sin’ Py
J

Grouping like terms yields
LWyo; = LU0 = LV 19 = LV¢;; = 0,
LWpp = b1\ cos y, LWy =0,
LU300 = by cos® y + 6w, sin®ycosy.

Applying lemma 2.3 allows us to iteratively solve these equations, and ultimately we find that

1
Wigr = Wao =0, Wyg= Vogp = W01 =0, Wi = 5571)\2)62 cos y,

3b, + 6 by — 6
W300 = ﬁxz cos y+ 277“01(005 y — cos(3y)).
8 32
Thus,
3(by+2
FALB.e) = bagAc? + 222 2W) 45 a g oy
ORCID iDs

Robin Ming Chen @ https://orcid.org/0000-0002-5211-5382
Miles H Wheeler & https://orcid.org/0000-0002-7286-9587

References

[1] Amann H 1983 Dual semigroups and second order linear elliptic boundary value problems Is: J.
Math. 45 225-54

[2] Amick C J and Turner R E L 1989 Small internal waves in two-fluid systems Arch. Ration. Mech.
Anal. 108 111-39

[3] Amick CJ and Turner R E L 1994 Center manifolds in equations from hydrodynamics Nonlinear
Differ. Equ. Appl. 1 47-90

[4] Benjamin T B 1971 A unified theory of conjugate flows Phil. Trans. R. Soc. A 269 587—-643

[5] Benjamin T B 1984 Impulse, flow force and variational principles IMA J. Appl. Math. 32 3—68

[6] Berestycki H and Nirenberg L 1992 Travelling fronts in cylinders Ann. Inst. Henri Poincaré C. Anal.
Non Linéaire 9 497-572

[7] Chen R M, Walsh S and Wheeler M H 2018 Existence and qualitative theory for stratified solitary
water waves Ann. Inst. Henri Poincaré C. Anal. Non Linéaire 35 517-76

[8] Chen R M, Walsh S and Wheeler M H 2020 Global bifurcation for monotone fronts of elliptic
equations (arXiv:2005.00651)

[9] Chen R M, Walsh S and Wheeler M H 2020 Large-amplitude internal fronts in two-fluid systems
Comptes Rendus Mathématique 358 1073—-83

[10] ChenR M, Walsh S and Wheeler M H 2021 Global bifurcation of anti-plane shear fronts J. Nonlinear
Sci. 31 31
[11] Constantin A, Strauss W and Varvaruca E 2016 Global bifurcation of steady gravity water waves

with critical layers Acta Math. 217 195-262

1983


https://orcid.org/0000-0002-5211-5382
https://orcid.org/0000-0002-5211-5382
https://orcid.org/0000-0002-7286-9587
https://orcid.org/0000-0002-7286-9587
https://doi.org/10.1007/bf02774019
https://doi.org/10.1007/bf02774019
https://doi.org/10.1007/bf02774019
https://doi.org/10.1007/bf02774019
https://doi.org/10.1007/bf01053459
https://doi.org/10.1007/bf01053459
https://doi.org/10.1007/bf01053459
https://doi.org/10.1007/bf01053459
https://doi.org/10.1007/bf01194039
https://doi.org/10.1007/bf01194039
https://doi.org/10.1007/bf01194039
https://doi.org/10.1007/bf01194039
https://doi.org/10.1098/rsta.1971.0053
https://doi.org/10.1098/rsta.1971.0053
https://doi.org/10.1098/rsta.1971.0053
https://doi.org/10.1098/rsta.1971.0053
https://doi.org/10.1093/imamat/32.1-3.3
https://doi.org/10.1093/imamat/32.1-3.3
https://doi.org/10.1093/imamat/32.1-3.3
https://doi.org/10.1093/imamat/32.1-3.3
https://doi.org/10.1016/s0294-1449(16)30229-3
https://doi.org/10.1016/s0294-1449(16)30229-3
https://doi.org/10.1016/s0294-1449(16)30229-3
https://doi.org/10.1016/s0294-1449(16)30229-3
https://doi.org/10.1016/j.anihpc.2017.06.003
https://doi.org/10.1016/j.anihpc.2017.06.003
https://doi.org/10.1016/j.anihpc.2017.06.003
https://doi.org/10.1016/j.anihpc.2017.06.003
https://arxiv.org/abs/2005.00651
https://doi.org/10.5802/crmath.128
https://doi.org/10.5802/crmath.128
https://doi.org/10.5802/crmath.128
https://doi.org/10.5802/crmath.128
https://doi.org/10.1007/s00332-021-09684-7
https://doi.org/10.1007/s00332-021-09684-7
https://doi.org/10.1007/s11511-017-0144-x
https://doi.org/10.1007/s11511-017-0144-x
https://doi.org/10.1007/s11511-017-0144-x
https://doi.org/10.1007/s11511-017-0144-x

