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Abstract: This paper studies the nonlinear stability of capillary-gravitywaves propagat-
ing along the interface dividing two immiscible fluid layers of finite depth. Themotion in
both regions is governed by the incompressible and irrotational Euler equations, with the
density of each fluid being constant but distinct. A diverse collection of small-amplitude
solitary wave solutions for this system have been constructed by several authors in the
case of strong surface tension (as measured by the Bond number) and slightly subcritical
Froude number.We prove that all of thesewaves are (conditionally) orbitally stable in the
natural energy space. Moreover, the trivial solution is shown to be conditionally stable
when the Bond and Froude numbers lie in a certain unbounded parameter region. For
the near critical surface tension regime, we prove that one can infer conditional orbital
stability or orbital instability of small-amplitude traveling waves solutions to the full
Euler system from considerations of a dispersive PDEmodel equation. These results are
obtained by reformulating the problem as an infinite-dimensional Hamiltonian system,
then applying a version of the Grillakis–Shatah–Strauss method recently introduced in
Varholm et al. (Commun Pure Appl Math 73:2634–2684, 2020). A key part of the anal-
ysis consists of computing the spectrum of the linearized augmented Hamiltonian at a
shear flow or small-amplitude wave. For this, we generalize an idea used by Mielke
(R Soc Lond Philos Trans Ser A Math Phys Eng Sci 360:2337–2358, 2002) to treat
capillary-gravity water waves beneath vacuum.
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1. Introduction

We consider the classical problem of determining the evolution of a free boundary divid-
ing two superposed incompressible, inviscid, and immiscible fluids under the influence
of gravity. This situation arises in countless applications, with a particularly important
example being internal waves propagating along a pycnocline or thermocline in the
ocean. Recent years have seen enormous progress made in understanding the Cauchy
problem for this system, and there is now a robust (local) well-posedness theory. In
parallel, a large body of work has established the existence of myriad traveling wave
solutions. Far less is known about the stability of these waves. While many authors have
addressed the spectral or linear stability of interfacial waves, nonlinear results are mostly
limited to dispersive model equations such as Korteweg–de Vries (KdV). In this paper,
we prove a number of theorems on the (conditional) orbital stability of small-amplitude
traveling wave solutions to the full system when the surface tension is strong in a sense
to be quantified shortly.

Mathematically, the problem is formulated as follows. Fix Cartesian coordinates
(x, y) so that the wave propagates in the x-direction with gravity acting in the negative
y-direction. Because we are most interested in the motion of the boundary, we suppose
that the fluid domain is confined to a channel with rigid walls at heights y = ±d± for
fixed d± ∈ (0,∞). At each time t ≥ 0, the interfaceS = S (t) is taken to be the graph
of an unknown smooth function η = η(t, x). For small-amplitude waves, this choice
incurs no loss of generality. Then, the upper layer inhabits the (time-dependent) set

�+ = �+(t) :=
{
(x, y) ∈ R

2 : η(t, x) < y < d+
}

,

while the lower layer is given by

�− = �−(t) :=
{
(x, y) ∈ R

2 : −d− < y < η(t, x)
}

.

Wewrite�(t) := �+(t)∪�−(t) to denote thefluiddomain.Our focuswill be on spatially
localized waves for which η(t, · ) decays at infinity. See Fig. 1 for an illustration.

Assuming that the flow in each region is irrotational and incompressible, the velocity
field in �±(t) is then given by ∇�±, for some function �± = �±(t, x, y) called the

Fig. 1. Configuration of the internal wave system. The unshaded fluid region �+(t) has density ρ+ while the
darker shaded region�−(t) below is of density ρ− ≥ ρ+. Their interfaceS (t) is a free boundary given by the
graph of η = η(t, x). In the far field, the widths of the upper and lower layer limit to d+ and d−, respectively
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velocity potential. We take the density in �±(t) to be constant and denote it by ρ± > 0.
In order to ensure that heavier fluid elements do not lie above lighter elements, it is
required that ρ+ ≤ ρ−. The case ρ+ = 0 formally corresponds to a single fluid beneath
vacuum. All of our analysis extends to this regime with only superficial modifications
to the arguments.

The evolution of the system is governed by the incompressible irrotational Euler
equations with a free boundary. In the bulk, the conservation of momentum has the
simple expression

��± = 0 in �±(t). (1.1a)

On both the rigid and moving boundary components, we have the kinematic condition
{

∂tη = −η′∂x�− + ∂y�− = −η′∂x�+ + ∂y�+ on {y = η(t, x)}
∂y�± = 0 on {y = ±d±}, (1.1b)

while onS (t) the dynamic or Bernoulli condition is imposed:

�ρ∂t� +
1

2
ρ|∇�|2 + gρη� + σ

(
η′

√
1 + (η′)2

)′
= 0 on {y = η(t, x)}. (1.1c)

Here � · � := ( · )+ − ( · )− denotes the jump of a quantity over the interface, g > 0 is
the gravitational constant, and σ > 0 is the coefficient of surface tension. The last term
on the right-hand side above is the signed curvature of the interface and represents the
influence of capillary effects. In (1.1b), we are enforcing the continuity of the normal
velocity across the interface, while (1.1c) arises from the Young–Laplace law for the
pressure jump. Also, here and in what follows we will mostly adhere to the convention
that primes denote x-derivatives of functions depending on (t, x), while ∂x is reserved
for functions of (t, x, y) or in defining operators.

Rather than work with the full velocity potential �±, which is defined on a moving
domain, it is advantageous to consider its restriction to the free boundary:

ϕ± = ϕ±(t, x) := �±(t, x, η(t, x)).

Through the use of nonlocal operators, it is possible to reformulate (1.1) in terms of the
surface variables (η, ϕ+, ϕ−); see Sect. 3.1.

1.1. Informal statement of results. Traveling or steady solutions of (1.1) are waves of
permanent configuration that appear independent of time when viewed in a moving
reference frame. Specifically, they exhibit the ansatz

η(t, x) = ηc(x − ct), ϕ±(t, x) = ϕc±(x − ct),

for some traveling wave profile (ηc, ϕc
+, ϕ

c−) and wave speed c ∈ R.
In the gravity wave case σ = 0, it is known that there exist solitary waves [4,11,34,

45], for which ηc decays as |x | → ∞; periodic waves [4,5], for which ηc is periodic in x ;
and fronts [5,20,21,44,45], for which ηc has distinct limits upstream and downstream.
Without surface tension, however, the dynamical problem is ill-posed [39], so to study
stability we always take σ > 0. Rigorous existence results for small-amplitude periodic
waves (including those with vorticity) were obtained in this regime by Le [41]. Solitary
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Fig. 2. Bifurcation diagram for internal capillary-gravity waves. Region A is the lighter shaded area that lies
above 
1 and to the right of 
2; this is where one has monotone solitary waves. Region B consists of all (β, λ)

lying above 
1 and to the right of 
3. Finally, Region C is the darker shaded set neighboring 
2. Explicit
parameterizations for these curves can be found in (3.39) and (3.49)

internal capillary-gravity waves were constructed by Kirrmann [37] and Nilsson [47];
the stability of these solutions is the main subject of the present paper. We also note that
analytical and numerical investigations of this regime have been performed by Laget
and Dias [38].

The existence and qualitative properties of traveling internal waves are determined
by four dimensionless parameters. The primary two are the Bond number β and inverse
square Froude number λ given by

β := σ

d+ρ−c2
, λ := −g�ρ�d+

ρ−c2
. (1.2)

The Bond number measures the strength of the surface tension, while λ describes the
balance between kinetic and potential energy. One can think of the Froude number 1/

√
λ

as a non-dimensionalizedwave speed, hence largeλ corresponds roughly to slowmoving
waves.

The dispersion relation for internal capillary-gravitywaves (rescaled to dimensionless
variables) is given by

∑
±

ρ±
ρ−

ξ coth

(
d±
d+

ξ

)
= λ + βξ2. (1.3)

This results from linearizing the problem at the trivial solution (η, ϕ+, ϕ−) = (0, 0, 0),
then looking for eigenvalues of the form iξ . If ξ is a root to (1.3), the linearized problem
admits a plane wave solution with η = exp (iξ(x − ct)). After some algebra, it can
be shown that there are three bifurcation curves 
1, 
2, 
3 that organize the (β, λ)-
plane into regions where the configuration of the spectrum near the imaginary axis is
qualitatively the same; see Fig. 2. They meet at the point (β0, λ0), which is given by

β0 := 1

3

(
ρ+

ρ−
+
d−
d+

)
, λ0 := ρ+

ρ−
+
d+
d−

, (1.4)
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and there we find that ξ = 0 is a root of (1.3) with multiplicity 4. We say that β0 is the
critical Bond number separating the weak and strong surface tension regimes.

In this regard, the internal wave system is quite similar to that of water waves beneath
vacuum; see, for instance, [2,16,17,25,30,32,33]. However, there are two additional
parameters to consider: the ratios of the fluid densities � and far-field layer heights h,
defined by

� := ρ+

ρ−
, h := d−

d+
. (1.5)

These are specific to the two-fluid problem and allow for a surprisingly rich variety of
traveling waves. For example, it has been proved by Nilsson [47] and Kirrmann [37] that
for (β, λ) in the Region A illustrated in Fig. 2, there exist six qualitatively distinct types
of small-amplitude waves. When � − 1/h2 is negative and O(1) as λ ↘ λ0, they find
waves of depression (that is, η < 0) that are to leading order KdV solitons. These are the
only kind of wave possible in the corresponding parameter regime for the one-fluid case,
which is consistent with simply taking ρ+ = 0. On the other hand, when � − 1/h2 > 0,
there are internal waves of elevation (η > 0) whose interface is a perturbed KdV soliton.
Moreover, in the regime |� − 1/h2| � |λ − λ0|1/2 � 1, they construct traveling waves
that are Gardner solitons to leading order. This furnishes four types of solutions, with
waves of depression and elevation for both signs of � − 1/h2. A fuller account is given
in Sect. 3.5.

Our first theorem, stated informally for the time being, establishes the nonlinear
stability of all these waves in the orbital sense.

Theorem 1.1 (Strong surface tension). Every sufficiently small-amplitude solitary inter-
nal wave (ηc, ϕc

+, ϕ
c−) with (β, λ) in Region A and 0 < λ − λ0 � 1 is conditionally

orbitally stable in the following sense. For all R > 0 and r > 0, there exists r0 > 0
such that, if (η, ϕ+, ϕ−) is any solution defined on a time interval [0, t0) that obeys the
bound

sup
t∈[0,t0)

(
‖η(t)‖H3+ + ‖ϕ+(t)‖

Ḣ
5
2 +∩Ḣ

1
2
+ ‖ϕ−(t)‖

Ḣ
5
2 +∩Ḣ

1
2

)
< R, (1.6)

and for which the initial data satisfies

‖η(0) − ηc‖H1 + ‖ϕ+(0) − ϕc
+‖Ḣ 1

2
+ ‖ϕ−(0) − ϕc−‖

Ḣ
1
2

< r0, (1.7)

then

sup
t∈[0,t0)

inf
s∈R

(
‖η(t, · − s) − ηc‖H1 + ‖ϕ+(t, · − s) − ϕc

+‖Ḣ 1
2

+‖ϕ−(t, · − s) − ϕc−‖
Ḣ

1
2

)
< r. (1.8)

Here Hs(R) and Ḣ s(R) are the standard inhomogeneous and homogeneous Sobolev
spaces respectively.

Remark 1.2. The bound in (1.8) controls the distance between (η, ϕ+, ϕ−) and the family
of translates of the steady wave. This is natural given that the underlying system (1.1) is
translation invariant, and indeed it is necessary even for model equations such as KdV.
Local well-posedness for the Cauchy problem at the level of regularity represented by
the norm in (1.6) has been proved by Shatah and Zeng [52,53]. On the other hand, we
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will show in Sect. 3.3 that the lower regularity norm in (1.7) and (1.8) is equivalent to
the physical energy. We also emphasize that because r is independent of t0, this result is
much stronger than continuity of the data-to-solution map. For a global-in-time solution,
it gives orbital stability in the classical sense.

Our next result concerns uniform flows for which the interface is perfectly flat and the
velocity is purely horizontal with the same constant value c in both layers. In a reference
framemovingwith thewave, it therefore appears quiescent.While linear stability criteria
for this regime are classical (see, for example, [26]), as far as we are aware, this is the
first nonlinear stability result.

Theorem 1.3 (Uniform flow). The laminar solution (ηc, ϕc
+, ϕ

c−) = (0, 0, 0) is condi-
tionally stable in the sense of Theorem 1.1 provided that (β, λ) lies in Region B.

Lastly, we consider the critical surface tension case where (β, λ) lies in Region C
near (β0, λ0); see Fig. 2. It is well-established that in this regime, the dynamics of
sufficiently shallowwaves are captured by a fifth-order nonlinear dispersive PDE similar
to the Kawahara equation [10,36]. For spatially localized traveling waves, one can then
integrate to obtain a fourth-order ODE

Z ′′′′ − 2(1 + δ)Z ′′ + Z − Z2 = 0, (1.9)

where we have scaled out all but the non-dimensional parameter δ = δc, which is deter-
mined explicitly by the wave speed via (3.46). The ODE (1.9) boasts an extraordinarily
large variety of solutions that are homoclinic to 0 (see, for example, [17]). For this paper,
we focus on the family {Zδ} of “primary homoclinic” orbits that are even, unimodal,
and exponentially localized. These primary homoclinic solutions have been rigorously
constructed for δ ≥ 0 and−1 � δ < 0, and numerically observed to persist as δ ↘ −2.
On the other hand, it is proved in [12] via variational methods that homoclinic solutions
exist for δ > −2. Nilsson [47] shows that for every |δc| � 1, there exists a traveling
wave (ηc, ϕc

+, ϕ
c−) solution to (1.1) with ηc given to leading order by a rescaling of Zδc .

The next result states that the orbital stability or instability of these solutions to the full
internal wave problem can be determined by considerations of the far simpler model
equation (1.9).

Theorem 1.4 (Critical surface tension). Let {Zδ} be the family of primary homoclinic
solutions to (1.9) and suppose that (β, λ) lies in Region C with |δc| � 1. Then the
corresponding traveling wave solution (ηc∗ , ϕc∗

+ , ϕ
c∗− ) to (1.1) is conditionally orbitally

stable provided that the function

c �→ sgn c
∫

R

Z2
δc
dx (1.10)

is strictly increasing at c∗, and it is orbitally unstable if this function is strictly decreasing
there.

We remark that this theorem is new even for the one-fluid case. Physically, the integral
in (1.10) represents the momentum carried by the wave; whether it is increasing or
decreasing as a function of δ has been investigated by many authors but remains open
in the present case. Under conditions analogous to Theorem 1.4, Levandosky [42,43]
proves a nonlinear stability/instability result for ground state solutions to a family of
fifth-order dispersive PDEs that includes the Kawahara equation. Treating Kawahara
orbits as constrained minimizers, Posukhovskyi–Stefanov [48] establish a criterion for
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spectral stability. On the other hand, for δ = 1/6, the primary homoclinic solution to
(1.9) has the explicit formula

Z 1
6

= 35

24
sech4

(√
6

12
·
)

,

and by exploiting this, (1.10) can be evaluated directly for various choices of the dimen-
sional parameters [1,24,35]. Although this value of the parameter δ falls outside range
considered in [47], the hydrodynamic relevance of Z1/6 has been justified in [54].Numer-
ical evidence in [31] suggests that stability holds for the Kawahara equation with δ > 0,
but analytical results are not currently available. Through Theorem 1.4, progress on this
question for the model equation can immediately be translated to (1.1).

1.2. Idea of the proof. It is well known that the internal wave problem (1.1) can be
formulated as an abstract Hamiltonian system of the general form

∂t u = JDE(u),

where u = u(t) is an unknown related to (η, ϕ+, ϕ−), the Poisson map J is a skew-
adjoint operator, and E is a conserved energy functional. The translation invariance of
the system gives rise to a second conserved quantity, the momentum P . A traveling
wave solution with wave speed c is in fact a critical point of the augmented Hamiltonian
Ec := E − cP .

It is therefore natural to adopt a constrained variational viewpoint, attempting to show
that the waves are minimizers of the energy on level sets of the momentum. A serious
challenge that arises in many applications, including the present one, is that D2Ec has an
unstable direction as well as a 0 eigenvalue due to translation invariance. This situation
can lead to either stability or instability, and a deft use of the conserved quantities is
necessary to discern which occurs for the waves in question. Benjamin [7] pioneered
this approach in his study of the orbital stability of KdV solitons. A systematic and
greatly expanded version was later developed by Grillakis, Shatah, and Strauss [27].
Now called the GSS method, it is one of the primary tools in nonlinear stability theory
for Hamiltonian systems.

