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Abstract

Recent U-Pb high-precision geochronological studies have shown rapid emplacement of the intrusive doleritic
component of the Karoo Large Igneous Province (KLIP) in Southern Africa. However, these studies focused on a
relatively small geographic and altitudinal region of the KLIP. Additionally, the timing of initiation of extrusive
volcanism, preserved in the Drakensberg-Lesotho highlands and its relationship to the intrusive suite, has only been
imprecisely constrained by Ar-Ar dates. Here, we present new high-resolution U-Pb zircon ages on dolerite sills and
dykes from across the central eastern Karoo Basin (South Africa) at elevations between mean sea level and 1560 m,
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as well as U-Pb detrital zircon data that can be used to estimate the maximum age of volcaniclastic deposition near
the base of the extrusive component of the KLIP. Dolerite samples were taken across two areas: (1) thick dykes
exposed along the coast of the Indian Ocean to ~1600 m flanking the Drakensberg Escarpment in the Eastern Cape;
and (2) sills between 20 and 220 m below surface, in a borehole core within the interior of the Karoo Basin, 400 km
hinterland from the coastline. Our estimated dolerite emplacement ages span a range of ca. 80 thousand years (Kyr),
between 183.122 + 0.029/-0.061 and 183.042 + 0.042/-0.072 million years ago (Ma), and fall within the 331 +60/-54 Kyr
age range previously established for magmatism related to the KLIP, despite the marked increase in sampling coverage
in terms of area and altitude in this study. Therefore, KLIP geochronology is consistent with other LIPS such as the
Siberian and Deccan Traps that supports the hypothesis of rapid emplacement timescales (<1 Myr). Additionally, these
data are consistent with, but better delineate that the KLIP in southern Africa appears to be ca. 500 Kyr older than
the main phase of magmatism in the Ferrar LIP of Antarctica. Detrital zircons from the basal volcanic sequence of the
Drakensberg Group exhibit age peaks at ca. 1 and 0.5 Ga, typical of the surrounding Namaqua-Natal and Pan-African
basement rocks, as well as younger peaks at ca. 260 and 200 Ma that likely relate to source provenances from south-
western Gondwana and reworking of the Karoo Supergroup sedimentary rocks. High-precision U-Pb dates of the
youngest zircon grains result in a maximum depositional age for the basal pyroclastics of 185.25 + 0.25 Ma, allowing

for a ca. 2 Myr offset with the intrusive Karoo dolerite suite.

Introduction

Lowermost Jurassic dolerites, outcropping throughout much of
Southern Africa and covering an area of more than half a million
square kilometers, preserved as dykes, sills and basalts are
referred to as the Karoo Large Igneous Province (KLIP). This
large magmatic province has been linked to the early stages of
separation between East and West Gondwana (du Toit. 1937,
Reeves et al., 2016, Mueller and Jokat. 2019, Peace et al., 2019)
and has been associated with rock sequences of the Donning
Maud Land region of East Antarctica, known as the Ferrar
dolerites that define the Ferrar Large Igneous Province (Riley
et al., 2005, Riley et al., 2006, Heinonen et al., 2010, Elliot, et al.,
1999, Burgess et al., 2015, Craddock et al., 2017; Luttinen 2018)
(Figure 1A). Since these two separate regions preserve large
extractions of mantle-derived basaltic magma and were likely
associated with high levels of CO, and SO, outgassing during
early Gondwana break-up (Sensarma et al., 2018), establishing
their potential temporal links to ecological and climatic
disturbances such as the Pliensbachian-Toarcian boundary
(ca. 183.5 Ma; Ruhl et al., 2016) and the Toarcian Oceanic
Anoxic Event (T-OAE; ca. 183.25 Ma; Sell et al., 2014), as
recorded in both marine and continental settings (e.g. Burgess
et al., 2015, Slater et al., 2019, De Lena et al., 2019) is essential.
The available geochronology suggests that the T-OAE is related
to KLIP magmatism (Pittet et al., 2014, Corfu et al., 2016, Them
et al., 2018, Greber et al., 2020). However, earlier biogeochemical
disturbances marking the late Pliensbachian previously correlated
with the KLIP, but now more precisely dated at circa 186.74 +
0.06 to 185.94 + 0.39 Ma, precede the KLIP by ca. 2 Myr,
precluding a causal link (De Lena et al., 2019).