Nonlinearity 35 (2022) 1927 R M Chen et al

[12] Dias F and Iooss G 2003 Water-waves as a spatial dynamical system Handbook of Mathematical
Fluid Dynamics vol 2 (Amsterdam: North-Holland) pp 443-99

[13] Dubreil-Jacotin M 1937 Sur les theoremes d’existence relatifs aux ondes permanentes periodiques
a deux dimensions dans les liquides heterogenes J. Math. Pure Appl. 16 43—67

[14] Ehrnstrom M, Escher J and Wahlén E 2011 Steady water waves with multiple critical layers SIAM
J. Math. Anal. 43 1436-56

[15] Faye G and Scheel A 2018 Center manifolds without a phase space Trans. Am. Math. Soc. 370
5843-85

[16] Fisher R A 1937 The wave of advance of advantageous genes Annals of Eugenics 7 355—-69

[17] Gao D Y 2017 Remarks on analytic solutions and ellipticity in anti-plane shear problems of non-
linear elasticity Canonical Duality Theory (Advances in Mechanics and Mathematics vol 37)
(Cham: Springer) pp 89-103

[18] Gilbarg D and Trudinger N 2001 Elliptic Partial Differential Equations of Second Order (Berlin:
Springer)

[19] GrueJ, Jensen A, Rusas P-O and Sveen J K 2000 Breaking and broadening of internal solitary waves
J. Fluid Mech. 413 181-217

[20] Haragus M and looss G 2011 Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-
Dimensional Dynamical Systems (Universitext) (Berlin: Springer)

[21] Haziot S V, Hur V M, Strauss W, Toland J, Wahlén E, Walsh S and Wheeler M H 2021 Traveling
water waves—the ebb and flow of two centuries Q. Appl. Math (arXiv:2109.09208)

[22] Healey T J and Simpson H C 1998 Global continuation in nonlinear elasticity Arch. Ration. Mech.
Anal. 143 1-28

[23] Helfrich K R and Melville W K 2006 Long nonlinear internal waves Annu. Rev. Fluid Mech. 38
395-425

[24] Hogancamp T 2021 Broadening global families of anti-plane shear equilibria SIAM J. Math. Anal.
53 5853-79

[25] Horgan C O and Abeyaratne R 1983 Finite anti-plane shear of a semi-infinite strip subject to a
self-equilibrated end traction Q. Appl. Math. 40 407-17

[26] Horgan C O 1995 Anti-plane shear deformations in linear and nonlinear solid mechanics SIAM Rev.
37 53-81

[27] Horgan C O and Knowles J K 1981 The effect of nonlinearity on a principle of Saint-Venant type
J. Elasticity 11 271-91

[28] Kirchgdssner K 1982 Wave-solutions of reversible systems and applications J. Differ. Equ. 45
113-27

[29] Kirrmann P 1991 Reduktion nichtlinearer elliptischer systeme in Zylindergebeiten unter Verwen-
dung von optimaler Regularitit in Holder-Réumen PhD Thesis (Universitit Stuttgart)

[30] Knowles J K 1976 On finite anti-plane shear for imcompressible elastic materials J. Aust. Math.
Soc. B 19 400-15