Historically, though, GSS has not been especially successful in treating the full water
wave problem. Indeed, (1.1) exhibits a host of features that make it highly resistant
to naïve applications of systematic methods. For example, the theory in [27] requires
that J be an isomorphism, which does not hold here as we show in Sect. 3.3. It is also
formulated under the hypothesis that the Cauchy problem is globally well-posed in the
natural energy space. At present, (1.1) is only known to be locally well-posed and this
assumes considerably more smoothness. Because the water wave problem is quasilinear,
it is not expected to generate a flow on the energy space. Worse still, the corresponding
functional E is not even differentiable at this level of regularity.

Seeking to address these issues, Varholm et al. [55] obtained a variant of the GSS
method that weakens the above hypotheses. In place of the bijectivity of J , it essentially
requires only that J is injective with dense range. The functional analytic framework
is also designed to accommodate the gap in regularity between the energy space and
the smoothness needed for local well-posedness. In this paper, we use the relaxed GSS
method to attack the water wave problem directly and prove Theorem 1.1 and Theo-
rem 1.4. A simpler, self-contained argument suffices for Theorem 1.3 as the augmented
linearized Hamiltonian has no unstable directions in that case.
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The most challenging step in this procedure is computing the spectrum of the lin-
earized augmented Hamiltonian at a traveling wave. For this, we generalize a technique
introduced by Mielke [46] in his work on solitary capillary-gravity waves in a single
finite-depth fluid and with strong surface tension. Briefly, this involves using the kine-
matic condition to eliminate ϕ± and obtain an auxiliary functional acting only on η.
Conjugating by a rescaling operator, a delicate argument shows that for sufficiently
small-amplitude waves, the spectrum coincides to leading order with the linearization of
a dispersive model equation (steady KdV or Gardner in the setting of Theorem 1.1 and
steady Kawahara for Theorem 1.4). Here it is important to note that these calculations
are substantially more difficult in the internal wave setting than for a single fluid: the
nonlocal operators introduced in the Hamiltonian reformulation are more complicated,
and theymust be expanded to higher order. On the other hand,Mielke proves conditional
orbital stability using an ad hocmodification of the GSSmethod. Because we have at our
disposal the general theory from [55], we are able to streamline this part of the argument.

Let us also mention an alternative variational approach to proving nonlinear stability
of water waves due to Buffoni. Roughly speaking, this consists of a penalization scheme
followed by a concentration compactness argument to directly construct traveling waves
as constrained minimizers of the energy with fixed momentum. In some circumstances,
one can then apply a soft analysis argument of Cazenave and Lions [18] to infer so-called
(conditional) energetic stability, meaning that the set of constrained minimizers is stable
in the energy norm. This differs from the orbital stability we obtain unless one also has
uniqueness of the minimizer up to translation, which is typically not available. Through
this variational method, Buffoni proved the existence and stability (in the above sense)
of solitary waves in the single-fluid case with strong surface tension [13]. He also gave
partial results concerning waves with weak surface tension and in infinite depth [14,15].
Pushing significantly further the technique, Groves and Wahlén [28,29] subsequently
obtained complete versions of these theorems, and also treated the case of constant
vorticity [30].

1.3. Plan of the article. In Sect. 2, we briefly recall the hypotheses and conclusions of
the general theory in [55] to better motivate the analysis in the rest of the paper.

In Sect. 3, we turn to application at hand, reformulating the internal wave problem
(1.1) as an abstract Hamiltonian system in the style of Benjamin and Bridges [8]. A num-
ber of hypotheses necessary to apply the general theory in [55] are then be verified. We
also recall the existence theory due to Nilsson [47], recasting it within the Hamiltonian
framework of the present paper.

Section 4 is devoted to computing the spectrum of the linearized augmented Hamil-
tonian at a uniform flow or small-amplitude traveling wave. As mentioned above, our
calculation is patterned on the basic approach of Mielke [46], but with many additional
challenges owing to the more complicated physical setting.

Themain results are then proved in Sect. 5. Thanks to the general theory, this requires
us only to determinewhether the so-calledmoment of instability, a scalar-valued function
of the wave speed, is strictly convex or concave. This is accomplished by exploiting a
long-wave rescaling and the leading-order form of the waves known from the existence
theory.

Finally, “Appendix A” contains some elementary calculations that play an essential
part in the spectral computation.
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2. General Theory

For the convenience of the reader, this section gives a self-contained presentation of the
relaxed GSSmethod introduced in [55] that will be the main abstract tool for the proof of
Theorems 1.1 and 1.4. We do not need the full strength of this result, however, because
our Poisson map will be state independent and the symmetry group is linear rather than
affine. We are therefore able to simplify the statement in several places.

2.1. Assumptions. As we shall see in Sect. 3, it will be necessary to work with a scale
of spaces

W ↪→ V ↪→ X,

where X is a real Hilbert space, while V and W are reflexive Banach spaces. (For our
application, in fact all three of these will be Hilbert spaces, but that is not necessary.)
The inner product on X will be denoted by ( · , · )X, and the corresponding norm by
‖ · ‖X. Likewise, let ‖ · ‖V and ‖ · ‖W be the norms for V and W, respectively. We write
X

∗ for the (continuous) dual of X, which is naturally isomorphic to X via the mapping
I : X → X

∗ taking u ∈ X to (u, · )X ∈ X
∗. We will not make this identification

here, but rather use I explicitly. On the other hand, we will simply identify X
∗∗ with X,

and likewise for V and W. The pairing of X and X
∗ we denote by 〈 · , · 〉X∗×X, while

〈 · , · 〉W∗×W is the pairing between W
∗ and W; when there is no risk of confusion, we

will omit the subscript.
Intuitively, X is the energy space for the system under consideration. This is where

the Hamiltonian structure will be formulated, and is the natural setting for analyzing the
spectrum. On the other hand, V is a space where the conserved quantities are smooth.
Finally, we think of W as a “well-posedness space”, with the norm coming from higher-
order energy estimates used to prove that the Cauchy problem is at least locally well-
posed in time. The norm onW also plays the secondary role of allowing us to get control
over V via interpolation. More precisely, we require the following:

Assumption 1 (Spaces). Let X, V, and W be given as above. Assume that there exist
constants θ ∈ (0, 1] and C > 0 such that

‖u‖3
V

≤ C‖u‖2+θ
X

‖u‖1−θ
W

(2.1)

for all u ∈ W.

It is often necessary to restrict attention to some smaller subset of these spaces in
order to ensure that the problem is well-defined. For the internal wave problem that we
will consider, it is necessary that the interface remains away from the upper and lower
rigid boundaries. For that reason, we introduce an open set O ⊂ X, where solutions
must live.

We endow X with symplectic structure in the form of a Poisson map J : Dom J ⊂
X

∗ → X which is required to satisfy the following hypotheses.

Assumption 2 (Poisson map).

(i) The domain Dom J is dense in X
∗.

(ii) J is injective.
(iii) J is skew-adjoint in the sense that

〈Jv, w〉 = −〈v, Jw〉 for all v,w ∈ Dom J.
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We are interested in abstract Hamiltonian systems taking the form

∂t = J DE(u), u|t=0 = u0, (2.2)

where E ∈ C3(O∩V; R) is the energy functional. In addition to the energy, we suppose
that there is a second conserved quantity P ∈ C3(O ∩ V; R), which for our application
will be the (linear horizontal)momentum. In order to state what it means to be a solution
of (2.2), and to work with it in a meaningful way, we need to be able to view the Fréchet
derivatives DE(u) and DP(u) as elements of X

∗ rather than V
∗.

Assumption 3 (Derivative extension). There existmappings∇E,∇P ∈ C0(O∩V; X
∗)

such that∇E(u) and∇P(u) are extensions of DE(u) and DP(u), respectively, for every
u ∈ O ∩ V.

We then say that u ∈ C0([0, t0);O ∩ W) is a solution of (2.2) on the interval [0, t0)
if

∂t 〈u(t), w〉 = − 〈∇E(u(t)), Jw〉 for all w ∈ Dom J, (2.3)

is satisfied in the distributional sense on (0, t0), the initial conditionu(0) = u0 is satisfied,
and both E and P are conserved.

As we have mentioned, the internal wave system is invariant under translation in
the x-direction. More generally, we can consider the situation where the system (2.2)
is invariant with respect to a symmetry group. Specifically, we assume that there exists
a one-parameter family of linear maps T (s) : X → X having the properties described
below.

Assumption 4 (Symmetry group). The symmetry group T ( · ) satisfies the following.
(i) The neighborhood O, the subspaces V and W, and I−1 Dom J are all invariant

under the symmetry group.
(ii) T comprises a flow on X in the sense that T (0) = IdX and T (s + r) = T (s)T (r)

for all s, r ∈ R. Moreover, T (s) is unitary on X and an isometry on V and W for
all s ∈ R.

(iii) The symmetry group commutes with the Poisson map in the sense that

J I T ( · ) = T ( · )J I.
(iv) The infinitesimal generator of T is the linear mapping

T ′(0)u = lim
s→0

(s−1(T (s)u − u)),

with dense domain Dom T ′(0) ⊂ X consisting of all u ∈ X such that the limit
exists in X. Similarly, we may speak of the dense subspaces Dom T ′(0)|V ⊂ V and
Dom T ′(0)|W ⊂ W on which the limit exists in V and W, respectively.
We assume that ∇P(u) ∈ Dom J for every u ∈ Dom T ′(0)|V ∩ O, and that

T ′(0)u = J∇P(u) (2.4)

for all such u.
(v) The subspace Dom T ′(0)|W ∩ Rng J is dense in X.
(vi) For all u ∈ O ∩ V, the energy is conserved by flow of the symmetry group:

E(u) = E(T (s)u), for all s ∈ R. (2.5)
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We say that u ∈ C1(R;O ∩ W) is a bound state of the Hamiltonian system (2.2)
provided that it is a solution of the form

u(t) = T (ct)Uc,

for some c ∈ R and Uc ∈ O ∩ W. We will also refer to Uc itself as a bound state. For
the internal wave problem where T represents translation, these are exactly the traveling
waves we wish to study.

Assumption 5 (Bound states). There exists a one-parameter family of bound state solu-
tions {Uc : c ∈ I }, where I ⊂ R is a non-empty open interval, to the Hamiltonian
system (2.2). The family enjoys the following properties.

(i) The mapping c ∈ I �→ Uc ∈ O ∩ W is C1.
(ii) For all c ∈ I ,

Uc ∈ Dom T ′′′(0) ∩ Dom J I T ′(0), Uc, J I T ′(0)Uc ∈ Dom T ′(0)|W.

(iii) The non-degeneracy condition T ′(0)Uc �= 0 holds for every c ∈ I .
(iv) It holds that lim inf |s|→∞‖T (s)Uc −Uc‖X > 0.

For a fixed parameter c, we define the augmented Hamiltonian to be the functional
Ec ∈ C3(V ∩ O; R) given by

Ec(u) := E(u) − cP(u).

One can confirm from the previous assumptions that in fact Uc is necessarily a critical
point of Ec. Due to this observation, we can think of each bound state Uc as being a
critical point of the energy with the constraint of a fixedmomentum, with the wave speed
c arising naturally as a Lagrange multiplier.

As mentioned in the introduction, it is often the case that the bound states sit at
a saddle point of the energy with Morse index 1. That is, the second derivative of
the augmented Hamiltonian at Uc has a single simple negative (real) eigenvalue, a 0
eigenvalue generated by the symmetry group, and the rest of the spectrum lies along
the positive real axis; bounded uniformly away from the origin. This is the basic setting
of the problem considered in [27], and what we will prove is the case for the internal
waves considered later in the paper. We therefore make the following hypotheses about
the configuration of the spectrum for the general theory.

Assumption 6 (Spectrum). The operator D2Ec(Uc) ∈ Lin(V, V
∗) extends uniquely to

a bounded linear operator Hc : X → X
∗ such that:

(i) I−1Hc is self-adjoint on X.
(ii) The spectrum of I−1Hc satisfies

spec I−1Hc = {−μ2
c, 0} ∪ �c, (2.6)

where −μ2
c < 0 is a simple eigenvalue corresponding to a unit eigenvector χc, 0 is

a simple eigenvalue generated by T , and �c ⊂ (0,∞) is bounded away from 0.
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2.2. Stability and instability theorems. Assuming that all of the hypotheses from the
previous subsection hold, we now state the main stability and instability theorems from
[55]. For a fixed bound state Uc and radius r > 0, we define the tubular neighborhoods

UX

r := {u ∈ O : inf
s∈R ‖u − T (s)Uc‖X < r},

UW

r := {u ∈ O ∩ W : inf
s∈R ‖u − T (s)Uc‖W < r}.

Similarly, for any R > 0, let BW

R denote the intersection of O with the ball of radius R
centered at the origin in W. ThenUc is said to be conditionally orbitally stable provided
that for all r > 0 and R > 0, there exists r0 > 0 such that if u : [0, t0) → BW

R is a
solution to (3.31) with u(0) ∈ UX

r0 , then u(t) ∈ UX
r for all t ∈ [0, t0). Here conditional

refers to the fact that stability only holds provided we know the solution exists, and that
its growth in W is controllable.

The moment of instability is the scalar-valued function d = d(c) that results from
evaluating the augmented Hamiltonian along the family of bound states:

d(c) := Ec(Uc) = E(Uc) − cP(Uc). (2.7)

The main appeal of the GSS method lies in its ability to characterize the orbital stability
of bound states in terms of the sign of d ′′. Under the relaxed hypotheses, we have by
[55, Theorem 2.4] the following stability criterion.

Theorem 2.1 (Stability). Suppose that the above assumptions hold. If d ′′(c) > 0, then
the bound state Uc is conditionally orbitally stable.

In order to state an instability result, we need to know that (2.2) can be solved at least
locally around the Uc-orbit. That is, we require one more assumption.

Assumption 7 (Local existence). There exists ν0 > 0 and t0 > 0 such that for all initial
data u0 ∈ UW

ν0
, there exists a unique solution to (2.2) on the interval [0, t0).

Note that ill-posedness of the Cauchy problem can itself be interpreted as a form
of instability. Supposing that Assumption 7 holds, we say that Uc is orbitally unstable
provided that there exists ν0 > 0 such that, for all 0 < ν < ν0 there exists initial data
in UW

ν for which the corresponding solution exits UW
ν0

in finite time. Observe that this is
not conditional.

Now, from [55, Theorem 2.6], we have the following orbital instability result.

Theorem 2.2 (Instability). If d ′′(c) < 0 and Assumption 7 is satisfied, then the bound
state Uc is orbitally unstable.

3. Hamiltonian Formulation for Internal Waves

3.1. Nonlocal operators and surface variables. Following the classical Zakharov–
Craig–Sulem idea, we will reformulate the interface Euler equations (1.1) as a nonlocal
problem in terms of quantities restricted to the free boundaryS (t). A similar approach
was taken by Benjamin and Bridges [8] and Craig and Groves [22] in their treatments
of this system.

Recall that we have defined

ϕ±(t, x) := �±(t, x, η(t, x)),
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to be the traces of the velocity potentials for the upper and lower regions. The velocity
field can then be recovered by means of the Dirichlet–Neumann operator in �±(t). For
a fixed η, this is the mapping given by

G±(η) f± := 〈η′〉(N± · ∇H±(η) f
)|S (3.1)

where N± is the unit outward normal to�± alongS , we are making use of the Japanese
bracket notation 〈 · 〉 := √

1 + | · |2, andH±(η) f is the harmonic extension of f to�±.
Specifically, in view of the kinematic conditions (1.1b) on the rigid boundaries, we take
H±(η) f to be the unique solution to

⎧
⎨
⎩

�H±(η) f = 0 in �±
H±(η) f = f on {y = η}

∂yH±(η) f = 0 on {y = ±d±}.
(3.2)

Dirichlet–Neumann operators are a standard tool in the study of water waves; for
a general reference, see [40] or [51]. In particular, for any real numbers k0 > 1/2
and k ∈ [1/2 − k0, 1/2 + k0], and profile η ∈ Hk0+1/2(R) with −d− < η < d+, we
have that G±(η) is an isomorphism Ḣ k(R) → Ḣ k−1(R), where Ḣ k denotes the usual
homogeneous Sobolev space of order k. Similarly, H±(η) is bounded as a mapping
Hk(R) → Hk+1/2(�±) and Ḣ k(R) → Ḣ k+1/2(�±). Our analysis relies on the fact that
the Dirichlet–Neumann operator depends smoothly on η. Indeed, η �→ G±(η) is real
analytic as a function from Hk0+1/2(R) → Lin(Ḣ k(R), Ḣ k−1(R)), and at η = 0, it is
the Fourier multiplier G±(0) = |∂x | coth (d±|∂x |). Note also that G±(η) is self-adjoint
Ḣ1/2(R) → Ḣ−1/2(R) and positive definite.