The Matatiele area of the Eastern Cape Province of South
Africa, flanking the Drakensberg-Lesotho Mountains, exhibits
well-exposed dolerites dykes and sills up to elevations above
3 000 m (Figure 1). Here, field observations and geochemistry
suggest a link between emplacement of the Karoo dolerites and
Drakensberg Group lavas (du Toit. 1911a, and 1954, Eales and
Marsh 1979, Bristow 1980, Bristow and Saggerson 1983,
Rollinson 1993, Marsh et al., 1997, Mitha, 2006, Muedi, 2019).
However, their relationship remains equivocal due to ambiguous
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field evidence and imprecise geochronological data. “Ar/3Ar
dating on lavas yielded eruption ages between 189 and 178 Ma
(e.g. Duncan et al., 1997, Jourdan et al., 2004, 2005, 2007, Moulin
et al., 2011, 2017) and U-Pb analyses on zircons from dolerites
across large areas of the Karoo yielded ages between ca. 181
and 184 Ma (Svensen et al., 2012). High-precision Isotope
Dilution Thermal Tonization Mass Spectrometer (ID-TIMS) U-Pb
geochronology of Sell et al., 2014, Burgess et al., 2015 and
Greber et al., 2020 constrain a short duration of Karoo dolerite
dyke and sill magmatism on the scale of a few hundred
thousand years at ca. 183 Ma. However, the spatial distribution
of the dated samples in these three previous studies is limited
to the relatively high elevation area (~1 000 m) east of the
Drakensberg Mountains (see Figure 1).

Here we present new high-resolution ID-TIMS U-Pb dates on
selected zircons from dolerite samples collected along a transect
between the eastern South African coast and the Drakensberg
Mountains to the west, as well as from a drill core located
400 km away, in the central Karoo Basin, in order to test for
potential age variations related to location, elevation or direction
and rate of magma propagation (Figure 1A). In addition, we also
present Laser Ablation Inductively Coupled Mass Spectrometry
(LA-ICPMS) zircon U-Pb dates on two samples from volcaniclastic
tuffs, as well as higher precision ID-TIMS U-Pb dates on their
youngest grains, in order to constrain the maximum depositional
age of volcanics at the base of the KLIP.

Geological setting of the Karoo dolerite suite

The Karoo dolerite sills analyzed in this study were sampled
across central and eastern South Africa, covering an area of
approximately 1000 km? where they intrude into the Triassic
strata of the Beaufort Group (Figure 1). Dykes linked to these
sills also intrude mafic volcanics of the overlying Lower Jurassic
Drakensberg Group (du Toit, 1920; Bristow and Saggerson,
1983; Ivanov et al., 2017; Coetzee and Kisters., 2018), which
forms the upper sequences of the Karoo Supergroup (du Toit
1954; Johnson et al., 2006; Linol and de Wit, 2016; Figures 1
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Figure 1. (A) Location of the Karoo Large Igneous Province (KLIP) in its reconstructed Gondwana position at 183 Ma, linked to the similar aged Ferrar

Large Igneous Province in Antarctica (Boyden et al., 2011). (B) Geological map showing Karoo igneous rocks across southern Africa in red. The black

square indicates the location of the detailed geological map shown in 1C. (C) Geological map of the study area and the location of an north-south

orientated cross-section (a-b-c) bighlighting dolerite sample locations from deep below sea-level up to 1800 masl, flanking the southern Drakensberg

Group volcanics. The sample locations for this current study and those from previous investigations of Sell et al., 2014), Burgess et al., 2015) and

Greber et al., 2020 are shown (D) Geological cross-section (a-b-c) from the Lesotho bighlands to the southern African coast, showing the main lithological

units and geochronologic sample locations. Green (KFN1) is a drill core,

lime dots represent collected borehole samples, grey, blue and cyan symbols

represent the sample locations from Greber et al., 2020, Burgess et al., 2015 and Sell et al., 2014, respectively.

