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Abstract. In the present study several integrable equations with cubic nonlinearity are derived as asymptotic models from
the classical shallow water theory. The starting point in our derivation is the Euler equation for an incompressible fluid with
the simplest bottom and surface conditions. The approximate equations are obtained by working under suitable scalings
that allow for the modeling of water waves of relatively large amplitude, truncating the asymptotic expansions of the
unknowns to appropriate order, and introducing a special Kodama transformation. The so obtained equations exhibit cubic
order nonlinearities and can be related to the following integrable systems: the Novikov equation, the modified Camassa—
Holm equation, and a Camassa—Holm type equation with cubic nonlinearity. Analytically, the formation of singularities of
the solution to some of these quasi-linear model equations is also investigated, with an emphasis on the understanding of
the effect of the nonlocal higher order nonlinearities. In particular it is shown that one of the models accommodates the
phenomenon of curvature blow-up.
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1. Introduction

The theory of water waves embodies the Euler equations of fluid mechanics along with the crucial behavior
of boundaries. Due to the complexity and the difficulties arising in the theoretical and numerical study
for the full system, simpler model equations have been proposed as effective approximations in various
specific physical regimes.

The present paper is along the same line of study. In particular we consider the shallow-water (or
long-wave) approximation to the irrotational gravity water wave system. Such approximation is usually
carried out formally from the governing equations via double asymptotic expansions in the following two
fundamental dimensionless positive parameters (see, for example, [16]):

2

the amplitude parameter ¢ := hi’ and the shallowness parameter p := )\—g, (L.1)
0

where a, hg and A\ are the typical amplitude of the wave, the depth of the water, and the wavelength,
respectively. The shallow-water/long-wave regime then corresponds to assuming p to be small: p < 1.
Further relating € with p then allows one to derive model equations in particular asymptotic regimes.

Arguably, one of the most famous and simplest long-wave asymptotic models which accommodates
genuine nonlinear behavior is the Korteweg—de Vries (KdV) equation [35]. The nonlinear effect in the
KdV modeling is reflected in that the wave amplitude is assumed to be small but finite: ¢ = O(u). Such
a scaling is later implemented to generate a family of asymptotically equivalent equations, namely the
BBM-type equations [1]. Both the KdV equation and the BBM class posses smooth soliton solutions and
global solutions for very general initial data, in particular all physically relevant waves; see, for example,
[12,44].

) Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-022-00685-4&domain=pdf

49 Page 2 of 31 R. M. Chen et al. JMFM

However some other fundamental nonlinear phenomena, such as wave-breaking and surface singulari-
ties, are prevented from the KdV model, due to its strong dispersive effect that regularizes the progres-
sively nonlinear steepening. This promotes the need to seek model equations that incorporate stronger
nonlinear effects to better describe singular wave phenomena for larger amplitude waves.

A natural approach is to consider regimes that bring higher-order nonlinear terms, characterized by
larger values of ¢, for instance, the so-called Camassa—Holm (CH) scaling for shallow water waves of
moderate amplitude [18]

p<l, e=0(u?). (1.2)
With this scaling, a two-parameter family of approximation equations are derived [18] including the
well-known Camassa—Holm (CH) equation

my + umyg + 2um =0, m=u— Uy,
and the Degasperis—Procesi (DP) equation
my +umqg +3u,m =0, m=1u— Ugy,

where u is the horizontal component of the velocity field at some specific depth, and m is the so-called
momentum density. The CH equation was first considered in [26] as a bi-Hamiltonian equation, and
the DP equation was first derived in [20] in the study of integrable equation. The CH equation was
later proposed in [5,18,32] in the context of water waves. Similar to the KdV equation, the CH and DP
equations are both completely integrable. In contrast to KdV, on the other hand, both CH and DP, and
their multi-component generalizations (for example, [19,31,41]) accommodate solutions exhibiting certain
degree of singularities, namely the breaking waves [7,13,14,23,39] and peaking waves [5,20,36,37]. Note
that for the full water wave problem, the traveling wave solutions of greatest height have a peak at their
crest; see [10,11,15].

The discovery of the CH and DP equations motivates the search for various generalization models
with interesting properties and applications. Since these two equations are both quadratic nonlinear, one
may wonder as the nonlinearity becomes more pronounced, and hence the hyperbolic property tends to
be more dominant, what kind of singularity can be triggered. In the context of asymptotic modeling, this
amounts to considering larger amplitude waves.

For the CH and DP equations, the formation of singularities in the solution that develops from a
localized and smooth initial data is in the form of blow-up of the slope, while the solution remains bounded
[9,14,39]. One of the motivations of this paper comes from the recent works on a new type of singularity
formation for cubic nonlinear models, namely the curvature blow-up, i.e. the second derivative uy, of
solution becomes unbounded in finite time while the solution u and its gradient u, remain bounded.
Examples can be found in the modified Camassa—Holm (mCH) equation [6,25,28,29,41,42] and the
generalized modified Camassa—Holm (gmCH) equation [7,24,41]. Indeed, these equations inherit certain
energy conservation and momentum persistence property that allow the control of v and w,. Yet the
presence of the higher order nonlocal nonlinearity induces the blow-up of the higher derivative. On
the other hand, such CH-type equations with cubic nonlinearity (also including the Novikov equation
[40]) were only studied in the framework of integrable systems theory and, to the best of the authors’
knowledge, there were limited attempts of the relations of these equations to the physically relevant
models in the context of water waves. To this end, we would like to perform a modeling under a different
scaling from (1.2), with the purpose of deriving cubic nonlinear equations (of CH-type) that may host
the aforementioned curvature blow-up phenomenon.

It is worthwhile pointing out that most of the higher order nonlinear descendants of the CH equation
(like the mCH, gmCH, Novikov, etc.) are derived in the context of integrable systems. Another goal of
the present study is to propose a hydrodynamic approach to derive some of those cubic nonlinear models,
including the mCH and Novikov equations.

Roughly speaking, since we expect the cubic nonlinearity to appear at the order of O(g2y), leaving
the O(1?) terms as higher order ones, this naturally leads to a scaling requirement & = o(u!/?). Therefore
we impose
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01, EZO(M%), (1.3)
which also corresponds to a shallow-water regime for waves of moderate amplitude but larger than the
one in the CH scaling regime (1.2). Proceeding analogously as for the CH equation, we first derive an
equation for the scaled surface elevation 7

1 3 3 23 5
2(Me + M) + 5 MNzzz + €M — *52772771 + *53773%5 tep | 75NeNex + ZNMMaza
3 4 8 12 6 14
115 23 29 3 )
+ 05 1M 70 (16773 + g Ml + 4n2nm> =0+0(, p?).
A similar equation for the surface was also derived in [43] under a larger amplitude scaling & = O(u'/4).
By relating the horizontal velocity u with 7, a cubic nonlinear equation for u is obtained.
Here we adapt the idea of [2] to expand 7 in terms of u together with its derivatives using the so-called

Kodama transformation [33]. In particular, the expansion takes the following form
ne~u+eA+ puB 4 epC + p?D + eFE + 3K + e2uG + ey H (1.5)

where

A= 1%, Bi= g, E:=Xu®, K=Xu', C:=M\u?+ suug,,

D = )\Guwwwaza G = A7uui + A8u2uww7 H = )\Quwuaxﬂz + Alouuma:xz + Alluiw-
This type of transformation was first introduced by Kodama in [33], and was used by Dullin et al.
[21] to derive a shallow water wave model under the influence of surface tension. A further splitting
of uz.+ together with an equation for u; generates one more degree of freedom v, cf. (3.6)—(3.7). Then
the expected specific form of the equations imposes exactly the same number of constraints on these

parameters, leading to exact parameter values in the resulting model equations. In particular, this allows
us to obtain the following types of equations.

Case 1. The CH-mCH-Novikov equation

I € kie? 9 koe?
me + Uy — o Yoas + 5(2uxm +umy) + T(( — Bpui)m), + T(u My + 3uu,m)
=0+0(e” 1),
5 69 .

where m = u — Suuyy, B = 12’ ko = = and k1 >~ —15.1765 is the only real root of

2000k3 + 106200k + 1871550k, + 10934031 = 0. (1.6)
Case 2. The CH-Novikov equation

k 2

me + Uy — %uwww + g(Quwm + umy) + ZTE(uzmw + 3uu,m) = 0+ O(e®, p?). (1.7)

Case 3. A cubic CH-type equation

4 2 4 4

4
where k3 = 36 (1.8)

kse? 1
me + Uy — Huxm + i(2u$m +umg) + e ((u2 — /Bu(uz)m)u> =040, p?),

x

Mathematically, under suitable scaling limits the quadratic terms in (1.6) and (1.7) can be dropped
out in a formal scaling limit, leaving (1.6) as the mCH-Novikov equation

ms + k1 ((u? — u2)m), + ko (u*my + 3uuzm) =0 (1.9)
where ki and ks satisfy conditions given above as in Case 1, and (1.7) as the Novikov equation
ms + ko (umy + 3uugm) = 0 (1.10)

with parameter ko given as in Case 2.
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As is explained earlier, with the cubic nonlinear models at hand, our second goal is to study the
formation of singularities due to the higher order nonlinear effects and construct initial data that lead to
the finite time curvature blow-up. To this end, we will at this moment only focus our attention on Eq.
(1.9) where only cubic nonlinearities are present, and consider the following Cauchy problem

t>0, z €R. 1.11
u(0,2) = ug(z), r (1.11)

{mt + Kk [(u2 — ui)m]r + ko (u2mw + 3uuwm) =0,
Moreover for mathematical speculation we will allow ourselves to consider a more general range of pa-
rameter values for k1 and ko than that which is given in Case 1.

It turns out that the two groups of cubic nonlinearities in (1.11) play quite different roles in the blow-
up analysis. In the case k; = 0, (1.11) becomes the Novikov Eq. (1.10), and when the initial momentum
density mg does not change sign then the solution exists globally for all time [45]. On the other hand
when the Novikov nonlinearity is not present (ko = 0 i.e., the mCH equation), it is shown [6,29,38] that
the curvature could still blow up in finite time even if mg does not change sign. This leads to a natural
question of understanding how the interaction between these two groups of cubic nonlinearities would
affect the singularity formation mechanism.

