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ABSTRACT

A tephra-rich cherty-clayey Famennian
succession within the major Brzeznica olis-
tostrome in the Bardo Mountains, Central
Sudetes, SW Poland, preserves a record of
the lost ocean later incorporated into the Va-
riscan orogenic belt. Fluctuating but mostly
oligotrophic regimes and low primary pro-
duction levels were influenced by weak up-
welling below the perennial oxygen minimum
zone, which controlled the interplay between
biosiliceous and siliciclastic deposition in
the oceanic basin, with episodic oxygen defi-
ciency. The Hangenberg Black Shale has been
identified in this oceanic setting based on its
characteristics described worldwide (includ-
ing mercury enrichments). A tectonic uplift
of the sediment source area near the Devo-
nian-Carboniferous boundary, recorded in
the distinguishing provenance signal of old
continental crust, was paired with a global
transgression, anoxia, and volcanic episode
in an interglacial interval. Assuming paleo-
geographic affinity with the Bavarian facies
of the Saxothuringian terrane, we interpret
the allochthonous sediments as part of an ac-
cretionary prism that was gravitationally re-
deposited into the late orogenic basin in front
of advancing Variscan nappes. The oceanic
basin parental to the Bardo pelagic succes-
sion is therefore thought to represent a tract
of the waning Saxothuringian Ocean in the
Peri-Gondwanan paleogeographic domain
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that was eventually subducted beneath the
Brunovistulian margin of Laurussia. The
sediments of the Bardo Ocean basin also in-
clude a distal record of Famennian explosive
volcanic activity that was likely related to a
continental magmatic arc whose remnants
are preserved as the Vrbno Group of the East
Sudetes.

INTRODUCTION

Biosiliceous facies in middle Paleozoic deep-
water, partly oceanic basins are widespread (Hein
and Parrish, 1987), but the depositional record of
Late Devonian radiolarian oozes remains poorly
known. Unlike the common Early Carbonifer-
ous Kulm facies (Tournaisian hypersiliceous
period of Racki and Cordey, 2000, their fig. 3;
see Gursky, 1996; Randon and Caridroit, 2008),
Late Devonian pelagic cherty strata of Variscan
Europe are overwhelmingly lost to a pervasive
tectonic or metamorphic overprint (Kiessling
and Tragelehn, 1994).

We report data from a hemipelagic siliceous
succession with pyroclastic horizons found in the
Bardo Mountains (Géry Bardzkie), one of the
main structural units of the Central Sudetes, SW
Poland (Figs. 1A and 1B). This fault-bounded
complex rock suite is defined as the Bardo Sedi-
mentary Unit (Mazur et al., 2006) or Bardo Fold
Structure (Zelazniewicz et al., 2011), an element
of the Saxothuringian Zone on the northern flank
of the European Variscides (Franke et al., 1993,
2017) consisting of poorly outcropped, dismem-
bered sedimentary series ranging in age from the
Upper Ordovician to lowermost Upper Carbonif-
erous (Haydukiewicz, 1979, 1990; Oberc, 1980;
Cymerman et al., 2015; Fig. 1C). According to

Wajsprych (1978, 1986, 2008), autochthonous
and allochthonous litho-tectonic domains are
clearly distinguished in this oceanic succession.
Early Carboniferous (late Viséan) wildflysch
deposits include flysch-dominated sediments,
biostratigraphically dated by graptolites and
conodonts as Silurian and Devonian in age (see
summary in Haydukiewicz, 1990, 1998; Cymer-
man et al., 2015).

New litho- and biostratigraphic data from the
Bavarian-type section of the Bardo Basin sedi-
ments are integrated with zircon geochronology
on intercalated tephra. The characteristics of the
Famennian explosive volcanism potentially link
this activity to continental arc magmatism in the
East Sudetes (Janousek et al., 2014). The results
are important in the context of controversial
paleogeography between Gondwana and Lau-
russia (Franke et al., 1993, 1995, 2017; Romer
and Hahne, 2010; Mazur et al., 2015; Golonka,
2020), and the global Devonian-Carboniferous
Hangenberg biotic crisis (Walliser, 1996; Aretz,
2020) uniquely identifiable in the easternmost
part of the Saxothuringian Zone.

GEOLOGICAL SETTING

The sedimentary succession of the Bardo
Basin comprises unmetamorphosed Upper
Devonian limestones and Lower Carbonifer-
ous flysch that is capped by wildflysch deposits
(Wajsprych, 1978, 1986, 2008). The wildflysch
contains large olistoliths of lower Paleozoic
(Ordovician and Silurian) and Devonian deep
marine sediments (Haydukiewicz, 1990). The
Bardo succession was folded at the turn of the
Early-Late Carboniferous into E-W-trending
folds and intruded by the Ktodzko-Ztoty Stok
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Figure 1. (A) Location geological map of the Bardo Mountains (Géry Bardzkie) within the Central Sudetes, SW Poland, with marked Bardo
area (dashed box; fig. 2 from Kryza et al., 2011). (B) Geological sketch-map of Bardo vicinity based on figure 1 from Haydukiewicz (1998)
(modified after Oberc et al., 1994), with arrowed studied localities Bardo III (marked by a thick dark shaly level), IV, and V (see Figs. 3
and 4), and (C) simplified lithostratigraphic column of the Bardo Sedimentary Unit after Mazur et al. (2006, their fig. 4; compare Alek-
sandrowski et al., 2000, their fig. 2), with arrowed studied latest Devonian interval in Figure 1C. SMF—Sudetic Marginal Fault; KZSG—
Klodzko-Zloty Stok Granitoid; Ord.—Ordovician; NYSA-S—outcrop Nysa-South.