and 2). The Clarens Formation (100 to 300 m thick), formerly
known as Cave sandstones (du Toit, 1954) is stratigraphically
below the mafic volcanics. This marker unit consists of yellow-
white fine- to medium-grained sandstones and mudstones,
interpreted to be deposited in desert-like paleo-environments and
is capped by volcanics that may terminate the Karoo Supergroup
(du Toit, 1911b; Coetzee and Kisters., 2018; Bordy et al., 2020).

The lowermost volcanic rocks of the Drakensberg Group in the
studied area outcrop at 1720 to 1750 m, and the contact with
underlying sandstones is erosive (du Toit, 1954; Eales and Marsh,
1979; Duncan et al., 1997; Moulin et al., 2016). In places, the
basaltic sequences preserve 20 to 50 m thick pillow lavas and
variable thicknesses >100 to 300 m of mafic tuffs (Lock et al.,
1974; de Wit et al., 2020). In certain cases, 2 to 10 m thick
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vertical dolerite dykes traverse westwards from the coastal
region across the entire volcanic stratigraphy (see Figure 1B for
prefered dyke orientations), implying that dolerite magmatism
continued throughout the eruption of mafic volcanics of the
Drakensberg Group.

Samples

Samples of dolerite that covers a large area and at various
elevations between 0 and 1600 m were collected. Two dolerite
dykes (AG1-2 and AG1-3), each approximately 200 m thick and
sub-vertical, often referred to as the “Gap dykes” (Moore and

Moore, 1965) were sampled northeast of East London
(Figure 1). These dykes trend parallel 10 km from each other
and perpendicular to the east coast (Walker, 1943; Moore,
1965; Neumann et al., 2020). These dolerites can be traced
continuously for about 300 km inland and are also inferred to
be present in the subsurface from geophysics and drill cores.
They mainly consist of plagioclase feldspar, pyroxene, with
minor biotite and amphibole. Zircons separated from these two
samples are euhedral and brownish to colorless. They are
elongated with 150 to 300 pm length and 50 to 100 pm width.
Some zircons are truncated and fractured, likely due to the
crushing process.
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Figure 2. AG1-3 U-Pb resulls. (a) Conventional concordia diagram and photomicrograph of the analysed zircons; analyses in grey are excluded from

emplacement age calculations. The shaded band. is the concordia error envelope arising from uncertainty in U decay constants. (b) Rank order 2°Pb/35U

date plot (2o analytical uncertainty) showing the resulting Bayesian emplacement age estimate and 95th percentile limits of the distribution.
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Two dolerite sill samples (KFN1-02 and KFN1-03) were
collected for U-Pb zircon analysis from the drill core on
Klipfontein Farm (drilled in the 1960s) at a depth of ca. 1000
and 1200 m. The extracted zircons exhibit various crystal shapes
and sizes (Figure 5a) but are generally prismatic and frequently
fractured, mostly smoky brownish-black to colorless and 100 to
300 um long with widths of approximately 80 to 100 pm.

An additional outcrop dolerite sample (KT3-1) was collected
in the Matatiele area near the town of Ngcobo at 1560 m
(Figure 1). Sample KT3-1 is from near the base of a medium to
coarse grained dolerite sill, 383 m thick. It is emplaced at the highest
level of the Beaufort Group sedimentary rock sequences, but below
and separated from the southern volcanics of the Drakensberg
Group. The dolerite comprises plagioclase, olivine, pyroxene and
minor biotite.

Two rock samples of fine-grained siliciclastics or tuffite that
overlie volcanic breccia near the base of the Drakensberg Group
(see Figure 1) were sampled for detrital zircon geochronology.
Sample 4159 is located below the lowermost basaltic lava in
the Loch Bridge section (see de Wit et al., 2020). This sample is
a grey, laminated very fine sandstone that overlies matrix-
supported volcaniclastic breccia. Sample 4205T was taken from
slightly higher up in the stratigraphy and is a blue fine-grained
sandstone that overlies andesitic breccia in the Bellmore section
(Lock et al., 1974).

