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Abstract. In the present study several integrable equations with cubic nonlinearity are derived as asymptotic models from
the classical shallow water theory. The starting point in our derivation is the Euler equation for an incompressible fluid with
the simplest bottom and surface conditions. The approximate equations are obtained by working under suitable scalings
that allow for the modeling of water waves of relatively large amplitude, truncating the asymptotic expansions of the
unknowns to appropriate order, and introducing a special Kodama transformation. The so obtained equations exhibit cubic
order nonlinearities and can be related to the following integrable systems: the Novikov equation, the modified Camassa–
Holm equation, and a Camassa–Holm type equation with cubic nonlinearity. Analytically, the formation of singularities of
the solution to some of these quasi-linear model equations is also investigated, with an emphasis on the understanding of
the effect of the nonlocal higher order nonlinearities. In particular it is shown that one of the models accommodates the
phenomenon of curvature blow-up.
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1. Introduction

The theory of water waves embodies the Euler equations of fluid mechanics along with the crucial behavior
of boundaries. Due to the complexity and the difficulties arising in the theoretical and numerical study
for the full system, simpler model equations have been proposed as effective approximations in various
specific physical regimes.

The present paper is along the same line of study. In particular we consider the shallow-water (or
long-wave) approximation to the irrotational gravity water wave system. Such approximation is usually
carried out formally from the governing equations via double asymptotic expansions in the following two
fundamental dimensionless positive parameters (see, for example, [16]):

the amplitude parameter ε :=
a

h0
, and the shallowness parameter μ :=

h2
0

λ2
, (1.1)

where a, h0 and λ are the typical amplitude of the wave, the depth of the water, and the wavelength,
respectively. The shallow-water/long-wave regime then corresponds to assuming μ to be small: μ � 1.
Further relating ε with μ then allows one to derive model equations in particular asymptotic regimes.

Arguably, one of the most famous and simplest long-wave asymptotic models which accommodates
genuine nonlinear behavior is the Korteweg–de Vries (KdV) equation [35]. The nonlinear effect in the
KdV modeling is reflected in that the wave amplitude is assumed to be small but finite: ε = O(μ). Such
a scaling is later implemented to generate a family of asymptotically equivalent equations, namely the
BBM-type equations [1]. Both the KdV equation and the BBM class posses smooth soliton solutions and
global solutions for very general initial data, in particular all physically relevant waves; see, for example,
[12,44].
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However some other fundamental nonlinear phenomena, such as wave-breaking and surface singulari-
ties, are prevented from the KdV model, due to its strong dispersive effect that regularizes the progres-
sively nonlinear steepening. This promotes the need to seek model equations that incorporate stronger
nonlinear effects to better describe singular wave phenomena for larger amplitude waves.

A natural approach is to consider regimes that bring higher-order nonlinear terms, characterized by
larger values of ε, for instance, the so-called Camassa–Holm (CH) scaling for shallow water waves of
moderate amplitude [18]

μ � 1, ε = O(μ
1
2 ). (1.2)

With this scaling, a two-parameter family of approximation equations are derived [18] including the
well-known Camassa–Holm (CH) equation

mt + umx + 2uxm = 0, m = u − uxx,

and the Degasperis–Procesi (DP) equation

mt + umx + 3uxm = 0, m = u − uxx,

where u is the horizontal component of the velocity field at some specific depth, and m is the so-called
momentum density. The CH equation was first considered in [26] as a bi-Hamiltonian equation, and
the DP equation was first derived in [20] in the study of integrable equation. The CH equation was
later proposed in [5,18,32] in the context of water waves. Similar to the KdV equation, the CH and DP
equations are both completely integrable. In contrast to KdV, on the other hand, both CH and DP, and
their multi-component generalizations (for example, [19,31,41]) accommodate solutions exhibiting certain
degree of singularities, namely the breaking waves [7,13,14,23,39] and peaking waves [5,20,36,37]. Note
that for the full water wave problem, the traveling wave solutions of greatest height have a peak at their
crest; see [10,11,15].

The discovery of the CH and DP equations motivates the search for various generalization models
with interesting properties and applications. Since these two equations are both quadratic nonlinear, one
may wonder as the nonlinearity becomes more pronounced, and hence the hyperbolic property tends to
be more dominant, what kind of singularity can be triggered. In the context of asymptotic modeling, this
amounts to considering larger amplitude waves.

For the CH and DP equations, the formation of singularities in the solution that develops from a
localized and smooth initial data is in the form of blow-up of the slope, while the solution remains bounded
[9,14,39]. One of the motivations of this paper comes from the recent works on a new type of singularity
formation for cubic nonlinear models, namely the curvature blow-up, i.e. the second derivative uxx of
solution becomes unbounded in finite time while the solution u and its gradient ux remain bounded.
Examples can be found in the modified Camassa–Holm (mCH) equation [6,25,28,29,41,42] and the
generalized modified Camassa–Holm (gmCH) equation [7,24,41]. Indeed, these equations inherit certain
energy conservation and momentum persistence property that allow the control of u and ux. Yet the
presence of the higher order nonlocal nonlinearity induces the blow-up of the higher derivative. On
the other hand, such CH-type equations with cubic nonlinearity (also including the Novikov equation
[40]) were only studied in the framework of integrable systems theory and, to the best of the authors’
knowledge, there were limited attempts of the relations of these equations to the physically relevant
models in the context of water waves. To this end, we would like to perform a modeling under a different
scaling from (1.2), with the purpose of deriving cubic nonlinear equations (of CH-type) that may host
the aforementioned curvature blow-up phenomenon.

It is worthwhile pointing out that most of the higher order nonlinear descendants of the CH equation
(like the mCH, gmCH, Novikov, etc.) are derived in the context of integrable systems. Another goal of
the present study is to propose a hydrodynamic approach to derive some of those cubic nonlinear models,
including the mCH and Novikov equations.

Roughly speaking, since we expect the cubic nonlinearity to appear at the order of O(ε2μ), leaving
the O(μ2) terms as higher order ones, this naturally leads to a scaling requirement ε = o(μ1/2). Therefore
we impose
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μ � 1, ε = O(μ
2
5 ), (1.3)

which also corresponds to a shallow-water regime for waves of moderate amplitude but larger than the
one in the CH scaling regime (1.2). Proceeding analogously as for the CH equation, we first derive an
equation for the scaled surface elevation η

2(ηx + ηt) +
1
3
μηxxx + 3εηηx − 3

4
ε2η2ηx +

3
8
ε3η3ηx + εμ

(
23
12

ηxηxx +
5
6
ηηxxx

)

+
115
192

ε4η4ηx + ε2μ

(
23
16

η3
x +

29
8

ηηxηxx +
3
4
η2ηxxx

)
= 0 + O(ε5, μ2).

(1.4)

A similar equation for the surface was also derived in [43] under a larger amplitude scaling ε = O(μ1/4).
By relating the horizontal velocity u with η, a cubic nonlinear equation for u is obtained.

Here we adapt the idea of [2] to expand η in terms of u together with its derivatives using the so-called
Kodama transformation [33]. In particular, the expansion takes the following form

η ∼ u + εA + μB + εμC + μ2D + ε2E + ε3K + ε2μG + εμ2H (1.5)

where

A := λ1u
2, B := λ2uxx, E := λ3u

3, K = λ0u
4, C := λ4u

2
x + λ5uuxx,

D := λ6uxxxx, G := λ7uu2
x + λ8u

2uxx, H := λ9uxuxxx + λ10uuxxxx + λ11u
2
xx.

This type of transformation was first introduced by Kodama in [33], and was used by Dullin et al.
[21] to derive a shallow water wave model under the influence of surface tension. A further splitting
of uxxt together with an equation for ut generates one more degree of freedom ν, cf. (3.6)–(3.7). Then
the expected specific form of the equations imposes exactly the same number of constraints on these
parameters, leading to exact parameter values in the resulting model equations. In particular, this allows
us to obtain the following types of equations.

Case 1. The CH-mCH-Novikov equation

mt + ux − μ

4
uxxx +

ε

2
(2uxm + umx) +

k1ε
2

4
((u2 − βμu2

x)m)x +
k2ε

2

4
(u2mx + 3uuxm)

= 0 + O(ε5, μ2),

where m = u − βμuxx, β =
5
12

, k2 =
69
5

, and k1 � −15.1765 is the only real root of

2000k3
1 + 106200k2

1 + 1871550k1 + 10934031 = 0. (1.6)
Case 2. The CH-Novikov equation

mt + ux − μ

4
uxxx +

ε

2
(2uxm + umx) +

k2ε
2

4
(u2mx + 3uuxm) = 0 + O(ε5, μ2). (1.7)

Case 3. A cubic CH-type equation

mt + ux − μ

4
uxxx +

ε

2
(2uxm + umx) +

k3ε
2

4

(
(u2 − 1

4
βμ(u2)xx)u

)
x

= 0 + O(ε5, μ2),

where k3 =
46
5

. (1.8)

Mathematically, under suitable scaling limits the quadratic terms in (1.6) and (1.7) can be dropped
out in a formal scaling limit, leaving (1.6) as the mCH-Novikov equation

mt + k1((u2 − u2
x)m)x + k2(u2mx + 3uuxm) = 0 (1.9)

where k1 and k2 satisfy conditions given above as in Case 1, and (1.7) as the Novikov equation

mt + k2(u2mx + 3uuxm) = 0 (1.10)

with parameter k2 given as in Case 2.
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As is explained earlier, with the cubic nonlinear models at hand, our second goal is to study the
formation of singularities due to the higher order nonlinear effects and construct initial data that lead to
the finite time curvature blow-up. To this end, we will at this moment only focus our attention on Eq.
(1.9) where only cubic nonlinearities are present, and consider the following Cauchy problem

{
mt + k1

[
(u2 − u2

x)m
]
x

+ k2
(
u2mx + 3uuxm

)
= 0,

u(0, x) = u0(x),
t > 0, x ∈ R. (1.11)

Moreover for mathematical speculation we will allow ourselves to consider a more general range of pa-
rameter values for k1 and k2 than that which is given in Case 1.

It turns out that the two groups of cubic nonlinearities in (1.11) play quite different roles in the blow-
up analysis. In the case k1 = 0, (1.11) becomes the Novikov Eq. (1.10), and when the initial momentum
density m0 does not change sign then the solution exists globally for all time [45]. On the other hand
when the Novikov nonlinearity is not present (k2 = 0 i.e., the mCH equation), it is shown [6,29,38] that
the curvature could still blow up in finite time even if m0 does not change sign. This leads to a natural
question of understanding how the interaction between these two groups of cubic nonlinearities would
affect the singularity formation mechanism.

It is also worthwhile pointing out that, as was discovered by Brandolese et al [3,4], many quadratic
nonlinear CH-type equations exhibit a very strong non-diffusive character that extremely “localized”
information about the data is enough to lead to finite time blow-up of solutions. Such a phenomenon
comes from the fact that the nonlinear nonlocal effects are over-dominated by the local nonlinearities
of the equations. This hyperbolic feature seems to be slightly counter balanced by the stronger nonlocal
effects due to higher nonlinearity of the equations, as was explored in [6,7]. Thus it would be interesting
to study how local structures of the initial data may affect the evolution of solutions to Eq. (1.11), and in
particular, the formation of singularity. Since the equation involves both the mCH and Novikov types of
nonlinearity, it is reasonable to expect some kind of relaxed local-in-space blow-up criterion in the spirit
of [6,7]. However as pointed out above, the two types of nonlinearities do not seem to cooperate in a good
way to produce blow-ups, making the analysis rather subtle.