granitoid pluton. Late Carboniferous refolding 1972). From Viséan times onward, the Géry that accumulated in a system of coarse clastic
produced NE-SW to N-S—trending folds, super-  Sowie Massif supplied the marginal parts of fans (Wajsprych, 1978, 1986; Pacholska, 1978).
posed onto the older E-W structures (Oberc, the Bardo basin with abundant gneissic pebbles = The mapped relationships show that the Bardo
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A waning Saxothuringian Ocean in the Central Sudetes

basin is partly floored by the Kiodzko meta-
morphic rocks and partly by the Nowa Ruda
Ophiolite. Moreover, the only borehole that
drilled through the entire Bardo succession was
stopped after penetrating typical Géry Sowie
gneiss (Chorowska et al., 1992).

The Middle-Late Devonian termination of
folding and metamorphism in the Klodzko
Unit and the adjacent Nowa Ruda Ophiolite
is constrained by an unconformity at the base
of non-metamorphosed late Frasnian or earli-
est Famennian sediments resting on crystal-
line basement rocks (Bederke, 1924; Kryza
et al., 1999). The most complete section of this
Upper Devonian succession is exposed at Mt.
Wapnica in Dzikowiec, SW Poland, adjacent to
the Nowa Ruda Ophiolite (e.g., Bederke, 1924;
Mazur, 1987). The unconformity that truncates
the metamorphic rocks of the Ktodzko Unit and
the Nowa Ruda Ophiolite, presumably devel-
oped during a relatively short time interval of
~10 m.y. between the early Givetian and late
Frasnian. This is suggested by the late Frasnian-
Famennian age of limestones, which directly
overlie the basal conglomerates (Bederke,
1929), and by the early Givetian age of a cor-
alline fauna from the greenschist facies crys-
talline limestone of the Ktodzko Unit (Hladil
et al., 1999). The presence of this unconformity
implies that at the transition from the Middle
to the Late Devonian, freshly deformed and
metamorphosed rocks had been exposed and
onlapped by deposits of the Bardo Basin that
eventually were folded during Namurian times
(Oberc, 1972).

The Bardo Basin sedimentary series does not
form any continuous stratigraphic succession.
Autochthonous limestone-dominated Upper
Devonian—Tournaisian pre-flysh strata (Wap-
nica Formation), resting on the ophiolitic gab-
bro (Mazur, 1987), are capped by Tournaisian
black shales (Gotoglowy Formation; Haydukie-
wicz, 1990), and Viséan gneissic sandstones and
conglomerates (Nowa Wie$§ Formation). The lat-
ter were deposited by high density currents and
debris flows clearly derived from the Géry Sowie
gneisses (Pacholska, 1978; Wajsprych, 1978).
The Nowa Wie$ Formation is overlain by the late
Viséan to possibly Namurian clastic sequence of
the Srebrna Géra Formation, composed of very
proximal turbidites passing upwards into a wild-
flysch and olistostrome (Wajsprych, 1978, 1986,
2008). The oldest allochthonous (Zdan6éw-
Bardo-Dg¢bowina) succession is characterized
by a transition from the flysch dominated Upper
Ordovician sandstones and siltstones into hemi-
pelagic and pelagic Silurian and Early Devonian
shales (Porgbska, 1982). In general, siliceous
shales and cherts, with rare interbeds of thin,
siliciclastic turbidites and tephras make up the
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Lower Silurian (Llandoverian)-Lower Devo-
nian (Pragian) part of the pelagic allochthonous
sequence (Porgbska, 1982; Wyzga, 1987). The
Middle to Upper Devonian rocks show a more
pelitic development (claystone, argillaceous
shale) with rare siliceous interbeds (Haydukie-
wicz, 1990; Franke et al., 1993). The affinity
of the Bardo succession to the Bavarian facies
of the Saxothuringian zone has been repeat-
edly postulated in the literature (Franke et al.,
1993, 2017; Franke and Zelazniewicz, 2000).
Consequently, the investigated sediments of
the Bardo Unit may represent a vestige of the
sedimentary fill of the Paleozoic Saxothuringian
Ocean (Franke and Zelazniewicz, 2000; Mazur
and Aleksandrowski, 2001) that was closed
during accretion of the Sudetes and amal-
gamation of Gondwana with Laurussia. The
studied chert-dominated section in the town of
Bardo was later intruded by the Graniec-Bardo
apophysis (341.6 & 2.8 Ma; Mikulski and Wil-
liams, 2014), an irregular dyke sourced from
the Klodzko-Ztoty Stok Granitoid Pluton, that
imposed low-grade contact metamorphism and
auriferous ore mineralization (Mikulski and
Williams, 2014).