Analytical methods

The samples, each about 2 to 5 kg, were carefully split, crushed,
milled and sieved. The fine-grained, low-density (feldspathic)
material was removed by hand-washing in water. The heavy
minerals were further concentrated via magnetic and density
separation methods using a Frantz magnetic separator and high-
density liquids at the MIT Isotope Lab in USA and at the AEON
Earth minilab of Nelson Mandela University, Geoscience
department at the University of Witwatersrand and at the Council
for Geosciences in South Africa. Two coarse-grained granophyric
dolerite samples (AG1-2, AG1-3) and three coarse grained dolerites
(KT3-1, KFN01-02 and KFN01-03) yielded enough zircon grains
for U-Pb geochronology. U-Pb isotopic analyses were performed
at TIMS facilities at MIT and Princeton University. AG1-3 and KT3-1
were analyzed at MIT, while AG1-2, KFN1-02 and KFN1-03 were
analyzed at Princeton University. Both laboratories use the same
isotopic tracer solution 202Pb-205Pbh-233U-255U (ET2535) and data
reduction procedure, meaning that the U-Pb dates obtained at
MIT or Princeton University are directly comparable.

Between 5 and 15 zircons per sample were handpicked
under a binocular microscope based on crystal morphology and
clarity (detailed sample preparation procedures are available in
Muedi, (2019) and were thermally annealed at 900°C for
60 hours in a muffle furnace. Individual zircon grains were
placed in Teflon capsules and leached in concentrated
hydrofluoric acid (HF) at either 190°C or 210°C for 12 hours
(aliquots are labelled indicating which temperature they were
chemically abraded at). At MIT, the higher chemical abrasion
temperature of 210°C was used for all analyses. At Princeton,
the lower chemical abrasion temperature of 190°C was initially

used. However, chemical abrasion temperatures were subsequently
increased in an attempt to eradicate residual Pb loss. Following
chemical abrasion, the residual zircon grains were rinsed a
number of times in dilute nitric acid, 6N hydrochloric acid (HCD
and milliQ water. After rinsing, the zircon grains were spiked
with the EARTHTIME 202Pb-205pb-233U-235U (ET2535) tracer
solution (see McLean et al., 2015 for details) and dissolved in
concentrated HF for 48 hours at 210°C. Following dissolution,
the solutions were dried and redissolved in 6N HCl overnight in
preparation for ion chromatography. Uranium and Pb were
purified by an HCl-based column chemistry using AG-1 X8
200 to 400 mesh anion-exchange resin following a procedure
modified from Krogh (1973). For more thorough descriptions of
the analytical methods used at Princeton University and MIT, see
Schoene et al., 2019 and Ramezani et al., 2011, respectively. All
reported ages are corrected for initial Th disequilibria unless
otherwise stated. Details regarding how the correction for initial
Th disequilibrium are available in the data supplement.
(Supplementary data files are archived in the South African
Journal of Geology (https://doi.org/10.25131/
$ajg.125.0009.sup-mat))

Emplacement ages were estimated using a Bayesian Markov

repository

Chain Monte Carlo technique; see Keller et al., 2018, Schoene
et al., 2019 and Kinney et al., 2021 for further details regarding
this methodology. Given that the zircons dated in this study are
from coarse-grained mafic sills and dykes, zircon saturation is
expected to only occur at very high crystallinities, where small
pockets of melt enriched in incompatible elements remain. For
this reason, the prior used for all Bayesian analysis was a half-
normal distribution in order to approximate the increase
in zircon saturation expected during and directly after
emplacement. In order to make comparisons with the previous
high-precision U-Pb zircon studies, we reanalyzed the
geochronological data of Sell et al., 2014, Burgess et al., 2015
and Greber et al., 2020 using the same Bayesian scheme and
the same zircon selection criteria. These newly interpreted ages
are shown in Table 1.