It is also worthwhile pointing out that, as was discovered by Brandolese et al [3,4], many quadratic
nonlinear CH-type equations exhibit a very strong non-diffusive character that extremely “localized”
information about the data is enough to lead to finite time blow-up of solutions. Such a phenomenon
comes from the fact that the nonlinear nonlocal effects are over-dominated by the local nonlinearities
of the equations. This hyperbolic feature seems to be slightly counter balanced by the stronger nonlocal
effects due to higher nonlinearity of the equations, as was explored in [6,7]. Thus it would be interesting
to study how local structures of the initial data may affect the evolution of solutions to Eq. (1.11), and in
particular, the formation of singularity. Since the equation involves both the mCH and Novikov types of
nonlinearity, it is reasonable to expect some kind of relaxed local-in-space blow-up criterion in the spirit
of [6,7]. However as pointed out above, the two types of nonlinearities do not seem to cooperate in a good
way to produce blow-ups, making the analysis rather subtle.

A refined Beale-Kato-Majda type blow-up criterion (cf. Lemma 5.2) singles out the right blow-up
quantity to look at. Tracking the dynamics of such a quantity along the characteristics reveals explicit local
and nonlocal interplays between the solution and its gradient, cf. Lemma 5.3. Using the two conservation
laws provides a way to control the nonlocal convolution. This allows one to derive crucial monotonicity
property of u, u, and m along the characteristics, which in turn leads to a Riccati dynamics for m, cf.
Theorem 5.3. This result covers a wide range of parameter values of k1 and ko, in particular the Eq. (1.6)
in Case 1.

We also provide a different way of approach which does not rely on the use of the conservation laws.
Instead, taking advantage of the sign preservation of the momentum density m, the nonlocal terms can
be shown to have good signs provided that the initial momentum density does not change sign. Therefore
it remains to examine the local terms. It turns out that a Riccati type inequality can be obtained as
long as the “local oscillation” |u, /u| is reasonably mild. Note that the sign condition on m already rules
out fast oscillations. A further refined analysis on the evolution of u, /u can be performed to show that
mild oscillations will persist along the characteristics with carefully chosen data, and therefore closes the
argument.

The remainder of the paper is organized as follows. In Sect. 2, the model equation for the free surface
with higher order terms is formally derived from shallow water in the Euler equation for an incompressible
fluid, with the computational details provided in Appendix A. Section 3 together with Appendix B is
devoted to the derivation of a family of asymptotically equivalent equations, namely the CH-mCH-Novikov
Eq. (1.6). Some other equations with cubic nonlinearity will be derived in Sect. 4. Section 5 is focused
on the mCH-Novikov Eq. (1.11). A blow-up criterion will be derived and special initial data will be
constructed that lead to the curvature blow-up.
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2. Derivation of the Free Surface Equation

The main goal of this section is to formally derive of model Eq. (1.4) for the free surface from the Euler
equations. Compared with the model equation derived in [32] which is truncated at the order O (g3, eu), the
new model (1.4) contains more higher order terms which will be useful to derive a class of unidirectional
wave equations including cubic nonlinear terms.

Consider the two-dimensional incompressible irrotational flows in the domain {(x,2) : 0 < z < h(z,t)}
with a parametrization of the free surface h = h(x,t), where the horizontal and vertical directions are
represented by x and z, respectively. The governing system is given by

Up + Uy + WU, = —%Px,

w + uwy + ww, = f%Pz —g,
Uy +w, =0,

U, — wy =0,

where the pressure is written as P(t, z, 2) = po+pg(ho—z)+p(t, z, z), where p, is the constant atmospheric
pressure, and p is the dynamic pressure. In addition, we pose the “no-flow” condition on the flat bed, i.e.,
w|,=0 = 0. On the surface z = hg + 7, the dynamic condition P = p, and the kinematic condition yield
p = pgn and w = 1y + uny.

Next we perform the following standard nondimensionalization

A
T — Ax, z— hoz, n—an, t — ﬁt’ u — \/ghou, w — \/pghow, p — pghop.
gho

Recalling (1.1), we further assume that u,w and p are proportional to the wave amplitude, that is,
u— eu, w — cw, p — ep.Toexamine the problem in an appropriate far field, we follow the approach
employing the far field variable with the right-going wave:

E=e2(x—t), 7=e%% (2.1)

We also transform w — /zw to keep mass conservation. Therefore, the governing equations become

—ue +e(ur + uue +wuy) = —pe in 0<z<1+en,

ep{—we + e(wr + uwe +ww,)}} =—p, In 0<z<1l+en,

ug +w, =0 in 0<z<1l+en,

u, — epwe =0 in 0<z<l1l+4en, (2.2)
p=mn on z=1+en,

w = —n¢ +e(nr + une) on z=1+en,

w=20 on z=0.

Before applying the asymptotic expansion, we Taylor expand the boundary terms:
F4en) =300 ) E £ (1) to obtain

n=0
—ue +e(ur + uue +wuy) = —pe in 0<z<1,
ep{—we + e(wr + uwe + ww,)} = —p, in 0<z<1,
ue +w, =0 in 0<z<1,
U, — epweg =0 in 0<z<1,
827’]2 837’]3
p+enp. + 5 Pzz + 6 Pzzz =1 on z=1,
82772 53773 . 52"72 53773 -
W+ ENW, + —5~Way + —5 Wezz = —Ne +ENr + 5775(“ +enuy + 5 -Uzr + Tuzzz) on z=1,
w =10 on z=0.

(2.3)
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A double asymptotic expansion is then introduced to seek a solution of the system formally,

(oo} (oo}
qNZZs”umqnm as €—0, p—0,

n=0m=0
where g will be taken to be the functions u, w, p and 7, and all functions g, satisfy the far field conditions
Gnm — 0 as |§] — oo for every n, m =0,1,2,3, ...
Substituting the asymptotic expansions of u, w, p, n into (2.3), we check all the coefficients at each
order O(g'p?) (i, j = 0,1,2,3,...). For example at O(1) we obtain

—Uo,e = —P00,¢ in 0<z<1,
0 = poo,- in 0<z<1,
Ugo,¢ + Woo,> = 0 in 0<z<1,
00,& 00,2 . 2.0
ugp,> = 0 in 0<z<1,
Poo = 1oos Woo = —Moo,e on z=1,
wpo =0 on z=0.

From the fourth equation in (2.4) it follows that wugg is independent of z. Thanks to the third equation
in (2.4) and the boundary condition of w on z = 0, we get

z
A
Woo = Woo|z=0 +/ Woo,» A2 = —2U00,¢,
0

which along with the boundary condition on z = 1 implies ugo ¢ (7,§) = 100,¢(7, §). Therefore

uoo(7,€) = 1o0(7, ),  wWoo = —2M00,¢,

here use has been made of the far field conditions wugg, 1700 — 0 as [£] — co. On the other hand, from the
second equation in (2.4), it follows that

z
P00 = Poolz=1 +/ P00,z dz' = 1.
1

At O(etp®) = O(e) we obtain

—U10,¢ 1 Uo,r + Uo0U00,6 = —P10,¢ in 0<z<1,

0 = pio,2 in 0<z<1,

Uu10,¢ + wio,z =0 in 0<z<1,

u19,2 =0 in 0<z<1, (2.5)
P10 + P0o,z700 = 710 on z=1,

w10 + 7M00W00,> = —M10,¢ + Noo,r + UooToo,e on z =1,

wig =0 on z=0.

From the fourth equation in (2.5), we know that w1 is independent to z, that is, u;g = ui0(7,€). Thanks
to the third equation in (2.5) and the boundary conditions of w on z = 0, we get

z
w19 = ’w10|z:0 +/ ww’z/dz' = —Zulo’g. (26)
0

Hence, from the third equation in (2.5) and (2.6) and the boundary conditions of w on z = 1, we obtain
that

U0, = M0,e — M00,r — (Woomoo)e  and  wig = (Moo, + 2700700,6 — 110,¢) (2.7)
Thanks to the second equation in (2.5) , we deduce that

P1o,e = T10,¢ = Ui0,¢ + Moo, + (LooToo)e- (2.8)
Taking account of the first equation in (2.5) and (2.7), it must be
—P10,e = —U10,¢ + M00,r + 100700,¢ 5
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which along with (2.8) and (2.7) implies
2100, + 3M00M00,¢ = 0.
Similarly, at the orders O(e%ut), O(e2u®), O(ctut), O(e3u°), O(e*1®) and O(e?pl), the relation be-
tween p;;, 1i;, ij, w;; and their 7-derivatives can be obtained; see, for example, [30].
As is discussed in the Introduction, the scaling relation (1.3) suggests us to seek terms up to the order

of O(e3u!). Following the same procedure as above (please refer to Appendix A for details), we obtain
the following equation for 7

323

1 3, 115 4 23 5
207 + 3nme + SHileee — JEN e + €N e + 100 —®n'ne + an’ne + ep 1o le"ee T g Mece

23 29 3
+e ”(16 2+ 5 "Menge + 477277§g§> =0+ 0(e” &%, 1?), (2.9)

where « is some constant we do not specify here.
Recall the original transformation x = 5’%5 +eir, t=e"37, namely,

7] —to,. 0

a—g = e 87%(8 + O). (2.10)

The Eq. (2.9) transforms to

1
2N + M) + % Mz + 3N + €2 A1 00 + €2 Ao’ + £t (AsNeNee + AdnMzca)

3 (2.11)
+ Ase'n'n, + 2 pu(Astiane, + AGnana::r +Amg) =0+ 0, &, 1),
where A1:—%7A2:%7A3 12,144— ,A5 AG Z A7: 16’A8_ %ég

Remark 2.1. Tt is noted that the high-order terms O(£°, %) in (2.9) only depend on the function 7 and
its ¢ derivatives. By the scaling invariance in (2.11), O(e®, u?) would not generate any low order terms
n (2.11) under the transformations in (2.10).

3. Derivation of Model Equations with Cubic Nonlinear Terms

Having derived the equation of the free surface n in Sect. 2, the focus of the development in this section
is the derivation of the model equations that incorporate cubic nonlinearities of various kinds including
the CH, mCH and Novikov types, as given in (1.6).