ANALYTICAL SECTIONS AND
STRATIGRAPHIC SUCCESSION

Four outcrops, Bardo I to Bardo IV, were
logged and sampled at the northern riverbank
of Nysa Klodzka, above the road from Bardo
to Opolnica on the steep slopes of Mtynarz Hill
(412 m above sea level), during two-stage field
works in May and October 2017. The map of
Oberc et al. (1994) shows that overturned Devo-
nian to Carboniferous strata, dipping at an angle
of 35-65° to the NE, are exposed along this
road. Only the Bardo IV site, distinguished by
a tephra-bearing cherty succession, is presented
in this article. Note that some Carboniferous
tephras were previously studied from the north-
ern Bardo Unit (Kryza et al., 2011); in addition,
Gunia (1985; his table 3) reported “tuffite” inter-
calations from the Lower Devonian siliceous and
clayey shales.

According to the description by Haydukie-
wicz (1979; p. 87-88 and p. 90-91, outcrops
Bol and Boll; see also Oberc, 1957, p. 117,
locality 3), the radiolarite localities were dated
with conodonts as middle to late Famennian (the
Famennian subages/substages, including the lat-
est Famennian, are after Streel et al., 2000, their
fig. 6; Becker et al., 2020, p. 747). However,
the comparison of the lithology descriptions
and conodont dating precludes any conclusive
correlation with previously described localities,
possibly due to changing outcropping in the
steep slope area and/or renovation works along
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the road. Other mudstone-dominated sections
provide only very scarce conodont data.

The Upper Devonian sequence at Mtynarz Hill
consists of claystones, siltstones, and siliceous
shales, alternating with graywacke sandstone
sets (Oberc et al., 1994). In regional lithostrati-
graphic informal terms, the strata were assigned
to the “Mikotajéow shales formation,” overlain
by the Lower Carboniferous “Opolnica forma-
tion,” including exactly the same lithologies
(see also Oberc, 1957, p. 116; Haydukiewicz,
1998; Cymerman et al., 2015). However, as
originally defined by Oberc (1951, 1957, p. 29,
1980, their fig. 7), Mikotajéow shales are typi-
cally green or yellow, thick-fissile (platy), and
thinly laminated argillaceous shales. Conversely,
the siliceous-shaly lithofacies was distinguished
as the Brzeznica beds, i.e., siliceous and quarz-
itic shales with thin intercalations of gray or
green clayey shales, and rarely with partings
of white “kaoline shales” (Oberc 1957, p. 30).
Our observations indicate that the reconstructed
cherty Famennian succession in the Bardo area
(Fig. 2A) is several dozen meters thick. Hence
the term “siliceous/cherty Brzeznica beds,”
as a characteristic local variety of Mikotajow
shales in the BrzeZnica-Bardo area, has been
maintained herein (see also Haydukiewicz,
1979, p. 94-95; Oberc, 1980, their fig. 7).

Locality Bardo IV

Bardo outcrops IVa and IVb are situated on
the opposite sides of a small ravine (Fig. 3A). A
third site, larger, more than 20 m long locality
IVc (50°30'42.40"N, 16°43'51.57"E), is located
east-southeast from the IVb site. Within the
composite ~8.5-m-thick succession, four faults
are recognized, but the nature of the contact
between similarly dipping successions IVb and
IVc is uncertain owing to a concealed boundary
between the two intervals.

In section IVa, a steeply dipping tight fold
(Fig. 3B) exposes mostly thin layers of cherts,
as well as a discontinuous thin horizon of easily
weathered black shale, in places thickened up to
several centimeters and shattered along the shear
surface of the contrasting lithologies. The cherty
strata in section IVb are less tectonized, although
they are partly displaced as a result of tectonic
overhangs, and likely earlier affected by disrup-
tive mass movements (Figs. 2A and 3C). Several
discontinuous tephra interbeds up to 2 cm thick
are found here.

For the largest [Vc locality, a composite sec-
tion was made by correlating three subsections
(o, B, ), taking into account the thickness of
these layers, their fabrics, superposition, and
vertical distances (Figs. 2 and 4A). Despite
minor tectonic deformation and sub-horizontal
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Figure 2. Columnar sections of the complex outcrop Bardo IV, near a road to the Opolnica village, SW Poland, logged in 2017 (see
Figs. 1B, 3, 4A, and 4B), ordered in the succession according to field logging, i.e., in inverted order in light of biostratigraphic datings.
The variation in the lamination and fabrics of layers and styles of tectonic deformation are shown, as well as soft-sediment deforma-
tion structures, in the lower conglomeratic part of section IVb (photo A). All sections are in the same vertical scale. Three examples of
etched chert slabs (in HF), presented in the lower right corner, show an erosional contact of radiolarite with mudstone (sample IVc/1;
B), recrystallized radiolarian(?) test (RK IVe-3; C), and a fragment of alleged graptoloid rhabdosome (RK IVc-3; D), respectively.

HBS—Hangenberg Black Shale.

slip surfaces, the correlation is supported by
tracing of cm-thick tephras (Fig. 4B). Mostly
dark gray chert/mudstone layers are often less
or more distinctly horizontally and sometimes
wavy laminated. Only exceptionally, a coarser
grain admixture, as well as tectonic breccias, can
be recognized.

Locality Bardo V

The conodont-bearing cherty olistolith was
described by Oberc (1957, locality 2) and

2376

Haydukiewicz (1998) from the northern side of
the Nysa Ktodzka River cut north of a bridge
in the middle of the town of Bardo (Fig. 1B).
The 130-m-long exposure includes several dif-
ferently oriented tectonic blocks (Fig. 4C) and
wedges, a few to over a dozen meters thick,
separated by tectonic breccia zones in the core
of the fold (Mikulski and Williams, 2014). Dark
gray radiolarite layers are ~20 cm thick, and dip
55-80° steeply northward.