In the case of the detrital zircon samples 4205T and 4159,
zircon grains were picked and placed onto double sided tape,
where epoxy was poured onto them to create mounts. Laser
ablation inductively coupled plasma mass spectrometry (LA-ICP-
MS) U-Pb analysis was carried out at the Earth Observatory of
Singapore, Nanyang Technological University using a Teledyne/
Photon Machines Analyte G2 193 nm excimer laser ablation
system coupled to a Thermo-Fisher-Scientific Element 2 sector
field ICP-MS. Sample standard bracketing was implemented
using zircon reference materials for calibration and quality
control, and data were reduced using Iolite v. 4.4.5 (Paton et al.,
2011D). Details of the analytical parameters including the results
from secondary reference materials can be found in Appendix B
in the supplementary data.

The youngest and most euhedral grains from sample 4205T
were extracted out of the epoxy mounts and analysed at Princeton
University using the same ID-TIMS methods described above. The
objective was to try and place a precise maximum depositional
age on the base of the volcanics of the Drakensberg Group.
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Table 1. Summary of the ID-TIMS U-Pb Bayesian statistics geochronology dates of the Karoo Basin, South Africa. See supplementary data for details.

Latitude Longitude Elevation Estimated 95% credible Host rock Mineral Sample Number
(masl) emplacement interval limits
age (Ma)

-30.252417 29.1139 1617 182.93 +0.133  -0.284 Sandstone, Baddeleyite ~ SA97, Sell et al., 2014
(Tarkastad Subgroup) and zircons

-29.1547 30.2444 1580 183.234 +0.03 -0.053 Sandstone, Zircons 1-247, Burgess et al., 2015
(Tarkastad Subgroup)

-31.0782 28.350200 1272 182.902 +0.085  -0.12 Zircons SA91, SA100, SA102,

Greber et al., 2020

-27.99153  31.6189 1350 183.042 +0.042  -0.072 Sandstone Zircons KT3-1, Ngcobo, this study
(Tarkastad Subgroup)

-30.5592 25.3077 223 183.122 +0.029  -0.061 Sandstone Zircons KFN1-02, KFN-03 borehole
(Adelaide Subgroup) Klipfontein, this study

-30.8669 29.6858 3 183.075 +0.022  -0.038 Sandstone Zircons AG1-3, Maqwathini,

(Adelaide Subgroup) this study

Geochronological results

The U-Pb zircon results are described below and summarized
in Table 1. All uncertainties are presented as 95th percentile
credible interval unless otherwise stated.

Gap Dyke dolerite at Maqwathini (AG1-3)

Ten zircons were extracted from this dolerite dyke sample and
seven zircons were analyzed for their U-Pb isotopic composition
(Figure 2). Six of these zircons yielded concordant U-Pb dates of
ca. 183 Ma. One analysis is significantly older at ca. 183.7 Ma,
possibly due to inheritance of an older zircon core from the host
rocks. Using Th-corrected ages for six overlapping zircons in the
Bayesian scheme (Z1, 72, 73, 74, 76, and Z7) yields an emplacement
age estimate at ca. 183.075 + 0.022/-0.038 Ma (Figure 2).

Ngcobo dolerite sill (KT3-1)

Four zircons (Z2, Z3, Z4 and Z5) free from crystallographic
imperfections and inclusions were selected for U-Pb analysis.
Three of the analyzed zircons exhibit very similar U-Pb dates of
ca. 183.1 Ma, while a fourth (Z5) is slightly older at ca. 183.25 Ma.
Using all four grains for the Bayesian inference results in a
median age of ca. 183.042 +0.042/-0.072 Ma (Figure 3).

Gap dyke dolerite at Toleni (AG1-2)

Ten zircon grains were analyzed from sample AG1-2 (Figure 4).
There is significant dispersion in the zircon U-Pb data, yielding
very few overlapping dates, varying between ca. 181 and
189 Ma. This heterogeneity suggests either significant residual
Pb loss, local contamination with xenocrystic zircon cores during
emplacement and/or a more diverse history of KLIP magmatism

104 SOUTH AFRICAN JOURNAL OF GEOLOGY

recorded by magmatic zircon (Figure 4). Three zircons dates
(Z4, 75, and Z9) overlap within uncertainty and may represent
the true emplacement age of this dyke. However, due to the
complicated age dispersion we choose not to assign an
emplacement age to this sample.