3.1. Asymptotic Expansion using Kodama Transformation

Recall that we assume p < 1 and work in the regime where € = O(u%). Since we expect our final model
equations to be cubic nonlinear, a higher-order approximation (in € and p) is needed. Thus it is natural
to post the Kodama transformation of the form

n=u+ecA+ uB+euC + p?D +®E + 3K + *uG + epH, (3.1)

where A, B,C,D,E,H, K and G are the parameters which are related to v and its derivatives but
independent of £ and p. Doing so allows enough degree of freedom in the expansion that may later be
optimized. For example, to obtain the CH-type terms, as described in [32], one can choose A = \ju?,
B = Ay, and K = Aou?, where \g, A; and Ao are some constants to be determined later. With such a
choice, (3.1) becomes

n=1u+ MAeu? + Aopitigy + epC + p?D + 2 FE + NoePu + 2 G + e H. (3.2)
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To proceed, we will substitute the Kodama transformation (3.2) into (2.11). The resulting equation will
purely consists of u-terms. Collecting at each order we have

Oo(1) := 2(ugz + uy), Op(e) := 4Me(uuy + uuy) + 3euuy,,

0
Oo(€?) 1= 26*(E, + Ey) + I\ie2u’uy + Are®uu,,
Oo(€?) 1= 33 (uE), + 6X2c3uuy + Ay i3 (uh), + Anedudu, 4+ 2003 (uh), + (ut)y),

A
Op(e?) = &* (Ao + A1+ A2+ A + ;) (u®)y + Ar1e* (W?E),

1 A
OO(NJ) = 2>\2N(u$zm + uzzt) + g,ufuzmxa OO(qu) = 2ﬂ2(Dx + Dt) + éﬂzuzmmrma
2
Oo(ep) = 2epu(Cyp + Cf) + (221 + 3X2 + As)epug iz, + (3)\1 + 33X\ + A4) EPU L

1
Oo(2p) = §€2ume + 282 (G + Gy) + 362 1(uC) 4 3da M (U gy ) o + Ao A1 (U gy )
+ 2)\1A3{—:2u(uui)m + A4/\152,uu2umm + )\1A4{—:2,uu(u2)mm

+ A552Muuzumz + A652Mu2uzxm + A7€2/J/Ui,

1
Oo(s,uz) = gsﬁC’zm + 25u2(Hm + H;) + 3€u2(uD)r + 3x\§5;¢2umuzm

+ A3>\25N2 (uzumrz)x + A4)\25,Uf2uxzuzmr + A4A25ﬂ2uurzfczma

1

Oo(e?1?) = 352/1'2wa$ + 3020 (U D)y + 3o 1% (Upe O) p + 362 1% (Hu)
+ A§A1€2u2 (uuiw)w + A12212 (P D), + Ase? 1% (up O + 2430 Moe? i (WU Usprz )z
+ A452/~L2cumzz + A4>\1)\252,U42U2Umxxmz + A4)\1>\252ﬂ2uxm (uz)zmm + A452H2ucxzx
+ A5A2€2M2uuxuwwmw + A5)\252M2U1U2Z + A5A2€2M2uua:xuwwm

+ A6>\252/142u2uzmxmm + 2A6>\252ﬂ2uumxumxm + 3A7)\2€2#2u§uxmz~

And this yields the following equation
1
U+ Uz + 5 [O0(e) + Oo(e?) + Oo(e”) + Oo (1) + Oo (1) + Oo(ep) + Oo(ep®)] = 0+ O(’ %%, ).

Here the subscript in Oy is just to emphasize that the terms may change at each step.
The next step is to eliminate the ¢ derivatives using the equation itself. As before, we expand the time
derivatives, namely

3
Up = — Uy — 2\1(uty + uug) — isuugC 53
3.3

1 .
~3 [00(£%) + 00 (%) + Oo (1) + Oo() + Oo(ep) + Oo(ep®)] + O(°u, €% %, 1)
In order to have the whole e2u2-order terms, we need to bring 2 and ep?-order terms back even though
they will be ignored as high-order at the end.
Step 1. At order g, we substitute (3.3) into %Oo(e), and it gives

3 _3 45003 37\ oy .2(,.3
2 1e(uuy 4+ uug) + 5 SUls = SEUL; 3)\15 ((u?)g + (u”)g) — A1e”(u”),
— Aieu[Oo(e?) + Oo(e”) + Oo(u) + Oo(en) + Oo (1) + Op(ep®)].  (3.4)
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This expansion generates higher order terms. It leads to the following terms in asymptotic order:

O1(6) i= Seuus, 01(=%) 1= 500(=%) — SN (W)s + (u)) — M)
O (%) = 300(53) C MeuO(e?),  On(e) = %00(64) — AeuOy(eY)
O1(ek) 1= 5O0(er) ~ MzuOy(),  Or(u) = 500(1).
01(1) = 5001, 01(€) = 500(e%) — MieuOo(en),
1

1
O1(ep?) = 500(5;12) — MeuOqg(p?), O1(e2p?) = 500(52;12) — MeuOq(ep?).

Step 2. For O;(g?) term, we can choose E = Azu®. Then we expand the time derivatives as

3 1
up = —Uy — 2\18(uty + uuy) — 2EUUr — 5 [Oo(1) 4+ Oo(11%) 4+ Oo(e%)] + O(?, epn).
Hence the O;(g?)-order term takes the following form,
A
01(e?) = ( A1+ 61) e2(u?), — (63 — 8AD) NP (v, + uug) — (Z)\ — 6 > 3uu,

- (2)\3 - 2)@) eu?[0p(e?) + Oo () + Oo (1?)].
We now denote
It == the coefficient of f(u).
Then coefficient of u?u, is given by
3 Ay

And the following terms in asymptotic order take the form

Os(11) = O1 (1), Os(c2) = @)\1 + /;1) uy,  Oa(ep) = Os(ep)

O5(e®) := 01(®) — (63 — 8A)\ie®u? (vuy + vug) — ( Az — 6/\2> 3uuy,

Os(e?) := 01 () — <2)\3 - 2)\%) 2u0p(e?),

3
0s(4%) = 01(42), Oa(e%y) = Ou(e2n) — (30— 228 02000
3
Os(ep?) := O1(ep?), Os(e%p?) := O01(e2p®) — <2)\3 — 2)\%) 2u?0g(1?).

Now the equation has the form of

ur + ug + O1(€) + 02(£%) + O2(p) 4+ Oa(ep) + O2(e2p) + Oa(e*) = 0+ O3, 1i*),
and the expression for u; is given by

Ay

3 1 1
Up = = Ug — SEUy — ( A+ 6) 2 (u?)y — §OO(M) - §Oo(€u) + MeuOg(p)

1
- 500(52;1) + MeuOg(ep) + (2)\3 - 2)@) 2u?0g(p) + O(e%, 1i?).
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Step 3. We now consider Os(u) term. Here, another parameter is required. To this end, splitting the
time derivative Agputugq, it appears that

/\Qﬂua:xt - )\2(1 - V)Muza;t + )‘2V/J/ua:a:t7 (37)
where v is the new parameter which will be determined later. We remove the u,,: term by eliminating
the ¢ derivatives using (3.6). Thereby, it yields

3

AoV lggt = — AoV lilggs — iAgusu(qu)m +Movp(Fez + Fyy + Fop + Frzy) oo + 0(53Iu, 5Iu3)’

where we define

1 A . 1
Fo=— (2)\1 + 61) Ez(us)m Fu = 7>\2,U(Uac3:x + Uaca:t) - gﬂuxm.’m

1 1 3
Feu = —500(8/1) + /\1u500(u), Fszu = —500(52/_4) + /\1u500(€,u) + (2/\3 — 2/\?) SQUZOo(M)~
This way Oz (u) takes the form

1 1 3
Ao pt(Uggr + Uget) + é,uuxm = ()\2(1 —v)+ 6> Plgzr + Ao (1 — V) pitger — iv)\ga,u(?)uzum + Wlgrz)

+Xovp(Fe + Fy+ Fop + Foop)an
The coefficient of u,.; can be written as
I

Uzt

= )\2(1 — V).

This procedure leads to the following terms in asymptotic order:
1
O3(u) := (A2(1 =) + Z)Htaws + A2(1 = V)it O3(%) := O2(&%),

3
Os3(ep) := Oz(ep) — §V)\2€u(3u,;um + Ul ) O3(e*) := Oq(e?)
Os(e?p) = Oa(e ) + Aovis(Fr2 ) o, Os(p?) 1= O2(1i®) + Aavpa(Fp) e
03(5:“2) = 02(5N2) + Aevp(Fep)zas 03(52:“2) : 02(52,“2) + >\2V/L(F52u)m7~

Proceeding systematically, we continue to compute the Os(ep) terms, O4(e%), Os(e?), and finally all
the 2 p-order terms generated in the asymptotic expansions. For the purpose of keeping the presentation
simple, the details of the computation are provided in Appendix B.

3.2. The Special form of the CH-mCH-Novikov Equation

Having obtained the asymptotic expansion up to sufficiently high order, we are ready to turn to the
procedure of deriving Eq. (1.6). Notice that this requires choosing specific values of the parameters in
the Kodama transformation, which can be determined through the following procedure.