A refined Beale–Kato–Majda type blow-up criterion (cf. Lemma 5.2) singles out the right blow-up
quantity to look at. Tracking the dynamics of such a quantity along the characteristics reveals explicit local
and nonlocal interplays between the solution and its gradient, cf. Lemma 5.3. Using the two conservation
laws provides a way to control the nonlocal convolution. This allows one to derive crucial monotonicity
property of u, ux and m along the characteristics, which in turn leads to a Riccati dynamics for m, cf.
Theorem 5.3. This result covers a wide range of parameter values of k1 and k2, in particular the Eq. (1.6)
in Case 1.

We also provide a different way of approach which does not rely on the use of the conservation laws.
Instead, taking advantage of the sign preservation of the momentum density m, the nonlocal terms can
be shown to have good signs provided that the initial momentum density does not change sign. Therefore
it remains to examine the local terms. It turns out that a Riccati type inequality can be obtained as
long as the “local oscillation” |ux/u| is reasonably mild. Note that the sign condition on m already rules
out fast oscillations. A further refined analysis on the evolution of ux/u can be performed to show that
mild oscillations will persist along the characteristics with carefully chosen data, and therefore closes the
argument.

The remainder of the paper is organized as follows. In Sect. 2, the model equation for the free surface
with higher order terms is formally derived from shallow water in the Euler equation for an incompressible
fluid, with the computational details provided in Appendix A. Section 3 together with Appendix B is
devoted to the derivation of a family of asymptotically equivalent equations, namely the CH-mCH-Novikov
Eq. (1.6). Some other equations with cubic nonlinearity will be derived in Sect. 4. Section 5 is focused
on the mCH-Novikov Eq. (1.11). A blow-up criterion will be derived and special initial data will be
constructed that lead to the curvature blow-up.
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2. Derivation of the Free Surface Equation

The main goal of this section is to formally derive of model Eq. (1.4) for the free surface from the Euler
equations. Compared with the model equation derived in [32] which is truncated at the order O(ε3, εμ), the
new model (1.4) contains more higher order terms which will be useful to derive a class of unidirectional
wave equations including cubic nonlinear terms.

Consider the two-dimensional incompressible irrotational flows in the domain {(x, z) : 0 < z < h(x, t)}
with a parametrization of the free surface h = h(x, t), where the horizontal and vertical directions are
represented by x and z, respectively. The governing system is given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uux + wuz = − 1
ρPx,

wt + uwx + wwz = − 1
ρPz − g,

ux + wz = 0,

uz − wx = 0,

where the pressure is written as P (t, x, z) = pa+ρg(h0−z)+p(t, x, z), where pa is the constant atmospheric
pressure, and p is the dynamic pressure. In addition, we pose the “no-flow” condition on the flat bed, i.e.,
w|z=0 = 0. On the surface z = h0 + η, the dynamic condition P = pa and the kinematic condition yield
p = ρgη and w = ηt + uηx.

Next we perform the following standard nondimensionalization

x → λx, z → h0z, η → aη, t → λ√
gh0

t, u →
√

gh0u, w →
√

μgh0w, p → ρgh0p.

Recalling (1.1), we further assume that u,w and p are proportional to the wave amplitude, that is,
u → εu, w → εw, p → εp. To examine the problem in an appropriate far field, we follow the approach
employing the far field variable with the right-going wave:

ξ = ε1/2(x − t), τ = ε3/2t. (2.1)

We also transform w → √
εw to keep mass conservation. Therefore, the governing equations become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−uξ + ε(uτ + uuξ + wuz) = −pξ in 0 < z < 1 + εη,

εμ{−wξ + ε(wτ + uwξ + wwz)} = −pz in 0 < z < 1 + εη,

uξ + wz = 0 in 0 < z < 1 + εη,

uz − εμwξ = 0 in 0 < z < 1 + εη,

p = η on z = 1 + εη,

w = −ηξ + ε(ητ + uηξ) on z = 1 + εη,

w = 0 on z = 0.

(2.2)

Before applying the asymptotic expansion, we Taylor expand the boundary terms:
f(1 + εη) =

∑∞
n=0

(εη)n

n! f (n)(1) to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−uξ + ε(uτ + uuξ + wuz) = −pξ in 0 < z < 1,

εμ{−wξ + ε(wτ + uwξ + wwz)} = −pz in 0 < z < 1,

uξ + wz = 0 in 0 < z < 1,

uz − εμwξ = 0 in 0 < z < 1,

p + εηpz + ε2η2

2 pzz + ε3η3

6 pzzz = η on z = 1,

w + εηwz + ε2η2

2 wzz + ε3η3

6 wzzz = −ηξ + εητ + εηξ(u + εηuz + ε2η2

2 uzz + ε3η3

6 uzzz) on z = 1,

w = 0 on z = 0.

(2.3)
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A double asymptotic expansion is then introduced to seek a solution of the system formally,

q ∼
∞∑

n=0

∞∑
m=0

εnμmqnm as ε → 0, μ → 0,

where q will be taken to be the functions u, w, p and η, and all functions qnm satisfy the far field conditions
qnm → 0 as |ξ| → ∞ for every n, m = 0, 1, 2, 3, ...

Substituting the asymptotic expansions of u, w, p, η into (2.3), we check all the coefficients at each
order O(εiμj) (i, j = 0, 1, 2, 3, ...). For example at O(1) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u00,ξ = −p00,ξ in 0 < z < 1,

0 = p00,z in 0 < z < 1,

u00,ξ + w00,z = 0 in 0 < z < 1,

u00,z = 0 in 0 < z < 1,

p00 = η00, w00 = −η00,ξ on z = 1,

w00 = 0 on z = 0.

(2.4)

From the fourth equation in (2.4) it follows that u00 is independent of z. Thanks to the third equation
in (2.4) and the boundary condition of w on z = 0, we get

w00 = w00|z=0 +
∫ z

0

w00,z′dz′ = −zu00,ξ,

which along with the boundary condition on z = 1 implies u00,ξ(τ, ξ) = η00,ξ(τ, ξ). Therefore

u00(τ, ξ) = η00(τ, ξ), w00 = −zη00,ξ,

here use has been made of the far field conditions u00, η00 → 0 as |ξ| → ∞. On the other hand, from the
second equation in (2.4), it follows that

p00 = p00|z=1 +
∫ z

1

p00,z′ dz′ = η00.

At O(ε1μ0) = O(ε) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u10,ξ + u00,τ + u00u00,ξ = −p10,ξ in 0 < z < 1,

0 = p10,z in 0 < z < 1,

u10,ξ + w10,z = 0 in 0 < z < 1,

u10,z = 0 in 0 < z < 1,

p10 + p00,zη00 = η10 on z = 1,

w10 + η00w00,z = −η10,ξ + η00,τ + u00η00,ξ on z = 1,

w10 = 0 on z = 0.

(2.5)

From the fourth equation in (2.5), we know that u10 is independent to z, that is, u10 = u10(τ, ξ). Thanks
to the third equation in (2.5) and the boundary conditions of w on z = 0, we get

w10 = w10|z=0 +
∫ z

0

w10,z′dz′ = −zu10,ξ. (2.6)

Hence, from the third equation in (2.5) and (2.6) and the boundary conditions of w on z = 1, we obtain
that

u10,ξ = η10,ξ − η00,τ − (u00η00)ξ and w10 = z(η00,τ + 2η00η00,ξ − η10,ξ) (2.7)
Thanks to the second equation in (2.5) , we deduce that

p10,ξ = η10,ξ = u10,ξ + η00,τ + (u00η00)ξ. (2.8)

Taking account of the first equation in (2.5) and (2.7), it must be

−p10,ξ = −u10,ξ + η00,τ + η00η00,ξ,
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which along with (2.8) and (2.7) implies

2η00,τ + 3η00η00,ξ = 0.

Similarly, at the orders O(ε0μ1), O(ε2μ0), O(ε1μ1), O(ε3μ0), O(ε4μ0) and O(ε2μ1), the relation be-
tween pij , ηij , uij , wij and their τ -derivatives can be obtained; see, for example, [30].

As is discussed in the Introduction, the scaling relation (1.3) suggests us to seek terms up to the order
of O(ε3μ1). Following the same procedure as above (please refer to Appendix A for details), we obtain
the following equation for η

2ητ + 3ηηξ +
1
3
μηξξξ − 3

4
εη2ηξ +

3
8
ε2η3ηξ +

115
192

ε3η4ηξ + αη5ηξ + εμ

(
23
12

ηξηξξ +
5
6
ηηξξξ

)

+ ε2μ

(
23
16

η3
ξ +

29
8

ηηξηξξ +
3
4
η2ηξξξ

)
= 0 + O(ε5, ε3μ, μ2), (2.9)

where α is some constant we do not specify here.
Recall the original transformation x = ε− 1

2 ξ + ε− 3
2 τ, t = ε− 3

2 τ , namely,

∂

∂ξ
= ε− 1

2 ∂x,
∂

∂τ
= ε− 3

2 (∂x + ∂t). (2.10)

The Eq. (2.9) transforms to

2(ηx + ηt) +
1
3
μηxxx + 3εηηx + ε2A1η

2ηx + ε3A2η
3ηx + εμ

(
A3ηxηxx + A4ηηxxx

)
+ A8ε

4η4ηx + ε2μ
(
A5ηηxηxx + A6η

2ηxxx + A7η
3
x

)
= 0 + O(ε5, ε3μ, μ2).

(2.11)

where A1 = − 3
4 , A2 = 3

8 , A3 = 23
12 , A4 = 5

6 , A5 = 29
8 , A6 = 3

4 , A7 = 23
16 , A8 = 115

192 .

Remark 2.1. It is noted that the high-order terms O(ε5, μ2) in (2.9) only depend on the function η and
its ξ derivatives. By the scaling invariance in (2.11), O(ε5, μ2) would not generate any low order terms
in (2.11) under the transformations in (2.10).

3. Derivation of Model Equations with Cubic Nonlinear Terms

Having derived the equation of the free surface η in Sect. 2, the focus of the development in this section
is the derivation of the model equations that incorporate cubic nonlinearities of various kinds including
the CH, mCH and Novikov types, as given in (1.6).

3.1. Asymptotic Expansion using Kodama Transformation

Recall that we assume μ � 1 and work in the regime where ε = O(μ
2
5 ). Since we expect our final model

equations to be cubic nonlinear, a higher-order approximation (in ε and μ) is needed. Thus it is natural
to post the Kodama transformation of the form

η = u + εA + μB + εμC + μ2D + ε2E + ε3K + ε2μG + εμ2H, (3.1)

where A,B,C,D,E,H,K and G are the parameters which are related to u and its derivatives but
independent of ε and μ. Doing so allows enough degree of freedom in the expansion that may later be
optimized. For example, to obtain the CH-type terms, as described in [32], one can choose A = λ1u

2,
B = λ2uxx and K = λ0u

4, where λ0, λ1 and λ2 are some constants to be determined later. With such a
choice, (3.1) becomes

η = u + λ1εu
2 + λ2μuxx + εμC + μ2D + ε2E + λ0ε

3u4 + ε2μG + εμ2H. (3.2)
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To proceed, we will substitute the Kodama transformation (3.2) into (2.11). The resulting equation will
purely consists of u-terms. Collecting at each order we have