The strata were dated by conodonts in the top-
most Famennian (maximally, the interval of Late
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expansa to the undivided praesulcata zones;
Haydukiewicz, 1998), which corresponds of Bis-
pathodus ultimus to the earliest Protognathodus
kockeli zonal interval in the revised zonation of
Spaletta et al., 2017). The locality was only com-
paratively studied herein for geochemistry.

METHODS AND MATERIAL

A total of 28 samples, including six from
tephras, were collected for analyses from an
~8.5-m-thick composite section of the Bardo

Geological Society of America Bulletin, v. 134, no. 9/10
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Figure 3. Bardo sections IVa (A and B) and IVb (C) at the locality of Bardo IV on Mlynarz Hill in Bardo town, near the road to Opolnica
village in SW Poland (see Fig. 1B). (A) General view of the Bardo IVa site at a small ravine with a persisting stream, filled mostly by delu-
vial till (Oberc et al., 1994). (B) Light gray-bluish, mostly thin layers of chert with almost vertical dips, converging in a downward-oriented
joint of an isoclinal fold (left side) at the Bardo I'Va site. Note arrowed laterally disrupted Hangenberg Black Shale that is horizon along the
fault surface. (C) Light gray thin- and medium-layered cherts in the lower part of the Bardo I'Vb section, where the tectonic disturbance
likely overlapped with previous mass movements (see Fig. 2A). Between some layers, mm-sized horizons of cream-colored tephra are visible
(arrowed).

IV slope exposure (Fig. 2A), interpreted collec-
tively as a faulted overturned succession.
Major, minor, and trace element abundances
were determined on all bulk rock samples at
the Acme Analytical Laboratories (Vancou-
ver) Ltd, Canada. Total concentrations of the
major oxides and several minor elements were
reported from a 0.2 g sample analyzed by
inductively coupled plasma (ICP)-emission
spectrometry following lithium metaborate/tet-
raborate fusion and dilute nitric acid digestion.
Rare earth and refractory elements (e.g., Ba,
Co, Th, U, V, Zr) were determined by ICP mass
spectrometry (MS) following the same decom-
position method. A separate 0.5 g split was
digested with 3 ml 2:2:2 HCI-HNO;-H,O and
also analyzed by ICP-MS for the precious and
base metals (e.g., Mo, Cu, Pb, Zn, Ni, As, Sb).
In addition, total carbon and sulfur were ana-
lyzed by Leco. The reliability of the data was
checked by analyses of international standard
reference materials. Precision and accuracy
of the results were better than £0.9% (mostly
+0.4%) for the 11 major elements, and better
than +15% for the 45 trace elements. When the
concentrations of trace metals (especially Hg,

Geological Society of America Bulletin, v. 134, no. 9/10

Cd, As, and Mo) were lower than the detection
limits (see Supplemental Material S3'), the
highest value below the suitable detection limit
value was used. Mercury concentrations were
determined using a two-cell, pyrolyzer-type
Milestone DMA-80 direct mercury analyzer for
atomic absorption spectrometry (AAS) at the
Institute of Earth Sciences, University of Sile-
sia (Poland). For analytical details see Racki
et al. (2018).

The 18 cherty samples were macerated for
radiolarians and bioapatites in hydrofluoric
acid. The material was obtained by diges-
tion of 50-70 g pieces with a 5% HF solu-
tion for 24 h. Th residuum was wet sieved
through 57 pm and 430 pm sieves. Two
samples from the black shale horizon from

ISupplemental Material. Supplemental Material
S1: Conodont alteration index discussion;
Supplemental Material S2: Radioisotopic data;
Supplemental Material S3: Geochemical analytical
and correlation dataset; Supplemental Material S4:
Additional geochemical figures. Please visit https://
doi.org/10.1130/GSAB.S.17149046  to  access
the supplemental material, and contact editing@
geosociety.org with any questions.
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Bardo IVa section were selected for the paly-
nological investigation. Standard laboratory
procedure was employed (HCI-HF-HCI acid
sequence; Wood et al., 1996). Rich organic
remains, including miospores, phytoplankton
taxa, and other palynomorphs, were obtained
and sieved through an 18 pm nylon mesh.
Finally, 10 standard palynological slides
were prepared. Peropoxy 154 was used as
a mounting agent; Cellosize was used as a
dispersal agent to avoid organic clumping.
Examination and documentation were done
using a Nikon Eclipse 50i transmitted light
microscope with a DS-U3 controller and
Nikon NIS-Elements imaging software suite.
The micropaleontological collections of con-
odonts and palynomorphs are housed at the
Department of Natural Sciences (University
of Silesia, Sosnowiec, Poland).