Note that the CH-type equation requires

qum = _57 quTTT = _ga Iu,uTT = _/6

for some parameter 3. It is determined that 8 = % and A1, \o, v are given by
A(l—v)=—
2( X l/) ﬂ? , (38)
>\1 + 5(1 — 3V>)\2 + 73 = —ﬁ,
On the other hand, Eq. (1.6) requires that

1 1
quum = Z(3k1 + 4k2), quuT” = _Zﬁ(kl + kg)
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Therefore from (3.5) and (B.1)

S+ A= Bk + 4ky), (3.9)
S(L—v)MAe+ B (1= v)do + LA + 2 A6 = —18(k1 + ko). ’
where A; = —3/4, As = 23/12, Ay = 5/6,A¢ = 3/4. Combining this with (3.8) we have
ki 189 ki 179 69 10k, + 204
T2 a0 2T e T YT M0k 1179 (3.10)

where k; € R is arbitrarily. The coefficients of (u*), and (u°), must vanish for Eq. (1.6) to emerge, and
hence from (B.2) and (B.3)

3 1 1
I(u4)m = g)\g + §A2 + Z}\lAl - 0,

1 3 49 As 3
I(uS)L = TO (—19/\0 — Z)\% + g)q + ? — 5/\3 + 24/\% — 51)\1/\3) =0,
where As = 3/8 and Ag = 115/192. Then it gives
ki 23 3 13083 1189081 108125767
A3=-—+— and A= —k} k3 : 3.11
BT T M AT M T Te0 M T Te00 T 114000 (3:11)
Also, for other terms, we require from (B.5) that
1 1
With this choice, it in turn implies that
A3 — %/\4 + %A7 —Xov(3A1 + A1) + AzA = —iﬁk‘h
33 — 35 — 9(1 — V))\Q)\l + A1(1 — 31/))\2 + (Ag + 3A4)/\1 + %A5 — 2)\% = 7%5(4]{11 + 3]{52),
where Ay =29/8, A7 = 23/16. Then we obtain
1 671 56327 1 67 30437
M=—=k?— —k — —— d =2k - —k - ——. A2
1= M T g0 T e M A= e T M T oo (312)
This way v and \; (i =1,...,5) are obtained in terms of kg = 65—9 and any k.
Lastly, the coefficients of £2u2-order terms should satisfy that:
k 1
L2, = Luugu = luuguu =0, Iz, = *1527 Tiju2 = klfﬁg-
crTTD oleoss watlor glzoe 4 *tee 2
Since the coefficient of the term u?u;gqzzs Needs to be zero, from (B.6) it follows that
Ay Ag 4 1
S MB — B = deds + §A§A2 —gMhs =0,
where 3 = % and \; (i =1,2,3) only depend on k;. This way the parameter k; should be a real root of
the following equation
2000k + 106200k% + 1871550k, + 10934031 = 0. (3.13)

And then k; ~ —15.1765. Notice that since the determinant of the matrix in (B.7) is nonzero, we can
obtain A7, Ag, Ag, A1 for any parameters Ag and Aq;.
In summary, if we take the Kodama transformation to be
N = u+ Aeu? + Aoptizy + (Mg 4+ Asurigs) + e2A3u? + e Mou + 12 (Nstowas )

3.14
+ 52”()‘77“1% + )\8u2ua::r) + 8M2<)\9uzua:mw + )\louuxa::rw + )\llui$>7 ( )

where the parameters satisfy conditions (3.10)—(3.13) and Ag, A1 can be any real number, then we arrive
at (1.6).
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4. Other Related Nonlinear Equations with Cubic Nonlinearity

Using the method as in Sect. 3, other shallow-water models can be derived when we choose suitable
parameters in the Kodama transformation. In particular, the CH-Novikov equation and a new cubic
nonlinear peakon equation will be derived in this section. Moreover, after certain rescaling, the mCH-
Novikov and Novikov equations can also be obtained.

The CH-Novikov equation

Consider the same form of Kodama transformation as before. Now we impose I,2,, = k2, I,2,,,, =
1
—Zﬁk% recalling (3.5) and (B.1), that is,
A+ % = ko
%(1 — I/))\1>\2 =+ %(1 — V))\Q =+ %A4A1 + %AG = 7%,8[1527
where A} = —3/4, A3 = 23/12, Ay =5/6, Ag = 3/4. Together with (3.8), it follows that

(4.1)

o180 AT 6 204
20’ 60’ 5’ 179
Setting I(yay, = I(ws), = Ly = 0 and Iyy,u,, = —5ko8 with 8 = &, and using (B.2), (B.3) and
(B.5), we know that
23 108125767 56327 30437
As=5 A= 000 4T T 200 >~ 71200
Then
Dt @wg N @uu o <5632’7u2 30437uu > @EQUS N 108125767 4 ,
20 60 " 1200 * 1200 " 5 114000

These choices give the so-called CH-Novikov equation which takes the form of

1 3 1
Up U = Blitlags = illags + UG — S5 B2 tay + Ulkpra) + kaoe®uu,

3 1
- Zkgﬁguuuzum — Zkgﬁez,uuQumx =0+ 0(55,u2).

The mCH-Novikov and Novikov equations

Applying the scaling transformation

w— 2, - (Bp) "2, @ — (Bp)

to Eq. (1.6) leads to the equation

3
me + Uy — g“m + 2um + umg + ki ((u? — u2)m), + ko (u?mg + 3uu,m) = 0. (4.3)

If we further scale t — 62t and u — §~ 1w, then (4.3) takes the form of

0 2my + up — gumm + 67 2upm 4+ umy) + k162 ((u? — u2)m), + kad 2 (uPmy + 3uuym) = 0.
Rewriting it as
my + 0%u, — 5221%” + 6(2upm + umy) + ki (v — u2)m), + ka(u*my + 3uuzm) =0 (4.4)
and taking ¢ — 0, then formally in the limit function u(¢, z) satisfies the mCH-Novikov equation

ms + ki[(u? — u2)m], + ko (u*my + 3uuzm) = 0. (4.5)



JMFM The Shallow-Water Models Page 13 of 31 49

Similarly, the Novikov equation can be obtained, viz.,
ms + ko (u?my + 3uuy,m) = 0. (4.6)

Indeed under a further scaling in time ¢ — kot the above equation becomes exactly the Novikov equation
[40].

A cubic CH-type equation

Choose 1,2, = %k‘:g, L2y, = —%ﬂkg, namely,

3)\1 + Al = 3k35
(1 — I/))\ )\2 + (1 - V))\Q + A4)\1 + AG = —%kgﬁ.
As a CH-type model, it should satisfy (3.8). Then we have
97 29 46 112
_— >\ = — k = — = —
200 2T PTE VT
For other terms, we choose I(y1), = I(y5), =0, I3 = —%61{:3, Luwyu,, = —%61{:3. It then gives that

(4.7)

A =

%/\3 + %A2 + 1/\1A1 = 0
—19X0 — SA2 4+ 80N, 4+ 45 — 235+ 240] —51A N3 =0

4.8
As— A+ 3A7 — )\2V(3/\1 + A1)+ Ash = —3ksf3, (“8)
33 — 35 — 9(1 — l/))\g)\l + Al(l — 31/))\2 + <A3 + 3A4))\1 + %AE) - 2)\% = —%ﬂkjg,
where Ay = 3/8, A5 =29/8, A7 = 23/16. Hence, we obtain
1 2 1 1261
Ao = 3067089’ L= 73’ M= 0373, and Ay — 6 .
114000 10 1200 600
Then
wr oz 2 (1261, 10873 LN 23, 13067089,
AET) 20/ TR o0 e T 200 ") T 10° 114000
It then follows that
1 1 1 1
my + Uy — zuuxwz + 58(2?19;’/71 + umw) + Zk3€2 ((UQ - 4ﬂu(u2)xz)u) =0+ 0(555 Mz)' (49)
Applying the scaling transformation
u— 2y, t— (ﬁu)_%t, x — (ﬂu)_%x,
the equation becomes
3 1
my + Uy — guzm + (2uym + umy) + ks <(u2 - 4(u2)m)u> =0. (4.10)
x

5. Curvature Blow-Up

Having derived the model equations in Sects. 3 and 4, our attention is now turned to the blow-up analysis.
In particular, as explained in the Introduction, we will consider the Cauchy problem for the mCH-Novikov
Eq. (1.11), with k‘l,k’z e R.

It can be shown that the following two functionals are conserved quantities for (1.11)

Hy[u) :/R(u2+ui) dx, Hj[u) :/R<u + 2uPu? — %u ) dx. (5.1)
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The local well-posedness theory can be obtained following the standard argument of [27] with a slight
modification.

Theorem 5.1. Let ug € H® with s > g Then there exists a time T > 0 such that the Cauchy problem
(1.11) has a unique strong solution u € C([0,T); H*) N C*([0,T); H*~1).

It is also shown in [8] that Eq. (1.11) posseses the single and multi-peakon solutions. Moreover the
single peakons are indeed orbitally stable in H'.

5.1. Blow-Up Criterion

Similar to the other CH-type equations, (1.11) can be reformulated into a nonlocal transport form.
Therefore from standard transport theory, a Beale-Kato—Majda type of blow-up criterion can be obtained.
A further refined analysis leads to the following lemma. The proof of this result follows a similar idea as
in [29], and hence we will omit it for the brevity of the presentation.

Lemma 5.1. Let ug € H® with s > g and u be the corresponding solution to (1.11). Assume that Ty >0
1s the maximum time of existence. Then

T;
T: <oo = /O " e (7) + 2kautiy (1)|| Lo dr = 0. (5.2)

Remark 5.1. The blow-up criterion (5.2) implies that the lifespan T};  does not depend on the regularity
index s of the initial data wug.

As usual, now we proceed to obtain an improved blow-up criterion which is in some sense “pointwise”.