O0(1) := 2(ux + ut), O0(ε) := 4λ1ε(uux + uut) + 3εuux,

O0(ε2) := 2ε2(Ex + Et) + 9λ1ε
2u2ux + A1ε

2u2ux,

O0(ε3) := 3ε3(uE)x + 6λ2
1ε

3u3ux + A1λ1ε
3(u4)x + A2ε

3u3ux + 2λ0ε
3((u4)x + (u4)t),

O0(ε4) := ε4
(

λ0 + λ1 + A1λ
2
1 + A2λ1 +

A8

5

)
(u5)x + A1ε

4(u2E)x

O0(μ) := 2λ2μ(uxxx + uxxt) +
1
3
μuxxx, O0(μ2) := 2μ2(Dx + Dt) +

λ2

3
μ2uxxxxx,

O0(εμ) := 2εμ(Cx + Ct) + (2λ1 + 3λ2 + A3)εμuxuxx +
(

2
3
λ1 + 3λ2 + A4

)
εμuuxxx,

O0(ε2μ) :=
1
3
ε2μExxx + 2ε2μ(Gx + Gt) + 3ε2μ(uC)x + 3λ2λ1ε

2μ(u2uxx)x + λ2A1ε
2μ(u2uxx)x

+ 2λ1A3ε
2μ(uu2

x)x + A4λ1ε
2μu2uxxx + λ1A4ε

2μu(u2)xxx

+ A5ε
2μuuxuxx + A6ε

2μu2uxxx + A7ε
2μu3

x,

O0(εμ2) :=
1
3
εμ2Cxxx + 2εμ2(Hx + Ht) + 3εμ2(uD)x + 3λ2

2εμ
2uxxuxxx

+ A3λ2εμ
2(uxuxxx)x + A4λ2εμ

2uxxuxxx + A4λ2εμ
2uuxxxxx,

O0(ε2μ2) :=
1
3
ε2μ2Gxxx + 3λ1ε

2μ2(u2D)x + 3λ2ε
2μ2(uxxC)x + 3ε2μ2(Hu)x

+ λ2
2A1ε

2μ2(uu2
xx)x + A1ε

2μ2(u2D)x + A3ε
2μ2(uxCx)x + 2A3λ1λ2ε

2μ2(uuxuxxx)x

+ A4ε
2μ2Cuxxx + A4λ1λ2ε

2μ2u2uxxxxx + A4λ1λ2ε
2μ2uxx(u2)xxx + A4ε

2μ2uCxxx

+ A5λ2ε
2μ2uuxuxxxx + A5λ2ε

2μ2uxu2
xx + A5λ2ε

2μ2uuxxuxxx

+ A6λ2ε
2μ2u2uxxxxx + 2A6λ2ε

2μ2uuxxuxxx + 3A7λ2ε
2μ2u2

xuxxx.

And this yields the following equation

ut + ux +
1
2
[
O0(ε) + O0(ε2) + O0(ε3) + O0(μ2) + O0(μ) + O0(εμ) + O0(εμ2)

]
= 0 + O(ε3μ, ε2μ2, μ3).

Here the subscript in O0 is just to emphasize that the terms may change at each step.
The next step is to eliminate the t derivatives using the equation itself. As before, we expand the time

derivatives, namely

ut = − ux − 2λ1ε(uux + uut) − 3
2
εuux

− 1
2
[
O0(ε2) + O0(ε3) + O0(μ2) + O0(μ) + O0(εμ) + O0(εμ2)

]
+ O(ε3μ, ε2μ2, μ3).

(3.3)

In order to have the whole ε2μ2-order terms, we need to bring μ2 and εμ2-order terms back even though
they will be ignored as high-order at the end.
Step 1 . At order ε, we substitute (3.3) into 1

2O0(ε), and it gives

2λ1ε(uux + uut) +
3
2
εuux =

3
2
εuux − 4

3
λ2
1ε

2((u3)x + (u3)t) − λ1ε
2(u3)x

− λ1εu
[
O0(ε2) + O0(ε3) + O0(μ) + O0(εμ) + O0(μ2) + O0(εμ2)

]
. (3.4)
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This expansion generates higher order terms. It leads to the following terms in asymptotic order:

O1(ε) :=
3
2
εuux, O1(ε2) :=

1
2
O0(ε2) − 4

3
λ2
1ε

2((u3)x + (u3)t) − λ1ε
2(u3)x,

O1(ε3) :=
1
2
O0(ε3) − λ1εuO0(ε2), O1(ε4) :=

1
2
O0(ε4) − λ1εuO0(ε3)

O1(εμ) :=
1
2
O0(εμ) − λ1εuO0(μ), O1(μ) :=

1
2
O0(μ),

O1(μ2) :=
1
2
O0(μ2), O1(ε2μ) :=

1
2
O0(ε2μ) − λ1εuO0(εμ),

O1(εμ2) :=
1
2
O0(εμ2) − λ1εuO0(μ2), O1(ε2μ2) :=

1
2
O0(ε2μ2) − λ1εuO0(εμ2).

Step 2 . For O1(ε2) term, we can choose E = λ3u
3. Then we expand the time derivatives as

ut = −ux − 2λ1ε(uux + uut) − 3
2
εuux − 1

2
[
O0(μ) + O0(μ2) + O0(ε2)

]
+ O(ε2, εμ).

Hence the O1(ε2)-order term takes the following form,

O1(ε2) =
(

1
2
λ1 +

A1

6

)
ε2(u3)x − (6λ3 − 8λ2

1)λ1ε
3u2(uux + uut) −

(
9
2
λ3 − 6λ2

1

)
ε3u3ux

−
(

3
2
λ3 − 2λ2

1

)
ε2u2

[
O0(ε2) + O0(μ) + O0(μ2)

]
.

We now denote

If(u) := the coefficient of f(u).

Then coefficient of u2ux is given by

Iu2ux
:=

3
2
λ1 +

A1

2
. (3.5)

And the following terms in asymptotic order take the form

O2(μ) := O1(μ), O2(ε2) :=
(

3
2
λ1 +

A1

2

)
ε2u2ux, O2(εμ) := O1(εμ)

O2(ε3) := O1(ε3) − (6λ3 − 8λ2
1)λ1ε

3u2(uux + uut) −
(

9
2
λ3 − 6λ2

1

)
ε3u3ux,

O2(ε4) := O1(ε4) −
(

3
2
λ3 − 2λ2

1

)
ε2u2O0(ε2),

O2(μ2) := O1(μ2), O2(ε2μ) := O1(ε2μ) −
(

3
2
λ3 − 2λ2

1

)
ε2u2O0(μ),

O2(εμ2) := O1(εμ2), O2(ε2μ2) := O1(ε2μ2) −
(

3
2
λ3 − 2λ2

1

)
ε2u2O0(μ2).

Now the equation has the form of

ut + ux + O1(ε) + O2(ε2) + O2(μ) + O2(εμ) + O2(ε2μ) + O2(ε4) = 0 + O(ε3μ, μ3),

and the expression for ut is given by

ut = − ux − 3
2
εuux −

(
1
2
λ1 +

A1

6

)
ε2(u3)x − 1

2
O0(μ) − 1

2
O0(εμ) + λ1εuO0(μ)

− 1
2
O0(ε2μ) + λ1εuO0(εμ) +

(
3
2
λ3 − 2λ2

1

)
ε2u2O0(μ) + O(ε2, μ2).

(3.6)
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Step 3 . We now consider O2(μ) term. Here, another parameter is required. To this end, splitting the
time derivative λ2μuxxt, it appears that

λ2μuxxt = λ2(1 − ν)μuxxt + λ2νμuxxt, (3.7)

where ν is the new parameter which will be determined later. We remove the uxxt term by eliminating
the t derivatives using (3.6). Thereby, it yields

λ2νμuxxt = −λ2νμuxxx − 3
2
λ2νεμ(uux)xx + λ2νμ(Fε2 + Fμ + Fεμ + Fε2μ)xx + O(ε3μ, εμ3),

where we define

Fε2 := −
(

1
2
λ1 +

A1

6

)
ε2(u3)x, Fμ := −λ2μ(uxxx + uxxt) − 1

6
μuxxx,

Fεμ := −1
2
O0(εμ) + λ1uεO0(μ), Fε2μ := −1

2
O0(ε2μ) + λ1uεO0(εμ) +

(
3
2
λ3 − 2λ2

1

)
ε2u2O0(μ).

This way O2(μ) takes the form

λ2μ(uxxx + uxxt) +
1
6
μuxxx =

(
λ2(1 − ν) +

1
6

)
μuxxx + λ2(1 − ν)μuxxt − 3

2
νλ2εμ(3uxuxx + uuxxx)

+ λ2νμ(Fε2 + Fμ + Fεμ + Fε2μ)xx.

The coefficient of uxxt can be written as

Iuxxt
:= λ2(1 − ν).

This procedure leads to the following terms in asymptotic order:

O3(μ) := (λ2(1 − ν) +
1
6
)μuxxx + λ2(1 − ν)μuxxt, O3(ε3) := O2(ε3),

O3(εμ) := O2(εμ) − 3
2
νλ2εμ(3uxuxx + uuxxx), O3(ε4) := O2(ε4)

O3(ε2μ) := O2(ε2μ) + λ2νμ(Fε2)xx, O3(μ2) := O2(μ2) + λ2νμ(Fμ)xx

O3(εμ2) := O2(εμ2) + λ2νμ(Fεμ)xx, O3(ε2μ2) := O2(ε2μ2) + λ2νμ(Fε2μ)xx.

Proceeding systematically, we continue to compute the O3(εμ) terms, O4(ε3), O5(ε4), and finally all
the ε2μ-order terms generated in the asymptotic expansions. For the purpose of keeping the presentation
simple, the details of the computation are provided in Appendix B.

3.2. The Special form of the CH-mCH-Novikov Equation

Having obtained the asymptotic expansion up to sufficiently high order, we are ready to turn to the
procedure of deriving Eq. (1.6). Notice that this requires choosing specific values of the parameters in
the Kodama transformation, which can be determined through the following procedure.

Note that the CH-type equation requires

Iuxxt
= −β, Iuuxxx

= −β

2
, Iuxuxx

= −β

for some parameter β. It is determined that β = 5
12 and λ1, λ2, ν are given by{

λ2(1 − ν) = −β,

λ1 + 3
2 (1 − 3ν)λ2 + A3

2 = −β.
(3.8)

On the other hand, Eq. (1.6) requires that

Iu2ux
=

1
4
(3k1 + 4k2), Iu2uxxx

= −1
4
β(k1 + k2).
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Therefore from (3.5) and (B.1){
3
2λ1 + A1

2 = 1
4 (3k1 + 4k2),

3
2 (1 − ν)λ1λ2 + A1

2 (1 − ν)λ2 + 1
2A4λ1 + 1

2A6 = − 1
4β(k1 + k2).

(3.9)

where A1 = −3/4, A3 = 23/12, A4 = 5/6,A6 = 3/4. Combining this with (3.8) we have

λ1 =
k1
2

+
189
20

, λ2 =
k1
6

+
179
60

, k2 =
69
5

, ν =
10k1 + 204
10k1 + 179

, (3.10)

where k1 ∈ R is arbitrarily. The coefficients of (u4)x and (u5)x must vanish for Eq. (1.6) to emerge, and
hence from (B.2) and (B.3)

I(u4)x =
3
8
λ3 +

1
8
A2 +

1
4
λ1A1 = 0,

I(u5)x =
1
10

(
−19λ0 − 3

4
λ2
1 +

49
8

λ1 +
A8

5
− 3

2
λ3 + 24λ3

1 − 51λ1λ3

)
= 0,

where A2 = 3/8 and A8 = 115/192. Then it gives

λ3 =
k1
4

+
23
5

and λ0 =
3
19

k3
1 +

13083
1520

k2
1 +

1189081
7600

k1 +
108125767

114000
. (3.11)

Also, for other terms, we require from (B.5) that

Iu3
x

= −1
4
βk1, Iuuxuxx

= −1
4
β(4k1 + 3k2).

With this choice, it in turn implies that{
λ3 − 3

2λ4 + 1
2A7 − λ2ν(3λ1 + A1) + A3λ1 = − 1

4βk1,

3λ3 − 3λ5 − 9(1 − ν)λ2λ1 + A1(1 − 3ν)λ2 + (A3 + 3A4)λ1 + 1
2A5 − 2λ2

1 = − 1
4β(4k1 + 3k2),

where A5 = 29/8, A7 = 23/16. Then we obtain

λ4 = −1
6
k2
1 − 671

120
k1 − 56327

1200
and λ5 = −1

6
k2
1 − 67

15
k1 − 30437

1200
. (3.12)

This way ν and λi (i = 1, . . . , 5) are obtained in terms of k2 = 69
5 and any k1.