Kransfontein dolerite sill in borebole core (KFN1-02)

In total, 26 zircon grains were extracted and processed for
U-Pb isotope analysis (Figure 5a). A number of zircons were
either lost during transfer to Teflon vials or were completely
dissolved during chemical abrasion, as reflected by the absence
of any radiogenic Pb in the analyzed aliquots. The first 17 grains
that were analyzed showed complicated date dispersion patterns,
in a similar fashion to AG1-2. These zircons range in age between
ca. 184 to 181.6 Ma with a cluster of dates around ca. 183.17 Ma
and were chemically abraded at a temperature of 195°C. In order
to determine whether the cluster of overlapping dates was an
accurate estimate of emplacement age or the result of residual
Pb loss, a further nine zircons were selected (Z1s to Z9s) to
undergo chemical abrasion at a higher temperature of 210°C in
an attempt to mitigate any residual Pb loss. These analyses also
show significant age variation, possibly implying continued
survival of metamict zircon despite higher chemical abrasion
temperatures, the presence of inherited zircon cores or protracted
zircon saturation in mafic magmas. However, several of the grains
that were chemically abraded at higher temperatures overlap
with the cluster of grains at ca. 183.15 Ma, implying that this
cluster is a reasonable estimate of the emplacement age. Using
the zircons from this age cluster to constrain the timing of
emplacement using Bayesian inference results in a median age
of ca. 183.122 +0.029/-0.061 Ma (Figure 6b and ¢). The Th/U of
the all of the analyzed zircons is relatively consistent at ca. 3.5
and shows no relationship with age, further supporting the
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Figure 3. (a) K13-1, conventional concordia diagram and photomicrograph of the analyzed zircons; analyses in grey are excluded from age calculation.
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uncertainty) showing the resulting Bayesian emplacement age estimate and 95th percentile limits of the distribution.

interpretation that the excess age dispersion may be the result
of residual Pb loss after chemical abrasion.

Kransfontein dolerite sill in borebole core (KFN1-03)

Twenty-one zircons were dated from this core sample. U-Pb dates
from the first 12 zircons analyzed span a large range from ca. 182.5
to 186 Ma (Figure 6). This variance may be due to a combination
of inherited xenocrystic zircon cores, prolonged magmatic growth
or residual Pb loss that survived chemical abrasion. In order to
eliminate the last possibility, another batch of nine zircons
(Z1s to Z9s) were chemically abraded at 210°C for 12 hours. The
majority of these zircons completely dissolved during chemical
abrasion, but the few grains that did survive chemical abrasion

still exhibited relatively large age variations, implying that zircons
from this sample record either protracted timescale of magmatic
saturation or the inclusion of xenocrystic cores — possibly from
the surrounding sedimentary rocks. For these reasons, an
emplacement age for this sill has not been estimated.

Lower Drakensberg tuffites 4205T and 4159

For the two detrital zircon samples, 76 and 125 U-Pb analyses
were collected for 4205T and 4159, respectively (Figure 7a).
Both samples show Namaqua Natal (ca. 1 Ga) and Pan African
(ca. 0.5 Ga) zircon age peaks, as well as significant age peaks
centered at ca. 200 and 260 Ma. Of the youngest and most
euhedral zircon grains from 4205T that were selected for
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Figure 4. (a) AG1-2 zircons dolerite photomicrographs and (b) conventional concordia diagram of the analyzed zircons. The Shaded band is the

concordia error envelope arising from uncertainty in U decay constants. Due to the age dispersion in this sample, a Bayesian emplacement estimate

was not calculated.

ID-TIMS analysis, only three survived chemical abrasion. These
ages range from ca. 187 to 185 Ma, with the youngest grain
having an age of ca. 185.25 + 0.25 Ma.