Lemma 5.2. Suppose that ug € H*(R) with s > % Then the corresponding solution u to the Cauchy
problem (1.11) blows up in finite time T* > 0 if and only if

lim%r*lf 1nf {kim(t, z)us(t, ) + 2kou(t, 2)u,(t, )} = —oo. (5.3)
Proof. In view of Remark 5.1, it suffices to consider the case s = 3. Suppose that if kymu, + kouu, is
bounded from below on [0, T* ) x R, i.e., there exists a constant K > 0 such that

uo

(kimug + 2kouug) (t,2) > =K on [0, T, ) x R. (5.4)
Multiplying (1.11) by m and integrating over R, and then integration by parts, we have
/m dx—i—/ (kyugm + 2kouug) m? dx = 0. (5.5)
2.dt R

The initial condition implies that mg € H*~2 C L for any 2 < ¢ < oo. From (5.5) we see that

<K
th/md:c /mdm

Applying Gronwall’s inequality yields that
Im(®)122 < e lmoll7.  for te[0,Ty). (5.6)

s Fug

Moreover using integration by parts and Sobolev embedding,
(O = [ (0 + 02, + 262) do > fulfys 2 e
Similarly we have

2dt/m dac—l—kl/ ((u —u )m)mmm dac—&-kg/R(uzmm—i—Buumm)xmz dz = 0.
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Integrating by parts the second term yields

2
kl/ [(u? — u2)m] o Mz dT = / (5k1uzm)m? dx —/ (k:luwm> mda.
R R R \3

Integrating by parts the third term can be computed as

klg/ (u2mx + 3uu$m)x My = / (4dkouug ) m? da —/
R R

(6kouuy) mzda:—/12k2umwm2dm.
R

R
This way we have

Ld / m? dx +/ (5k1uzm + dkouuy,) m? da —/
2 dt R R R
So together with (5.5), we have
1d
2dt Jp

2
(Skl%m + Gkguuw) m2dx — / 12kqum,m2dz = 0.
R

(m? +m?) do = — / (kyugm + 2kouu,) m? dx — / (5k1uzm + dkouug ) m? da
R R

2
—|—/ <3k1uzm+6k2uux> m2dm+/12k2umwm2dm
R R
L o 2 9 14 4
=— [ (kyuzm + 2kouu,) gm +5mZ | de+ | keuuy | 6mi — ?m dr
R R

+ 4/ kouy,m>dx
R

< (5K + 6|k [Juts || oo + 4lka|ull g [Jm] £2) [lm] 7 -
Applying Gronwall’s inequality and (5.6) it follows that
Im(®)]|% < exp (5Kt 1 eSlkllluol HmoHLz(eKt—U/K) lmoll %

for t € [0, T}; ). From Theorem 5.1 this implies that the solution does not blow up in finite time.
On the other hand, if

htIT%"inf {inf (kim(t, x)u,(t,x) + 2k2u(t,x)um(t,g:))} = —00,
G Loe

then either u, or m blows up in finite time. The proof of Lemma 5.2 is hence completed. (I

5.2. Dynamics Along the Characteristics

We are going to perform our blow-up analysis along the characteristics of Eq. (1.11). So let us define the
characteristics associated to the mCH-Novikov Eq. (1.11) as

_ 2,2 2

a(t,x) = [k (u? —u?) + kou?] (L, q(t, 2)), rER, te0,T) (5.7)
q(0,z) = =,

One can easily verify that

Proposition 5.1. Suppose ug € H*(R) with s > g, and let T' > 0 be the mazimal existence time of the

strong solution w to the corresponding initial value problem (1.11). Then (5.7) has a unique solution
q € CH([0,T) x R,R) such that q(t,-) is an increasing diffeomorphism of R with

¢
q:(t, ) = exp (2/ (kimug + kauuy) (s,q(s, x)) ds) >0, V(t,z)e[0,T)xR. (5.8)
0
Moreover, for all (t,z) € [0,T) x R it holds that .
m(t, q(t, z)) = mo(x) exp <—/ (2k1muy + 3kauug)(s, (s, z)) ds) , (5.9)
0

where mo(z) = m(0, ).
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A direct consequence of Proposition 5.1 is that the momentum density satisfies the sign-persistence
property as in the following corollary. We want to point out that such a feature proved to be the key to
several qualitative results about the CH and DP equation. In that context, this invariance is related to
a geometric interpretation of these model equations (see the discussion in [9,22]), but we are not aware
of such an interpretation in the general case considered in this paper. Note that the geometric structure
is quite restrictive [17,34].

Corollary 5.2. Suppose ug € H*(R) with s > g Let T > 0 be the mazimal existence time of the strong
solution u to the corresponding initial value problem (1.11). If mo(z) > 0 for all x € R, then m(t,x) > 0
for all (t,z) € [0,T) x R.

Denote p(z) = e~ 1*! the fundamental solution of 1—9?2 on R, and define the two convolution operators

P+, D— as
(&

bt =5 [ e poes@ =5 [ e san (5.10)

Then we have the relation
P =p++p-, Pz =P— — P+
Now we compute the dynamics of a few important quantities along the characteristics ¢(t, zo). Denote
" the derivative 0; + (k1 (u? —u2) + kguz) 0, along the characteristics, and

u(t) .= u(t,q(t, z0)), Ug(t) :=u.(t,q(t,x0)), m(t) :=m(t, q(t, zo)), ]\//.T(t) = (muyg)(t, q(t, z0)).

Lemma 5.3. Let ug € H*(R), s > 5/2. Then u(t, x), u.(t,x), m(t, z) and (mu,)(t, x) satisfy the following
integro-differential equations

~ 2, __ k k

u'(t) = —gkluxg + <31 + ;) [Py * (u—ug)® — po * (u+uy)?] (¢, q(t, z0)), (5.11)
_ 145 ko5
W' (t) = ky <3u3 — uuf) + %“(u2 T (5.12)

32
m'(t) = —(2kymuy + 3kouty)m, (5.13)

- (kl + kz) P4 (u—ua)® +px (u+ )] (¢ q(t, w0)),

M (t) = —2k, M2 + % [(%1 + k)2 — (6ky + 211@)@2}

ki ka\
- (31 + 22) M [pg * (u—uq)® +po * (u+ ug)®] (¢, q(t, 20)). (5.14)
Proof. The proof of (5.13) can be immediately obtained from the Eq. (1.11).

In view of (1.11), it follows that

u = —kip* [(u® — ui)m}x — kop x (u*my + Buuym) . (5.15)

The structure of the right-hand side of the above equation suggests that we may recall the results from
[6] and [7]. First, from [6, (3.1)] we know that

2 1
p[(u® —ui)m] = (u® —ud)us + i — 5 [P (u— ug)

3 3
From [7, (3.7)] we have

Popo ok (w4 ug)?] .

1
D * (uzmx + 3uumm) = u?u, — 3 [p+ * (u— uw)?’ —p_x(u+ uz)?’] .
Plugging the above two into (5.15) we obtain (5.11).
The proof of (5.12) can be proceeded the same way. Differentiating (5.15) we obtain

Uy = —kip * [(u® — uZ)m] o — F2D (uw®m, + 3uugm) . (5.16)
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From [6, (3.2)], it follows that

1 1
p [(u® —uZ)m] o = (U — U2 g + (3u3 - uui) ~3 [Py * (u—ug)® +po * (u+uy)?] .

From [7, (3.8)], we know
1
p (uPmg + Buugm) | = uPug, — %(u2 —u?) - 3 [Pt * (u—ug)® +p_* (u+uy)?].

Therefore (5.12) is obtained by combining the above two equations.
Finally (5.14) can be derived from (5.12) and (5.13). O

5.3. Choice of Data and Blow-Up: 2k + 3k2 # 0

Note that this parameter regime is consistent with what appears in (1.6), where k1 ~ —15.2 and ko = 13.8.

The blow-up criterion (5.3) together with the conservation law H;[u] indicates two possible scenarios
for the formation of singularity, namely the wave-breaking (|u,| — oo) or curvature blow-up (|m| — oo)
in finite time. Here in this section we seek data which lead to the latter one.

5.3.1. General Data. We start by considering a general momentum density mg and look for the blow-
up data. In this case we make use of the conservation laws Hj[u] and Hs[u], which will be the key to
obtain the convolution estimates. Such a control of the nonlocal terms allows us to propagate certain
monotonicity property that can lead to a Riccati dynamics.

1
§||Ux||i4 = / (u* + 2u*u?) dz — Haluo] < 2||ul| 3 Hiluo] — Haluo) < Hf[uo] — Haluo).
R

Therefore
uallzs < 3 (HP[uo] — Haluo]) - (5.17)
Therefore the convolution estimates follow as

Ipx * (uF u)’| < sl [|(wF ua)®l] 0 < 2 (lullgs + luallZs)

(5.18)
< 2B [ug) + 2/3H1 uo) (H2uo] — Holug)) =: K.

The blow-up result in this section is the following.

Theorem 5.3. Suppose k1 < 0 and f%kl < ko < —2ky. Let ug € H*(R) with s > 5/2. Assume that there
exists an rg € R and some 0 < 6 < 1 such that

k H
mo(zo) > — 5k 1[u0], ug(z0) >0, wou(ro) > VA1, and
2k1 (1 — 6) 2 (5.19)
2k + 3ko

o (20)t5.0 (w0) 2 — g Ao,

2%k + 3k H 3/2
A1 = —714—3 2K, Ag = 2K+ 71[1“)] 5
2k, 2

and K is given in (5.18). Then the solution u(t,x) blows up in finite time with an estimate of the blow-up
time T™ as

where

1
B 2k10myg (JTO)UO,JC (xO) .

T* <

Remark 5.1. Note that clearly Theorem 5.3 applies to the case where k; and ky are obtained in Sect. 3
(and hence in Eq. (1.6)).
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Proof. Plugging (5.18) in (5.11) and (5.12) we obtain that

~ 2 3 2k + 3ko
> Tkt - LT g
u = 3 1u 3
- ko\ 2k + 3k H 3/2
uy > — (k‘l + ;) uuw2 _ S rom —g 2 oK + (1£u0]> .

Hence we know that @ is increasing when ﬂ;g > A1, and 1, is increasing when
ko\ 2k + 3k
— kl + i U’U,IQ 2 ¥A2
2 6
From the assumption (5.19) we know that the above two conditions are satisfied initially. Hence a conti-

nuity argument yields that over the time of existence of solutions, @(t) and @, (t) are both increasing. In
particular,

a(t) > UO(.%'()) > 07 ’l/l,;(t) > UO}I((E()) > \3/ A1 > 0. (520)
Recall that m satisfies m' = —u,m(2k1m + 3kaw). At the initial time we see from (5.19) that

3ky | Hqfuo] - 3ka

2% (0) < — a(0) < 0,

= 1-0V 2 T 1-6
and hence 2k1m(0) + 3kou(0) < 0. Together with (5.20) we see that m(t) increases initially. Then a

continuity argument ensures that m increases (and hence is positive) over some time interval [0, ¢,] for
t. > 0. Therefore on [0, ¢.]

- N 3k2 Hl[uo] 3k2 ~
2kym(t) < 2kym(0) < s 5 ST1C 5“@);

2k m(t) + 3ko@i(t) < 2k16m(t) <0 on [0,t,].