Because N+ + N− = 0, the continuity of the normal velocity over the interface is
equivalent to

G+(η)ϕ+ + G−(η)ϕ− = 0. (3.3)

Thus the kinematic condition (1.1b) onS (t) can be expressed as

∂tη = ∓G±(η)ϕ±. (3.4)

Note that the kinematic condition on {y = ±d±} is encoded in the definition of H.
Rather than work with ϕ±, we consider the quantity

ψ := −�ρ�� = ρ−ϕ− − ρ+ϕ+. (3.5)

Using (3.3), we can recover both ϕ+ and ϕ− from ψ . Indeed, we compute that

−G−(η)ψ = ρ+G−(η)ϕ+ − ρ−G−(η)ϕ−
= ρ+G−(η)ϕ+ + ρ−G+(η)ϕ+ = B(η)ϕ+,

where

B(η) := ρ+G−(η) + ρ−G+(η). (3.6)

By the above discussion, we have that B(η) is bounded and linear Hk(R) → Hk−1(R)

and Ḣ k(R) → Ḣ k−1(R), for all η ∈ Hk0+1/2(R) and with k0, k given as before. One
can readily confirm, moreover, that B(η) is an isomorphism Ḣ k(R) → Ḣ k−1(R). Thus,
repeating the same computation with signs reversed leads to the identity

ϕ± = ∓B(η)−1G∓(η)ψ. (3.7)
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The kinematic condition (3.4) can then be recast as

∂tη = A(η)ψ (3.8)

for the operator

A(η) := G−(η)B(η)−1G+(η). (3.9)

It is simple to show that these operators commute, and hence we can alternatively write

A(η) = G+(η)B(η)−1G−(η).

To reformulate the Bernoulli condition (1.1c) requires being able to reconstruct the
full gradient ∇�± restricted to the interface from the surface variables. For this, we
simply observe that

ϕ′± = (∂x�±)|y=η + η′(∂y�±)|y=η,

which together with the definition of G±(η) in (3.1) leads to the useful identities
(

ϕ′±
G±(η)ϕ±

)
=
(

1 η′
±η′ ∓1

)
(∇�±)|S ,

(∇�±)|S = 1

1 + (η′)2

(
1 ±η′
η′ ∓1

)(
ϕ′±

G±(η)ϕ±

)
. (3.10)

Now, observe that simply by definition

−∂tψ = ρ+∂tϕ+ − ρ−∂tϕ− = �ρ∂t�� + (∂tη)�ρ∂y��.

Thus (1.1c) can be rewritten as

∂tψ = 1

2
�ρ|∇�|2� − (∂tη)�ρ∂y�� + g�ρ�η + σ

(
η′

〈η′〉
)′

. (3.11)

In view of (3.10), this gives a formulation of the Bernoulli condition involving only the
surface variables η and ψ .

3.2. Functional analytic setting. Let us now define the function spaces in which the
internal wave problem will be posed. Following the approach outlined above, we wish
to recast the system in terms of the unknown u := (η, ψ). It is convenient to introduce
a scale of spaces describing the spatial regularity of u: for each k ≥ 1/2, let

X
k = X

k
1 × X

k
2 := Hk+ 1

2 (R) ×
(
Ḣ k(R) ∩ Ḣ

1
2 (R)

)
. (3.12)

In what follows, we will frequently use the shorthand X
k+ (and likewise Hk+) to denote

X
k+ε for any 0 < ε � 1 that is fixed and then suppressed.

Remark 3.1. Observe that Hr (R) ∩ Ḣ s(R) is dense in both Hr (R) and Ḣ s(R) for all
r, s ∈ R; see, for example, [55, Lemma A.1]. This will turn out to be crucial when we
turn to verifying Assumption 4(v).
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We will work in a trio of nested Banach spaces W ↪→ V ↪→ X. The largest, X, we
call the energy space. Specifically, we take

X := X
1
2 = H1(R) × Ḣ

1
2 (R). (3.13)

Its dual is

X
∗ = H−1(R) × Ḣ− 1

2 (R),

and we let I = (1 − ∂2x , |∂x |) denote the natural isomorphism X → X
∗. In particular,

when u ∈ X, the velocity field ∇�± ∈ L2(�±). As we will see below, this ensures that
the kinetic energy is indeed finite. Likewise, the H1 norm of η is equivalent to the excess
potential energy relative to the undisturbed state.

However, observe that u �→ G±(η) is not smooth with domainX, since wemust have
that η is at least Lipschitz continuous and also bounded away from the rigid boundaries
at y = ±d±. This leads us to introduce the space

V := X
1+ = H

3
2 +(R) ×

(
Ḣ1+(R) ∩ Ḣ

1
2 (R)

)
, (3.14)

and neighborhood

O := {(η, ψ) ∈ X : −d− < η < d+} .

Note that H3/2+(R) ↪→ W 1,∞(R), so u ∈ V does indeed imply that η has the requisite
Lipschitz continuity.

Lastly, because the Cauchy problem is not likely to be well-posed in V, we consider
the even smoother space

W := X
5
2 + = H3+(R) ×

(
Ḣ

5
2 +(R) ∩ Ḣ

1
2 (R)

)
. (3.15)

Local well-posedness at this level of regularity was proved by Shatah and Zeng [53], for
example.

Before continuing, we record the fact these spaces have the following embedding
property that corresponds to Assumption 1.

Lemma 3.2 (Spaces). Let the spaces X, V, and W be defined by (3.13), (3.14), and
(3.15), respectively. There exists a constant C > 0 and θ ∈ (0, 1

4 ) such that

‖u‖3
V

≤ C‖u‖2+θ
X

‖u‖1−θ
W

for all u ∈ W.

Proof. This can be quickly verified using from the definitions of X, V, and W and the
Gagliardo–Nirenberg interpolation inequality. ��

Observe that this inequality ensures that small cubic terms in V are dominated by
quadratic terms in X on bounded sets in W, which is needed in the general theory when
Taylor expanding functionals that are smooth with domain V ∩ O. A similar argument
appears in the proof of Theorem 5.1.
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3.3. Hamiltonian structure. Benjamin andBridges [8] established that the internal wave
problem (1.1) has a (canonical) Hamiltonian formulation in terms of the state variable
u by adapting the well-known Zakharov–Craig–Sulem formulation for the single-fluid
case. In this section, we will recall the system obtained in [8] while verifying that it
satisfies a number of the hypotheses of the general theory.

The kinetic energy carried by the wave is given by

K = 1

2

∫

�+(t)
ρ+|∇�+|2 dx dy + 1

2

∫

�−(t)
ρ−|∇�−|2 dx dy

= 1

2

∫

R

ρ+ϕ+G+(η)ϕ+ dx +
1

2

∫

R

ρ−ϕ−G−(η)ϕ− dx .

Using (3.3) and (3.7), this can be rewritten as

K = 1

2

∫

R

ψG−(η)B(η)−1G+(η)ψ dx .

Thus, we can view K as the C∞(O ∩ V, R) functional acting on u given by

K (u) := 1

2

∫

R

ψ A(η)ψ dx, (3.16)

where recall A(η) was defined in (3.9). Likewise, the potential energy for the system is
described by the functional

V (u) := −1

2

∫

R

g�ρ�η2 dx + σ

∫

R

(√
1 + (η′)2 − 1

)
dx .

The total energy is thus

E(u) := K (u) + V (u)

= 1

2

∫

R

ψ A(η)ψ dx − 1

2

∫

R

g�ρ�η2 dx + σ

∫

R

(√
1 + (η′)2 − 1

)
dx .

(3.17)

By our choice of spaces, E ∈ C∞(O ∩ V; R). We claim, moreover, that DE(u) can be
extended to a mapping defined on the entire dual space X

∗. This rather technical fact is
necessary in order to reformulate the problem as a Hamiltonian system.

Before addressing this question, we pause to record the following crucial formulas
for the Fréchet derivatives of the nonlocal operators G±(η) and A(η). As it is quite
simple, the proof of this lemma is given in “Appendix A”.

Lemma 3.3 (First derivatives). Let (η, ψ) ∈ O ∩ V, η̇ ∈ V1, and ξ ∈ V2 be given.

(a) The Fréchet derivative of G±(η) admits the representation formula
∫

R

ξ 〈DG±(η)η̇, ψ〉 dx =
∫

R

(
a±
1 (η, ψ)ξ ′ + a±

2 (η, ψ)G±(η)ξ
)
η̇ dx, (3.18)

with

a±
1 (η, ψ) := 1

1 + (η′)2
(∓ψ ′ − η′G±(η)ψ

)

a±
2 (η, ψ) := 1

1 + (η′)2
(±G±(η)ψ − η′ψ ′) .

(3.19)
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(b) The Fréchet derivative of A(η) admits the representation formula

∫

R

ξ 〈DA(η)η̇, ψ〉 dx

=
∑
±

ρ±
∫

R

(
a±
1 (η, A(η)G±(η)−1ψ)

(
A(η)G±(η)−1ξ

)′)
η̇ dx

+
∑
±

ρ±
∫

R

(
a±
2 (η, A(η)G±(η)−1ψ)A(η)ξ

)
η̇ dx .

(3.20)

Remark 3.4. Observe that by (3.10), a±
1 (η, ψ) = ∓(∂xH±(η)ψ)|S while a±

2 (η, ψ) =
−(∂yH±(η)ψ)|S . In particular, this means that both are linear in ψ .

Likewise, concise formulas for the second variations of the nonlocal operators is
an essential ingredient for the spectral analysis taken up in Sect. 4. First, we record
following elementary second derivative formula for the Dirichlet–Neumann operators
G±. Here we use notation similar to that in [46,55].

Lemma 3.5 (Second derivative of G±). For all u = (η, ψ) ∈ O ∩ V and η̇ ∈ V1, it
holds that

∫

R

ψ
〈
D2G±(η)[η̇, η̇], ψ

〉
dx

=
∫

R

(
a±
4 (u)η̇2 + 2a±

2 (u)η̇G±(η)
(
a±
2 (u)η̇

))
dx,

(3.21)

where

a±
4 (u) := −2a±

1 (u)′a±
2 (u), (3.22)

and a±
1 , a

±
2 are given by (3.19).

Proof. This is a straightforward though quite long calculation. ��
Far more involved is the second derivative of A(η), a formula for which is given in

the next lemma. As the proof is rather long but not difficult, we delay it to “Appendix A”.

Lemma 3.6 (Second derivative of A). For all u = (η, ψ) ∈ O∩V and η̇ ∈ V1, it holds
that
∫

R

ψ
〈
D2A(η)[η̇, η̇], ψ

〉
dx =

∫

R

(
a4(u)η̇ + 2

∑
±

ρ±a±
2 (η, θ±)G±(η)

(
a±
2 (η, θ±)η̇

)

−2M (u)η̇ + 2N (u)η̇
)
η̇ dx, (3.23)

where we define the functions

θ±(u) := G±(η)−1A(η)ψ, a4(u) :=
∑
±

ρ±a±
4 (η, θ±), (3.24)
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and linear operators

L±(u)η̇ := −G±(η)−1 (a±
1 (η, θ±)η̇

)′
+ a±

2 (η, θ±)η̇, L (u) :=
∑
±

ρ±L±(u)

(3.25)

M (u)η̇ :=
∑
±

ρ±
(
a±
1 (η, θ±)(L±(u)η̇)′ + a±

2 (η, θ±)G±(η)L±(u)η̇
)

(3.26)

N (u)η̇ :=
∑
±

ρ±
(
a±
1 (η, θ±)

(
A(η)G±(η)−1L (u)η̇

)′
+ a±

2 (η, θ±)A(η)L (u)η̇

)
.

(3.27)

Remark 3.7. Formally setting ρ+ = 0 and ρ− = 1 recovers the standard one-fluid model
with normalized density. We can see from (A.1) that this would imply A(η) = G−(η),
and so (3.23) must agree with the second variation formula (3.21). Indeed, one can verify
directly that θ− = ψ , so that

L−(u) = −G−(η)−1∂xa
−
1 (u) + a−

2 (u), a4(u) = a−
4 (u),

and hence

N (u) = a−
1 (u)∂xL−(u) + a−

2 (u)G−(η)L−(u) = M (u),

giving back the one-fluid formula in [46, Proposition 2.1].

We are now able to prove that DE(u) extends to X
∗ when the base point u has

sufficient regularity.

Lemma 3.8 (Energy extension). There exists a mapping ∇E ∈ C∞(O ∩ V; X
∗) such

that

〈∇E(u), v〉X∗×X = DE(u)v for all u ∈ O ∩ V, v ∈ V.

Proof. Let u = (η, ψ) ∈ O∩ V and u̇ = (η̇, ψ̇) ∈ V be given. Then from the definition
of E in (3.17) and the self-adjointness of A(η), we compute that

DE(u)u̇ = 1

2

∫

R

ψ〈DA(η)η̇, ψ〉 dx+
∫

R

ψ̇ A(η)ψ dx−
∫

R

(
g�ρ�η+σ

(
η′

〈η′〉
)′)

η̇ dx .

The latter two terms on the right-hand side certainly correspond to an element of X
∗

acting on u̇. To see the same is true for the first term, we make use of the representation
formula (3.20) to write

∫

R

ψ〈DA(η)η̇, ψ〉 dx =
∑
±

ρ±
∫

R

a±
1 (η, θ±)θ ′±η̇ dx

+
∑
±

ρ±
∫

R

(
a±
2 (η, θ±)A(η)ψ

)
η̇ dx,

for a±
1 and a±

2 given by (3.19) and θ± := A(η)G±(η)−1ψ . Since u ∈ O ∩ V, it is easy
to check that

A(η)ψ, a±
1 (η, θ±), a±

2 (η, θ±) ∈ L2(R), θ± ∈ H1(R),
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and hence the extension ∇E(u) can be defined explicitly as

〈∇E(u), v〉X∗×X = (E ′(u), v)L2 ,

where the L2 gradient E ′(u) = (E ′
η(u), E ′

ψ(u)) takes the form

E ′
η(u) := 1

2

∑
±

ρ±
(
a±
1 (η, θ±)θ ′± + a±

2 (η, θ±)A(η)ψ
)− g�ρ�η − σ

(
η′

〈η′〉
)′

,

E ′
ψ(u) := A(η)ψ. (3.28)

This completes the proof. ��
Remark 3.9. Throughout the paper, we use the notational convention that, for a C1

functional F(V; R) and u ∈ V, DF(u) ∈ V
∗ is the Fréchet derivative at u, F ′(u) is

the L2 gradient, and ∇F(u) is an extension of DF(u) to X
∗ (should such an extension

exist).

The energy space X will be endowed with symplectic structure through the prescrip-
tion of the Poisson map

J :=
(

0 1
−1 0

)
: Dom J ⊂ X

∗ → X (3.29)

with domain

Dom J :=
(
H−1(R) ∩ Ḣ

1
2 (R)

)
×
(
H1(R) ∩ Ḣ− 1

2 (R)
)

. (3.30)

While J appears relatively anodyne at first glance, the difference in regularity and homo-
geneity between X1 and X2 means that it is not bijective. This unpleasant fact is one of
the major barriers to applying the classical GSS method [27] to the system. The next
lemma shows, however, that J satisfies the weaker requirements of [55, Assumption 2].

Lemma 3.10 (Poissonmap). The Poissonmap J defined by (3.29) satisfies Assumption 2

Proof. Part (i) is a consequence of Remark 3.1, while (ii) and (iii) are obvious by
definition. ��
Theorem 3.11 (Hamiltonian formulation). Consider the abstract Hamiltonian system

∂t u = JDE(u), u|t=0 = u0 (3.31)

where u0 ∈ O ∩ W is the initial data, J is the canonical symplectic matrix (3.29), and
the energy E is defined in (3.17). Then u ∈ C0([0, t0);O ∩ W) is a (weak) solution to
(3.31) provided if and only if the corresponding (η,�±) solves the Eulerian internal
wave problem (1.1).

Proof. As this formulation of the problem was previously obtained by Benjamin and
Bridges [8], we provide a sketch of the argument for completeness. Suppose that u(t) =
(η(t), ψ(t)) ∈ C0([0, t0);O ∩ W) is a weak solution to the Hamiltonian system (3.31).
Recalling (3.7), we have that�± := ∓H(η)G±(η)−1A(η)ψ ∈ Ḣ3+∩ Ḣ1 is the velocity
potential in �± and satisfies (1.1a). The definition of the harmonic extension operator
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H(η) in (3.2) also ensures the kinematic condition holds on {y = ±d±}. Moreover, from
the expression for E ′(u) obtained in (3.28), we see that

∂tη = E ′
ψ(u) = A(η)ψ,

in the distributional sense. This is precisely (3.8) and hence corresponds to the kinematic
condition on the internal interface (1.1b).