Discussion
Characterizing dolerite age beterogeneity across the
Karoo basin LIP

Sample AG1-3 was previously analyzed using ID-TIMS, yielding
zircon ages about 0.5 to 1.0 Myrs younger than those in this study,
which may be the result of differences in U-Pb spike calibration
(e.g. Corfu et al., 2016) and highlights the benefit of using a
community-wide U-Pb spike such as EARTHTIME (Condon et al.,
2015). In contrast, our new results show significant similarity with
the ID-TIMS U-Pb zircon studies of Sell et al., 2014, Burgess et al.,
2015 and Greber et al., 2020, which utilize the same isotopic tracer
and similar data reduction strategies.

Our dolerite samples span a wide geographic and altitude
distribution across the central eastern Karoo Basin. The dolerite
sill from Ngcobo (KT3-1) is located at 1560 m elevation and
100 km away from AG1-3 (Figure 1). Sample KFN01-02 is
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located about 400 km hinterland. As can be seen on Figure 8,
which compiles all available U-Pb zircon dates that use the
Earthtime isotopic tracer, KLIP magmatism is constrained to a
330 Kyr time period and shows no resolvable age relationship
with altitude or geographic location. These compiled high-
resolution U-Pb zircon dates from the KLIP clearly support rapid
timescales of magmatism that is effectively synchronous across
large parts of the Karoo Basin, supporting the connection
between KLIP magmatism and the T-OAE as suggested by Sell
et al., 2014; Greber et al., 2020.

Detrital zircons provenances

The two samples of sediment matrix associated with volcanic
breccia near the base of the Drakensberg Group show significant
Namaqua-Natal (ca. 1 Ga) and Pan African (ca. 0.5 Ga) age
peaks, which can be anticipated given the abundance of these
terranes within the Kalahari Shield underlying and surrounding
the Karoo Basin. The two oldest dates at ca. 2.7 to 2.8 Ga may
be locally derived from the Archean Kaapvaal craton.
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In contrast, the ca. 260 and 200 Ma age peaks coincide with
Permian-Triassic continental arc-volcanism along the paleo-
Pacific margin of Gondwana, including the 250 to 280 Ma
Choiyoi Province (e.g. Kay et al., 1989; Pankhurst et al., 1998;
de Wit, 2007; Munizaga et al., 2008; Kleiman and Japas, 2009;
Nelson and Cottle, 2019; Morake et al., 2021). Additionally, a
magmatism phase at ca. 200 Ma- potentially related to initial
Gondwana break up- has been identified in Antarctica (Morake
et al., 2021), which may have been another source for detrital
zircons of this age. These two age peaks have been reported
elsewhere in the Karoo, Parand, and Congo basins (e.g. Lopez-
Gamundi, 2006; Fildani et al., 2009; Linol et al., 2015; Canile

(a) Z1

& ) &% 2 8% ¢ 0 B @ o

et al., 2016; Viglietti et al., 2018; Bordy et al., 2020), implying
that more likely these young zircons in basal KLIP volcaniclastic
sequences represent sediment reworking of some back-arc basin
systems. However, the sediment distribution pathways across
distances >1000 km from the southern Gondwanan volcanic belt
to the intracratonic basin depositional areas remain poorly
resolved, particularly as the opening of the oceans between
southern America (Patagania), Africa, and Antarctica (Peninsula,
Ellsworth-Whitmore and East Antarctica) has largely changed
the initial paleogeography.

The youngest TIMS analysis of 185.25 + 0.25 Ma sets for the
first time a robust maximum depositional age for basal KLIP
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Figure 5. KFN1-02, (a) conventional concordia diagram of analyzed zircons; analyses in grey are excluded from age calculation. Shaded band is
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resulting Bayesian emplacement age estimate and 95th percentile limits of the distribution.
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extrusive volcanism and implies that a ca. 2 Myr temporal offset
may exist with the intrusive components of the KLIP. High-
precision magmatic zircon dates from the basal Drakensberg
Group lavas are needed to further elucidate whether this
temporal gap truly exists.