Thus another application of the continuity argument yields that m increases over the entire time of
existence, and the dynamics of m(t) gives

leading to

-~/

m = —@T/T\L(lem + 3]62@) > —2]4}1517;777,2 > —2]61(5U071-(330)7/T\L2.
Hence m(t) blows up to +o0 in finite time with an estimate on the blow-up time 7™ as

1

T < — :
- 2/€15m0($0)uo,x($0)

Since u,(t) > ug 5(z9) > 0 and u(t) is bounded, we see that in fact
kim(t)uy (t) + 2kou(t)uy (t) — —oo, as t— T,

Hence from Lemma 5.2 we see that the solution blows up in finite time, which completes the proof of the
theorem. ]

Using similar techniques but with less restrictive assumption on the initial momentum mg one can
prove the following result when kiko > 0.

Corollary 5.4. Suppose k1ks > 0. Let ug € H*(R) with s > 5/2. Assume that there exists an o € R such

that

2ky + 3k
mo(zg) >0, wup(xo) >0, uo(xo)uax(xo) > #AQ and

- 3(2]€1 + k2)
ey { 2 VB, when ks <0,
“0.e\10)\ < _YB when ky, ke >0,

(5.21)

where ok 2k
_ 1+ 2

By :
! 2k,
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and Ay and K are given in Theorem 5.3. Then the solution u(t, x) blows up in finite time with an estimate
of the blow-up time T* as
1

T < - :
- lemo(IO)UO,x(x())

Proof. We will sketch the argument for the proof. For simplicity we only consider the case when kq, ko < 0.
The other case can be dealt in the same way. The dynamics of U and u, yield

~ 2. 3 2k +3k
u > *gklux:} + %K,

U > — <k1 + k;) a2 4 2t 3k ’gng

o (411

Hence by a similar argument as in the proof of Theorem 5.3 we conclude that as (5.21) holds, @ and w,
are both increasing:

U(t) > ug(ze) >0,  Wu(t) > uga(xe) > V/B1 > 0. (5.22)

Plugging the above into the dynamics of m and using (5.21) again indicates that m increases (and hence
is positive) over the time of existence. Therefore

o~

fl\’L/ == 17;(—2]{71?:)\12 - 3k2fﬁﬁ) 2 —2k1uzﬁ12 Z —2]{31’&0@(1’0)@2.
Hence m(t) blows up to 400 in finite time with an estimate on the blow-up time T as

1

T < — ;
2k1mo($o)u0,z($0)

which completes the proof of the corollary. O

5.3.2. Non-Sign-Changing Data. Next we will utilize the sign-persistence property, cf. Corollary 5.2, to
consider data with positive momentum mg > 0. From the identities

u(t,z) = p*xm(t, ), Uy (t, ) = pe x m(t, )

we have
u(t,z) >0, uEuy, =2pg xm > 0. (5.23)

This allows us to control the convolution terms in Lemma 5.3, and we can obtain

Theorem 5.5. Suppose that k1 < 0, 2k1/3 < ko < —2k1/9. Let ug € H*(R) for s > 5/2 and mgy > 0.
Assume that there exists some point xg € R such that mo(zo) > 0 and

2]{31 + 3](32 \/ 2]431 + 3k2
o _ _ 24
UQ7£($0) = UO(JJO) max {\/ 4k ’ 6k + 21ko } (5 )

Then the corresponding solution u(t,z) blows up in finite time with an estimate of the blow-up time T*

as
1

B 2k1mo (xo)uo,z (xO) .

T* <

Proof. From Corollary 5.2 we know that m(t,z) > 0 and m > 0. It then follows from (5.23) and Sobolev
embedding that

VH[u]/2 > u(t,x) > |u,(t,x)| >0, u(t) > 0. (5.25)
Therefore u, does not blow up, and then Lemma 5.2 indicates that it suffices to consider the quantity
M(t,x) = (mug)(t, z).
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From the condition of the theorem, (5.25), and (5.14) it holds that

o~

M = —2k, M2 + % {(214;1 + 3ko)a2 — (6k1 + 21k2)@2]
kl ]CQ ~ 3 3
5 +5)m (D4 * (u—ug)® + po * (u+uy)?] (¢, q(t, x0)) (5.26)

> 9k, M2 + % [(le + 3ko)a? — (6ky + 21k2)ﬂ;2] .
Since u,m > 0, it is now clear that in order to arrive at a Riccati-type inequality M > M 2, one would
like to have (2ky + 3k2) — (6k1 + 21k2)@2/ﬂ2 > 0. From the assumptions on k; and ks we see that such
a condition can be written as,
Uy o 2k + 3k
u? — 6k, + 21]62’
which involves the competition between u and its derivative u, along the characteristics. In particular, a

finite-time blow-up of M can be realized if the ration |uz /u| stays reasonably big along the characteristics.
A quick computation shows that

(5.27)

—\ / —~ 2 ~\ 47
Uy 2 ]fl kQ kQ Uy 2]'{}1 Uy

_ = —_— — ) -k il i - =

(5) (5 +5) (0 3)(5) + % (5

2k1 + 3ko -

T T e (@ + w)ps * (u = ug)® + (@ = Uz)p— * (u+ uy)?]

. ki ko ko w\° 2k @4_
> =4+ =) - =)= = (=
2 |(5+3) - (0 5) (5) +5 (%)

(5.28)

_ kg | (|| (T 2kt 3k
3 m m 4k,

From (5.24), we have chosen the initial data so that

Uy (0) > max \/ 2k + 3k \/ 2k + 3ky
u - 4k, ’ 6k1 + 21ko '
Recall from (5.25) that |%| < 1. The assumptions on k; and ko ensure that the right-hand side of the

above is less than 1. Therefore % increases initially, and a continuity argument implies that it decreases
for later time, and hence

w o %k, + 3ky \/%1 + 3ks
— () >(=)(0) > .
(a>()—(a>()—max{\/ dky 6k1+21k2}

In particular we have

w2 2ky + 3ky
u? T 6k +21ky

(5.29)

Plugging this into (5.26) it yields that ]\7’(15) > —2k; M?, and thus J\//T(t) blows up in finite time with
an estimate of the blow-up time T as

A S ! ,
2k M (0) 2k1mo(w0)uo,. (o)

completing the proof of the theorem. O
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Remark 5.2. Using a similar argument one can prove the finite time blow-up for data such that mgy < 0,
mo(xo) < 0 and

o (50) < o(ze) - \/2k1+3k2\/2k1+3k2
0,210/ = Holo x Ak, oV 6k + 21k [

Recall from Lemma 5.2 that when m does not change sign, the true blow-up quantity is kymu,. In
the setting of Theorem 5.5 and Remark 5.2 where k1 > 0, we seek data which lead to mu, — —oc. Thus
using a similar argument we can handle the case when k; < 0, as indicated in the following corollary.

Corollary 5.6. Suppose that ki > 0, —2k1/9 < ko < 2k1/3. Let ugp € H*(R) for s > 5/2 and mg > 0.
Assume that there exists some point o € R such that mo(zg) > 0 and

2k + 3ks \/ 2k + 3ks
. < — . . .
g,z (70) < —up(wo) - max {\/ 1V 6k 1 21k } (5.30)

Then the corresponding solution u(t,z) blows up in finite time with an estimate of the blow-up time T*
as

1
2k1mg ($0)U0,x (xo) .

T <

Proof. We still consider the dynamics of M and look to have M — —oo in finite time.

M = 2k M2 4 T2 [ (2k1 + 3k2)i? — (6k1 + 21k
kl kz ~ 3 3
- (3 + 2) i [pg o (u— ug)® + p * (u+ )] (£, q(t, z0)) (5.31)

A~

< 9k, M2+ %

T
a2

—~2
(2ky + 3ks) — (6k1 + 21ky) = 1 .

Now the goal is to have (2k; + 3ko)u2 — (6k1 + 21ko)u,> < 0, that is,
Up? 2k + 3k

= a7 5.32
u? — 6ky + 21ks ( )
and this again leads to considering u, /4. From (5.28) we have
u u? 3 2 3
2k1 +3ko - . __ ~
— oz (@ )y (u—up)” + (0 = Ta)p— * (u+ ua)’] (5.33)
%1 5 | (W)’ U\ 2ky + 3ko
< —<u =] -1 =) ——
u u 4k
Therefore we know that when (5.36) is satisfied, @, /u decreases, and thus
w iy J 2R+ 3Ry 2k + 3k
@ ST Wk 6k 21k, )
This way we obtain the desired Riccati inequality for M
M'(t) < 2k, M?,
— 1
which implies that M (t) — —oo as t — T where T* < O

B 2k1m0 (l’O)UO,z (SC()) .

Remark 5.53. Note that when ks = 0, Eq. (1.11) becomes the mCH equation. Condition (5.24) becomes
up 2 (70) < —up(z0)/v/2, which agrees with the one obtained in [6, Theorem 1.1].
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5.4. Choice of Data and Blow-Up: 2k + 3k, = 0

In the previous section, we require that 2k; + 3ky # 0. In fact when 2k; + 3k = 0, the dynamics in
Lemma 5.3 can be simplified as

2
A _Zk /;37
(3 3 1u
_ ka\ 2,
w = — (k1 + 2) = —fk:luuf,
2 3 (5.34)
W = — (k1 s + Skoliin) i = — 2k (M — 1),

— — 4~ o~ 2.
M = -2k, M? + gklﬂumM = 2k M (m — Su) .

In particular, the convolution terms all vanish and the dynamics is completely local. However, the dy-
namics of M does not immediately lead to a Riccati type inequality. Instead, it involves the competition
between u and m.

5.4.1. The Case When k; < 0. Note from (5.34) that when k; < 0,
sign(a') = sign(uy), sign(u,’ ) = sign(). (5.35)
Using this we first derive the following theorem which requires m to be non-sign-changing.