Lastly, the coefficients of ε2μ2-order terms should satisfy that:

Iu2uxxxxx
= Iuuxuxxxx

= Iuuxxuxxx
= 0, Iu2

xuxxx
=

k1
4

β2, Iuxu2
xx

= k1
1
2
β2.

Since the coefficient of the term u2uxxxxx needs to be zero, from (B.6) it follows that

−A4

2
λ1β − A6

2
β − λ2λ3 +

4
3
λ2
1λ2 − 1

6
λ1λ5 = 0,

where β = 5
12 and λi (i = 1, 2, 3) only depend on k1. This way the parameter k1 should be a real root of

the following equation
2000k3

1 + 106200k2
1 + 1871550k1 + 10934031 = 0. (3.13)

And then k1 � −15.1765. Notice that since the determinant of the matrix in (B.7) is nonzero, we can
obtain λ7, λ8, λ9, λ10 for any parameters λ6 and λ11.

In summary, if we take the Kodama transformation to be

η = u + λ1εu
2 + λ2μuxx + εμ(λ4u

2
x + λ5uuxx) + ε2λ3u

3 + ε3λ0u
4 + μ2(λ6uxxxx)

+ ε2μ(λ7uu2
x + λ8u

2uxx) + εμ2(λ9uxuxxx + λ10uuxxxx + λ11u
2
xx),

(3.14)

where the parameters satisfy conditions (3.10)–(3.13) and λ6, λ11 can be any real number, then we arrive
at (1.6).
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4. Other Related Nonlinear Equations with Cubic Nonlinearity

Using the method as in Sect. 3, other shallow-water models can be derived when we choose suitable
parameters in the Kodama transformation. In particular, the CH-Novikov equation and a new cubic
nonlinear peakon equation will be derived in this section. Moreover, after certain rescaling, the mCH-
Novikov and Novikov equations can also be obtained.

The CH-Novikov equation

Consider the same form of Kodama transformation as before. Now we impose Iu2ux
= k2, Iu2uxxx

=

−1
4
βk2, recalling (3.5) and (B.1), that is,

{
3
2λ1 + A1

2 = k2
3
2 (1 − ν)λ1λ2 + A1

2 (1 − ν)λ2 + 1
2A4λ1 + 1

2A6 = − 1
4βk2,

(4.1)

where A1 = −3/4, A3 = 23/12, A4 = 5/6, A6 = 3/4. Together with (3.8), it follows that

λ1 =
189
20

, λ2 =
179
60

, k2 =
69
5

, ν =
204
179

.

Setting I(u4)x = I(u5)x = Iu3
x

= 0 and Iuuxuxx
= − 3

4k2β with β = 5
12 , and using (B.2), (B.3) and

(B.5), we know that

λ3 =
23
5

, λ0 =
108125767

114000
, λ4 = −56327

1200
, λ5 = −30437

1200
.

Then

η = u +
189
20

εu2 +
179
60

μuxx − εμ

(
56327
1200

u2
x +

30437
1200

uuxx

)
+

23
5

ε2u3 +
108125767

114000
ε3u4.

These choices give the so-called CH-Novikov equation which takes the form of

ut + ux − βμuxxt − 1
4
μuxxx +

3
2
εuux − εμ

1
2
β(2uxuxx + uuxxx) + k2ε

2u2ux

− 3
4
k2βε2μuuxuxx − 1

4
k2βε2μu2uxxx = 0 + O(ε5, μ2).

(4.2)

The mCH-Novikov and Novikov equations

Applying the scaling transformation

u → 2ε−1u, t → (βμ)− 1
2 t, x → (βμ)− 1

2 x,

to Eq. (1.6) leads to the equation

mt + ux − 3
5
uxxx + 2uxm + umx + k1((u2 − u2

x)m)x + k2(u2mx + 3uuxm) = 0. (4.3)

If we further scale t → δ−2t and u → δ−1u, then (4.3) takes the form of

δ−2mt + ux − 3
5
uxxx + δ−1(2uxm + umx) + k1δ

−2((u2 − u2
x)m)x + k2δ

−2(u2mx + 3uuxm) = 0.

Rewriting it as

mt + δ2ux − δ2
3
5
uxxx + δ(2uxm + umx) + k1((u2 − u2

x)m)x + k2(u2mx + 3uuxm) = 0 (4.4)

and taking δ → 0, then formally in the limit function u(t, x) satisfies the mCH-Novikov equation

mt + k1[(u2 − u2
x)m]x + k2(u2mx + 3uuxm) = 0. (4.5)



JMFM The Shallow-Water Models Page 13 of 31 49

Similarly, the Novikov equation can be obtained, viz.,

mt + k2(u2mx + 3uuxm) = 0. (4.6)

Indeed under a further scaling in time t 	→ k2t the above equation becomes exactly the Novikov equation
[40].

A cubic CH-type equation

Choose Iu2ux
= 3

4k3, Iu2uxxx
= − 1

8βk3, namely,{
3
2λ1 + A1

2 = 3
4k3,

3
2 (1 − ν)λ1λ2 + A1

2 (1 − ν)λ2 + 1
2A4λ1 + 1

2A6 = − 1
8k3β.

(4.7)

As a CH-type model, it should satisfy (3.8). Then we have

λ1 =
97
20

, λ2 =
29
20

, k3 =
46
5

, ν =
112
87

.

For other terms, we choose I(u4)x = I(u5)x = 0, Iu3
x

= − 1
8βk3, Iuuxuxx

= − 1
2βk3. It then gives that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

3
8λ3 + 1

8A2 + 1
4λ1A1 = 0,

−19λ0 − 3
4λ2

1 + 49
8 λ1 + A8

5 − 3
2λ3 + 24λ3

1 − 51λ1λ3 = 0
λ3 − 3

2λ4 + 1
2A7 − λ2ν(3λ1 + A1) + A3λ1 = − 1

8k3β,

3λ3 − 3λ5 − 9(1 − ν)λ2λ1 + A1(1 − 3ν)λ2 + (A3 + 3A4)λ1 + 1
2A5 − 2λ2

1 = − 1
2βk3,

(4.8)

where A2 = 3/8, A5 = 29/8, A7 = 23/16. Hence, we obtain

λ0 =
13067089
114000

, λ3 =
23
10

, λ4 = −10373
1200

, and λ5 =
1261
600

.

Then

η = u +
97
20

εu2 +
29
20

μuxx + εμ

(
1261
600

uuxx − 10373
1200

u2
x

)
+

23
10

ε2u3 +
13067089
114000

ε3u4.

It then follows that

mt + ux − 1
4
μuxxx +

1
2
ε(2uxm + umx) +

1
4
k3ε

2

(
(u2 − 1

4
βμ(u2)xx)u

)
x

= 0 + O(ε5, μ2). (4.9)

Applying the scaling transformation

u → 2ε−1u, t → (βμ)− 1
2 t, x → (βμ)− 1

2 x,

the equation becomes

mt + ux − 3
5
uxxx + (2uxm + umx) + k3

(
(u2 − 1

4
(u2)xx)u

)
x

= 0. (4.10)

5. Curvature Blow-Up

Having derived the model equations in Sects. 3 and 4, our attention is now turned to the blow-up analysis.
In particular, as explained in the Introduction, we will consider the Cauchy problem for the mCH-Novikov
Eq. (1.11), with k1, k2 ∈ R.

It can be shown that the following two functionals are conserved quantities for (1.11)

H1[u] =
∫
R

(
u2 + u2

x

)
dx, H2[u] =

∫
R

(
u4 + 2u2u2

x − 1
3
u4

x

)
dx. (5.1)
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The local well-posedness theory can be obtained following the standard argument of [27] with a slight
modification.

Theorem 5.1. Let u0 ∈ Hs with s > 5
2 . Then there exists a time T > 0 such that the Cauchy problem

(1.11) has a unique strong solution u ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1).

It is also shown in [8] that Eq. (1.11) posseses the single and multi-peakon solutions. Moreover the
single peakons are indeed orbitally stable in H1.

5.1. Blow-Up Criterion

Similar to the other CH-type equations, (1.11) can be reformulated into a nonlocal transport form.
Therefore from standard transport theory, a Beale–Kato–Majda type of blow-up criterion can be obtained.
A further refined analysis leads to the following lemma. The proof of this result follows a similar idea as
in [29], and hence we will omit it for the brevity of the presentation.

Lemma 5.1. Let u0 ∈ Hs with s > 5
2 and u be the corresponding solution to (1.11). Assume that T ∗

u0
> 0

is the maximum time of existence. Then

T ∗
u0

< ∞ ⇒
∫ T ∗

u0

0

‖k1mux(τ) + 2k2uux(τ)‖L∞ dτ = ∞. (5.2)

Remark 5.1. The blow-up criterion (5.2) implies that the lifespan T ∗
u0

does not depend on the regularity
index s of the initial data u0.

As usual, now we proceed to obtain an improved blow-up criterion which is in some sense “pointwise”.

Lemma 5.2. Suppose that u0 ∈ Hs(R) with s > 5
2 . Then the corresponding solution u to the Cauchy

problem (1.11) blows up in finite time T ∗ > 0 if and only if

lim inf
t→T ∗

inf
x∈R

{
k1m(t, x)ux(t, x) + 2k2u(t, x)ux(t, x)

}
= −∞. (5.3)

Proof. In view of Remark 5.1, it suffices to consider the case s = 3. Suppose that if k1mux + k2uux is
bounded from below on [0, T ∗

u0
) × R, i.e., there exists a constant K > 0 such that

(k1mux + 2k2uux) (t, x) ≥ −K on [0, T ∗
u0

) × R. (5.4)

Multiplying (1.11) by m and integrating over R, and then integration by parts, we have
1
2

d

dt

∫
R

m2 dx +
∫
R

(k1uxm + 2k2uux) m2 dx = 0. (5.5)

The initial condition implies that m0 ∈ Hs−2 ⊂ Lq for any 2 ≤ q ≤ ∞. From (5.5) we see that
1
2

d

dt

∫
R

m2 dx ≤ K

∫
R

m2 dx.

Applying Gronwall’s inequality yields that

‖m(t)‖2L2 ≤ e2Kt‖m0‖2L2 for t ∈ [0, T ∗
u0

). (5.6)

Moreover using integration by parts and Sobolev embedding,

‖m(t)‖2L2 =
∫
R

(
u2 + u2

xx + 2u2
x

)
dx ≥ ‖u‖2H2 ≥ ‖ux‖L∞ .

Similarly we have
1
2

d

dt

∫
R

m2
x dx + k1

∫
R

(
(u2 − u2

x)m
)
xx

mx dx + k2

∫
R

(
u2mx + 3uuxm

)
x

mx dx = 0.
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Integrating by parts the second term yields

k1

∫
R

[
(u2 − u2

x)m
]
xx

mx dx =
∫
R

(5k1uxm) m2
x dx −

∫
R

(
2
3
k1uxm

)
m2dx.

Integrating by parts the third term can be computed as

k2

∫
R

(
u2mx + 3uuxm

)
x

mx =
∫
R

(4k2uux) m2
x dx −

∫
R

(6k2uux) m2dx −
∫
R

12k2umxm2dx.

This way we have
1
2

d

dt

∫
R

m2
x dx +

∫
R

(5k1uxm + 4k2uux) m2
x dx −

∫
R

(
2
3
k1uxm + 6k2uux

)
m2dx −

∫
R

12k2umxm2dx = 0.

So together with (5.5), we have
1
2

d

dt

∫
R

(m2 + m2
x) dx = −

∫
R

(k1uxm + 2k2uux) m2 dx −
∫
R

(5k1uxm + 4k2uux) m2
x dx

+
∫
R

(
2
3
k1uxm + 6k2uux

)
m2dx +

∫
R

12k2umxm2dx

= −
∫
R

(k1uxm + 2k2uux)
(

1
3
m2 + 5m2

x

)
dx +

∫
R

k2uux

(
6m2

x − 14
3

m2

)
dx

+ 4
∫
R

k2uxm3dx

≤ (5K + 6|k2|‖uux‖L∞ + 4|k2|‖u‖H1‖m‖L2) ‖m‖2H1 .