We claim that the Bernoulli condition (1.1c) is equivalent to

∂tψ = −E ′
η(u).

interpreted again in the distributional sense. Observe that, due to Remark 3.4 and the
identity (3.7), many of the quantities occurring in E ′

η(u) have physical significance:

θ± = A(η)G±(η)−1ψ = ∓ϕ±, a±
1 (η, θ±) = (∂x�±)|S ,

a±
2 (η, θ±) = ±(∂y�±)|S ,

and hence,

E ′
η(u) = 1

2

∑
±

ρ±
(∓(∂x�±)|S ϕ′± ± (∂y�±)|S A(η)ψ

)− g�ρ�η − σ

(
η′

〈η′〉
)′

= −1

2
�ρ|∇�|2� + (∂tη)�ρ∂y�� − g�ρ�η − σ

(
η′

〈η′〉
)′

,

where in the second line we have used the kinematic condition (3.8) and the identities
(3.10). Comparing this to equivalent statement of the Bernoulli condition in (3.11), we
see that the proof is indeed complete. ��

3.4. The symmetry group and the momentum. The internal wave problem is invariant
under translations in the x-direction, which formally should be associated to the con-
servation of (horizontal linear) momentum; see, for example, [9]. To put this on firmer
ground, we introduce the one-parameter symmetry group

T (s)u := u( · − s) for all u ∈ X. (3.32)

Now, letting

P± := ±
∫

R

ρ±η′ϕ± dx

represent the momentum in �±, we have that the total momentum carried by the wave
is

P(u) := P+(u) + P−(u) = −
∫

R

η′ψ dx, (3.33)

which defines a C∞(O ∩ V; R) functional. The next lemma establishes that T exhibits
the necessary properties for the abstract theory in [55] and P is indeed generated by the
translation invariance in the sense that (3.35) holds.
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Lemma 3.12 (Conserved quantities and symmetry). The energy E, momentum P, and
translation symmetry group T given above satisfy Assumptions 3 and 4. In particular,
the infinitesimal generator of T |Xk is the unbounded linear operator

T ′(0)|Xk : Dom T ′(0) ⊂ X
k → X

k u �→ −∂xu (3.34)

with (dense) domain Dom T ′(0)|Xk := X
k+1, and

T ′(0)u = J∇P(u) for all u ∈ O ∩ Dom T ′(0). (3.35)

Proof. Regarding Assumption 3, we already confirmed that the energy can be extended
in Lemma 3.8. The existence of the extension ∇P is obvious from the formulas for the
derivative DP . In particular, for u = (η, ψ) ∈ O ∩ V and u̇ = (η̇, ψ̇) ∈ V, we have

DP(u)u̇ =
∫

R

ψ ′η̇ dx −
∫

R

η′ψ̇ dx =: 〈∇P(u), u̇〉X∗×X. (3.36)

The right-hand side above clearly defines an element of X
∗ that depends continuously

on u. In particular, it has the explicit L2 gradient

P ′(u) = (P ′
η(u), P ′

ψ(u)), P ′
η(u) := ψ ′, P ′

ψ(u) := −η′. (3.37)

From this it is also clear that ∇P(u) ∈ Dom J for u ∈ O ∩ V. Noting that
Dom T ′(0) = X

3/2 ⊂ V, the identity (3.35) now follows from the definitions of J
in (3.29) and T ′(0) in (3.34).

Most of the statements in Assumption 4 are simple to confirm, so we omit the details.
However, part (v) merits closer consideration since its conclusion is the key assumption
in [55] that replaces the hypothesis that J is bijective in the standard GSS approach.
First note that

Rng J =
(
H1(R) ∩ Ḣ− 1

2 (R)
)

×
(
H−1(R) ∩ Ḣ

1
2 (R)

)
,

and hence by part (3.34) we have that

Dom T ′(0)|W ∩ Rng J =
(
H4+(R) ∩ Ḣ− 1

2 (R)
)

×
(
H−1(R) ∩ Ḣ

1
2 (R) ∩ Ḣ

7
2 +(R)

)
.

This is indeed dense in X due to Remark 3.1. ��

3.5. Traveling waves. In Hamiltonian language, a traveling internal wave is a solution
to (3.31) taking the form

u(t) = T (ct)U, (3.38)

for some wave speed c ∈ R and time-independent bound state U ∈ O ∩ W. Let us now
discuss in somewhat finer detail the existence theory obtained by Nilsson in [47].

Recall that we have defined the dimensionless parameters β, λ, �, and h in (1.2) and
(1.5). Let T := {z ∈ C : Re z ∈ (−r, r)} be a thin slab centered on the imaginary axis.
For r > 0 sufficiently small, we have by the dispersion relation (1.3) that there exist
three curves in the (β, λ)-plane along which the spectrum of the linearized problem in
T crosses the real or imaginary axis.

Consider first the curve 
1, which is simply the line λ = λ0. Immediately below it
and to the right of β = β0, the spectrum in T consists of a pair of oppositely signed
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real eigenvalues and a complex conjugate pair on the imaginary axis. Passing through

1, the imaginary eigenvalues collide at the origin then move along the real axis. This
same 02 resonance is associated with transition from periodic solutions to solitons in the
steady KdV equation, for example. On the curve


2 := {(β(ξ), λ(ξ)) : ξ ∈ [0,∞)} ,

where

β(ξ) :=
∑
±

ρ±
ρ−

d+
d±

(− sin (
d±
d+

ξ) cos (
d±
d+

ξ) + d±
d+

ξ

2ξ sin2 (
d±
d+

ξ)

)
,

λ(ξ) := β(ξ)2 + ξ
∑
±

ρ±
ρ−

coth (
d+
d±

ξ),

(3.39)

the spectrum in T consists of two real eigenvalues with multiplicity 2. In the region
bounded by 
1 and 
2, there are two pairs of oppositely signed simple real eigenvalues.

Nilsson’s approach is to fix β > β0 and treat λ as a bifurcation parameter with
0 < λ − λ0 � 1. This ensures that (β, λ) remains in the Region A depicted in Fig. 2,
which is the narrow open set bounded below by 
1 and lying beneath 
2. Because he
opts to non-dimensionalize the system at the outset, translating his result to our setting
involves introducing some heavy notation, but this will be pared down soon.

Theorem 3.13 (Nilsson [47]). Let {�ε = (ρ±ε, d±ε, σε, cε) : 0 < ε � 1} be a smooth
curve in the dimensional parameter space such that the corresponding Bond number is
fixed to β > β0 and λ = λ0 + ε2.

(a) Suppose that �ε − 1/h2ε = O(1) as ε ↘ 0. Then for any k > 1/2, there exists a
smooth curve

C A
β = {uAε;β : 0 < ε � 1} ⊂ X

k

so that uA
ε;β

is a traveling internal wave for the parameter values �ε. Along this
curve, the free surface profile has leading-order form

ηAε;β = ε2d+
� − 1/h2

sech2
(

ε ·
2d+

√
β − β0

)
+ O(ε3) in X

k
1 as ε ↘ 0.

(3.40)

(b) Suppose instead that �ε − 1/h2ε = κε for a fixed κ �= 0. Then for any k > 1/2 there
exists two smooth curves

C A
β,κ,± = {uAε;β,κ,± : 0 < ε � 1} ⊂ X

k

so that uA
ε;β,κ,± is a traveling internal wave for the parameter values �ε. Along

C A
β,κ,±, the free surface profile has leading-order form

ηAε;β,κ,± = 2εd+

κ ±√κ2 + 4(� + 1/h3)
sech

(
ε ·

d+
√

β − β0

)
+ O(ε3)

in X
k
1 as ε ↘ 0. (3.41)
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Remark 3.14. The above solutions are obtained using a center manifold reduction at
the point (β, λ0) ∈ 
1. For the scaling regime of part (a), the reduced equation is a
perturbation of steadyKdV. This gives rise to waves with the classical sech2 asymptotics
in (3.40). However, when � − 1/h2 � 1, cubic terms enter at leading order, and so one
insteadobtains an equationofGardner ormKdV-KdV type.An important consequence of
this construction is that the O(ε3) remainder terms in (3.40) and (3.41) are exponentially
decaying and exhibit the same scaling of the spatial variable as the leading-order part.
Note also that the regularity of the solutions is not stated by Nilsson, but follows from
a standard bootstrapping argument.

Theorem3.13fixesβ but allows the dimensional parameters to vary.While convenient
for proving existence, this choice is not ideal for stability analysis: two waves on one of
these curves may not necessarily solve the same physical problem. The general theory in
[27,55] instead asks for a family of bound states parameterized by c, with the remaining
dimensional parameters held constant. Given a choice of parameters (ρ±∗, d±∗, σ∗, c∗),
we therefore let

(βc, λc) :=
(

σ∗
d+∗ρ−∗c2

, −g�ρ∗�d+∗
ρ−∗c2

)
, εAc := √

λc − λ0 for |c − c∗| � 1.

(3.42)

The first of these parameterizes a segment of the straight line joining (β∗, λ∗) to the
origin in the (β, λ)-plane, while the second expresses the bifurcation parameter ε from
Theorem 3.13 in terms of c.

The next two corollaries convert Theorem 3.13 to statements on bound states indexed
by c. In particular, they prove that Assumption 5 is satisfied.

Corollary 3.15. (KdV bound states) Let (ρ±∗, d±∗, σ∗, c∗) be given so that �∗−1/h2∗ �=
0 and the corresponding non-dimensional parameters (β∗, λ∗) lies in Region A. There
exists an open intervalI � c∗ and a family of bound states {UA

c }c∈I ⊂ O∩W having
the non-dimensional parameter values (βc, λc) given by (3.42). The free surface profile
is

ηAc := ηA
εAc ;βc

for c ∈ I .

Moreover, {UA
c } satisfies Assumption 5.

Proof. Let (ρ±∗, d±∗, σ∗, c∗) be given as above and assume that the corresponding
(β∗, λ∗) satisfy β∗ > β0 and 0 < λ∗ − λ0 � 1. Then for all |c − c∗| � 1, the
dimensional parameters meet the hypotheses of Theorem 3.13(a), and so may simply
take UA

c := uεAc ;βc
for βc and εAc defined according to (3.42).

The free surface profile from (3.40) is constructed as a solution to a second-order
ODE that is a homoclinic to 0. It can be verified directly that the origin is a saddle point,
and hence ηA

ε;β is exponentially localized, with uniform decay rate on compact subsets
of parameter space. Moreover, due to the translation invariance, the profile is of class
C∞. In particular, it is clearly an element of X

k
1 for all k ≥ 1/2. Solving the kinematic

condition, we see that the correspondingψ = ψA
ε;β is likewise smooth and an element of

X
k
2 for all k ≥ 1/2. Part(i) now follows from the smooth dependence of uε;β on (ε, β).

Part(ii) certainly holds in view of the (arbitrarily high) regularity of the bound states.
Finally, parts (iii) and (iv) are obvious given the form of ηAc . ��
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An identical argument applied to the family of waves in Theorem 3.13(b) yields the
following.

Corollary 3.16 (Gardner bound states). Let (ρ±∗, d±∗, σ∗, c∗) be given so that the
corresponding (β∗, λ∗) lies in Region A and |�∗ − 1/h2∗| � |λ∗ − λ0|1/2. There exists
an open intervalI � c∗ and two families of bound states {UA±

c }c∈I ⊂ O ∩ W having
the non-dimensional parameter values (βA

c , λAc ) given by (3.42) and with the remaining
parameters fixed. They satisfy Assumption 5 and the corresponding free surface is given
by

ηA±
c := ηA

εAc ;βc,κAc ,± for κA
c := 1

εAc

(
�∗ − 1

h2∗

)
, c ∈ I .

Consider now the situation where (β, λ) is contained in Region C, which is a neigh-
borhood of the curve 
2. Nilsson uses a center manifold reduction method to construct
traveling waves, this time bifurcating from the point (β0, λ0). Setting γ := (� + h)/45,
one can show using the parameterization of 
2 that for all δ ∈ R, the point

β = β0 + 2(1 + δ)γ ε2, λ = λ0 + γ ε4 (3.43)

is contained in Region C for all 0 < ε � 1. When δ > 0, it lies below 
2 and for δ < 0,
it lies above.

At ε = 0, this gives the critical parameter value (β0, λ0) where we recall that 0 is an
eigenvalue of multiplicity 4. The resulting reduced equation on the center manifold thus
has a four-dimensional phase space.When �−1/h2 = O(1) as ε ↘ 0, after performing
a rescaling and truncation, we obtain the ODE

Z ′′′′ − 2(1 + δ)Z ′′ + Z − 3

2
γ −3/2

(
� − 1

h2

)
Z2 = 0. (3.44)

This equation arises in the study of capillary-gravitywaves beneath vacuum in the critical
surface tension regime as well as a modeling the buckling of elastic struts [3]. Analysis
in [16,19] shows that, at δ = 0, there is a primary homoclinic solution Z0 to (3.44)
that is unimodal, even, and exponentially localized. Moreover, there is a smooth one-
parameter family of homoclinic orbits {Zδ}δ defined for δ ≥ 0 and −1 � δ < 0 that
bifurcates from Z0. These solutions are transversely constructed, in that the stable and
unstable manifolds of the zero equilibrium of (1.9) intersect transversely at Z = Zδ(0)
at the zero level set of the Hamiltonian energy. For δ ≥ 0, we have that Zδ is the unique
(up to translation) homoclinic solution to (1.9) that is positive, even and monotone for
x > 0 (see [3]). When −1 � δ < 0, uniqueness is not known and Zδ has exponentially
decaying oscillatory tails. In addition to the primary homoclinic orbits, there exists a
“plethora” of other solutions to (3.44) that take the form of multisolitons; see [16,23].
Because these are multimodal, they are unlikely to be amenable to analysis through the
general theory in [55] and so we will not consider them here.

On the other hand, if � − 1/h2 = κε2, for some κ �= 0, then upon rescaling and
truncating to leading order, the reduced equation on the center manifold takes the form

Z ′′′′ − 2(1 + δ)Z ′′ + Z − 3

2
γ −3/2κZ2 − 4γ −2

(
� +

1

h3
+
2(� − 1)2

225γ

)
Z3 = 0.

(3.45)
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In [47, Appendix B], it is shown that, at δ = 0, this ODE has both a positive and negative
primary homoclinic solution, which we denote by Z0;κ,±. As in the non-resonant case,
these are exponentially localized, uniqueup to translation (for thefixed sign), andbecause
they are transversely constructed, they persists for |δ| � 1. Let the corresponding
families be denoted {Zδ;κ,±}.

We now state Nilsson’s results for this case reformulated in the style of Corollar-
ies 3.15 and 3.16. Let (ρ±∗, d±∗, σ∗, c∗) be given so that the corresponding (β∗, λ∗) lies
in Region C. In view of (3.43), we define

εCc :=
(

λc − λ0

γ∗

)1/4

, δc := βc − β0

2γ∗(εCc )2
− 1 for |c − c∗| � 1, (3.46)

with (βc, λc) given in (3.42). The existence of bound states is then summarized in the
following lemma.

Lemma 3.17. (Kawahara bound states) Let (ρ±∗, d±∗, σ∗, c∗) be given so that �∗ −
1/h2∗ �= 0 and the corresponding non-dimensional parameters (β∗, λ∗) lie in Region C
with 0 < εCc∗ � 1.

(a) There exists an open intervalI � c∗ and a family of bound states {UC
c }c∈I ⊂ O∩W

having the non-dimensional parameter values (βc, λc) and satisfying Assumption 5.
The corresponding free surface profile takes the form

ηCc = ε4d+
√

γ Zδ

(
ε ·
d+

)
+ O

(
ε5
)

in X
k
1 (3.47)

with ε = εCc and δ = δCc given by (3.46), d+ = d+∗, and γ = γ∗.
(b) Suppose that |�∗ − 1/h2∗| � (εCc∗)

2 � 1. Then there exists an open interval I � c∗
and two families of bound states {UC±

c }c∈I ⊂ O ∩ W having the non-dimensional
parameter values (βc, λc) and satisfying Assumption 5. The corresponding free sur-
face profile takes the form

ηC±
c = ε2d+

√
γ Zδ; κ,±

(
ε ·
d+

)
+ O

(
ε3
)

in X
k
1

for κ = κC
c := 1

ε2c

(
�∗ − 1

h2∗

)
, (3.48)

with ε = εCc and δ = δCc given by (3.46), d+ = d+∗, and γ = γ∗.

Remark 3.18. While we will carry out many of the calculations for both families {UC
c }

and {UC±
c }, we only obtain a stability result for the former. In the latter case, we find that

the rescaled linearized augmented potential does not converge precisely to the lineariza-
tion of (3.44),which obstructs the spectral analysis in the next section; seeLemma4.7(b).