Theorem 5.7. Suppose that ki < 0, 2ky + 3ks = 0. Let ug € H*(R) for s > 5/2. Assume that
(a) mg > 0 and there exists some point xg € R such that

4
mo(zg) >0, wugu(xo) >0, mo(xo) > guo(xo), or (5.36)
(b) mo <0 and there exists some point xo € R such that
4
mo(l‘o) < 07 ’Z,L07m(130) < 0, mo(xo) > gUo(on). (537)

Then the corresponding solution u(t,x) blows up in finite time with an estimate of the blow-up time T*

as
1

kimo(xo)uo,z (o)

Proof. Because k; < 0, the goal is to show that M — 400 in finite time.
(a) Since now m > 0, m > 0 and k; < 0, we know from (5.35) that @ > 0 and hence @, > 0. So
Uz (t) > 0 if 25 (0) > 0. Then the last equation in (5.34) suggests that in order to derive a Riccati type

inequality for M , one would like to have m — %ﬂ > em, for some € > 0, that is,
2

-
=2 - 5.38
u ~3(1—¢) (5:38)
Now we can check the dynamics of m /4.
~ / A~~~ A~ o~
m 2kimug (. o 1 __ 2kimuy (. 4
<a> = —# (mu —u? - 3ux2) > —%72 (mu - 3u2> , (5.39)

where we have used |u,| < u to obtain the last inequality.
Therefore /U increases when m > 34. So when m(0)

m
—(t) >
=) >
indicating that we may take ¢ = % in (5.38). Thus from the last equation in (5.34) we have

M > —k M2,
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leading to J\/I\(t) — +o0 as t — T where T* satisfies

1

_klmo(xo)uo,z(l“o)’

T <

proving part (a).
(b) Similarly as in (a), we can deduce from (5.37) that

M) <0, a(t) <a0) <0, ay(t)<u(0)<o0. (5.40)

To obtain a Riccati type inequality for M , it suffices to ask that m —
leads to (5.38) again.

Following the dynamics of m/u and keeping track of the signs as in (5.40) it follows that (5.39) still
holds. Hence the rest of the argument goes the same way as in (a). O

%ﬂ < em, for some € > 0, which

5.4.2. The Case When k; > 0. In this case it follows from (5.34) that
sign(a') = —sign(uy), sign(wy ) = —sign (7). (5.41)
The corresponding blow-up results are as follows.

Theorem 5.8. Suppose that kv > 0, 2k1 + 3ka = 0. Let ug € H*(R) for s > 5/2. Assume that

(a) mqg > 0 and there exists some point xg € R such that

4
mo(.’L‘Q) > 0, UO@(QL‘()) <0, mo(l‘o) > g’u,o(.fo), (542)

or
(b) mo <0 and there ezists some point xg € R such that

4
mo(l‘o) < O7 Uo,x(l‘o) > 0, mo(aio) < gUo(.ﬁo), (543)

Then the corresponding solution u(t,z) blows up in finite time with an estimate of the blow-up time T*
as
T < 1 (5.44)
= kimo(zo)uo z(z0) '

Proof. Tracking the dynamics of M and using (5.41) we see that to obtain a Riccati type inequality for

M it suffices to have (5.38) for some € > 0, for both cases (a) and (b). Thus computing (m/u)" and using
that |u,| < u we get

m\" kit (5 1 ity (. 4,
= = mu —u” — Jug | 2 ———5 mu— -u” |,
u u 3 U 3

which implies that

m
= >

increases if . (5.45)

SR

Q| W~

This in turn leads to M’ < —k:ll\/i 2 and hence the blow-up of M , with an estimate of the blow-up time
as (5.44).
Finally the theorem is proved by realizing that (5.45) is satisfied if (5.42) or (5.43) holds. O
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Appendix A. Computation for the derivation of the 17 equation

In this section we provide the details in deriving (2.9). Recall the asymptotic expansion of (2.3) at orders
O(etp?) in Sect. 2 for i + 2§ < 4. For the O(e3u!)-order approximation when 0 < z < 1, the following
system is obtained

—Pa1,e = —us1,e + U217 + (UooU21 + wioU11 + U20U01 )¢
Fwooto1,. + W1oU11,2,
—P31,2 = —Wa0.¢ + Wio,7 + UooWi0,e + U10Wo0,¢ + (WooW10)2, (A.1)

usle +wsr,. =0,

U3y, — Wwao,e = 0.

The boundary condition on z = 0 is w3; = 0, and on z = 1, the conditions read

_ 1,2
N31 = P31 + 121P00,z + 1MooP21,z + M11P10,z + N1oP11,z + 720P01,z + M01DP20,2 + 5M50P11,225
2
n
w31 + N21W00,z + NooW21,> + N1W10,2 + NoW11,z + N20Wo1,2 + No1W20,2 — M21,7 + 52 W11 22

= —M31,¢ + U21Moo,¢ + UooN21,6 + U20M01,¢ + U01M20,6 + U10M11,6 + U11M10,¢ + 100700, U11, 2 -

Next, we plug w0 = —21;0,¢(¢ = 0, 1, 2) which can easily be obtained from [30] into the second equation
in (A.1). It takes the form of

P31,2 = — ZU20,¢¢ + 2U10,¢7 + ZU00UI0,¢¢ + 2U10M00,66 — (WooW10) -

Taking the £ derivative of the above and integrating in z on [1, z], we know

z
D31,¢ =/ P31,¢d2’ + P31 glam1
1

722—1
2

( — Ug0,¢¢¢ + U10,e67 + (UooU10,¢¢ + Ulonoo,gg)g) + (woow10)el =1 (A.2)

1
— (woow10)e + 31,6 + (77107100,55 =+ MooMo,ec + 277007780,5 + 577807700,55)5.

On the other hand, we have ug1 . = wig,¢ and uq1,, = woo,¢ from [30]. Then the first equation in (A.1)
becomes

—P31,e = — U31,¢ + U21,r + (UooU21 + UroU11 + U20U01 )e + (WooWr0)e- (A.3)
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Combining (A.2) with (A.3), it leads to
0

= —uz1¢ + u21r + (UooU21 + UroUI1 + U20U01)e + N31,¢ + (Woow10)e|2=1

1
+ (Uloﬁoo,gg + 100M10,e¢ + 200M50,¢ + 5773()7700,&)5 (A.4)
22 -1

2

Now we will simplify Eq. (A.4). Because the fourth equation in (A.1) gives that

((— u20.ece + wr0.eer + (uooU10,c6 + Ur0700,¢¢)¢ ) -

2
z
uste = — 5 unoeee + 0e®31(7,&).

for some ®31(7,&) independent of z, the third equation in (A.1) and the boundary condition on {z = 0}
for ws; yield that

z z ZB
w31 = W31]2=0 +/ w3y d2' = —/ usy e dz’ = 5 Y206ee 20: P31 (T, §).
0 0

Hence, combining with the boundary condition for wz; on {z = 1}, we have
1 1
Gu20.cec = O P31(7, ) = =i + 7121, + Haele=1 — 5 (MoMo0,ce)e

where Hy := ugon21 + u21M00 + U20M01 + 01720 + w11M10 + u10m11. Therefore P31 (7, &) satisfies

1 1
O ®31(7, &) = 31,6 — M21,7 + Gu20.666 — Hyel.—1 + 5(77307700,55)5

This in turn implies that
22 1 1
U3le = MN31,6 — N2l,r — (2 - 6) ugo, e — Haglo=1 + 5(77807700,55)5-
It then follows from (A.4) that

1 1
§(U1077007701)g + (77007710,55)5 - 5(7700“10,55)5
5
+ 6(77107700’55) + Hyglo=1 — (Uoo /7711,7 df) — (upoHal2=1)¢ — /7711,77 d§ — Har|.=1  (A.5)
3

0 = 2721, + (u20m01 + MooM21 + U10M11)e —

1 1 1, 5 3 9
- gulo,ggr + §u2o,555 + (7700,57710,5)5 + ﬁ(noonoo,sg)é + 5(77007700,5)5,

where Hs := ugon11 + u11M00 + %10M01 + %o1710-
From [30], it is easy to see that

-2 (noo/ml,f dE){ (A.6)

1 13

3 5
= 3(mBom1 + Moomonor e — 1(77307)01)5 + 3(77007710,55)5 + ﬂ(nooﬁgo,g)g + 6(77807700,55)5-

and

/7711,77 dé- + HQ,T|Z:1

3 3 1 1 1 3
:Z(Ugoﬁm)g - 1(77307711)§ - ﬁnoomo,ggg - Emoﬂoo,ggg - 67710,&7 - 5(770077107701)6 (A~7)

13 53 3
+ E(ng(),gnoo)ﬁ + @(77807700&) - §77(2)07700,£££'
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To obtain an equation for 7 only, we substitute wig,ug1, u20,u21 and (A.6), (A.7) into (A.5) to get
that

1 3
0 = 21217 + 3(Moon21 + Mo17m20 + MoN1)e + 370,666 ~ 1(77307711 + 2101710M00) ¢

3 5 23
+ g(ﬁgonm)s + 5 (Motoo.gee + Moono.gee) + 75 (M00.eMmo.ee + 1o.gernose) (A.8)
21,

5 3,
+ T6(”700,5) - 1*6(77007700,57700,55) — Z(Uooﬁoo,ggg)-
The asymptotic expansion introduced before shows
1 1= Moo + €Nio + €220 + €200 + pnor + epmy + e2pnar + O(eh, 1?).
In view of [30], the 7,; equations are given by

2100, + 31M00M00,e = 0,

1
2101, + 3(n00M01)e + 370066 = 0,

1
2110, + 3(100M10)e — 1(7780)5 =0,

w

3 3
2120, + 3(100M20 + 577%0)5 - 1(77307710)5 + 3*2(7730)5 =0

3 3 23
2130, + 3(MooM30 + M10M20)e — 1(77807720 + 100730 + g(ngonlo)g + @(7780)5 =0,

1 3 23 5
2011,7 + 3(Moom1 + Momor)e + 3Mo.gee — 1(7730’701)5 + ﬂ(ngo,g)ﬁ + 6(77007700,555) =0,
and hence (2.9) is obtained.

Appendix B. Computation of the higher order terms in the u equation

In this section we provide the detailed computation for the asymptotic expansion of the surface Eq. (2.11)
when substituting the Kodama transformation (3.2). In Sect. 3 we already computed the coefficients in
lower order terms. In the following we continue to proceed to the higher order terms.