[31] Kolmogorov A N, Petrovski I and Piscounov N 1937 Etude de I’équation de la diffusion avec crois-
sance de la quantité de matiere et son application a un probleme biologique Bull. Univ. Moskow,
Ser. Internat., Sec. A 1 1]-25

[32] Kozlov V, Kuznetsov N and Lokharu E 2020 Solitary waves on constant vorticity flows with an
interior stagnation point J. Fluid Mech. 904 18

[33] Ladyzhenskaya O A and Ural’tseva N N 1968 Linear and Quasilinear Elliptic Equations (New
York: Academic) Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon
Ehrenpreis

[34] Laget O and Dias F 1997 Numerical computation of capillary-gravity interfacial solitary waves J.
Fluid Mech. 349 221-51

[35] Lamb K G and Wan B 1998 Conjugate flows and flat solitary waves for a continuously stratified
fluid Phys. Fluids 10 2061-79

[36] Lopez-Gomez J 2003 Classifying smooth supersolutions for a general class of elliptic boundary
value problems Adv. Differ. Equ. 8 1025-42

[37] Makarenko N I 1992 Smooth bore in a two-layer fluid Free Boundary Problems in Continuum
Mechanics (Novosibirsk, 1991) (International Series of Numerical Mathematics vol 106) (Basel:
Birkhéuser) pp 195-204

[38] Makarenko N I 1999 Conjugate flows and smooth bores in a weakly stratified fluid Prikl. Mekh.
Tekhn. Fiz. 40 69-78

1984


https://doi.org/10.1007/bf01448894
https://doi.org/10.1007/bf01448894
https://doi.org/10.1007/bf01448894
https://doi.org/10.1007/bf01448894
https://doi.org/10.1137/100792330
https://doi.org/10.1137/100792330
https://doi.org/10.1137/100792330
https://doi.org/10.1137/100792330
https://doi.org/10.1090/tran/7190
https://doi.org/10.1090/tran/7190
https://doi.org/10.1090/tran/7190
https://doi.org/10.1090/tran/7190
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1017/s0022112000008648
https://doi.org/10.1017/s0022112000008648
https://doi.org/10.1017/s0022112000008648
https://doi.org/10.1017/s0022112000008648
https://arxiv.org/abs/2109.09208
https://doi.org/10.1007/s002050050098
https://doi.org/10.1007/s002050050098
https://doi.org/10.1007/s002050050098
https://doi.org/10.1007/s002050050098
https://doi.org/10.1146/annurev.fluid.38.050304.092129
https://doi.org/10.1146/annurev.fluid.38.050304.092129
https://doi.org/10.1146/annurev.fluid.38.050304.092129
https://doi.org/10.1146/annurev.fluid.38.050304.092129
https://doi.org/10.1137/21m1392838
https://doi.org/10.1137/21m1392838
https://doi.org/10.1137/21m1392838
https://doi.org/10.1137/21m1392838
https://doi.org/10.1090/qam/693875
https://doi.org/10.1090/qam/693875
https://doi.org/10.1090/qam/693875
https://doi.org/10.1090/qam/693875
https://doi.org/10.1137/1037003
https://doi.org/10.1137/1037003
https://doi.org/10.1137/1037003
https://doi.org/10.1137/1037003
https://doi.org/10.1007/bf00041940
https://doi.org/10.1007/bf00041940
https://doi.org/10.1007/bf00041940
https://doi.org/10.1007/bf00041940
https://doi.org/10.1016/0022-0396(82)90058-4
https://doi.org/10.1016/0022-0396(82)90058-4
https://doi.org/10.1016/0022-0396(82)90058-4
https://doi.org/10.1016/0022-0396(82)90058-4
https://doi.org/10.1017/s0334270000001272
https://doi.org/10.1017/s0334270000001272
https://doi.org/10.1017/s0334270000001272
https://doi.org/10.1017/s0334270000001272
https://doi.org/10.1017/jfm.2020.647
https://doi.org/10.1017/jfm.2020.647
https://doi.org/10.1017/s0022112097006861
https://doi.org/10.1017/s0022112097006861
https://doi.org/10.1017/s0022112097006861
https://doi.org/10.1017/s0022112097006861
https://doi.org/10.1063/1.869721
https://doi.org/10.1063/1.869721
https://doi.org/10.1063/1.869721
https://doi.org/10.1063/1.869721
https://doi.org/10.1007/BF02468521
https://doi.org/10.1007/BF02468521
https://doi.org/10.1007/BF02468521
https://doi.org/10.1007/BF02468521