We conclude this section by noting that Nilsson also proves the existence of many
types of traveling waves with (β, λ) in a neighborhood of the bifurcation curve


3 = {(β(iξ), λ(iξ)) : ξ ∈ [0,∞)}, (3.49)

with (β(ξ), λ(ξ)) given by (3.39). The stability of these solutions will be the subject of
a forthcoming work.
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4. Spectral Analysis

Observe that if u(t) = T (ct)U is a traveling wave for the bound state U ∈ O ∩ W and
wave speed c ∈ R, then necessarily by (3.31), Lemma 3.12, and Assumption 4(vi) we
have

du

dt
= cT ′(0)U = JDE(U ).

Combining this with (3.35), we obtain the steady equation

DE(U ) = cDP(U ),

where we have used that J is injective. This motivates us to consider the augmented
Hamiltonian, which for a fixed c is the functional Ec ∈ C∞(O ∩ V; R) given by

Ec(u) := E(u) − cP(u).

The above calculation shows that bound states are critical points of Ec. It also suggests
that one can construct such solutions as constrained extrema of the energy on level sets
of the momentum, with the wave speed a Lagrange multiplier. In order to exploit this
connection, we must first understand better the second derivative of Ec.

With that in mind, this section is devoted to the quite difficult task of computing
the spectrum of the linearized augmented Hamiltonian at either a shear flow or small-
amplitude internal capillary-gravity wave. Here we will follow the general approach
of Mielke [46], which was also the basis for the calculation in [55]. The strategy has
two steps. First, via the kinematic condition ψ is eliminated in favor of η. Making this
substitution in the definition of Ec gives the so-called augmented potential V aug

c =
V aug
c (η), which proves to be much more amenable to analysis. In particular, we show in

Sect. 4.1 that its second variation at a critical point is characterized by a certain second-
order nonlocal differential operator Qc(η). As one might predict, Qc(0) is a Fourier
multiplier whose symbol is related directly to the dispersion relation (1.3).

This is enough to characterize the continuous spectrum of D2V aug
c (η) when η is suf-

ficiently small amplitude; see Lemma 4.4. Determining the discrete spectrum, however,
requires considerably more effort. Following Mielke, the second step is to conjugate
Qc(η) with a rescaling Sε informed by the asymptotics of η discussed in Sect. 3.5.
Briefly put, the idea here is to show that linearization and scaling almost commute. It is
well known that in the shallowwater regime, the internal wave system can bemodeled by
nonlinear dispersive PDEs such as KdV or Gardner. We seek to prove that imposing this
scaling on the linearized operator Qc(η) via conjugation by Sε will, to leading order,
coincide with the linearization of the corresponding model equation. After a delicate
calculation, we do indeed find that in the long-wave limit ε ↘ 0, the rescaled operator
S−1
ε Qc(η)Sε converges (in an appropriate sense) to the linearized steady KdV or Gard-

ner equation in the case of Region A, and to the linearization of (3.44) or (3.45) in the
case of Region C. This is the subject of Sect. 4.2. In Sect. 4.3, we prove that the spectrum
of D2V aug

c is qualitatively the same as that of this limiting rescaled operator.
Lastly, in Sect. 4.4we take the information about the spectrumofD2V aug

c and translate
it back to that of D2Ec. For Uc one of the family of bound states described in Sect. 3.5,
we confirm that D2Ec(Uc) extends to a self-adjoint operator on X that has Morse index
1 as required by Assumption 6.
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4.1. The augmented potential and its derivatives. If u∗ = (η∗, ψ∗) is a critical point
of Ec, then in particular Dψ E(u∗) = cDψ P(u∗). Because V is independent of ψ and
A(η) is self-adjoint, we see that

Dψ E(u)ψ̇ =
∫

R

ψ̇ A(η)ψ dx .

Combining this with (3.36) we find that ψ∗ can be uniquely determined from η∗ via

ψ∗(η) := −cA(η)−1η′. (4.1)

Note that ψ∗ also depends on c, but in this section the wave speed will be fixed, so there
is no harm in suppressing it. In fact it will turn out to be easier to work with ϕ∗ rather
than ψ∗. So we recall from (3.5) and (3.4) that

ψ∗ = ρ−ϕ∗− − ρ+ϕ∗+, ϕ∗± = ±cG±(η)−1η′. (4.2)

When there is no risk of confusion, wewill drop the ∗ subscripts to declutter the notation.
Recall fromRemark 3.4 that the coefficients a±

1 and a±
2 that arise in the first derivative

formula (3.18) for G±(η) can be alternatively be expressed as

a±
1 (η, φ) := ∓(∂xH±(η)φ)|S , a±

2 := −(∂yH±(η)φ)|S .

Therefore, when they are evaluated at φ = ϕ±, they give (up to a sign) the trace of the
velocity field on S . Following [55, Section 6], we introduce the related functions

b±
1 := ∓a±

1 (η, ϕ±) − c, b±
2 := −a±

2 (η, ϕ±). (4.3)

This way, (b±
1 , b±

2 ) represents the relative velocity in �± restricted to the interface.
Consequently, for η ∈ W1, we have from (4.2) that b±

1 , b±
2 ∈ H2+(R). Notice also that,

because u represents a traveling wave, the kinematic condition (3.8) gives

b±
2 = η′b±

1 . (4.4)

Differentiating (4.2), we find that

Dψ∗(η)η̇ = ρ−Dϕ−(η)η̇ − ρ+Dϕ+(η)η̇,

Dϕ±(η)η̇ = ±〈cD(G±(η)−1)η̇, η′〉 ± cG±(η)−1η̇′.

On the other hand,

〈D(G±(η)−1)η̇, η′〉 = −G±(η)−1〈DG±(η)η̇, G±(η)−1η′〉,
and so we may infer from Lemma 3.3 and (4.2) that

G±(η)〈D(G±(η)−1)η̇, cη′〉 = (a±
1 (η,±ϕ±)η̇)′ − G±(η)(a±

2 (η,±ϕ±)η̇)

= ±(a±
1 (η, ϕ±)η̇)′ ∓ G±(η)(a±

2 (η, ϕ±)η̇).

Thus,

Dϕ±(η)η̇ = G±(η)−1(a±
1 (η, ϕ±)η̇)′ − a±

2 (η, ϕ±)η̇ ± cG±(η)−1η̇′

= ∓G±(η)−1(b±
1 η̇)′ + b±

2 η̇,
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and hence

Dψ∗(η)η̇ =
∑
±

ρ±G±(η)−1(b±
1 η̇)′

︸ ︷︷ ︸
=: Sη̇

−
∑
±

±ρ±b±
2 η̇

︸ ︷︷ ︸
=: T η̇

.

(4.5)

Now, let the augmented potential be the functional V aug
c ∈ C∞(O∩ V; R) given by

V aug
c (η) := Ec(η, ψ∗(η)) = min

ψ
Ec(η, ψ). (4.6)

While it is not immediately obvious, for small-amplitudewaves the spectrumofD2Ec can
be determined from that of D2V aug

c .We therefore devote the remainder of this subsection
to studying the second variation of V aug

c . In particular, we will derive an analytically
tractable quadratic form representation defined in terms of physical quantities.

Lemma 4.1 (Second derivative of V aug
c ). For all (η, ψ∗(η)) ∈ O ∩ V and η̇ ∈ V1, it

holds that

D2V aug
c (η)[η̇, η̇] = D2

ηEc(η, ψ∗(η))[η̇, η̇] −
∫

R

(S − T )η̇A(η)(S − T )η̇ dx (4.7)

where S and T are defined in (4.5).

Proof. Starting from the definition of V aug
c in (4.6), we see that

DV aug
c (η)η̇ = DηEc(u∗)η̇ + Dψ Ec(u∗)Dψ∗(η)η̇ = DηEc(u∗)η̇,

where u∗ = u∗(η) := (η, ψ∗(η)). Note that the last equality follows from the fact that
u∗ is a critical point of Ec for all η. Differentiating again in η gives

D2V aug
c (η)[η̇, η̇] = D2

ηEc(u∗)[η̇, η̇] + DψDηEc(u∗)[Dψ∗(η)η̇, η̇]
= D2

ηEc(u∗)[η̇, η̇] − D2
ψ Ec(u∗)[Dψ∗(η)η̇, Dψ∗(η)η̇].

The potential energy is independent of ψ and the momentum is linear in ψ . Thus,

D2
ψ Ec(u∗)[Dψ∗(η)η̇, Dψ∗(η)η̇] = D2

ψK (u∗)[Dψ∗(η)η̇, Dψ∗(η)η̇]
=
∫

R

Dψ∗(η)η̇A(η)Dψ∗(η)η̇ dx,

which, from (4.5), implies (4.7). ��
Lemma 4.2. (Quadratic form) For all (η, ψ∗(η)) ∈ O ∩ V and c ∈ R, there is a self-
adjoint linear operator Qc(η) ∈ Lin(X1; X

∗
1) such that

D2V aug
c (η)[η̇, ζ̇ ] = 〈

Qc(η)η̇, ζ̇
〉
X

∗
1×X1

(4.8)

for all η̇, ζ̇ ∈ V1. It is given explicitly by

Qc(η)η̇ = −
(

σ
η̇′

〈η′〉3
)′

−
(
g�ρ� +

∑
±

±ρ±b±
1 (b±

2 )′
)
η̇

+
∑
±

ρ±b±
1

(
G±(η)−1(b±

1 η̇)′
)′

.

(4.9)
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Remark 4.3. Taking ρ+ = 0 and ρ− = 1 recovers the one-fluid problem, and it is
straightforward to see that formula (4.9) agrees with computation in [46, Theorem 3.3].

Proof. We continue to write u∗ := (η, ψ∗(η)). Since the momentum is linear in η, we
see that

D2
ηEc(u∗)[η̇, η̇] = D2

ηK (u∗)[η̇, η̇] + D2
ηV (u∗)[η̇, η̇]

= 1

2

∫

R

ψ∗〈D2A(η)[η̇, η̇], ψ∗〉 dx −
∫

R

g�ρ�η̇2 dx +
∫

R

σ
(η̇′)2

〈η′〉3 dx .

(4.10)

The latter two terms on the right-hand side above are already in the desired form. But,
to understand the first requires the formula for the second variation of A(η) derived in
Lemma 3.6.

In particular, notice that when θ± defined in (3.24) is evaluated at u∗, it simplifies to

θ±(u∗) = −cG±(η)−1η′ = ∓ϕ±,

and a±
1 (η, θ±) = b±

1 + c, a±
2 (η, θ±) = ±b±

2 . We further define

S±(η)ξ := G±(η)−1(b±
1 ξ)′, T±(η)ξ := ±b±

2 ξ,

so that S(η) = ∑
± ρ±S±(η) and T (η) = ∑

± ρ±T±(η). Making these substitution,
we find from the second derivative formula (3.23) that

1

2

∫

R

ψ∗〈D2A(η)[η̇, η̇], ψ∗〉 dx =
∑
±

ρ±
∫

R

(
∓(b±

1 )′b±
2 η̇2 + T±η̇G±(η)T±η̇

)
dx

+
∫

R

(−η̇M (u∗)η̇ + η̇N (u∗)η̇) dx .

Let us next look more closely at the two terms on the second line above. Observe first
that

L±(u∗)η̇ = −G±(η)−1 ((b±
1 + c)η̇

)′ ± b±
2 η̇ = −

(
T± − S± + cG±(η)−1∂x

)
η̇

L (u∗) = T − S − cA(η)−1∂x , (4.11)

where the second line follows from the first and (A.1). Because L± and L will be
evaluated at u∗ throughout the calculation, we will suppress their arguments in the
interests of readability. Using (4.11), we see that the operatorM defined in (3.26) at the
critical point satisfies

∫

R

η̇M η̇ dx =
∑
±

ρ±
∫

R

(
(b±

1 + c)(L±η̇)′ ± b±
2 G±(η)L±η̇

)
η̇ dx

=
∑
±

ρ±
∫

R

(
− ((b±

1 + c)η̇
)′ ± G±(η)b±

2 η̇
)
L±η̇ dx

=
∑
±

ρ±
∫

R

L±η̇G±(η)L±η̇ dx,



1120 R. M. Chen, S. Walsh

where again we are abbreviating M = M (u∗). Substituting in the expression (4.11)
and expanding yields
∫

R

η̇M η̇ dx =
∑
±

ρ±
∫

R

(
S±η̇G±(η)S±η̇ − 2S±η̇G±(η)T±η̇ + T±η̇G±(η)T±η̇

)
dx

+
∫

R

(
c2η̇′A(η)−1η̇′ + 2cη̇′(S − T )η̇

)
dx .

For later use, we compute
∫

R

S±η̇G±(η)T±η̇ dx = ±
∫

R

G±(η)−1(b±
1 η̇
)′
G±(η)(b±

2 η̇) dx

= ±
∫

R

(
b±
1 η̇
)′
(b±

2 η̇) dx

= ±1

2

∫

R

(
(b±

1 )′b±
2 − b±

1 (b±
2 )′
)
η̇2 dx .

Finally, in view of (3.27) and the formula forL in (4.11), we have thatN = N (u∗)
satisfies

∫

R

η̇N η̇ dx =
∑
±

ρ±
∫

R

(
(b±

1 + c)(A(η)G±(η)−1L η̇)′ ± b±
2 A(η)L η̇

)
η̇ dx

=
∑
±

ρ±
∫

R

(
(b±

1 + c)(A(η)G±(η)−1(T − S − cA(η)−1∂x )η̇
)′

± b±
2 A(η)(T − S − cA(η)−1∂x )η̇

)
η̇ dx .

Recalling that A(η) and G±(η)−1 commute, continuing to simplify the right-hand side
we obtain
∫

R

η̇N η̇ dx = −
∑
±

ρ±
∫

R

G±(η)−1((b±
1 + c)η̇

)′
A(η)(T − S − cA(η)−1∂x )η̇ dx

+
∫

R

T η̇A(η)(T − S − cA(η)−1∂x )η̇ dx

=
∫

R

(T − S − cA(η)−1∂x )η̇A(η)(T − S − cA(η)−1∂x )η̇ dx

=
∫

R

(
Dψ∗(η)η̇A(η)Dψ∗(η)η̇ + 2cη̇′(S − T )η̇ + c2η̇′A−1η̇′) dx .

Putting the above together and using Lemma 4.1, (4.10) and Lemma 3.6 we obtain

D2V aug
c (η)[η̇, η̇] =D2

ηEc(u∗)[η̇, η̇] −
∫

R

Dψ∗(η)η̇A(η)Dψ∗(η)η̇ dx

=
∫

R

(
1

2
ψ∗〈D2A(η)[η̇, η̇], ψ∗〉 − g�ρ�η̇2 + σ

(η̇′)2

〈η′〉3
)

dx

−
∫

R

Dψ∗(η)η̇A(η)Dψ∗(η)η̇ dx



Orbital Stability of Internal Waves 1121

=
∫

R

(
σ

(η̇′)2

〈η′〉3 −
(
g�ρ� +

∑
±

±ρ±b±
1 (b±

2 )′
)
η̇2

−
∑
±

ρ±S±η̇G±(η)S±η̇

)
dx,

which leads to the formula Qc(η) claimed in (4.9). ��
Following [46, Theorem 3.5], we can determine the continuous spectrum of Qc(η)

as follows.

Lemma 4.4. (Continuous spectrum)Let u = (η, ψ) ∈ O∩Vbe given. Then the operator
Qc(η) defined in (4.9) is self-adjoint on L2(R) with domain H2(R). The continuous
spectrum of Qc(η) is the same as the one of Qc(0), which is [ν∗,+∞), where

ν∗ :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−g�ρ�

(
1 − λ20

λ2

)
, for β ≥ β0,

−g�ρ�

[
1 − 1

λ2
max
ξ∈R

(∑
±

ρ±
ρ−

d+ξ coth (d±ξ) − βd2+ξ
2

)]
, for β < β0.

(4.12)

Proof. The domain and the self-adjointness of Qc(η) follows from the regularity of η.
The continuous spectrum of Qc(η) coincides with that of Qc(0) because η(x) → 0 as
|x | → ∞. A direct computation yields that the Fourier symbol of Qc(0) is given by

qc(ξ) := −g�ρ�

[
1 − 1

λ2

(∑
±

ρ±
ρ−

d+ξ coth (d±ξ) − βd2+ξ
2

)]
,

which leads to the conclusion of the lemma. ��
Remark 4.5. Observe that the symbol qc above recovers the dispersion relation in that
d+ξ is a root of (1.3) if and only if qc(ξ) = 0.