Applying Gronwall’s inequality and (5.6) it follows that

‖m(t)‖2H1 ≤ exp
(
5Kt + e6|k2|‖u0‖H1‖m0‖L2 (e

Kt−1)/K
)

‖m0‖2H1

for t ∈ [0, T ∗
u0

). From Theorem 5.1 this implies that the solution does not blow up in finite time.
On the other hand, if

lim inf
t↑T ∗

u0

[
inf
x∈R

(k1m(t, x)ux(t, x) + 2k2u(t, x)ux(t, x))
]

= −∞,

then either ux or m blows up in finite time. The proof of Lemma 5.2 is hence completed. �

5.2. Dynamics Along the Characteristics

We are going to perform our blow-up analysis along the characteristics of Eq. (1.11). So let us define the
characteristics associated to the mCH-Novikov Eq. (1.11) as{

qt(t, x) =
[
k1
(
u2 − u2

x

)
+ k2u

2
]
(t, q(t, x)),

q(0, x) = x,
x ∈ R, t ∈ [0, T ). (5.7)

One can easily verify that

Proposition 5.1. Suppose u0 ∈ Hs(R) with s > 5
2 , and let T > 0 be the maximal existence time of the

strong solution u to the corresponding initial value problem (1.11). Then (5.7) has a unique solution
q ∈ C1([0, T ) × R,R) such that q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp
(

2
∫ t

0

(k1mux + k2uux) (s, q(s, x)) ds

)
> 0, ∀ (t, x) ∈ [0, T ) × R. (5.8)

Moreover, for all (t, x) ∈ [0, T ) × R it holds that

m(t, q(t, x)) = m0(x) exp
(

−
∫ t

0

(2k1mux + 3k2uux)(s, q(s, x)) ds

)
, (5.9)

where m0(x) = m(0, x).
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A direct consequence of Proposition 5.1 is that the momentum density satisfies the sign-persistence
property as in the following corollary. We want to point out that such a feature proved to be the key to
several qualitative results about the CH and DP equation. In that context, this invariance is related to
a geometric interpretation of these model equations (see the discussion in [9,22]), but we are not aware
of such an interpretation in the general case considered in this paper. Note that the geometric structure
is quite restrictive [17,34].

Corollary 5.2. Suppose u0 ∈ Hs(R) with s > 5
2 . Let T > 0 be the maximal existence time of the strong

solution u to the corresponding initial value problem (1.11). If m0(x) > 0 for all x ∈ R, then m(t, x) > 0
for all (t, x) ∈ [0, T ) × R.

Denote p(x) = 1
2e−|x| the fundamental solution of 1−∂2

x on R, and define the two convolution operators
p+, p− as

p+ ∗ f(x) =
e−x

2

∫ x

−∞
eyf(y)dy, p− ∗ f(x) =

ex

2

∫ ∞

x

e−yf(y)dy. (5.10)

Then we have the relation
p = p+ + p−, px = p− − p+.

Now we compute the dynamics of a few important quantities along the characteristics q(t, x0). Denote
′ the derivative ∂t +

(
k1(u2 − u2

x) + k2u
2
)
∂x along the characteristics, and

û(t) := u(t, q(t, x0)), ûx(t) := ux(t, q(t, x0)), m̂(t) := m(t, q(t, x0)), M̂(t) := (mux)(t, q(t, x0)).

Lemma 5.3. Let u0 ∈ Hs(R), s > 5/2. Then u(t, x), ux(t, x), m(t, x) and (mux)(t, x) satisfy the following
integro-differential equations

û′(t) = −2
3
k1ûx

3 +
(

k1
3

+
k2
2

)[
p+ ∗ (u − ux)3 − p− ∗ (u + ux)3

]
(t, q(t, x0)), (5.11)

ûx
′(t) = k1

(
1
3
û3 − ûûx

2

)
+

k2û

2
(û2 − ûx

2) (5.12)

−
(

k1
3

+
k2
2

)[
p+ ∗ (u − ux)3 + p− ∗ (u + ux)3

]
(t, q(t, x0)),

m̂′(t) = −(2k1m̂ûx + 3k2ûûx)m̂, (5.13)

M̂ ′(t) = −2k1M̂
2 +

m̂û

6

[
(2k1 + 3k2)û2 − (6k1 + 21k2)ûx

2
]

−
(

k1
3

+
k2
2

)
m̂
[
p+ ∗ (u − ux)3 + p− ∗ (u + ux)3

]
(t, q(t, x0)). (5.14)

Proof. The proof of (5.13) can be immediately obtained from the Eq. (1.11).
In view of (1.11), it follows that

ut = −k1p ∗ [(u2 − u2
x)m

]
x

− k2p ∗ (u2mx + 3uuxm
)
. (5.15)

The structure of the right-hand side of the above equation suggests that we may recall the results from
[6] and [7]. First, from [6, (3.1)] we know that

p ∗ [(u2 − u2
x)m

]
x

= (u2 − u2
x)ux +

2
3
u3

x − 1
3
[
p+ ∗ (u − ux)3 − p− ∗ (u + ux)3

]
.

From [7, (3.7)] we have

p ∗ (u2mx + 3uuxm
)

= u2ux − 1
2
[
p+ ∗ (u − ux)3 − p− ∗ (u + ux)3

]
.

Plugging the above two into (5.15) we obtain (5.11).
The proof of (5.12) can be proceeded the same way. Differentiating (5.15) we obtain

uxt = −k1p ∗ [(u2 − u2
x)m

]
xx

− k2p ∗ (u2mx + 3uuxm
)
x

. (5.16)
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From [6, (3.2)], it follows that

p ∗ [(u2 − u2
x)m

]
xx

= (u2 − u2
x)uxx +

(
1
3
u3 − uu2

x

)
− 1

3
[
p+ ∗ (u − ux)3 + p− ∗ (u + ux)3

]
.

From [7, (3.8)], we know

p ∗ (u2mx + 3uuxm
)
x

= u2uxx − u

2
(u2 − u2

x) − 1
2
[
p+ ∗ (u − ux)3 + p− ∗ (u + ux)3

]
.

Therefore (5.12) is obtained by combining the above two equations.
Finally (5.14) can be derived from (5.12) and (5.13). �

5.3. Choice of Data and Blow-Up: 2k1 + 3k2 �= 0

Note that this parameter regime is consistent with what appears in (1.6), where k1 � −15.2 and k2 = 13.8.
The blow-up criterion (5.3) together with the conservation law H1[u] indicates two possible scenarios

for the formation of singularity, namely the wave-breaking (|ux| → ∞) or curvature blow-up (|m| → ∞)
in finite time. Here in this section we seek data which lead to the latter one.

5.3.1. General Data. We start by considering a general momentum density m0 and look for the blow-
up data. In this case we make use of the conservation laws H1[u] and H2[u], which will be the key to
obtain the convolution estimates. Such a control of the nonlocal terms allows us to propagate certain
monotonicity property that can lead to a Riccati dynamics.

1
3
‖ux‖4L4 =

∫
R

(
u4 + 2u2u2

x

)
dx − H2[u0] ≤ 2‖u‖2L∞H1[u0] − H2[u0] ≤ H2

1 [u0] − H2[u0].

Therefore
‖ux‖4L4 ≤ 3

(
H2

1 [u0] − H2[u0]
)
. (5.17)

Therefore the convolution estimates follow as∣∣p± ∗ (u ∓ ux)3
∣∣ ≤ ‖p±‖L∞

∥∥(u ∓ ux)3
∥∥

L1 ≤ 2
(‖u‖3L3 + ‖ux‖3L3

)

≤
√

2H
3/2
1 [u0] + 2

√
3H1[u0](H2

1 [u0] − H2[u0]) =: K.
(5.18)

The blow-up result in this section is the following.

Theorem 5.3. Suppose k1 < 0 and − 2
3k1 < k2 < −2k1. Let u0 ∈ Hs(R) with s > 5/2. Assume that there

exists an x0 ∈ R and some 0 < δ < 1 such that

m0(x0) ≥ − 3k2
2k1(1 − δ)

√
H1[u0]

2
, u0(x0) > 0, u0,x(x0) ≥ 3

√
A1, and

u0(x0)u2
0,x(x0) ≥ − 2k1 + 3k2

3(2k1 + k2)
A2,

(5.19)

where

A1 := −2k1 + 3k2
2k1

K, A2 := 2K +
(

H1[u0]
2

)3/2

,

and K is given in (5.18). Then the solution u(t, x) blows up in finite time with an estimate of the blow-up
time T ∗ as

T ∗ ≤ − 1
2k1δm0(x0)u0,x(x0)

.

Remark 5.1. Note that clearly Theorem 5.3 applies to the case where k1 and k2 are obtained in Sect. 3
(and hence in Eq. (1.6)).
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Proof. Plugging (5.18) in (5.11) and (5.12) we obtain that

û′ ≥ −2
3
k1ûx

3 − 2k1 + 3k2
3

K,

ûx
′ ≥ −

(
k1 +

k2
2

)
ûûx

2 − 2k1 + 3k2
6

[
2K +

(
H1[u0]

2

)3/2
]

.

Hence we know that û is increasing when ûx
3 ≥ A1, and ûx is increasing when

−
(

k1 +
k2
2

)
ûûx

2 ≥ 2k1 + 3k2
6

A2.

From the assumption (5.19) we know that the above two conditions are satisfied initially. Hence a conti-
nuity argument yields that over the time of existence of solutions, û(t) and ûx(t) are both increasing. In
particular,

û(t) ≥ u0(x0) > 0, ûx(t) ≥ u0,x(x0) ≥ 3
√

A1 > 0. (5.20)
Recall that m̂ satisfies m̂′ = −ûxm̂(2k1m̂ + 3k2û). At the initial time we see from (5.19) that

2k1m̂(0) ≤ − 3k2
1 − δ

√
H1[u0]

2
≤ − 3k2

1 − δ
û(0) < 0,

and hence 2k1m̂(0) + 3k2û(0) < 0. Together with (5.20) we see that m̂(t) increases initially. Then a
continuity argument ensures that m̂ increases (and hence is positive) over some time interval [0, t∗] for
t∗ > 0. Therefore on [0, t∗]

2k1m̂(t) ≤ 2k1m̂(0) ≤ − 3k2
1 − δ

√
H1[u0]

2
≤ − 3k2

1 − δ
û(t),

leading to

2k1m̂(t) + 3k2û(t) ≤ 2k1δm̂(t) < 0 on [0, t∗].

Thus another application of the continuity argument yields that m̂ increases over the entire time of
existence, and the dynamics of m̂(t) gives

m̂′ = −ûxm̂(2k1m̂ + 3k2û) ≥ −2k1δûxm̂2 ≥ −2k1δu0,x(x0)m̂2.

Hence m̂(t) blows up to +∞ in finite time with an estimate on the blow-up time T ∗ as

T ∗ ≤ − 1
2k1δm0(x0)u0,x(x0)

.

Since ûx(t) ≥ u0,x(x0) > 0 and û(t) is bounded, we see that in fact

k1m̂(t)ûx(t) + 2k2û(t)ûx(t) → −∞, as t → T ∗.

Hence from Lemma 5.2 we see that the solution blows up in finite time, which completes the proof of the
theorem. �

Using similar techniques but with less restrictive assumption on the initial momentum m0 one can
prove the following result when k1k2 > 0.