Laser ablation (LA)-ICP-MS U-Pb dating of
zircons from three tephra samples was carried
out at the Institute of Geochemistry and Petrol-
ogy, ETH Ziirich, Switzerland. The analytical
methods followed Guillong et al. (2014); all
details of instrumental setup and results are pro-
vided in Supplemental Material S2.
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Figure 4. Reference section Bardo IVc on Miynarz Hill in Bardo town, near the road to
Opolnica village in SW Poland (A and B; see Figs. 1B and 2A), encompassing inverted
cherty-clayey succession, and the auxiliary of locality Bardo V (C), in the middle of Bardo
town. Some sampled horizons are shown. (A) A series of thin-layered, gray mudstones and
siliceous shales succeed upwards into thin- and medium-layered, horizontally laminated
cherts of the subsection IVc-B. Horizontal tectonic displacements along the surface of the
cherty layers are recorded in thin layer splits (siliceous shale habitus; compare lithofacies
1 in Fraser and Hutchison, 2017). Tephra partings (see Fig. 4B) characterize the lower and
middle part of the section. (B) Cream-colored tephras, up to 2 cm thick, between the second-
arily brownish, differently layered cherts in the middle of the IVc-a section (see Fig. 2A). (C)
Rock promontory protruding from the cliff edge toward the Nysa Klodzka River in the cen-
tral part of the Bardo V outcrop. The succession comprises steeply dipping end-Famennian
cherts (see the Block III in Haydukiewicz, 1998, their fig. 4).

BIOSTRATIGRAPHY the family Entactinidae (Fig. 2C) were not useful
from a biostratigraphical point of view.

Two important microfossil groups, conodonts

and palynomorphs, were recovered from the
siliceous-clayey deposits from the Bardo IV
site. Unfortunately, the poorly-preserved spheri-
cal spongy tests of polycystine radiolarians of
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Conodonts

The conodont collection studied includes
175 P, elements found in 11 samples from the
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Bardo IVc and IVb sites (Table 1). The very
fragile elements are mostly broken, fractured,
deformed, and corroded, and the best preserved
are juvenile and early juvenile individuals, com-
prising 60% of the collection investigated. The
frequency of elements in the samples is low,
not exceeding 30 specimens per sample, which
precludes quantitative biofacies analysis. Nev-
ertheless, Palmatolepis (Pa.) is the dominant
genus, attaining 84% and 73% of total number
of specimens in the Bardo IVc and Bardo IVb
sections, respectively.

In all samples investigated the conodont
color alteration index (CAI) has been deter-
mined, based on the reference material kindly
supplied by Anita Harris (U.S. Geological Sur-
vey), and on the Rejebian et al. (1987) color
scale. The elements are generally gray in color
with white denticle terminations, which points
to CAI 6 values corresponding to temperatures
of 360-550 °C (Supplemental Material S1).
Single assemblages display higher values, up
to CAI 7, thus indicating temperatures >600
°C. Such high temperatures and lateral CAI
variability show that the host sediments had
been heated during the contact metamorphic
processes (Haydukiewicz, 2002), probably
related to a hidden small apophyse related to
the Klodzko-Zloty Stok granitoids (Mikulski
and Williams, 2014).

The investigated collection includes 11 spe-
cies and subspecies (Table 1; Fig. 5). In view of
partly missing zonal indicators, the biostratigra-
phy of particular samples was based on compari-
son of total ranges of possibly all co-occurring
taxa, referred to the zonation proposed by Spal-
letta et al. (2017). In the Bardo IVc section, the
interval from sample IVc/12 to IVc/1 corre-
sponds with Pa. marginifera to Pa. marginifera
utahensis (Table 1). This is based on the pres-
ence of Pa. m. marginifera in sample IVc/12
(Fig. 5: see no. 17) and Palmatolepis glabra
prima (Fig. 5: see no. 3) in sample IVc/1. The
lower age limit is defined by Pa. m. marginifera,
being the index taxon for the Pa. m. marginifera
Zone. The upper limit is defined by the last
appearance (LAD) of the subspecies Pa. gla-
bra prima (see Spalletta et al., 2017). Very poor
material from locality IVb allows the dating of
the middle Famennian (Pa. m. marginifera to Pa.
m. utahensis zones). The age was constrained by
the presence of Branmehla werneri (Fig. 5: see
no. 23) that has a first appearance datum in the
Pa. m. marginifera Zone, and the LAD of Pa.
glabra prima (Fig. 5: see no. 6). In summary,
the conodont faunas document a middle Famen-
nian sequence in the Bardo IVb-IVc succession
(Fig. 2).

Conodont assemblages from single samples
from Bardo II and III sites (Fig. 1B) are poorer
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TABLE 1. CONODONT DISTRIBUTION IN SAMPLES FROM SECTIONS BARDO IVC AND IVB (SEE FIG. 2A)

Sections

Ve Vb

Conodont zones

Pa. marginifera marginifera—Pa. marginifera utahensis

Sample numbers 12 1

10 9 7 5 4 3 2 1 1

Palmatolepis marg. cf. marginifera
Palmatolepis glabra pectinata
Palmatolepis glabra prima
Palmatolepis glabra cf. prima
Palmatolepis glabra

Palmatolepis gracilis gracilis
Palmatolepis gracilis cf. gracilis
Palmatolepis gracilis semisigmoidalis
Palmatolepis gracilis

Branmehla werneri 1
Branmehla cf. werneri

Branmehla sp. 2
Palmatolepis perlobata schindewolfi

Palmatolepis perlobata

“Polygnathus” diversus

Palmatolepis sp.

Pandorinellina sp.

Belodella sp.