Nonlinearity 35 (2022) 1927 R M Chen et al

[39] Mielke A 1986 A reduction principle for nonautonomous systems in infinite-dimensional spaces J.
Differ. Equ. 65 68—88

[40] Mielke A 1988 Reduction of quasilinear elliptic equations in cylindrical domains with applications
Math. Methods Appl. Sci. 10 51-66

[41] Mielke A 1995 Homoclinic and heteroclinic solutions in two-phase flow Proc. of the IUTAM/ISIMM
Symp. on Structure and Dynamics of Nonlinear Waves in Fluids (Hannover, 1994) (Advanced
Series in Nonlinear Dynamics vol 7) (River Edge, NJ: World Scientific Publications) pp 353-62

[42] Minors K and Dawes J H P 2017 Invasions slow down or collapse in the presence of reactive
boundaries Bull. Math. Biol. 79 2197-214

[43] Moebius W, Murray A W and Nelson D R 2015 How obstacles perturb population fronts and alter
their genetic structure PLoS Comput. Biol. 11 1004615

[44] Perry R B and Schimke G R 1965 Large-amplitude internal waves observed off the northwest coast
of sumatra J. Geophys. Res. 70 2319-24

[45] Pucci E and Saccomandi G 2013 The anti-plane shear problem in nonlinear elasticity revisited J.
Elast. 113 167-77

[46] Ribeiro R Jr, Milewski P A and Nachbin A 2017 Flow structure beneath rotational water waves with
stagnation points J. Fluid Mech. 812 792-814

[47] Rivlin R S and Thomas A G 1951 Large elastic deformations of isotropic materials: VIII. Strain
distribution around a hole in a sheet Phil. Trans. R. Soc. A. 243 289-98

[48] Scheel A and Sandstede B 2007 Relative Morse indices, fredholm indices, and group velocities
Discrete Continuous Dyn. Syst. - Ser. A (DCDS-A) 20 139-58

[49] Treloar L R G 1948 Stresses and birefringence in rubber subjected to general homogeneous strain
Proc. Phys. Soc. 60 135-44

[50] Turner R E L and Vanden-Broeck J M 1988 Broadening of interfacial solitary waves Phys. Fluids
31 2486-90

[51] Volpert A 1, Volpert V A and Volpert V' A 1994 Traveling Wave Solutions of Parabolic Systems
(Translations of Mathematical Monographs vol 140) (Providence, RI: American Mathematical
Society) Translated from the Russian manuscript by James F Heyda

[52] Voss J, Baaser H, Martin R J and Neff P 2020 More on anti-plane shear J. Optim. Theory Appl. 184
226-49

[53] Wahlén E 2009 Steady water waves with a critical layer J. Differ. Equ. 246 2468-83

[54] Wheeler M H 2013 Large-amplitude solitary water waves with vorticity SIAM J. Math. Anal. 45
2937-94