Corollary 5.4. Suppose k1k2 > 0. Let u0 ∈ Hs(R) with s > 5/2. Assume that there exists an x0 ∈ R such
that

m0(x0) > 0, u0(x0) > 0, u0(x0)u2
0,x(x0) ≥ 2k1 + 3k2

3(2k1 + k2)
A2 and

u0,x(x0)
{≥ 3

√
B1, when k1, k2 < 0,

≤ − 3
√

B1, when k1, k2 > 0,

(5.21)

where
B1 :=

2k1 + 3k2
2k1

K
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and A2 and K are given in Theorem 5.3. Then the solution u(t, x) blows up in finite time with an estimate
of the blow-up time T ∗ as

T ∗ ≤ − 1
2k1m0(x0)u0,x(x0)

.

Proof. We will sketch the argument for the proof. For simplicity we only consider the case when k1, k2 < 0.
The other case can be dealt in the same way. The dynamics of û and ûx yield

û′ ≥ −2
3
k1ûx

3 +
2k1 + 3k2

3
K,

ûx
′ ≥ −

(
k1 +

k2
2

)
ûûx

2 +
2k1 + 3k2

6

[
2K +

(
H1[u0]

2

)3/2
]

.

Hence by a similar argument as in the proof of Theorem 5.3 we conclude that as (5.21) holds, û and ûx

are both increasing:

û(t) ≥ u0(x0) > 0, ûx(t) ≥ u0,x(x0) ≥ 3
√

B1 > 0. (5.22)

Plugging the above into the dynamics of m̂ and using (5.21) again indicates that m̂ increases (and hence
is positive) over the time of existence. Therefore

m̂′ = ûx(−2k1m̂
2 − 3k2m̂û) ≥ −2k1ûxm̂2 ≥ −2k1u0,x(x0)m̂2.

Hence m̂(t) blows up to +∞ in finite time with an estimate on the blow-up time T ∗ as

T ∗ ≤ − 1
2k1m0(x0)u0,x(x0)

,

which completes the proof of the corollary. �

5.3.2. Non-Sign-Changing Data. Next we will utilize the sign-persistence property, cf. Corollary 5.2, to
consider data with positive momentum m0 ≥ 0. From the identities

u(t, x) = p ∗ m(t, x), ux(t, x) = px ∗ m(t, x)

we have
u(t, x) ≥ 0, u ± ux = 2p± ∗ m ≥ 0. (5.23)

This allows us to control the convolution terms in Lemma 5.3, and we can obtain

Theorem 5.5. Suppose that k1 < 0, 2k1/3 < k2 < −2k1/9. Let u0 ∈ Hs(R) for s > 5/2 and m0 ≥ 0.
Assume that there exists some point x0 ∈ R such that m0(x0) > 0 and

u0,x(x0) ≥ u0(x0) · max

{√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

}
. (5.24)

Then the corresponding solution u(t, x) blows up in finite time with an estimate of the blow-up time T ∗

as

T ∗ ≤ − 1
2k1m0(x0)u0,x(x0)

.

Proof. From Corollary 5.2 we know that m(t, x) ≥ 0 and m̂ > 0. It then follows from (5.23) and Sobolev
embedding that √

H1[u]/2 ≥ u(t, x) ≥ |ux(t, x)| ≥ 0, û(t) > 0. (5.25)

Therefore ux does not blow up, and then Lemma 5.2 indicates that it suffices to consider the quantity
M(t, x) = (mux)(t, x).



49 Page 20 of 31 R. M. Chen et al. JMFM

From the condition of the theorem, (5.25), and (5.14) it holds that

M̂ ′ = −2k1M̂
2 +

m̂û

6

[
(2k1 + 3k2)û2 − (6k1 + 21k2)ûx

2
]

−
(

k1
3

+
k2
2

)
m̂
[
p+ ∗ (u − ux)3 + p− ∗ (u + ux)3

]
(t, q(t, x0))

≥ −2k1M̂
2 +

m̂û

6

[
(2k1 + 3k2)û2 − (6k1 + 21k2)ûx

2
]
.

(5.26)

Since û, m̂ > 0, it is now clear that in order to arrive at a Riccati-type inequality M̂ ′ � M̂2, one would
like to have (2k1 + 3k2) − (6k1 + 21k2)ûx

2
/û2 ≥ 0. From the assumptions on k1 and k2 we see that such

a condition can be written as,

ûx
2

û2
≥ 2k1 + 3k2

6k1 + 21k2
, (5.27)

which involves the competition between u and its derivative ux along the characteristics. In particular, a
finite-time blow-up of M̂ can be realized if the ration |ux/u| stays reasonably big along the characteristics.
A quick computation shows that

(
ûx

û

)′
= û2

[(
k1
3

+
k2
2

)
−
(

k1 +
k2
2

)(
ûx

û

)2

+
2k1
3

(
ûx

û

)4
]

− 2k1 + 3k2
6û2

[
(û + ûx)p+ ∗ (u − ux)3 + (û − ûx)p− ∗ (u + ux)3

]

≥ û2

[(
k1
3

+
k2
2

)
−
(

k1 +
k2
2

)(
ûx

û

)2

+
2k1
3

(
ûx

û

)4
]

=
2k1
3

û2

[(
ûx

û

)2

− 1

][(
ûx

û

)2

− 2k1 + 3k2
4k1

]
.

(5.28)

From (5.24), we have chosen the initial data so that
(

ûx

û

)
(0) ≥ max

{√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

}
.

Recall from (5.25) that
∣∣ux

u

∣∣ ≤ 1. The assumptions on k1 and k2 ensure that the right-hand side of the
above is less than 1. Therefore ûx

û increases initially, and a continuity argument implies that it decreases
for later time, and hence

(
ûx

û

)
(t) ≥

(
ûx

û

)
(0) ≥ max

{√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

}
.

In particular we have

ûx
2

û2
≥ 2k1 + 3k2

6k1 + 21k2
. (5.29)

Plugging this into (5.26) it yields that M̂ ′(t) ≥ −2k1M̂
2, and thus M̂(t) blows up in finite time with

an estimate of the blow-up time T ∗ as

T ∗ ≤ − 1

2k1M̂(0)
= − 1

2k1m0(x0)u0,x(x0)
,

completing the proof of the theorem. �
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Remark 5.2. Using a similar argument one can prove the finite time blow-up for data such that m0 ≤ 0,
m0(x0) < 0 and

u0,x(x0) ≤ u0(x0) · max

{√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

}
.

Recall from Lemma 5.2 that when m does not change sign, the true blow-up quantity is k1mux. In
the setting of Theorem 5.5 and Remark 5.2 where k1 > 0, we seek data which lead to mux → −∞. Thus
using a similar argument we can handle the case when k1 < 0, as indicated in the following corollary.

Corollary 5.6. Suppose that k1 > 0, −2k1/9 < k2 < 2k1/3. Let u0 ∈ Hs(R) for s > 5/2 and m0 ≥ 0.
Assume that there exists some point x0 ∈ R such that m0(x0) > 0 and

u0,x(x0) ≤ −u0(x0) · max

{√
2k1 + 3k2

4k1
,

√
2k1 + 3k2
6k1 + 21k2

}
. (5.30)

Then the corresponding solution u(t, x) blows up in finite time with an estimate of the blow-up time T ∗

as
T ∗ ≤ − 1

2k1m0(x0)u0,x(x0)
.

Proof. We still consider the dynamics of M̂ and look to have M̂ → −∞ in finite time.

M̂ ′ = −2k1M̂
2 +

m̂û

6

[
(2k1 + 3k2)û2 − (6k1 + 21k2)ûx

2
]

−
(

k1
3

+
k2
2

)
m̂
[
p+ ∗ (u − ux)3 + p− ∗ (u + ux)3

]
(t, q(t, x0))

≤ −2k1M̂
2 +

m̂û3

6

[
(2k1 + 3k2) − (6k1 + 21k2)

ûx
2

û2

]
.

(5.31)

Now the goal is to have (2k1 + 3k2)û2 − (6k1 + 21k2)ûx
2 ≤ 0, that is,

ûx
2

û2
≥ 2k1 + 3k2

6k1 + 21k2
, (5.32)

and this again leads to considering ûx/û. From (5.28) we have(
ûx

û

)′
=

û2 − ûx
2

û2

[(
k1
3

+
k2
2

)
û2 − 2k1

3
ûx

2

]

− 2k1 + 3k2
6û2

[
(û + ûx)p+ ∗ (u − ux)3 + (û − ûx)p− ∗ (u + ux)3

]

≤ 2k1
3

û2

[(
ûx

û

)2

− 1

][(
ûx

û

)2

− 2k1 + 3k2
4k1

]
.

(5.33)

Therefore we know that when (5.36) is satisfied, ûx/û decreases, and thus

ûx
2

û2
≥ max

{
2k1 + 3k2

4k1
,

2k1 + 3k2
6k1 + 21k2

}
.

This way we obtain the desired Riccati inequality for M̂

M̂ ′(t) ≤ −2k1M̂
2,

which implies that M̂(t) → −∞ as t → T ∗ where T ∗ ≤ − 1
2k1m0(x0)u0,x(x0)

. �

Remark 5.3. Note that when k2 = 0, Eq. (1.11) becomes the mCH equation. Condition (5.24) becomes
u0,x(x0) ≤ −u0(x0)/

√
2, which agrees with the one obtained in [6, Theorem 1.1].
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5.4. Choice of Data and Blow-Up: 2k1 + 3k2 = 0

In the previous section, we require that 2k1 + 3k2 �= 0. In fact when 2k1 + 3k2 = 0, the dynamics in
Lemma 5.3 can be simplified as

û′ = −2
3
k1ûx

3
,

ûx
′ = −

(
k1 +

k2
2

)
ûûx

2 = −2
3
k1ûûx

2
,

m̂′ = −(2k1m̂ûx + 3k2ûûx)m̂ = −2k1m̂ûx(m̂ − û),

M̂ ′ = −2k1M̂
2 +

4
3
k1ûûxM̂ = −2k1ûxM̂

(
m̂ − 2

3
û

)
.

(5.34)

In particular, the convolution terms all vanish and the dynamics is completely local. However, the dy-
namics of M̂ does not immediately lead to a Riccati type inequality. Instead, it involves the competition
between û and m̂.

5.4.1. The Case When k1 < 0. Note from (5.34) that when k1 < 0,

sign(û′) = sign(ûx), sign(ûx
′) = sign(û). (5.35)

Using this we first derive the following theorem which requires m to be non-sign-changing.

Theorem 5.7. Suppose that k1 < 0, 2k1 + 3k2 = 0. Let u0 ∈ Hs(R) for s > 5/2. Assume that
(a) m0 ≥ 0 and there exists some point x0 ∈ R such that

m0(x0) > 0, u0,x(x0) > 0, m0(x0) ≥ 4
3
u0(x0), or (5.36)

(b) m0 ≤ 0 and there exists some point x0 ∈ R such that

m0(x0) < 0, u0,x(x0) < 0, m0(x0) ≥ 4
3
u0(x0). (5.37)

Then the corresponding solution u(t, x) blows up in finite time with an estimate of the blow-up time T ∗

as
T ∗ ≤ − 1

k1m0(x0)u0,x(x0)
.