Ramiforms 8 4
Total P4 13 16

1
6

=B~

w W
=N w

2
2 1
1 3 3 5 1
1
1 1 4
4 6 6 1 4 2 1
5 4
1
2 1 1 9 7 3
2 1 2
2 2 3 1
1 5 2
1
1 1
3 1

A
(&)}
[eo)

30 28

—_

30 15 1

Note: Pa.—Palmatolepis.

than those from the Bardo IV section. They point
to the occurrence of an undivided interval from
the middle Famennian (Palmatolepis gracilis
gracilis Zone) to the early Tournaisian (Proto-
gnathodus kockeli Zone).

Palynomorphs

All organic matter (OM) from the Bardo
IVa/2 samples was significantly changed under
the influence of high temperature and is black in
color (Fig. 6). Moreover, palynomorphs are fre-
quently cracked, with signs of recrystallization.

Among some taxa classified as miospores,
there are specimens with visible central bodies
and an external perispore layer with character-
istic reticulate ornamentation. Such features
are particularly characteristic of Retispora lepi-
dophyta, the guide species occurring only in the
latest Famennian (see Streel et al., 1987, 2000;
Higgs et al., 1988). Its disappearance is treated
worldwide as the marker for the Devonian-Car-
boniferous (D-C) boundary. In the studied mate-
rial, smaller forms are dominant, which should
be classified as R. lepidophyta var. minor. The
larger variety, belonging to R. lepidophyta var.
lepidophyta (see Maziane et al., 2002) are pres-
ent less frequently. It should be stressed, how-
ever, that even if the palynomorphs, identified
here as ?R. lepidophyta (Fig. 6: see nos. 1-8),
are only dubiously attributed to this species, this
taxonomic interpretation is strengthened by the
occurrence of the guide species in the Hangen-
berg Black Shale (HBS) in another D-C bound-
ary section in the Bardo Unit (Wapnica quarry
at Dzikowiec village in Ktodzko County, Matyja
et al., 2021; Fig. 6: see nos. 22-25). Other mio-
spores are similar to Grandispora?, Tumulis-
pora?, and Vallatisporites?, frequent palyno-
floral components for a broader D-C transition

Geological Society of America Bulletin, v. 134, no. 9/10

interval. They quantitatively predominate over
IR. lepidophyta.

Acritarchs are quite common and repre-
sented by dominantly spherical forms, vari-
ably equipped with long, narrow appendages
or possessing shorter spines. From known spe-
cies, Gorgonisphaeridium possess this type of
architecture. Some taxa are similar to Gorgoni-
sphaeridium ohioense (Fig. 6: see nos. 14 and
20) from the Late Devonian (Wicander, 1974; Le
Hérissé et al., 2000). Other forms with smaller
ornamentation sometimes possess additionally
partial rupture characteristic of Lophosphaerid-
ium (Fig. 6: see no. 13).

The beginning of the Carboniferous was a
time where a significant phytoplankton crisis
is noted, a so called phytoplankton blackout
(sensu Riegel, 2008; Martin and Servais, 2019).
Therefore, ?Retispora lepidophyta and spherical
acritarcha have significance for supporting the
latest Famennian age of the assumed HBS level.
Moreover, the co-occurrence of miospore tetrads
(Fig. 6: see nos. 9 and 10) may also be significant
here, and at Dzikowiec (Matyja et al., 2021). The
higher miospore concentration was previously
noticed in the topmost Devonian (European stan-
dard lepidophyta—nitidus (LN) Miospore Zone)
from the Kowala Quarry (Filipiak and Racki,
2010), and other regions (Prestianni et al., 2016;
Marshall et al., 2020).

ZIRCON GEOCHRONOLOGY OF
TEPHRA HORIZONS

Three tephra (t) samples from the Bardo IVc
section yielded pristine, euhedral zircons of
presumed volcanic origin (see Supplemental
Material S2). Individual LA-ICP-MS 20°Pb/>33U
zircon dates range from 378 to 349 Ma, with a
single crystal at 549 Ma (sample t IV) and one
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crystal at 337 Ma (t I1I) that likely records partial
Pb loss (Fig. 7). Weighted mean 2%°Pb/?3%U ages
are indistinguishable between the three samples
at 360.3 £ 3.8 Ma (t I), 362.7 4= 4.0 Ma (t III),
and 360.7 4= 4.0 Ma (t IV). Given the euhedral
nature of the dated zircons and their simple (if
over dispersed) age distributions, we interpret
the results as primary magmatic crystallization
ages. The ages indicate that the tephras of the
lower half of the Bardo IVc section are products
of later Famennian volcanism.

STRATIGRAPHIC SUCCESSION
AND THE QUESTION OF THE
HANGENBERG GLOBAL EVENT

Summarizing the biostratigraphic dating
correlations provided by conodonts (sections
IVb and IVc) and palynomorphs (IVa), it is
possible to consistently interpret the faulted
Bardo succession (Fig. 2), corresponding to
the cartographic setting provided by Oberc
et al. (1994). The middle Famennian age of
the topographically higher part of section IVc
documents the bottom part of an overturned
succession (Fig. 8), in agreement with dating
of Bol locality (claystones of the Mikotajéw
shales) by Haydukiewicz (1979). In the west,
the slice has a contact with the tectonized block
I'Va, tentatively assigned using palynomorphs
to the latest Famennian Retispora lepidophyta
Palynozone. Thus, the distinctive black shale
intercalation is thought herein as the Hangen-
berg Black Shale.