4.2. Rescaled operator. We now execute the second step in the plan outlined at the start
of the section, namely using a long-wave rescaling to discern the leading-order form of
the operator Qc(η) in the small-amplitude limit along the families of waves discussed in
Sect. 3.5. Because we wish to exploit the fact that (β, λ) is close to the curve 
1 or 
2, it
is more convenient to perform these calculations working with the parameterization in
[47]. With that in mind, let {�ε} be a smooth curve in the dimensional parameter space.
ForRegionA,we assume that the correspondingβ > β0 is fixed andλ = λ0+ε2,whereas
for Region C, (β, λ) are given by (3.43) with δ fixed. To avoid cluttered notation, the
dependence of (ρ±, d±, σ, c) on ε will be suppressed when there is no risk of confusion.
Recall that the corresponding curves of traveling waves are denoted C A

β , C A
β,κ,±, C C

β,δ ,

and C C
β,δ,κ,±.

The main character in this analysis is the scaling operator

Sε f := f

(
ε ·
d+

)
.
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Clearly Sε is a bounded isomorphism on Hk(R) for all k ≥ 0 with ‖Sε‖Lin(Hk ) =
O(ε−1). Note that ∂x and Sε satisfy the following commutation identities.

∂x Sε = ε

d+
Sε∂x , ∂x S

−1
ε = d+

ε
S−1
ε ∂x ,

In particular, this shows that ∂x Sε and ∂x S−1
ε are uniformly bounded in Lin(Hk+1, Hk)

for any k.
From the existence theory in Sect. 3.5, the traveling wave profiles can be written

ηε =: εmd+Sε (̃η + r̃ε) , r̃ε = O(ε) in W1 as ε ↘ 0, (4.13)

with

m :=

⎧⎪⎪⎨
⎪⎪⎩

2 for C A
β and C C

β,δ,κ,±,

1 for C A
β,κ,±,

4 for C C
β,δ.

Note that in (4.13) we are continuing the practice of omitting superscripts and subscripts
when they can be inferred from context. Thus, from (3.40) and (3.41) it follows that in
Region A, η̃ is a scaled KdV or Gardner soliton, while in Region C it is given by Zδ or
Zδ,κ,±. From the commutation identities, we then have that η′

ε = εm+1Sε

(̃
η′ + r̃ ′

ε

)
.

Abusing notation somewhat, let Qε be the operator resulting from evaluating Qc at
the parameter values �ε:

Qε(ηε) := −∂x

(
σ

〈η′
ε〉3

∂x

)
−
(
g�ρ� +

∑
±

±ρ±b±
1ε(b

±
2ε)

′)

+
∑
±

ρ±b±
1ε∂xG±(ηε)

−1∂xb
±
1ε (4.14)

where b±
iε = b±

i (ηε) is a multiplication operator and ηε is from one of the families C A
β ,

C A
β,κ,±, C C

β,δ , or C
C
β,δ,κ,±. Note that again the dependence of many quantities on ε is

being suppressed. Our interest is the rescaled operator:

Q̃ε(ηε) := 1

εn

d+
c2ρ−

S−1
ε Qε(ηε)Sε, (4.15)

where n = 2 in Region A and n = 4 in Region C. Conjugating by Sε imposes a
long-wave scaling that will, in the limit ε ↘ 0, converge to the linearized operator
for the corresponding dispersive model equation. We are also non-dimensionalizing the
problem in order to simplify the resulting expressions.

Lemma 4.6 (Expansion of Q̃ε). The operator Q̃ε defined in (4.15) admits the expansion

Q̃ε(ηε) = Q̃ε(0) + R̃ε,

where in Region A

R̃ε =

⎧⎪⎪⎨
⎪⎪⎩

− 3

(
� − 1

h2

)
η̃ + O(ε2) for C A

β

− 3κη̃ − 6

(
� +

1

h3

)
η̃2 + O(ε) for C A

β,κ,±,

(4.16)



Orbital Stability of Internal Waves 1123

in Lin(Hk+2, Hk), and in Region C

R̃ε =

⎧
⎪⎪⎨
⎪⎪⎩

− 3

(
� − 1

h2

)
η̃ + O(ε2) for C C

β,δ

− 3κη̃ − 6

(
� +

1

h3

)
η̃2 + (1 − �)

(
∂x (̃η∂x ) + η̃′′) + O(ε2) for C C

β,δ,κ,±,

(4.17)

in Lin(Hk+2, Hk).

Proof. Looking at its definition in (4.14), we see that Qε(ηε) is the sum of a second-
order differential operator (call it the surface tension term), a multiplication operator
(the potential term), and a first-order nonlocal operator (the nonlocal term). Rescaling
the surface tension term yields

− 1

εn

d+
c2ρ−

S−1
ε ∂x

(
σ

〈η′
ε〉3

∂x

)
Sε = −ε2−n∂x

(
β

〈εm+1(̃η′ + r̃ ′
ε)〉3

∂x

)
. (4.18)

To understand the contribution of the potential term to Q̃ε(ηε), we first denote the non-
dimensionalized and rescaled relative velocity field

b±
1ε =: cSεb̃

±
1 , b±

2ε =: cSεb̃
±
2 . (4.19)

From the kinematic boundary condition (4.4) we then have that b̃±
2 = εk+1η̃′b̃±

1 . Hence

− 1

εn

d+
c2ρ−

S−1
ε

(
g�ρ� +

∑
±

±ρ±b±
1ε(b

±
2ε)

′
)
Sε = λ

εn
− εm−n+2

∑
±

±ρ±
ρ−

b̃±
1 (̃η′b̃±

1 )′.

The rescaling of the nonlocal term in Qε(ηε) will require the most effort to expand.
Towards that end, we define the operator M̃±

ε (ηε) ∈ Lin(Hk+2, Hk+1) by

M̃±
ε (ηε) := d+

εn
S−1
ε ∂xG±(ηε)

−1∂x Sε. (4.20)

In particular, this means that

Q̃ε(0) = 1

εn

(
−ε2β∂2x + λ +

∑
±

ρ±
ρ−

εnM̃±
ε (0)

)
. (4.21)

Now, using the above calculations, we will analyze the difference operator

R̃ε := Q̃ε(ηε) − Q̃ε(0)

= −βε2−n∂x

[(
1

〈εm+1(̃η′ + r̃ ′
ε)〉3

− 1

)
∂x

]
− εm−n+2

∑
±

±ρ±
ρ−

b̃±
1 (η̃′b̃±

1 )′

+
∑
±

ρ±
ρ−
(̃
b±
1 M̃

±
ε (ηε)̃b

±
1 − M̃±

ε (0)
)
. (4.22)

In view of (4.13) and (4.18), the first term on the right-hand side above is higher order:

− βε2−n∂x

[(
1

〈εm+1(̃η′ + r̃ ′
ε)〉3

− 1

)
∂x

]
= O(ε2m−n+4) in Lin(Hk+2, Hk).

(4.23)
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Consider the remaining two terms in (4.22). Notice that for any f ∈ Hk+2 we have

F
(
M̃±

ε (0) f
)
(ξ) = d+

εn

ε

d+
F
(
∂xG±(0)−1∂x Sε f

)( ε

d+
ξ

)
= d+

εn
m±

(
ε

d+
ξ

)
f̂ (ξ)

wherem±(ξ) := −ξ coth(d±ξ) is the symbol for ∂xG±(0)−1∂x . Thus M̃±
ε (0) is indeed

a Fourier multiplier and its symbol is given by

m̃±
ε (ξ) := − 1

εn

εξ

tanh(d±εξ/d+)
. (4.24)

As an immediate consequence, it follows that

∥∥∥∥εnM̃±
ε (0) +

d+
d±

∥∥∥∥
Lin(Hk+2,Hk )

≤
∥∥∥∥

1

〈 · 〉2
(

εnm̃±
ε +

d+
d±

)∥∥∥∥
L∞

� ε2. (4.25)

In other words, εnM̃±
ε (0) is to leading order the multiplication operator −d+/d± in

Lin(Hk+2, Hk).
To estimate the scaled relative velocity, we observe that by (4.2)–(4.3) and (4.19), it

holds that

b̃±
1 = 1

c
S−1
ε (∂x�ε±|S − c) ,

where, as usual, �ε± denotes the velocity potential. But expanding the Dirichlet–
Neumann operator, we find that

ϕ′± = ±c∂x
(
G±(ηε)

−1∂xηε

)

= ±c∂x
[
G±(0)−1η′

ε +
〈
DG±(0)−1ηε, η

′
ε

〉]
+ O(ε3m) in Hk,

(∂x�ε±)|S = 1

1 + (η′
ε)

2

(
ϕ′± ± η′

εG±(ηε)ϕ±
) = 1

1 + (η′
ε)

2

(
ϕ′± ± (η′

ε)
2
)

= ±c∂x
[
G±(0)−1η′

ε +
〈
DG±(0)−1ηε, η

′
ε

〉]
+ O(ε3m) in Hk .

We can compute DG±(0)−1 as

〈
DG±(0)−1ηε, f

〉
= −G±(0)−1

〈
DG±(0)ηε,G±(0)−1 f

〉
,

and from Lemma 3.3, we see that

〈
DG±(0)ηε,G±(0)−1∂x Sε f

〉
= ±∂x Sε

[(
S−1
ε ∂xG±(0)−1∂x Sε f

)
d+ε

m η̃
]

± G±(0)Sε

(
ε

d+
(∂x f )d+ε

m η̃

)

= ±∂x Sεε
m+n (M̃±

ε (0) f
)
η̃ ± εm+1G±(0)Sε(̃η∂x f ).

(4.26)
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Therefore

b̃±
1 = S−1

ε

[± ∂x
(
G±(0)−1η′

ε +
〈
DG±(0)−1ηε, η

′
ε

〉)− 1
]
+ O(ε3m)

= ±εmd+
[
S−1
ε ∂xG±(0)−1∂x (Sεη̃) − S−1

ε ∂xG±(0)−1 〈DG±(0)ηε,G±(0)−1∂x Sεη̃
〉]

− 1 + O(ε3m)

= ±εm+nM̃±
ε (0)̃η − 1 + O(ε3m)

∓ εmd+S
−1
ε ∂xG±(0)−1 [±εm+n∂x Sε

(
M̃±

ε (0)̃η
)
η̃ ± εm+1G±(0)Sε(̃ηη̃′)

]

= ±εm+nM̃±
ε (0)̃η − 1 − ε2m+2nM̃±

ε (0)
((
M̃±

ε (0)̃η
)
η̃
)− ε2m+2∂x (̃ηη̃′) + O(ε3m)

= −1 ∓ εm
d+
d±

η̃ − ε2m
d2+
d2±

η̃2 + O(εm+2) in Hk .

(4.27)

Hence for the second term on the right-hand side of (4.22) we have

− εm−n+2
∑
±

±ρ±
ρ−

b̃±
1 (̃η′b̃±

1 )′

= εm−n+2(1 − �)̃η′′ + ε2m−n+2
(

� +
1

h

)[
2η̃η̃′′ + (̃η′)2

]

+ O(ε3m−n+2) in Lin(Hk+2, Hk).

(4.28)

Using the expansion (4.27) for b̃±
1 also furnishes the estimate

b̃±
1 M̃

±
ε (ηε)̃b

±
1 = M̃±

ε (ηε) ± εm
d+
d±
[̃
ηM̃±

ε (ηε) + M̃±
ε (ηε)̃η

]

+ ε2m
d2+
d2±

[
η̃M̃±

ε (ηε)̃η + η̃2M̃±
ε (ηε) + M̃±

ε (ηε)̃η
2
]
+ O(ε3m−n)

(4.29)

in Lin(Hk+2, Hk). On the other hand, from the definition of M̃±
ε in (4.20) it follows

that for all f ∈ Hk+2 with ‖ f ‖Hk+2 = 1,

(
M̃±

ε (ηε) − M̃±
ε (0)

)
f = d+

εn
S−1
ε ∂x

(
G±(ηε)

−1 − G±(0)−1
)

∂x Sε f

= d+
εn

S−1
ε ∂x

〈
DG±(0)−1ηε, ∂x Sε f

〉

+
d+
2εn

S−1
ε ∂x

〈
D2G±(0)−1[ηε, ηε], ∂x Sε f

〉

+ O(ε3m−n) in Hk .

(4.30)

Explicit calculation yields
〈
D2G±(0)−1[ηε, ηε], f

〉

= −G±(0)−1
〈
D2G±(0)[ηε, ηε],G±(0)−1 f

〉

+ 2G±(0)−1
〈
DG±(0)ηε,G±(0)−1

〈
DG±(0)ηε,G±(0)−1 f

〉〉
.
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From (4.26) we have

〈DG±(0)ηε, G±(0)−1
〈
DG±(0)ηε,G±(0)−1∂x Sε f

〉〉

= ∂x Sε

[(
S−1
ε ∂xG±(0)−1∂x Sεε

m+n (M̃±
ε (0) f

)
η̃
)
d+ε

m η̃
]
+ O(ε2m+1)

= ε2(m+n)∂x SεM̃±
ε (0)

((
M̃±

ε (0) f
)
η̃
)
η̃ + O(ε2m+1) in Hk .

Likewise, Lemma 3.5 allows us to estimate

〈
D2G±(0)[ηε, ηε], G±(0)−1 f

〉
= O(ε2m+1) in Hk .

Substituting the above into (4.30) yields

(
M̃±

ε (ηε) − M̃±
ε (0)

)
f = ∓ d+

εn
S−1
ε ∂xG±(0)−1∂x Sε

(
εm+nM̃±

ε (0) f
)
η̃

+
d+
εn

S−1
ε ∂xG±(0)−1∂x Sε

(
ε2(m+n)M̃±

ε (0)
(
M̃±

ε (0) f
)
η̃
)

η̃

∓ d+
εn

S−1
ε ∂x Sε

(
εm+1η̃∂x f

)
+ O(ε2m−n+1)

= ∓ εm+nM̃±
ε (0)

((
M̃±

ε (0) f
)
η̃
)∓ εm−n+2∂x (̃η∂x f )

+ ε2(m+n)M̃±
ε (0)

(
M̃±

ε (0)
(
M̃±

ε (0) f
)
η̃
)
η̃ + O(ε2m−n+1)

= ∓ εm−n d
2
+

d2±
η̃ f ∓ εm−n+2∂x (̃η∂x f ) − ε2m−n d

3
+

d3±
η̃2 f

+ O(ε2m−n+1),

(4.31)

in Hk . Using this, the previous estimate (4.29) becomes

b̃±
1 M̃

±
ε (ηε)̃b

±
1 f = M̃±

ε (0) f ± εm
d+
d±

η̃M̃±
ε (0) f ± εm

d+
d±

M̃±
ε (0)̃η f

+ ε2m
d2+
d2±

[
η̃M̃±

ε (0)̃η f + η̃2M̃±
ε (0) f + M̃±

ε (0)̃η2 f
]

∓ εm−n d
2
+

d2±
η̃ f ∓ εm−n+2∂x (̃η∂x f ) − 3ε2m−n d

3
+

d3±
η̃2 f

− ε2m−n+2 d+
d±

[̃η∂x (̃η∂x f ) + ∂x (̃η∂x (̃η f ))] + O(ε2m−n+1),

in Hk . We can simplify further by applying (4.25), which results in

b̃±
1 M̃

±
ε (ηε)̃b

±
1 f = M̃±

ε (0) f ∓ 3εm−n d
2
+

d2±
η̃ f − 6ε2m−n d

3
+

d3±
η̃2 f ∓ εm−n+2∂x (̃η∂x f )

+ O(ε2m−n+1) in Hk .
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Therefore in computing the third term on the right-hand side of (4.22) we find

∑
±

ρ±
ρ−
(̃
b±
1 M̃

±
ε (ηε)̃b

±
1 − M̃±

ε (0)
)
f

= 3εm−n
∑
±

∓ρ±
ρ−

d2+
d2±

η̃ f − 6ε2m−n
∑
±

ρ±
ρ−

d3+
d3±

η̃2 f

+ εm−n+2
∑
±

∓ρ±
ρ−

∂x (̃η∂x f ) + O(ε2m−n+1)

= −3εm−n
(

� − 1

h2

)
η̃ f − 6ε2m−n

(
� +

1

h3

)
η̃2 f

+ εm−n+2(1 − �)∂x (̃η∂x f ) + O(ε2m−n+1),

in Hk . Taken together with (4.23) and (4.28), this yields the claimed expansion for R̃ε.
��

Let us now look more closely at the leading-order part of Q̃ε(ηε), which by the above
lemma is the Fourier multiplier Q̃ε(0). Analyzing its symbol will allow us to infer that
it has a point-wise limit as ε ↘ 0. Near the critical Bond number, however, there is a
degeneracy that causes the limiting operator to be fourth order. Combining this with the
previous result, we obtain the following.

Lemma 4.7 (Limiting rescaled operator). Consider the rescaled operator Q̃ε(ηε) given
by (4.15).