Proof. Because k1 < 0, the goal is to show that M̂ → +∞ in finite time.
(a) Since now m ≥ 0, m̂ > 0 and k1 < 0, we know from (5.35) that û > 0 and hence ûx

′
> 0. So

ûx(t) > 0 if ûx(0) > 0. Then the last equation in (5.34) suggests that in order to derive a Riccati type
inequality for M̂ , one would like to have m̂ − 2

3 û ≥ εm̂, for some ε > 0, that is,

m̂

û
≥ 2

3(1 − ε)
. (5.38)

Now we can check the dynamics of m̂/û.(
m̂

û

)′
= −2k1m̂ûx

û2

(
m̂û − û2 − 1

3
ûx

2

)
≥ −2k1m̂ûx

û2

(
m̂û − 4

3
û2

)
, (5.39)

where we have used |ux| ≤ u to obtain the last inequality.
Therefore m̂/û increases when m̂ ≥ 4

3 û. So when m̂(0) ≥ 4
3 û(0) we have

m̂

û
(t) ≥ m̂

û
(0) ≥ 4

3
,

indicating that we may take ε = 1
2 in (5.38). Thus from the last equation in (5.34) we have

M̂ ′ ≥ −k1M̂
2,
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leading to M̂(t) → +∞ as t → T ∗ where T ∗ satisfies

T ∗ ≤ − 1
k1m0(x0)u0,x(x0)

,

proving part (a).
(b) Similarly as in (a), we can deduce from (5.37) that

m̂(t) < 0, û(t) ≤ û(0) < 0, ûx(t) ≤ ûx(0) < 0. (5.40)

To obtain a Riccati type inequality for M̂ , it suffices to ask that m̂ − 2
3 û ≤ εm̂, for some ε > 0, which

leads to (5.38) again.
Following the dynamics of m̂/û and keeping track of the signs as in (5.40) it follows that (5.39) still

holds. Hence the rest of the argument goes the same way as in (a). �

5.4.2. The Case When k1 > 0. In this case it follows from (5.34) that

sign(û′) = −sign(ûx), sign(ûx
′) = −sign(û). (5.41)

The corresponding blow-up results are as follows.

Theorem 5.8. Suppose that k1 > 0, 2k1 + 3k2 = 0. Let u0 ∈ Hs(R) for s > 5/2. Assume that

(a) m0 ≥ 0 and there exists some point x0 ∈ R such that

m0(x0) > 0, u0,x(x0) < 0, m0(x0) ≥ 4
3
u0(x0), (5.42)

or
(b) m0 ≤ 0 and there exists some point x0 ∈ R such that

m0(x0) < 0, u0,x(x0) > 0, m0(x0) ≤ 4
3
u0(x0), (5.43)

Then the corresponding solution u(t, x) blows up in finite time with an estimate of the blow-up time T ∗

as

T ∗ ≤ − 1
k1m0(x0)u0,x(x0)

. (5.44)

Proof. Tracking the dynamics of M̂ and using (5.41) we see that to obtain a Riccati type inequality for
M̂ it suffices to have (5.38) for some ε > 0, for both cases (a) and (b). Thus computing (m̂/û)′ and using
that |ux| ≤ u we get

(
m̂

û

)′
= −2k1m̂ûx

û2

(
m̂û − û2 − 1

3
ûx

2

)
≥ −2k1m̂ûx

û2

(
m̂û − 4

3
û2

)
,

which implies that

m̂

û
increases if

m̂

û
≥ 4

3
. (5.45)

This in turn leads to M̂ ′ ≤ −k1M̂
2 and hence the blow-up of M̂ , with an estimate of the blow-up time

as (5.44).
Finally the theorem is proved by realizing that (5.45) is satisfied if (5.42) or (5.43) holds. �
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Appendix A. Computation for the derivation of the η equation

In this section we provide the details in deriving (2.9). Recall the asymptotic expansion of (2.3) at orders
O(εiμj) in Sect. 2 for i + 2j ≤ 4. For the O(ε3μ1)-order approximation when 0 < z < 1, the following
system is obtained ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−p31,ξ = −u31,ξ + u21,τ + (u00u21 + u10u11 + u20u01)ξ

+w00u21,z + w10u11,z,

−p31,z = −w20,ξ + w10,τ + u00w10,ξ + u10w00,ξ + (w00w10)z,

u31,ξ + w31,z = 0,

u31,z − w20,ξ = 0.

(A.1)

The boundary condition on z = 0 is w31 = 0, and on z = 1, the conditions read
⎧⎪⎨
⎪⎩

η31 = p31 + η21p00,z + η00p21,z + η11p10,z + η10p11,z + η20p01,z + η01p20,z + 1
2η2

00p11,zz,

w31 + η21w00,z + η00w21,z + η11w10,z + η10w11,z + η20w01,z + η01w20,z − η21,τ + η2
00
2 w11,zz

= −η31,ξ + u21η00,ξ + u00η21,ξ + u20η01,ξ + u01η20,ξ + u10η11,ξ + u11η10,ξ + η00η00,ξu11,z.

Next, we plug wi0 = −zηi0,ξ(i = 0, 1, 2) which can easily be obtained from [30] into the second equation
in (A.1). It takes the form of

p31,z = − zu20,ξξ + zu10,ξτ + zu00u10,ξξ + zu10η00,ξξ − (w00w10)z.

Taking the ξ derivative of the above and integrating in z on [1, z], we know

p31,ξ =
∫ z

1

p31,z′ξdz′ + p31,ξ|z=1

=
z2 − 1

2
(− u20,ξξξ + u10,ξξτ + (u00u10,ξξ + u10η00,ξξ)ξ

)
+ (w00w10)ξ|z=1

− (w00w10)ξ + η31,ξ +
(
η10η00,ξξ + η00η10,ξξ + 2η00η

2
00,ξ +

1
2
η2
00η00,ξξ

)
ξ
.

(A.2)

On the other hand, we have u21,z = w10,ξ and u11,z = w00,ξ from [30]. Then the first equation in (A.1)
becomes

−p31,ξ = − u31,ξ + u21,τ + (u00u21 + u10u11 + u20u01)ξ + (w00w10)ξ. (A.3)
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Combining (A.2) with (A.3), it leads to

0 = − u31,ξ + u21,τ + (u00u21 + u10u11 + u20u01)ξ + η31,ξ + (w00w10)ξ|z=1

+
(
η10η00,ξξ + η00η10,ξξ + 2η00η

2
00,ξ +

1
2
η2
00η00,ξξ

)
ξ

+
z2 − 1

2
(− u20,ξξξ + u10,ξξτ + (u00u10,ξξ + u10η00,ξξ)ξ

)
.

(A.4)

Now we will simplify Eq. (A.4). Because the fourth equation in (A.1) gives that

u31,ξ = −z2

2
u20,ξξξ + ∂ξΦ31(τ, ξ).

for some Φ31(τ, ξ) independent of z, the third equation in (A.1) and the boundary condition on {z = 0}
for w31 yield that

w31 = w31|z=0 +
∫ z

0

w31,z′ dz′ = −
∫ z

0

u31,ξ dz′ =
z3

6
u20,ξξξ − z∂ξΦ31(τ, ξ).

Hence, combining with the boundary condition for w31 on {z = 1}, we have

1
6
u20,ξξξ − ∂ξΦ31(τ, ξ) = −η31,ξ + η21,τ + H4,ξ|z=1 − 1

2
(η2

00η00,ξξ)ξ,

where H4 := u00η21 + u21η00 + u20η01 + u01η20 + u11η10 + u10η11. Therefore Φ31(τ, ξ) satisfies

∂ξΦ31(τ, ξ) = η31,ξ − η21,τ +
1
6
u20,ξξξ − H4,ξ|z=1 +

1
2
(η2

00η00,ξξ)ξ.

This in turn implies that

u31,ξ = η31,ξ − η21,τ −
(

z2

2
− 1

6

)
u20,ξξξ − H4,ξ|z=1 +

1
2
(η2

00η00,ξξ)ξ.

It then follows from (A.4) that

0 = 2η21,τ + (u20η01 + η00η21 + u10η11)ξ − 1
2
(u10η00η01)ξ + (η00η10,ξξ)ξ − 1

3
(η00u10,ξξ)ξ

+
5
6
(η10η00,ξξ) + H4,ξ|z=1 −

(
u00

∫
η11,τ dξ

)
ξ

− (u00H2|z=1)ξ −
∫

η11,ττ dξ − H2,τ |z=1

− 1
3
u10,ξξτ +

1
3
u20,ξξξ + (η00,ξη10,ξ)ξ +

1
24

(η2
00η00,ξξ)ξ +

3
2
(η00η2

00,ξ)ξ,

(A.5)

where H2 := u00η11 + u11η00 + u10η01 + u01η10.
From [30], it is easy to see that

−2
(

η00

∫
η11,τ dξ

)
ξ

= 3(η2
00η11 + η00η10η01)ξ − 3

4
(η3

00η01)ξ +
1
3
(η00η10,ξξ)ξ +

13
24

(η00η2
00,ξ)ξ +

5
6
(η2

00η00,ξξ)ξ.

(A.6)

and ∫
η11,ττ dξ + H2,τ |z=1

=
3
4
(η3

00η01)ξ − 3
4
(
η2
00η11

)
ξ
− 1

12
η00η10,ξξξ − 1

12
η10η00,ξξξ − 1

6
η10,ξξτ − 3

2
(η00η10η01)ξ

+
13
16

(η2
00,ξη00)ξ +

53
48

(η2
00η00,ξξ)ξ − 3

8
η2
00η00,ξξξ.

(A.7)
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To obtain an equation for η only, we substitute u10, u01, u20, u21 and (A.6), (A.7) into (A.5) to get
that

0 = 2η21,τ + 3(η00η21 + η01η20 + η10η11)ξ +
1
3
η20,ξξξ − 3

4
(η2

00η11 + 2η01η10η00)ξ

+
3
8
(η3

00η01)ξ +
5
6
(η10η00,ξξξ + η00η10,ξξξ) +

23
12

(η00,ξη10,ξξ + η00,ξξη10,ξ)

+
21
16

(η3
00,ξ) − 5

16
(η00η00,ξη00,ξξ) − 3

4
(η2

00η00,ξξξ).

(A.8)

The asymptotic expansion introduced before shows

η := η00 + εη10 + ε2η20 + ε3η30 + μη01 + εμη11 + ε2μη21 + O(ε4, μ2).

In view of [30], the ηij equations are given by

2η00,τ + 3η00η00,ξ = 0,

2η01,τ + 3(η00η01)ξ +
1
3
η00,ξξξ = 0,

2η10,τ + 3(η00η10)ξ − 1
4
(η3

00)ξ = 0,

2η20,τ + 3(η00η20 +
3
2
η2
10)ξ − 3

4
(η2

00η10)ξ +
3
32

(η4
00)ξ = 0

2η30,τ + 3(η00η30 + η10η20)ξ − 3
4
(η2

00η20 + η00η
2
10)ξ +

3
8
(η3

00η10)ξ +
23
192

(η5
00)ξ = 0,

2η11,τ + 3(η00η11 + η10η01)ξ +
1
3
η10,ξξξ − 3

4
(η2

00η01)ξ +
23
24

(η2
00,ξ)ξ +

5
6
(η00η00,ξξξ) = 0,

and hence (2.9) is obtained.

Appendix B. Computation of the higher order terms in the u equation

In this section we provide the detailed computation for the asymptotic expansion of the surface Eq. (2.11)
when substituting the Kodama transformation (3.2). In Sect. 3 we already computed the coefficients in
lower order terms. In the following we continue to proceed to the higher order terms.
Step 4. We now consider O3(εμ) term. Choose C = λ4u

2
x + λ5uuxx. From (3.6), the expression for ut is

given by

ut = −ux − 3
2
εuux − 1

2
(O0(μ) + O0(εμ)) + λ1uεO0(μ) + O(ε2μ, μ2, ε2).

This operation produces O3(εμ) of the form

εμ(Cx + Ct) − λ1εμu(2λ2(uxxx + uxxt))

= − 3λ4ε
2μux(uux)x − 3

2
λ5ε

2μuuxuxx −
(

3
2
λ5 − 3λ1λ2

)
ε2μu(uux)xx

− λ4εμux(O0(μ))x − λ5εμuxx
1
2
O0(μ) −

(
1
2
λ5 − λ1λ2

)
εμuO0(μ)xx

− λ4εμux

(
O0(εμ) + 2λ1uεO0(μ)

)
x

− λ5

2
εμuxxO0(εμ) + λ5λ1uuxxε2μO0(μ)

−
(

1
2
λ5 − λ1λ2

)
εμuO0(εμ)xx + (λ5 − 2λ1λ2)λ1ε

2μu(uO0(μ))xx.