The radiometrically dated (360.7-
362.7 + 4.0 Ma) tephras come from the
conodont-dated middle Famennian interval,
which would correspond to between 367.3
and 363.4 Ma following the astronomical time
calibration of Ma et al. (2020, their fig. 8). The
partly overlapping ages are confirmation of the
age interpretation, especially given that the geo-
chronology of Famennian biozones is still uncer-
tain (compare dates in Becker et al., 2020). In
light of conodont data presented by Haydukie-
wicz (1998), the additional Bardo V succession
(Fig. 1B) probably corresponds to a tectonic gap
in the thrust separating Bardo IVa and I'Vb sec-
tions (see Figs. 2 and 8). All the data suggest
a significant primary thickness of the cherty
Brzeznica beds.

MICROFACIES OF CHERTY
LITHOLOGIES

The siliceous rocks of the Bardo IVc section
are composed of monotonously textured micro-
crystalline quartz with an admixture of other
silicates. Biotic components are rare and largely
limited to radiolarians and palynomorphs, the
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Figure 5. Conodont elements
from the Bardo IV section
(IVc and IVb; Table 1). 1, 2,
and 6-11: Palmatolepis gla-
bra prima Ziegler and Huddle
(1969) (1—upper view, sam-
ple IVc/2, GIUS 4-3737/1;
2a—upper view; 2b—lower
view, IVc¢/5, GIUS 4-3737/3;
6a—lower view; 6b—upper
view, IVb/1, GIUS 4-3737/20;
7—upper view, IVc/12, GIUS
4-3737/6; 8—upper view, IVc/3,
GIUS 4-3737/7; 9a—upper
view; 9b—lower view, IVc/5,
GIUS 4-3737/8; 10—upper
view, IVc/5, GIUS 4-3737/4;
11—upper view, IVc/2, GIUS
4-3737/5). 3:  Palmatolepis
glabra cof. prima Ziegler and
Huddle (1969) upper view,
IVe/1, GIUS 4-3737/2. 4 and 5:
Palmatolepis glabra pectinata
Ziegler (1962) (4—upper view,
IVe/12, GIUS 4-3737/9; 5—
upper view of juvenile form,
IVce/9, GIUS 4-3737/10). 12, 13,
and 20: Palmatolepis gracilis
Branson and Mehl (1934) (12—
upper/oblique view, IVc/l,
GIUS 4-3737/12; 13—upper
view, IVb/1, GIUS 4-3737/21;
20—upper view, IVc/7, GIUS
4-3737/13). 14 and 15: “Polyg-
nathus” diversus Helms (1959)
(14a—lower view; 14b—Ilateral
view of juvenile form, IVc/2,
GIUS 4-3737/18; 15—Ilateral
view of juvenile form, IVb/1,
GIUS 4-3737/22). 16, 17, and
22: Palmatolepis marginifera
cf. marginifera Helms (1959)
(16—upper view of juvenile
form, IVc/9, GIUS 4-3737/15;

17—upper view of juvenile form, IVc/12, GIUS 4-3737/16; 22—upper view, IVc/9, GIUS 4-3737/17). 18: Palmatolepis perlobata schindewolfi
Miiller (1956) (upper view, IVc/3, GIUS 4-3737/11). 19: Palmatolepis gracilis semisigmoidalis Hartenfels (2011) (upper view, IVc/3, GIUS
4-3737/14). 21 and 23: Branmehla werneri Ziegler (1962) (21a—lateral view; 21b—Ilateral/oblique view, IVc/11, GIUS 4-3737/19; 23a—Iat-
eral view; 23b—lower view of juvenile specimen, IVb/1, GIUS 4-3737/23). Linear scale = 0.1 mm.

latter represented mostly by acritarch-like rem-
nants. Radiolarian tests vary between 50 and
180 pm and are mostly dissolved, replaced by
quartz and preserved as mold casts (Figs. 2B—
2C and 9). In addition, problematic microfos-
sils resembling degraded planktonic unicellular
algae are noteworthy (Fig. 9C).

Among microfacies, the most common
variety is radiolarian chert, grading into
argillaceous varieties (see below), in places
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with peloid-like structures. Amorphous OM
is dispersed throughout the chert matrix.
Dark brown “clumps” of irregular shape
(sized from 20 to 200 pm), as well as pyrite
grains (Fig. 9D), are abundant in some levels
(Fig. 9E). Clumps composed of cryptocrys-
talline quartz and amorphous OM. Subordi-
nately, especially in the lower part of Bardo
IVc section, a variety with rare radiolarians
occurs (Figs. 91 and 9J), in which laminations
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of highly disintegrated OM are rarely rec-
ognizable.

Lamination is finely developed, mostly in
clay-enriched lithologies. Quartz and silicate-
enriched horizons with indistinct laminae
up to 500 pm thick that contain alloclasts are
visible, and rarely paired with continuous and
wavy organic matter streaks (Figs. 9A-9B,
and 9G-9I). The presence of microbial mats
is sporadically suggested, but no morphologi-
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cally preserved remnants of bacteria are vis-
ible. Therefore, the laminated organic material
may have been derived directly from the water
column. The absence of benthic skeletal fauna,
even silicisponges, and microbial mats sug-
gests a harsh, mostly poorly oxygenated and/
or extremely muddy near-bottom habitat. The
origin of the “clumps” is unclear, as they may
represent highly degraded planktonic OM or
some reworked sediment with benthic microbial

Geological Society of America Bulletin, v. 134, no. 9/10

life. Fossil excreta of a soft-bodied infauna is
not supported.