Karoo-Ferrar temporal beterogeneity and connections
with global carbon cycle perturbations

Figure 9 shows kernel density estimates created using all
available high-precision U-Pb zircon dates from the KLIP and
FLIP. As mentioned above, the existing KLIP zircon dates
from Sell et al., 2014, Burgess et al., 2015 and Greber et al., 2020
were all recomputed using the same Bayesian Markov Chain
Monte Carlo technique as was used for our newly presented
emplacement age estimates. Zircon grain selection was the same
as that used for the weighted mean calculations presented in
the publications in each case. The total age distributions for KLIP
and FLIP show some overlap but their peak emplacement age
probabilities are distinct, with a ca. 500 Kyr separation. This data
indicates that the KLIP began and ended before the FLIP with
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only a potential overlap of a few 100’s of Kyr, in accordance
with previous studies that invoke age differences between the
two igneous provinces (e.g. Burgess et al., 2015 and Greber
et al., 2020). Our dates also further support temporal correlations
of KLIP magmatism to global climate change during the T-OAE,
which was temporally constrained at 183.22 + Ma by Sell et al.,
2014. Figure 9 shows a lack of any temporal connection between
KLIP intrusive magmatism and late Pliensbachian carbon cycle
perturbations as well as the Pliensbachian-Toarcian boundary
(in support of previous studies by Sell et al., 2014, De Lena
et al., 2019, Greber et al., 2020. However, our maximum
depositional age for the base of KLIP extrusive lavas of ca.
185.25 Ma, does not rule out the possibility of a temporal link
with late Pliensbachian carbon isotope variability, which
occurred between ca. 186.5 and 184.5 Ma, based on the age
model of De Lena et al., 2019. Since large volumes of Karoo lavas
erupted below sea level (e.g., Elliot and Fleming, 2008; de Wit et
al., 2020), this early phase of the Gondwanan volcanism must
have influenced ocean geochemistry but more precise dating of
the pillow lavas is needed to test these connections.
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The maximum depositional age for the youngest zircons precedes the Pliensbachian-Toarcian boundary by ca. 2 Myr.
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Figure 9. Kernel Density Estimates for existing bigh-precision U-Pb ages from the Karoo LIP (Greber et al., 2020; Burgess et al., 2015; Sell et al., 2014

and Ferrar Burgess et al., 2015). The age and two sigma uncertainty for the initiation of the T-OAE are shown in grey (Burgess et al., 2015; Svensen et
al., 2017; Greber et al., 2020). Radiometric (Pdlfy and Smith, 2000) and cyclostratigraphic (Rubl et al., 2016) age constraints on the Pliensbachian-

Toarcian boundary are shown with black errorbars. A minimum age constraint for the Pliensbachian-Toarcian boundary presented by Sell et al., 2014

is shown in red.

Conclusions

The currently available (new and compiled) high-precision ID-
TIMS U-Pb zircon dates for dolerite sills and dykes of the Karoo
large igneous province (KLIP) range from ca. 182.9 to 183.25 Ma,
resolving a duration of mafic magmatism of <330 Kyr. This
timescale is similar to those presented for Large Igneous
Provinces across Earth history (e.g. Kasbohm et al., 2021; Park
et al., 2020, Schoene et al., 2019). In composite, the available
high-precision TIMS ages show no apparent trends between
level of emplacement or geographical location in the Karoo
Basin and age, implying a regionally synchronous magmatic
event. Our new dates on Karoo dolerites combined with
previous published ages are older by several hundred thousand
years than the Ferrar equivalents flanking Antarctica across
a collective triple junction between East (South Africa) and
West (Antarctica) Gondwana before the break-up of the
supercontinent (Elliot and Fleming, 2000). Lastly, a maximum
depositional age of ca. 185 Ma for basal KLIP lavas and tuffs
leaves the possibility for a significant temporal offset with
the intrusive dolerites and highlights the need for high-
precision zircon age constraints from the extrusive rocks of the
Drakensberg Group to test for a causal relationship with late

Pliensbachian climate and carbon cycle perturbations.
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