(a) Suppose that β > β0 and λ = λ0 + ε2 lies in Region A. Then for any k > 1/2 and
ζ ∈ Hk+2,

‖Q̃ε(ηε)ζ − Q̃0ζ‖Hk −→ 0 as ε ↘ 0,

where the operator Q̃0 ∈ Lin(Hk+2, Hk) is given by

Q̃0 =

⎧
⎪⎪⎨
⎪⎪⎩

− (β − β0)∂
2
x + 1 − 3

(
� − 1

h2

)
η̃ for C A

β

− (β − β0)∂
2
x + 1 − 3κη̃ − 6

(
� +

1

h3

)
η̃2 for C A

β;κ,±.

(b) Suppose that (β, λ) lie in Region C and are given by (3.43) for a fixed δ < 0. Then
for any k > 1/2 and ζ ∈ Hk+4,

‖Q̃ε(ηε)ζ − Q̃0ζ‖Hk −→ 0 as ε ↘ 0,

where the operator Q̃0 ∈ Lin(Hk+4, Hk) is given by

Q̃0 =

⎧⎪⎪⎨
⎪⎪⎩

γ ∂4x − 2(1 + δ)γ ∂2x + γ − 3

(
� − 1

h2

)
η̃ for CC

β,δ

γ ∂4x − 2(1 + δ)γ ∂2x + γ − 3κη̃ − 6

(
� +

1

h3

)
η̃2 + (1 − �)

(
∂x (̃η∂x ) + η̃′′) for CC

β;κ,δ,±.
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Proof. Fix k > 1/2. Recall that Q̃ε(ηε) = Q̃ε(0) + R̃ε, where Q̃ε(0) is given in (4.21).
We have already seen in Lemma 4.6 that R̃ε has a uniform limit in Lin(Hk+2, Hk) as
ε ↘ 0. From (4.24), it is clear that Q̃ε(0) is a Fourier multiplier: for all f ∈ Hk+2,

F
(
Q̃ε(0) f

)
(ξ) = 1

εn

(
ε2βξ2 + λ −

∑
±

ρ±
ρ−

εξ coth

(
d±
d+

εξ

))
f̂ (ξ) =: q̃ε(ξ) f̂ (ξ).

Consider the point-wise limit of the symbol q̃ε as ε ↘ 0. Here it is important to keep in
mind that the dimensional parameters are moving along the curve {�ε} and λ ↘ λ0 in
this limit. Therefore, we write

q̃ε(ξ) = ε2−n(β − β0)ξ
2 +

λ − λ0

εn
+

1

εn

(
β0(εξ)2 + λ0 −

∑
±

ρ±
ρ−

εξ coth

(
d±
d+

εξ

))

=: ε2−n(β − β0)ξ
2 +

λ − λ0

εn
+
r(εξ)

εn
.

Taylor expanding r near ξ̃ := εξ = 0 yields that

r(̃ξ ) = β0ξ̃
2 + λ0 −

∑
±

ρ±
ρ−

ξ̃ coth

(
d±
d+

ξ̃

)
= γ ξ̃4 + O (̃ξ6) as ξ̃ → 0. (4.32)

For Region A, we have n = 2 and λ = λ0 + ε2, and hence for each fixed ξ ∈ R,

q̃ε(ξ) −→ (β − β0)ξ
2 + 1 as ε ↘ 0.

On the other hand, in Region C we have n = 4 with (β, λ) given by (3.43). Again, fixing
ξ we then have that the limiting symbol is

q̃ε(ξ) −→ γ ξ4 + 2(1 + δ)γ ξ2 + γ as ε ↘ 0.

Combining these expressions for the limiting symbol with the asymptotics of R̃ε from
(4.16) and (4.17), the formulas for Q̃0 in (a) and (b) now follow. ��

4.3. Spectrum of the linearized augmented potential. Using the limiting behavior
derived above, we will now characterize the spectrum of the Qε(ηε). It is worth reiterat-
ing that an essential challenge in this analysis is that the operator converges point-wise
to Q0(0) whose essential spectrum is [0,∞). It is for this reason that we introduced the
rescaled operator Q̃ε(ηε), since by Lemma 4.7 converges (again only point-wise) to Q̃0,
which has a gap between the positive essential spectrum and 0.

Spectral analysis in Region A We start by deriving the spectral properties of Qε(ηε) for
the strong surface tension waves with parameters (β, λ) in Region A.

Lemma 4.8. In the setting of Lemma 4.7 (a), the limiting rescaled operator Q̃0 satisfies

ess specQ̃0 = [1,∞), spec Q̃0 = {−ν̃2, 0} ∪ �̃ (4.33)

where the first two eigenvalues −ν̃2 < 0 and 0 are both simple with corresponding
eigenfuctions φ̃1 and φ̃2 = η̃′, respectively; and there exists ν∗ > 0 such that �̃ ⊂
[ν∗,∞).
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Proof. This is a classical result on linear Schrödinger operators, and can be found, for
example, in [6]. The fact that−ν̃2 and 0 are all simple follows from the theory of ODEs:
the Wronskian of two L2 solutions to the eigenvalue problem Q̃0 f = ν̃ f is necessarily
0. ��

Using a similar argument as [46, Theorem 4.3], we then have the following result.

Theorem 4.9 (Spectrum in Region A). Let the assumptions of Lemma 4.7 (a) hold. For
each a ∈ (0, ν∗) there exists some ε0 > 0 such that for all ε ∈ (0, ε0) the operator
Qε(ηε) satisfies

ess specQε(ηε) ⊂ [ε2c2ρ−/d+,∞), spec Qε(ηε) = {−ν2, 0} ∪ �,

where � ⊂ [aε2c2ρ−/d+,∞), and

ν2 = ε2c2ρ−
d+

ν̃2 + o(ε2) as ε ↘ 0.

The first two eigenvalues ν1 := −ν2 < 0 and ν2 := 0 are simple with the associated
eigenfunctions taking the form φi = Sεφ̃i + o(1) in Hk as ε ↘ 0.

Proof. From Lemma 4.6 we see that it suffices to prove that the operator

Qε := Q̃ε(0) + R̃0,

with R̃0 defined by (4.16) with ε = 0, has exactly two simple eigenvalues lying in
(−∞, a) that converge to ν̃i respectively for i = 1, 2. It is clear that Qε is self-adjoint.
Note that Qε may not have 0 as an exact eigenvalue, but this does hold for Q̃ε(ηε).

Firstly, from Lemma 4.7 (a) it follows that

‖ (Qε − ν̃i ) φ̃i‖Hk ≤ Cε2‖φ̃i‖Hk . (4.34)

Therefore Qε admits spectral values close to ν̃i with O(ε2) distance.
Now we consider a sequence {(νε j , φε j )} of eigenpairs of Qε j with νε j ∈ (−∞, a)

and ε j ↘ 0 as j → ∞. Our goal is to prove the compactness of the eigenpair sequence
and confirm that the limit must be an eigenpair of Q̃0.

We normalize so that ‖φε j ‖Hk = 1. Note that ‖η̃‖WN ,∞ ≤ CN for any N ≥ 0.
Moreover from the proof of Lemma 4.6 we see that Q̃ε(0) − 1 is positive semi-definite.
From this we know that the spectrum ofQε is bounded below: specQε ⊂ [1−Ck,∞).
Since η̃ decays exponentially, we have that ess specQε = [1,∞). Thus specQε ∩ [1 −
Ck, a] consists of discrete eigenvalues of finite multiplicity. By definition,

(
Q̃ε j (0) − νε j

)
φε j = −R̃0φε j . (4.35)

Since νε j ∈ [1 − Ck, a], from the proof of Lemma 4.6, the Fourier symbol of operator
on the left-hand side is

q̃ε j (ξ) − νε j ≥ q̃0(ξ) − a = (β − β0)ξ
2 + 1 − a ≥ δ∗(1 + ξ2)

for some δ∗ > 0 independent of ε j . This uniform ellipticity property allows us via
bootstrapping to obtain the bound‖φε j ‖Hk+4 ≤ C∗ fromsomeuniversal constantC∗ > 0.
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To obtain compactness of the sequence {φε j } in Hk+2, we proceed to prove a uniform
decay estimate. Given an exponential weight w := cosh(α · ) for some α > 0, we see
that for any Schwartz function f ,

F
[
w
(
Q̃ε j (0) − νε j

)−1
f
]
(ξ) = 1

2

[
f̂ (ξ + iα)

q̃ε j (ξ + iα) − νε j

+
f̂ (ξ − iα)

q̃ε j (ξ − iα) − νε j

]
.

Taking α2 < (1 − a)/(β − β0) it follows that

sup
| Im ξ |≤α

∣∣∣∣∣
1

q̃ε j (ξ ± iα) − νε j

∣∣∣∣∣ ≤ C∗,

for some C∗ > 0. Therefore
∥∥∥(Q̃ε j (0) − νε j

)−1
∥∥∥
Lin(L2

w)
≤ C∗,

where L2
w := { f ∈ L2 : w f ∈ L2} is the weighted L2 space corresponding tow. Hence

from (4.35),

‖φε j ‖L2
w

≤ C∗‖R̃0φε j ‖L2
w

≤ C∗‖w R̃0‖L∞‖φε j ‖L2 ≤ C∗‖w R̃0‖L∞ � 1.

Thus {φε j } is bounded in Hk+4 ∩ L2
w, which is compactly embedded in Hk+2. Hence

up to a subsequence, as j → ∞, νε j → ν∗ ∈ (−∞, a] and φε j → φ∗ in Hk+2 with
‖φ∗‖Hk = 1. Moreover, Q̃0φ∗ = ν∗φ∗, which indicates that φ∗ = φ̃i for some i = 1, 2.

Finally we check the convergence of the corresponding spectral projections. Set
Pε to be the spectral projection for Qε associated with the interval [1 − Ck, a].
From (4.34), there exists ε0 > 0 such that dimRngPε ≥ 2 for ε ∈ (0, ε0). Also
Pε = ∑Nε

i=1

〈 · , φi,ε
〉
φi,ε for somefinite integer Nε and orthonormal eigenbasis {φi,ε}Nε

i=1.
Were there a sequence ε j ↘ 0 such that Nε j ≥ 3, then it would contradict the above
convergence result. Therefore, for all ε sufficiently small, it must be that Nε = 2. We
can then conclude that φi,ε → φ̃i in Hk . ��

Spectral analysis in Region C The same argument can also be applied to the near critical
surface tension waves with (β, λ) in Region C. On the solution curve C C

β,δ , we have that
η̃ satisfies

γ ∂4x η̃ − 2(1 + δ)γ ∂2x η̃ + γ η̃ − 3

2

(
� − 1

h2

)
η̃2 = 0. (4.36)

Direct computation shows that the Green’s function of [∂4x − 2(1 + δ)∂2x + 1]−1 decays
like e−s|x | as x → ±∞, where

s :=
{√

1 + δ −√δ(2 + δ), δ ≥ 0,√|δ|/2, δ < 0,
(4.37)

indicating that η̃ is exponentially localized. Therefore, invoking the Weyl theorem on
continuous spectrum (see, for example, [49]), we know that

ess specQ̃0 = [γ,∞) when δ > −2. (4.38)
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Note that the operator Q̃0 is self-adjoint in L2(R) with domain Hk+4(R). Therefore, its
spectrum is confined to the real line. Standard ODE theory shows that any eigenvalue
of Q̃0 has geometric multiplicity ≤ 2.

By setting Z := 3
2γ

(
� − 1

h2

)
η̃, equation (4.36) becomes (1.9)

Z ′′′′ − 2(1 + δ)Z ′′ + Z − Z2 = 0,

which leads us to study

Qδ := ∂4x − 2(1 + δ)∂2x + 1 − 2Zδ (4.39)

viewed as an unbounded operator on L2(R) with domain H4(R). While more exotic
than the Schrödinger operator encountered in Region A, the spectral properties of this
Qδ for δ > −2 have been studied by Sandstede [50]. We quote an important result of
his below.

Lemma 4.10 (Sandstede [50]). Let δ > −2 and Zδ be a homoclinic solution of (1.9),
and consider the linearized operator Qδ given by (4.39).

(i) Qδ has at least one negative eigenvalue.
(ii) If Zδ is transversely constructed, then zero is a simple eigenvalue of Qδ . Moreover,

when δ is varied, the number of negative eigenvalues remains constant until Zδ

ceases to be transversely constructed.
(iii) In particular, for δ ≥ 0 or −1 � δ < 0 and consider Zδ being a transversely

constructed primary homoclinic orbit. Then Qδ has exactly one negative eigenvalue.
That is, the spectrum of Qδ takes the form

ess specQδ = [1,∞), spec Qδ = {−ν̃2, 0} ∪ �̃

where −ν̃2 < 0 and 0 are both simple with corresponding eigenfuctions φ̃1 and
φ̃2 = Z ′

δ , respectively; and there exists ν∗ > 0 such that �̃ ⊂ [ν∗,∞).

With these provisions, we obtain the following theorem of the spectrum of the aug-
mented potential in Region C. The proof is very similar to the one for Theorem 4.9, and
hence we omit it.

Theorem 4.11 (Spectrum in Region C). Let the assumptions of Lemma 4.7 (b) hold.
Let ν̃, ν∗ and φ̃1,2 given as in Lemma 4.10 (iii). Then for each a ∈ (0, ν∗) there exists
some ε0 > 0 such that for all ε ∈ (0, ε0) the operator Qε(ηε) satisfies

ess specQε(ηε) ⊂ [γ ε4c2ρ−/d+,∞), spec Qε(ηε) = {−ν2, 0} ∪ �,

where � ⊂ [aε4c2ρ−/d+,∞), and

ν2 = ε4c2ρ−
d+

ν̃2 + o(ε4) as ε ↘ 0.

The first two eigenvalues ν1 := −ν2 and ν2 := 0 are simple with the associated eigen-
functions taking the form φi = Sεφ̃i + o(1) in Hk as ε ↘ 0.
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4.4. Spectrum of the linearized augmented Hamiltonian.

Lemma 4.12 (Extension of D2Ec). Let {Uc} be one of the family of bound states {UA
c },

{UA±
c }, or {UC

c } given by Corollaries 3.15, 3.16 or Lemma 3.17(a), respectively. Then
D2Ec(Uc) extends uniquely to a bounded linear operator Hc : X → X

∗ such that

D2Ec(Uc)[u̇, v̇] = 〈Hcu̇, v̇〉X∗×X for all u̇, v̇ ∈ V,

and I−1Hc is self-adjoint on X.

Proof. It suffices to consider the diagonal, so let a bound state Uc = (ηc, ψc) and
u̇ = (η̇, ψ̇) ∈ V be given. By Lemmas 4.1 and 4.2, we have that

D2Ec(Uc)[u̇, u̇] =D2V aug
c (ηc)[η̇, η̇] +

∫

R

(Tc − Sc)η̇A(ηc)(Tc − Sc)η̇ dx

+ 2DψDηEc(Uc)[η̇, ψ̇] + D2
ψ Ec(Uc)[ψ̇, ψ̇]

=〈Qc(ηc)η̇, η̇〉X∗×X +
∫

R

(Tc − Sc)η̇A(ηc)(Tc − Sc)η̇ dx

+ 2
∫

R

ψ̇〈DA(ηc)η̇, ψc〉 dx + 2c
∫

R

η̇′ψ̇ dx +
∫

R

ψ̇ A(ηc)ψ̇ dx,

where we write Sc and Tc to indicate that these operators are being evaluated atUc. The
first derivative formula in Lemma 3.3 then gives

D2Ec(Uc)[u̇, u̇] = 〈Qc(ηc)η̇, η̇〉X∗×X +
∫

R

(Tc − Sc)η̇A(ηc)(Tc − Sc)η̇ dx

+
∫

R

ψ̇ A(ηc)ψ̇ dx

+ 2c
∫

R

η̇′ψ̇ dx + 2
∑
±

ρ±
∫

R

(
(b±

1c + c)
(
G±(ηc)

−1A(ηc)ψ̇
)′

±b±
2c A(ηc)ψ̇

)
η̇ dx,

where (b±
1c, b

±
2c) is the relative velocity determined by Uc via (4.3). Recalling the defi-

nitions of S and T in (4.5), this can be expressed quite concisely as:

D2Ec(Uc)[u̇, u̇] = 〈Qc(ηc)η̇, η̇〉X∗×X +
∫

R

(
(Tc − Sc)η̇ + ψ̇

)
A(ηc)

(
(Tc − Sc)η̇ + ψ̇

)
dx .

(4.40)

It is then clear that D2Ec(Uc) extend to an element of X
∗. ��

We can now state and prove the main result of this section, which characterizes the
spectrum.