Step 4. We now consider O3z(ep1) term. Choose C' = A\gu2 + \sutiy,. From (3.6), the expression for u; is
given by

3 1
Up = g — SEUUy — 5(00(/1) + Oo(ep)) + M\ueOg (1) + O(2p, p?, €2).
This operation produces Osz(ep) of the form

ep(Cyp + Cp) — Mepu(2A2(Uga + Ugat))

= — 3\ g Uty )y — %)\562uuuacum - <g)\5 - 3)\1)\2) 2 pu(uty ) o
1 1
— Mgy (Oo(ft))e — >\55Mum§00(ﬂ) - (2>\5 - /\1/\2> epuOo (1) zo
A
— \gELU, (Oo(su) + 2)\1’&600(,&))1 — é’suumOo(eu) + As A utige 2O (1)
1
— (2)\5 — )\1)\2> epuOg(eft)zz + (A5 — 201 X)) A1 pu(uOg (1)) -

The ep-order term turns out to be

3 1 3 3 1 9
gl [(2)\2 + §A4 — 2V>\2) Ul gy + ()\1 + 5)\2 + §A3 — 2V)\2> uium} .
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Denote the coefficients of utz,, and Uy, by

quzmz = %AQ + %A4 — %VAQ,
Iuwua:z = )\1 + %)\2 + %Ag, - %I/}\Q.

The terms in asymptotic order are
O4(p?) :=03(1%), O4(e”) == 03(£”), Ou(e?) = O3(e"),
O4(e% 1) :=03(?11) — 3\4e? g (utiy ) — g)\552uuumum — (3)\5 — 3)\1)\2> 2 pu(utty ) g,
1 1
Ou(en) =Oale) ~ Mz (On(10)s = N5 On() ~ 335 = Mde ) p(Oalj)
A
O4(E2u2) :=Og(€2u2) — Mepug (Oo(ep) + 2M1eu0g (1)) — é’euumOo(Eu) + )\5>\1€2uuum00(,u)
1
— (2>\5 — Al)\2> E[LU(O()(&M))xz + (>\5 — 2)\1)\2))\1€2ILLU(UOO(IM))I£.
Step 5. Next we consider £3-order which has the form
1
O4(e%) = 500(53) — Meu0g(e?) — (6A3 — AN\ e3u? (uuy + uuy) — (Z)\3 — 6/\§> 3udu,
_ (3 1 1 3,4 30,4 4
= (gha+ gdat+ Jhdr ) € (uh)e + 200 (u")e + (uh)y),
where we have replaced u; by —u, — %Eu%. The coefficient is denoted by
3 1 1
I(u4)z = g)\g —+ §A2 —+ Z)\lAl. (B2)
Also, at e*-order we have
1
Os(c?) := 500(54) — MeuOy(e3) — (;Ag — 2X;’) e2u?0p(e?)—12 o v u,y .
Since
A

Op(e) = ¢* </\0 F A AN+ AN+ ?8 + A1)\3) (u®),,
we can simplify Oy as

1

05(64) = 500(64) — /\15’&00(53) — (2)\3 — 2/\%) €2u200(62)—12/\0£4u4u$

(= 1900 + 5A1 + 5AIN] + 5Ax\1 + As + 541 3)e*utu,

DN | =

3
— )\184(12/\3 + 6)\% +4A1 M + Ag)u‘lum — <2)\3 — 2)\%) (9)\1 + Al)u4uw

1 3, 49 A 3
- 545( — 100 — $A A+ - S+ 24 - 51)\1/\3)(u5)1.
Then
1 3., 49 As 3
Ty, = 35 (—19)\0 SIS - S 240 - 51/\1)\3> , (B.3)

and the terms which involve p remain the same.
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Step 6. Finally, we consider the e2p-order which has the form
2 1 2 2 (3 2) 2
04(6 ,u) = 500(5 ,u) — )\16’&00(5#) —u 5)\3 —2X\ ) e Oo(,u) + )\QVILL(FE2)QW
2 3. o 3 2
= 3\se” pug (uty), — 5)\55 U Uy — 5)\5 =3\ | e pu(uty) ga

We choose G' = A\yuu? + A\gu?u,, to keep the scaling in the equation. From (3.6), the expression for u; is

given by u; = —uy — Aopt(Uggr + Uget) — = WUzre. We eliminate u; by (3.6) itself, namely

6
1
Up = — Uy — épumz + O(ep). (B.4)
Thereby, there appears the relation
2 Iy 299 1. 29 1 2.2 2 Ly 29
€ :U/(Ga: + Gt) = _6)\75 P U Upgr — g)\7€ P UU Ugzre — EASE MU Upzrrs — g)\BE B Uz Uz g -

Hence, $O00(c%p) takes the form
1 2 v_ 1o 3 3 5 2 3 5 2 3 2 2
200(6 ) = 65 A3 (u?) pra + 25 pAg(uus)z + 26 s (U Uy ) + 2)\2)\15 (U U)o
1 1 1
+ 562/1)\2141(’&211@95)@ + EQM)\lAg(uui)x + §A4)\152uu2uzm + §E2MA1A4U(U2)1M
1
2

1 1 1
A5€2,uuumum + §A6£2,uu2umm + §A7€2,uui — f)\7€2,u2uiumm

- 6

1 1 1
- 7)\752,“2’“”1”9::1’301 - 7)\852/142u2uz:m:x:1: - 7)\852M2uua:xu:czm-

3 6 3

We now deal with —A\jueOg(ep). By definition C' = A\qu2 + Asuuy, and (B.4), it follows that

2 2 2 1 1 1 2
_2)\15 ,U/U(C:r + Ct) = - _§>\1)\4uuxuxzza: - 6)\1)\5uuxzuzxm - 6)\1)\5114 Ugpzzze | -
Then we know
2 6 2 2
—MueOg(ep) = — Me‘p g)q + 33Xy + A3 | uupUys + 5)‘1 + 3N + Ay | U Ups

1 1 1
+ 52/1'2 (3)\1)\4uuzurxmz + 6)\1)\5uumxuzzm + 6)\1A5u2umzmxr) .

Similarly, we have

3 1 2 1 2
- (2)\3 — 2)3) 52u200(u) = — <2/\3 - 3)\%) 52uu2umz — A9 <2)\3 — 3)\%) 52u2u2umzm,

and Aovpu(Fe2)an = _)\2V52,u(%)‘1 + %)(u?))wzz
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Putting the above together, we have

1 3 5 3 3
Os(e%p) = 652u)\3(u Vozs + 25 2pdg(uu?), + 26 u/\g,(uzum) + f)\g)quu(uQum)w

1 1
+ §€2MA2A1(u2um) +e2uh Az (uu?), + A4)\15 P gy + 25 2 Agu(u?) pn

1
+ §A552,uuuxum + 7A6€2,uu2umx + §A75 pus — A’ ,u(g)\l + 3N + Az)utg g,
1 2
_ )\152’u, (3)\1 + 32 + A4> U Upgpy — (2)\3 — 3)\?) 52uu2umm

1 A
— )\2V€2M (2)\1 + 61> (u3)xxm

3 3
— 3)\452uu1(uum)z — §A552uuumum — <2)\5 — 3)\1)\2) 52uu(uum)m
More precisely, the coefficient of these terms are

3 A 1 1
L, = 5(1=)de + 71(1 — Vg + 5 Ak + 5 As,

1
quﬂhr = 33 — 35 — 9(1 — V)/\Q/\l + Al(l — 31/)/\2 + (A3 + 3A4))\1 + §A5 — 2)\%, (B5)
1 3
Iui = §A7 + A3 — )\21/(3)\1 + Al) — 5)\4 + Az,
In the asymptotic order, we have
2 1 2
O5(n”) 1= 500(k") + Aovia(EFy)oa,
1

Os(ep®) := 500(5#2) — MeuOo (%) + Aovpi(Fep) e

1 1
— Mepug (Oo(1)) e — /\5€uum§Oo(u) - (2/\5 - >\1>\2> epuOo () 2z

1 3
Os(£2u?) = iOo(ez,uz) — AeuOg(ep?) — (2)\3 — 2)@) e2u? (0o (11%) + Aovp(Frzy,) za

A
— é’suumOo(eu) + As A\ U2 100 (1)

1
— (2)\5 — )\1)\2> epu(Oo () ze + (A5 — 2X1 Xo) M2 pu(uOo (1)) we

— Mepg (Ooep) + 221ue00 (1))«

1 1 1 1 2
+ 52,“2>\1 <3)\4uuzummmz + 6>\5uummumzfc + )\5’[1, umzmmm) - )\2 (2)\3 - 3>\§> 52ﬂ2u2uzzzmx

1
2 2 2 2 2 2 2,2
— 6)\75 /1 UgUggg — —ASE“ U U Uy — =€ UTASUULp Ug gy -

>\ xWrrrxx —
76 /l UULU 6 3

3

This procedure can be continued successively, and finally the coefficients of the terms at the order of
e2u?-order are obtained as

IUQ’U,J;L‘L_L‘L = Cly qumuxmm = )\8 - 6/\10 - 4141)\6 + 02,
I, = A7+ As — 104126 — 30A\1 A6 — 6)g + C4, (B.6)

Uz Uzzx

9 5
Iuﬂ"u?ca‘ = 2X\7 + Ag — 15A1 g — 45106 — 5)\9 — ?)\11 + Cs,
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where C;(i = 1...5) are constants depending on Ay, ..., A5 and v, and satisfy the following:
01 0 -6 A7 Lynigugyn, — C2 + 4416
11 0 —15 A . quxmumm — C3+ 1041 )¢ (B 7)
11-6 0 Ag o Iuiumz —Cy+ (30)\1 + 10A1)>\6 ’
21-3 0 Ao Lwz, — Cs + 001 + (45X + 154;) A
01 0 -6
. 110 =151 . . . .
Note that the 4 x 4 matrix 11-6 0 is invertible. Thus, for any choice of parameters and any
21-3 0

choice of Ag, A\11, there exists unique tuple A7, A\g, Ag, A1g solve the above equation.
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