1985


https://doi.org/10.1016/0022-0396(86)90042-2
https://doi.org/10.1016/0022-0396(86)90042-2
https://doi.org/10.1016/0022-0396(86)90042-2
https://doi.org/10.1016/0022-0396(86)90042-2
https://doi.org/10.1002/mma.1670100105
https://doi.org/10.1002/mma.1670100105
https://doi.org/10.1002/mma.1670100105
https://doi.org/10.1002/mma.1670100105
https://doi.org/10.1007/s11538-017-0326-x
https://doi.org/10.1007/s11538-017-0326-x
https://doi.org/10.1007/s11538-017-0326-x
https://doi.org/10.1007/s11538-017-0326-x
https://doi.org/10.1371/journal.pcbi.1004615
https://doi.org/10.1371/journal.pcbi.1004615
https://doi.org/10.1029/jz070i010p02319
https://doi.org/10.1029/jz070i010p02319
https://doi.org/10.1029/jz070i010p02319
https://doi.org/10.1029/jz070i010p02319
https://doi.org/10.1007/s10659-012-9416-z
https://doi.org/10.1007/s10659-012-9416-z
https://doi.org/10.1007/s10659-012-9416-z
https://doi.org/10.1007/s10659-012-9416-z
https://doi.org/10.1017/jfm.2016.820
https://doi.org/10.1017/jfm.2016.820
https://doi.org/10.1017/jfm.2016.820
https://doi.org/10.1017/jfm.2016.820
https://doi.org/10.1098/rsta.1951.0005
https://doi.org/10.1098/rsta.1951.0005
https://doi.org/10.1098/rsta.1951.0005
https://doi.org/10.1098/rsta.1951.0005
https://doi.org/10.3934/dcds.2008.20.139
https://doi.org/10.3934/dcds.2008.20.139
https://doi.org/10.3934/dcds.2008.20.139
https://doi.org/10.3934/dcds.2008.20.139
https://doi.org/10.1088/0959-5309/60/2/303
https://doi.org/10.1088/0959-5309/60/2/303
https://doi.org/10.1088/0959-5309/60/2/303
https://doi.org/10.1088/0959-5309/60/2/303
https://doi.org/10.1063/1.866602
https://doi.org/10.1063/1.866602
https://doi.org/10.1063/1.866602
https://doi.org/10.1063/1.866602
https://doi.org/10.1007/s10957-018-1358-6
https://doi.org/10.1007/s10957-018-1358-6
https://doi.org/10.1007/s10957-018-1358-6
https://doi.org/10.1007/s10957-018-1358-6
https://doi.org/10.1016/j.jde.2008.10.005
https://doi.org/10.1016/j.jde.2008.10.005
https://doi.org/10.1016/j.jde.2008.10.005
https://doi.org/10.1016/j.jde.2008.10.005
https://doi.org/10.1137/120891460
https://doi.org/10.1137/120891460
https://doi.org/10.1137/120891460
https://doi.org/10.1137/120891460

	Center manifolds without a phase space for quasilinear problems in elasticity, biology, and hydrodynamics
	1.  Introduction
	1.1.  Statement of results
	1.2.  Plan of the article

	2.  Center manifolds for quasilinear elliptic PDE on a cylinder
	2.1.  Linear theory
	2.2.  Reformulation as a fixed point
	2.3.  Analysis of the nonlinear term
	2.4.  Truncation and fixed point mapping
	2.5.  Proof of main results

	3.  Extensions to other types of elliptic problems
	3.1.  Symmetries
	3.2.  Other boundary conditions
	3.3.  Internal interfaces and free boundaries
	3.4.  Diagonal elliptic systems
	3.5.  Commuting linearization and reduction

	4.  General strategy to apply the reduction procedure
	4.1.  Iteration
	4.2.  Anticipated scaling

	5.  Anti-plane shear
	5.1.  Center manifold reduction
	5.2.  Reduced ODE and truncation
	5.3.  Proof of existence

	6.  Fronts in 2D Fisher–KPP
	6.1.  Center manifold reduction
	6.2.  Reduced ODE and truncation
	6.3.  Proof of existence

	7.  Rotational bores in a channel
	7.1.  Statement of the problem
	7.2.  Main results
	7.3.  Conjugate flows
	7.4.  Reformulating the problem
	7.5.  Center manifold reduction
	7.6.  Reduced ODE and truncation
	7.7.  Flow force on the center manifold
	7.8.  Proof of existence
	7.9.  Critical layers and streamline pattern

	Acknowledgments
	Appendix A.  Amick–Turner fixed point theory
	Appendix A. 
	Appendix B. Iteration for anti-plane shear with a general body force
	ORCID iDs
	References