Theorem 4.13. (Spectrum) Let {Uc} be one of the family of bound states {UA
c }, {UA±

c },
or {UC

c } given by Corollaries 3.15, 3.16 or Lemma 3.17(a), respectively. Then

spec I−1Hc = {−μ2
c, 0} ∪ �c,

where −μ2
c < 0 is a simple eigenvalue corresponding to a unique eigenvector χc; 0 is a

simple eigenvalue generated by T ; and �c ⊂ (0,∞) is bounded uniformly away from
0.
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Proof. This follows from the structure of I−1Hc and a soft analysis argument as in [46,
Proposition 5.3]. Due either to Theorem 4.9 or Theorem 4.11, the operator

Qc(ηc) + (α − ν2c )〈 · , φ1c〉φ1c + α〈 · , η′
c〉η′

c

is positive definite for all α > 0, where −ν2c is the negative eigenvalue of Qc(ηc) and
φ1c is the corresponding eigenfunction. As A(ηc) is itself positive definite, from (4.40)
we obtain the estimate

〈Hcu, u〉X∗×X + (α − ν2c )〈I−1(φ1c, 0), u〉2
X∗×X

+ α〈I−1(η′
c, 0), u〉2

X∗×X
�c ‖u‖2

X
,

for all u ∈ X. Thus I−1Hc is positive definite on a codimension 2 subspace.
On the other hand, we know that T ′(0)Uc is in the kernel of Hc, and by (4.40) we

have that

〈Hcu, u〉X∗×X = 〈Qc(ηc)φ1c, φ1c〉X∗×X = −ν2c < 0 for u = (φ1c, (Sc − Tc)φ1c).

Thus I−1Hc has a one-dimensional kernel generated by T ′(0)Uc, a one-dimensional
negative definite subspace, and it is positive definite in the orthogonal complement. The
claimed spectral properties of I−1Hc are now easily confirmed. ��

5. Proof of the Main Results

5.1. Stability of uniform flows. We begin with the simpler case of the trivial solution
Uc = (0, 0), corresponding to a laminar flow with (the same) constant purely horizontal
velocity in each layer. For (β, λ) in Region B, we then have by Lemma 4.4 that I−1Hc is
positive definite. Let us now state and prove a rigorous version of Theorem 1.3. Because
Uc = 0, the tubular neighborhoods above simply become balls in the appropriate spaces,
and hence conditional orbital stability is equivalent to conditional stability.

Theorem 5.1 (Stability of uniform flows). Let Uc = (0, 0) be the trivial bound state
for the internal wave problem (3.31) with wave speed c ∈ R. Then Uc is conditionally
stable if the corresponding (β, λ) lies in Region B.

Proof. Because Ec is C∞(V; R), Ec(Uc) = 0, and DEc(Uc) = 0, Taylor expanding it
at Uc gives

Ec(u) = 1

2
〈Hcu, u〉 + O(‖u‖3

V
).

For (β, λ) in Region B, we have by Lemmas 4.4 and 4.12 that I−1Hc is positive definite
on X. On the other hand, the cubic term above can be controlled via Lemma 3.2:

‖u‖3
V

� ‖u‖1−θ
W

‖u‖2+θ
X

≤ r θ R1−θ‖u‖2
X

for all u ∈ UX

r ∩ BW

R .

Thus, for r > 0 sufficiently small, it holds that

Ec(u) ≥ α‖u‖2
X

for all u ∈ UX

r ∩ BW

R , (5.1)

for some α = α(r, R) > 0.
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Now, seeking a contradiction, suppose thatUc is not conditionally stable. Thus there
exists R > 0, r > 0, and a sequence of initial data {un0} ⊂ O ∩ W with un0 → 0 in X

but for which the corresponding solution un : [0, tn0 ) → BW

R exits UX
r in finite time:

‖un(τn)‖X = r for some τn ∈ (0, tn0 ).

Let τn be the first such time and, if necessary, shrink r so that (5.1) holds. Together with
the conservation of energy and momentum, this ensures that

Ec(u
n
0) = Ec(un(τn)) ≥ αr2 for all n ≥ 1. (5.2)

Because {un0} ⊂ BW

R and un0 → 0 in X, Lemma 3.2 forces un0 → 0 in V. But then,
the continuity of E and P would imply that Ec(un0) also vanishes in the limit. As this is
in obvious contradiction with (5.2), the proof is complete. ��

5.2. Stability for strong surface tension. Next, we turn to themore complicated situation
where the wave in question is small-amplitude but nontrivial. Consider first the strong
surface tension case corresponding to the waves in Region A. In Theorem 4.13, it was
shown that I−1Hc has a negative direction in this regime, and so we will use the energy-
momentum approach to show stability. Having laid the groundwork for this argument in
the previous sections,we are prepared to state and prove a precise version ofTheorem1.1.

Theorem 5.2 (Stability for strong surface tension). For all c such that 0 < λc−λ0 � 1,
the bound states UA

c and UA±
c given by Corollaries 3.15 and 3.16 are conditionally

orbitally stable.

Proof. Let Uc stand for both UA
c and UA±

c , as the first stage of the proof is identical
in either case. In Sect. 3, we confirmed that Assumptions 1—5, and Assumption 6 was
verified in Theorem 4.13. By Theorem 2.1, to prove that Uc∗ is conditionally orbitally
stable we need only show that d ′′(c∗) > 0, where recall that d is moment of instability
defined by

d(c) := Ec(Uc) = E(Uc) − cP(Uc). (5.3)

Because Uc is a critical point of Ec, differentiating the above equation gives

d ′(c) = −P(Uc). (5.4)

Thus we must confirm that c �→ −P(Uc) is strictly increasing at c = c∗.
The definition of the momentum (3.33) and kinematic condition (4.1) yield the

explicit formula

d ′(c) =
∫

R

η′
cψc dx = c

∫

R

ηc∂x A(ηc)
−1η′

c dx .

As in Sect. 4.2, we will exploit a long-wave rescaling to analyze this quantity. Recycling
notation, let us redefine the scaling operator to be

Sc f := f

(
εc ·

d+
√

βc − β0

)
, (5.5)
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where εc = εAc and βc are given by (3.42). Likewise, the asymptotics for the free surface
profile established in (3.40) and (3.41) permits us to write

ηc =: εmc d+Sc (̃η + r̃c) for r̃c = O(εc) in Hk,

with m = 2 for UA
c and m = 1 for UA±

c . Using the rescaling, we compute that

d ′(c) = cε2mc d2+

∫

R

(Sc (̃η + r̃c))∂x A(ηc)
−1∂x Sc (̃η + r̃c) dx

= cε2m−1
c d3+

√
βc − β0

∫

R

(̃η + r̃c)S
−1
c ∂x A(ηc)

−1∂x Sc (̃η + r̃c) dx

= cε2m−1
c d3+

√
βc − β0

∑
±

ρ±
∫

R

(̃η + r̃c)S
−1
c ∂xG±(ηc)

−1∂x Sc (̃η + r̃c) dx,

where the last line follows from (A.1). Similar to (4.20), let us define

M̃±
c (ηc) := d+S

−1
c ∂xG±(ηc)

−1∂x Sc.

Arguing as in Lemma 4.6, we then find that
∥∥∥∥M̃±

c (0) +
d+
d±

∥∥∥∥
Lin(H2,L2)

� ε2c ,
∥∥M̃±

c (ηc) − M̃±
c (0)

∥∥
Lin(H2,L2)

� εmc ,

and hence

d ′(c) = cε2m−1
c d2+

√
βc − β0

∑
±

ρ±
∫

R

η̃M̃±
c (0)̃η dx + O(ε3m−1

c ) in C1(I )

= −cε2m−1
c d2+

√
βc − β0

∑
±

ρ±
d+
d±

∫

R

η̃2 dx + O(ε3m−1
c ) in C1(I ),

(5.6)

where recall that I is a sufficiently small interval containing c∗.
Now, observe that εc, βc > 0, and from (3.42),

c �→ εc and c �→ cβc sgn c are both positive and

{
strictly decreasing for c > 0, and

strictly increasing for c < 0,

Therefore c �→ −cε2m−1
c (βc − β0)

1/2 is strictly increasing. This completes the proof
for the family {UA

c }, as η̃ is independent of c in that case.
The argument for {UA±

c } is only slightly more complicated. Recall that by (3.41),

η̃ = η̃A±
c (x) = 1

κc ±√κ2
c + 4(� + h) cosh x

, (5.7)

with κc = κA
c defined as in Corollary 3.16. Since we are in fact computing

∫
R

η̃2 dx , it is
sufficient to assume that κc > 0. Then, clearly η̃A+c > 0 and c �→ κc sgn c is increasing,
so we again have by (5.6) and the argument in the previous paragraph that d ′ is strictly
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increasing. Finally, η̃A−
c is a wave of depression and an explicit computation using (5.7)

gives

∫

R

(̃ηA−
c )2 dx =

κc tan−1
(

κc+
√

κ2c +4(�+h)

4(�+h)

)

2(� + h)3/2
− 1

2(� + h)
.

It is easily seen that the right-hand side above is strictly increasing in c for c > 0 and
strictly decreasing for c < 0. The proof is therefore complete. ��

5.3. Stability for near critical surface tension. Consider now the families of bound
states {UC

c } that correspond to traveling waves in Region C. Recall from Sect. 3.5, that
to leading order, the corresponding free surface profiles are rescalings of the family of
primary homoclinic orbits {Zδ} of the ODEs (3.44). To unify the presentation, we will
write Zc as shorthand for ZδCc

.
The next theorem shows that under the hypothesis of Theorem 4.11, the orbital

stability/instability of these waves can be inferred purely from properties of the primary
homoclinic orbits.

Theorem 5.3. (Stability for critical surface tension) Consider the family of traveling
waves {UC

c } given in Lemma 3.17(a) and assume that the hypothesis of Theorem 4.11
holds. For all c∗ with 0 < λc∗ − λ0 � 1, the corresponding wave is conditionally
orbitally stable provided that the function

c �→ sgn c
∫

R

Z2
c dx is strictly increasing at c∗, (5.8)

and it is orbitally unstable if this function is strictly decreasing there.

Proof. Throughout the argument, we abbreviate {Uc} for {UC
c } and εc = εCc . We have

already proved in Theorem 4.13 that the spectral hypothesis Assumption 6 holds for
I−1Hc. As in the previous subsection, we may therefore apply Theorem 2.1 to conclude
thatUc∗ is conditionally orbitally stable provided that d

′′(c∗) > 0,where d is themoment
of instability (5.3). On the other hand, because the Cauchy problem is locally well-posed,
Assumption 7 is satisfied, and so Theorem 2.2 tells us that Uc∗ is orbitally unstable if
d ′′(c∗) < 0.

From Lemma 3.17, we know that free surface profile takes the form

ηc = ε4cd+Sc (Zc + r̃c) with r̃c = O(εc) in Hk as ε ↘ 0,

where we have redefined the scaling operator to be Sc f := f (ε · /d+). The same
argument as in the proof of Theorem 5.2 reveals that

d ′(c) = −cε7cd
2
+γ
∑
±

ρ±
d+
d±

∫

R

Z2
c dx + O(ε11c ) in C1(I ).

From the definition of εc in (3.46),

c �→ εc and c �→ cε2c sgn c are both positive and

{
strictly decreasing for c > 0, and

strictly increasing for c < 0,

Thus c �→ −cε7c is strictly increasing. Therefore d ′(c) is strictly increasing at c∗ when
(5.8) is satisfied. ��
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We remark that (5.8) is stated in terms of the wave speed c, but to compare it to results
on dispersive model equations of Kawahara type (1.9) it is natural to consider the related
function δ �→ ∫

Z2
δ dx . Looking carefully at its definition in (3.46), we see that c �→ δCc

can be both increasing or decreasing depending on the various physical parameters.
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Appendix A. Elementary Identities

Here we give the proofs of the elementary first and second derivative formulas for the
nonlocal operators G±(η) and A(η).

Proof of Lemma 3.3. The formula (3.18) for DG±(η) can be derived using the same
method as the standard one-fluid case. To obtain (3.20), it is easier to first consider the
derivative of

A(η)−1 = G+(η)−1B(η)G−(η)−1 = ρ+G+(η)−1 + ρ−G−(η)−1. (A.1)

Then,

〈DA(η)η̇, ψ〉 = −A(η)
〈
D(A(η)−1)η̇, A(η)ψ

〉

=
∑
±

ρ±A(η)G±(η)−1
〈
DG±(η)η̇,G±(η)−1A(η)ψ

〉
.

Using the self-adjointness of G±(η) and the formula (3.18) for DG±(η), this leads
immediately to (3.20). ��
Proof of Lemma 3.6. As in the proof of Lemma 3.3, we start by considering the corre-
sponding formula for A(η)−1. Recalling (A.1), we see that

D2(A(η)−1)[η̇, η̇] =
∑
±

ρ±D2(G±(η)−1)[η̇, η̇]

= −
∑
±

ρ±G±(η)−1
(
D2G±(η)[η̇, η̇]

−2DG±(η)[η̇]G±(η)−1DG±(η)[η̇]
)
G±(η)−1.

On the other hand, we have the elementary identity

D2A(η)[η̇, η̇] = −A(η)D2(A(η)−1)[η̇, η̇]A(η) + 2DA(η)[η̇]A(η)−1DA(η)[η̇]. (A.2)
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Together, these will furnish a representation formula for the second variation of A(η)−1

once we have fully expanded these expressions using (3.18) and (3.21).
Consider each of the terms on the right-hand side of (A.2). For the first, we have

−
∫

R

ψ A(η)D2(A(η)−1)[η̇, η̇]A(η)ψ dx =
∑
±

ρ±
∫

R

θ±D2G±(η)[η̇, η̇]θ± dx

− 2
∑
±

ρ±
∫

R

θ±DG±(η)[η̇]G±(η)−1DG±(η)[η̇]θ± dx,

where recall that θ± = θ±(η, ψ) is given by (3.24). Throughout the remainder of the
proof, a±

i will always be evaluated at (η, θ±), so we suppress the arguments for read-
ability. By the first variation (3.18) and second variation (3.21) formulas for G±(η), this
becomes

−
∫

R

ψ A(η)D2(A(η)−1)[η̇, η̇]A(η)ψ dx =
∑
±

ρ±
∫

R

(
a±
4 η̇2 + 2a±

2 η̇G±(η)
(
a±
2 η̇
))

dx

− 2
∑
±

ρ±
∫

R

a±
1

(
G±(η)−1DG±(η)[η̇]θ±

)′
η̇ dx

− 2
∑
±

ρ±
∫

R

a±
2 (DG±(η)[η̇]θ±) η̇ dx

=
∑
±

ρ±
∫

R

(
a±
4 η̇2 + 2a±

2 η̇G±(η)
(
a±
2 η̇
))

dx

− 2
∑
±

ρ±
∫

R

L±[η̇]DG±(η)[η̇]θ± dx,

for the linear operatorL± given by (3.25). Using (3.18) once more allows us to simplify
this to

−
∫

R

ψ A(η)D2(A(η)−1)[η̇, η̇]A(η)ψ dx =
∑
±

ρ±
∫

R

(
a±
4 η̇ + 2a±

2 G±(η)
(
a±
2 η̇
))

η̇ dx

− 2
∑
±

ρ±
∫

R

(
a±
1 L±[η̇]′ + a±

2 G±(η)L±[η̇]) η̇ dx .

So finally we have

−
∫

R

ψ A(η)D2(A(η)−1)[η̇, η̇]A(η)ψ dx

=
∫

R

(
a4η̇ + 2

∑
±

ρ±a±
2 G±(η)

(
a±
2 η̇
)− 2M η̇

)
η̇ dx (A.3)

where recall a4 = a4(η, ψ) and M = M (η, ψ) were defined in (3.24) and (3.26),
respectively.
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Likewise, the second in term on the right-hand side of (A.2) can be treated as follows.
Using (3.20), we calculate that
∫

R

ψDA(η)[η̇]A(η)−1DA(η)[η̇]ψ dx =
∑
±

ρ±
∫

R

(
a±
1

(
G±(η)−1DA(η)[η̇]ψ

)′

+ a±
2 A(η)DA(η)[η̇]ψ

)
η̇ dx

=
∑
±

ρ±
∫

R

L±[η̇]DA(η)[η̇]ψ dx =
∫

R

L [η̇]DA(η)[η̇]ψ dx .

Applying (3.20) once more then yields
∫

R

ψDA(η)[η̇]A(η)−1DA(η)[η̇]ψ dx =
∑
±

ρ±
∫

R

(
a±
1

(
A(η)G±(η)−1L [η̇]

)′

+ a±
2 A(η)L [η̇]

)
η̇ dx

=
∫

R

η̇N η̇ dx,

(A.4)

with N = N (η, ψ) defined in (3.27). Combining this with (A.2) and (A.3) gives the
formula (3.23), completing the proof. ��
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