The εμ-order term turns out to be

εμ

[(
3
2
λ2 +

1
2
A4 − 3

2
νλ2

)
uuxxx +

(
λ1 +

3
2
λ2 +

1
2
A3 − 9

2
νλ2

)
uxuxx

]
.
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Denote the coefficients of uuxxx and uxuxx by{
Iuuxxx

:= 3
2λ2 + 1

2A4 − 3
2νλ2,

Iuxuxx
:= λ1 + 3

2λ2 + 1
2A3 − 9

2νλ2.
(B.1)

The terms in asymptotic order are

O4(μ2) :=O3(μ2), O4(ε3) := O3(ε3), O4(ε4) := O3(ε4),

O4(ε2μ) :=O3(ε2μ) − 3λ4ε
2μux(uux)x − 3

2
λ5ε

2μuuxuxx −
(

3
2
λ5 − 3λ1λ2

)
ε2μu(uux)xx,

O4(εμ2) :=O3(εμ2) − λ4εμux(O0(μ))x − λ5εμuxx
1
2
O0(μ) −

(
1
2
λ5 − λ1λ2

)
εμu(O0(μ))xx,

O4(ε2μ2) :=O3(ε2μ2) − λ4εμux(O0(εμ) + 2λ1εuO0(μ))x − λ5

2
εμuxxO0(εμ) + λ5λ1ε

2μuuxxO0(μ)

−
(

1
2
λ5 − λ1λ2

)
εμu(O0(εμ))xx + (λ5 − 2λ1λ2)λ1ε

2μu(uO0(μ))xx.

Step 5 . Next we consider ε3-order which has the form

O4(ε3) =
1
2
O0(ε3) − λ1εuO0(ε2) − (6λ3 − 8λ2

1)λ1ε
3u2(uux + uut) −

(
9
2
λ3 − 6λ2

1

)
ε3u3ux

=
(

3
8
λ3 +

1
8
A2 +

1
4
λ1A1

)
ε3(u4)x + 2λ0ε

3
(
(u4)x + (u4)t

)
,

where we have replaced ut by −ux − 3
2εuux. The coefficient is denoted by

I(u4)x :=
3
8
λ3 +

1
8
A2 +

1
4
λ1A1. (B.2)

Also, at ε4-order we have

O5(ε4) :=
1
2
O0(ε4) − λ1εuO0(ε3) −

(
3
2
λ3 − 2λ2

1

)
ε2u2O0(ε2)−12λ0ε

4u4ux.

Since

O0(ε4) = ε4
(

λ0 + λ1 + A1λ
2
1 + A2λ1 +

A8

5
+ A1λ3

)
(u5)x,

we can simplify O5 as

O5(ε4) =
1
2
O0(ε4) − λ1εuO0(ε3) −

(
3
2
λ3 − 2λ2

1

)
ε2u2O0(ε2)−12λ0ε

4u4ux

=
1
2
(− 19λ0 + 5λ1 + 5A1λ

2
1 + 5A2λ1 + A8 + 5A1λ3

)
ε4u4ux

− λ1ε
4
(
12λ3 + 6λ2

1 + 4A1λ1 + A2

)
u4ux −

(
3
2
λ3 − 2λ2

1

)(
9λ1 + A1

)
u4ux

= ε4
1
10

(
− 19λ0 − 3

4
λ2
1 +

49
8

λ1 +
A8

5
− 3

2
λ3 + 24λ3

1 − 51λ1λ3

)
(u5)x.

Then

I(u5)x =
1
10

(
−19λ0 − 3

4
λ2
1 +

49
8

λ1 +
A8

5
− 3

2
λ3 + 24λ3

1 − 51λ1λ3

)
, (B.3)

and the terms which involve μ remain the same.
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Step 6 . Finally, we consider the ε2μ-order which has the form

O4(ε2μ) =
1
2
O0(ε2μ) − λ1εuO0(εμ) − u2

(
3
2
λ3 − 2λ2

1

)
ε2O0(μ) + λ2νμ(Fε2)xx

− 3λ4ε
2μux(uux)x − 3

2
λ5ε

2μuuxuxx −
(

3
2
λ5 − 3λ1λ2

)
ε2μu(uux)xx.

We choose G = λ7uu2
x + λ8u

2uxx to keep the scaling in the equation. From (3.6), the expression for ut is

given by ut = −ux − λ2μ(uxxx + uxxt) − 1
6
μuxxx. We eliminate ut by (3.6) itself, namely

ut = −ux − 1
6
μuxxx + O(εμ). (B.4)

Thereby, there appears the relation

ε2μ(Gx + Gt) = −1
6
λ7ε

2μ2u2
xuxxx − 1

3
λ7ε

2μ2uuxuxxxx − 1
6
λ8ε

2μ2u2uxxxxx − 1
3
λ8ε

2μ2uuxxuxxx.

Hence, 1
2O0(ε2μ) takes the form

1
2
O0(ε2μ) =

1
6
ε2μλ3(u3)xxx +

3
2
ε2μλ4(uu2

x)x +
3
2
ε2μλ5(u2uxx)x +

3
2
λ2λ1ε

2μ(u2uxx)x

+
1
2
ε2μλ2A1(u2uxx)x + ε2μλ1A3(uu2

x)x +
1
2
A4λ1ε

2μu2uxxx +
1
2
ε2μλ1A4u(u2)xxx

+
1
2
A5ε

2μuuxuxx +
1
2
A6ε

2μu2uxxx +
1
2
A7ε

2μu3
x − 1

6
λ7ε

2μ2u2
xuxxx

− 1
3
λ7ε

2μ2uuxuxxxx − 1
6
λ8ε

2μ2u2uxxxxx − 1
3
λ8ε

2μ2uuxxuxxx.

We now deal with −λ1uεO0(εμ). By definition C = λ4u
2
x + λ5uuxx and (B.4), it follows that

−2λ1ε
2μu(Cx + Ct) = −ε2μ2

(
−1

3
λ1λ4uuxuxxxx − 1

6
λ1λ5uuxxuxxx − 1

6
λ1λ5u

2uxxxxx

)
.

Then we know

−λ1uεO0(εμ) = − λ1ε
2μ

[(
6
3
λ1 + 3λ2 + A3

)
uuxuxx +

(
2
3
λ1 + 3λ2 + A4

)
u2uxxx

]

+ ε2μ2

(
1
3
λ1λ4uuxuxxxx +

1
6
λ1λ5uuxxuxxx +

1
6
λ1λ5u

2uxxxxx

)
.

Similarly, we have

−
(

3
2
λ3 − 2λ2

1

)
ε2u2O0(μ) = −

(
1
2
λ3 − 2

3
λ2
1

)
ε2μu2uxxx − λ2

(
1
2
λ3 − 2

3
λ2
1

)
ε2μ2u2uxxxxx,

and λ2νμ(Fε2)xx = −λ2νε2μ( 12λ1 + A1
6 )(u3)xxx.
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Putting the above together, we have

O5(ε2μ) :=
1
6
ε2μλ3(u3)xxx +

3
2
ε2μλ4(uu2

x)x +
3
2
ε2μλ5(u2uxx)x +

3
2
λ2λ1ε

2μ(u2uxx)x

+
1
2
ε2μλ2A1(u2uxx)x + ε2μλ1A3(uu2

x)x +
1
2
A4λ1ε

2μu2uxxx +
1
2
ε2μλ1A4u(u2)xxx

+
1
2
A5ε

2μuuxuxx +
1
2
A6ε

2μu2uxxx +
1
2
A7ε

2μu3
x − λ1ε

2μ(
6
3
λ1 + 3λ2 + A3)uuxuxx

− λ1ε
2μ

(
2
3
λ1 + 3λ2 + A4

)
u2uxxx −

(
1
2
λ3 − 2

3
λ2
1

)
ε2μu2uxxx

− λ2νε2μ

(
1
2
λ1 +

A1

6

)
(u3)xxx

− 3λ4ε
2μux(uux)x − 3

2
λ5ε

2μuuxuxx −
(

3
2
λ5 − 3λ1λ2

)
ε2μu(uux)xx.

More precisely, the coefficient of these terms are

Iu2uxxx
:=

3
2
(1 − ν)λ1λ2 +

A1

2
(1 − ν)λ2 +

1
2
A4λ1 +

1
2
A6,

Iuuxuxx
:= 3λ3 − 3λ5 − 9(1 − ν)λ2λ1 + A1(1 − 3ν)λ2 + (A3 + 3A4)λ1 +

1
2
A5 − 2λ2

1,

Iu3
x

:=
1
2
A7 + λ3 − λ2ν(3λ1 + A1) − 3

2
λ4 + A3λ1.

(B.5)

In the asymptotic order, we have

O5(μ2) :=
1
2
O0(μ2) + λ2νμ(Fμ)xx,

O5(εμ2) :=
1
2
O0(εμ2) − λ1εuO0(μ2) + λ2νμ(Fεμ)xx

− λ4εμux(O0(μ))x − λ5εμuxx
1
2
O0(μ) −

(
1
2
λ5 − λ1λ2

)
εμuO0(μ)xx,

O5(ε2μ2) :=
1
2
O0(ε2μ2) − λ1εuO0(εμ2) −

(
3
2
λ3 − 2λ2

1

)
ε2u2(O0(μ2) + λ2νμ(Fε2μ)xx

− λ4εμux(O0(εμ) + 2λ1uεO0(μ))x − λ5

2
εμuxxO0(εμ) + λ5λ1uuxxε2μO0(μ)

−
(

1
2
λ5 − λ1λ2

)
εμu(O0(εμ))xx + (λ5 − 2λ1λ2)λ1ε

2μu(uO0(μ))xx

+ ε2μ2λ1

(
1
3
λ4uuxuxxxx +

1
6
λ5uuxxuxxx +

1
6
λ5u

2uxxxxx

)
− λ2

(
1
2
λ3 − 2

3
λ2
1

)
ε2μ2u2uxxxxx

− 1
6
λ7ε

2μ2u2
xuxxx − 1

3
λ7ε

2μ2uuxuxxxx − 1
6
λ8ε

2μ2u2uxxxxx − 1
3
ε2μ2λ8uuxxuxxx.

This procedure can be continued successively, and finally the coefficients of the terms at the order of
ε2μ2-order are obtained as

Iu2uxxxxx
:= C1, Iuuxuxxxx

:= λ8 − 6λ10 − 4A1λ6 + C2,

Iuuxxuxxx
:= λ7 + λ8 − 10A1λ6 − 15λ10 + C3,

Iu2
xuxxx

:= λ7 + λ8 − 10A1λ6 − 30λ1λ6 − 6λ9 + C4,

Iuxu2
xx

:= 2λ7 + λ8 − 15A1λ6 − 45λ1λ6 − 9
2
λ9 − 15

2
λ11 + C5,

(B.6)
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where Ci(i = 1 . . . 5) are constants depending on λ1, . . . , λ5 and ν, and satisfy the following:⎛
⎜⎜⎝

0 1 0 −6
1 1 0 −15
1 1 −6 0
2 1 − 9

2 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

λ7

λ8

λ9

λ10

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Iuuxuxxxx
− C2 + 4A1λ6

Iuuxxuxxx
− C3 + 10A1λ6

Iu2
xuxxx

− C4 + (30λ1 + 10A1)λ6

Iuxu2
xx

− C5 + 15
2 λ11 + (45λ1 + 15A1)λ6

⎞
⎟⎟⎠ . (B.7)

Note that the 4 × 4 matrix

⎛
⎜⎜⎝

0 1 0 −6
1 1 0 −15
1 1 −6 0
2 1 − 9

2 0

⎞
⎟⎟⎠ is invertible. Thus, for any choice of parameters and any

choice of λ6, λ11, there exists unique tuple λ7, λ8, λ9, λ10 solve the above equation.
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