PALYNOFACIES OF THE
HANGENBERG BLACK SHALE

The organic material (Fig. 6) consists of
diverse miospores, acritarchs, prasinophyta,
higher plants tracheids, scolecodonts, and
amorphic organic matter. The dominance of
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Figure 6. Palynomorphs from
the Bardo IVa section (1-21;
IVa-2/1 sample) and, for com-
parison, better  preserved
specimens from the Wapnica
Quarry near the village of
Dzikowiec, SW Poland (see
Matyja et. al., 2021; 22-25). All
pictures possess the same mag-
nification. 1-4: Miospores clas-
sified as ?Retispora lepidophyta
var. minor Kedo (1974) (1—
best preserved specimen with
partly well-preserved external
perispore layer, with character-
istic reticulate ornamentation
(arrowed). 5-8: Miospores clas-
sified as ?Retispora lepidophyta
var. lepidophyta (Kedo) Play-
ford (1976). 9-10: Miospores
tetrads. 11: Higher plant tra-
cheid. 12: Scolecodont. 13:
Acritarcha similar to Lophos-
phaeridium. 14-20: Gorgoni-
sphaeridium type of acritarcha,
14 and 20: ?Gorgonisphaerid-
ium ohioense Winslow (1962)
and Wicander (1974). 21: Ac-
ritarcha or Grandispora? 22
and 23: Retispora lepidophyta
var. minor Kedo (1974), sample
9. 24 and 25: Retispora lepi-
dophyta var. lepidophyta (Kedo)
Playford, (1976), sample 11.

black amorphic OM over other organic com-
ponents is typical of low-oxygen regimes in
the bottom zone (Batten, 1996).

The mixed playnomorph assemblage, partly of
marine (acritarchs) and land (miospores) origin,
indicates a full-marine setting with a significant
supply of terrestrial organic material during the
Hangenberg clayey deposition. In particular,
R. lepidophyta characterized the cosmopolitan
vegetation of coastal lowlands, the downstream

2381



Racki et al.

th
weighted mean 2°Pb/**U age:
2] 360.3x0.8/3.8Ma uox
e (MSWD: 9.5, n = 38/38)
420
7 8.
5 ° 100 8
o
§
2
2 4
B
£

460 m

7P|

th

weighted mean 2°Pb/?lJ age:
362.7 £ 1.5/4.0 Ma

(MSWD: 3.5, n = 10/12)

0.065
1

206Pb/233u
0.060
1

420 m

Figure 7. U-Pb zircon ages in
three Bardo IVc tephra hori-
zons of SW Poland (see Fig. 4B;
for detail see DR2). Uncer-
tainties on weighted mean
ages displayed as internal/
internal + 1% propagated sys-
tematic uncertainty. MSWD—
mean squared weighted
deviation; t—tephra.

8
°
T T T
0.40 0.45 0.50
207Pb/235u
é- tIv 400
weighted mean 2%Pb/2*) age:
360.7 +1.6/4.0 Ma
g (MSWD: 4.4, n = 9/9) 390w
$D 3680w
S g
n_ o
&
£
8

0.42

207Pb/235U

0.44

“coal” swamp margin milieu of Streel et al. (2000,
their figs. 28 and 33). Here, in addition to local
humidity and equable climate, the highly effec-
tive reproduction was directly controlled by short-
term sea-level fluctuations. Transgressive pulses,
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notable in the interglacial HBS episode (Kaiser
et al., 2016), led to a rise of the freshwater table
in these habitats and the expansion of marsh flora,
and thus a widespread dispersal of the miospores
in adjoining basins (Streel et al., 2000, p. 149).
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ELEMENTAL GEOCHEMISTRY OF
CHERTY ROCKS

The chemostratigraphic study of the sili-
ceous-clayey succession Bardo IV is based
on conventional analyses of whole-rock bulk
samples, which is the current research standard
in sedimentary geology (see reviews in Sage-
man and Lyons, 2003; Calvert and Pedersen,
2007; Rothwell and Croudace, 2015; Yudov-
ich and Ketris, 2015; Craigie, 2018). The
elemental geochemistry of cherts is focused on
lithogenous (detrital) and non-silicate authi-
genic phases, strongly diluted by biogenic
opal (see Murray, 1994; Sageman and Lyons,
2003). Consequently, the elemental multi-
proxy approach is routinely used to reconstruct
environmental factors during deposition of the
bedded cherts (Figs. 10-13), as exemplified
recently by Kuroda et al. (2015), Ran et al.
(2015), Udchachon et al. (2017), Zong et al.
(2016), Fraser and Hutchison (2017), Harris
et al. (2018), Dong et al. (2018), Khan et al.
(2019), Gao et al. (2021), and Hou et al. (2021).
Four “chemo-intervals” -1V are distinguished
in the Bardo IV succession (see below), and
the black shale (sample IVa/2 = interval IV-H;
Figs. 11 and 12) is summarized separately due
to its many disparate characters.

To compare elemental contents and ratios in
sediments with fluctuating silica dilution and
detrital input, we use Al-normalization (E/Al)
and enrichment factors (Epg = E/Algpp1e/E/
Al gangara)s Tribovillard et al., 2006; Fraser and
Hutchison, 2017), in which E represents the
targeted element. The average shale of Wede-
pohl (1971; Fig. 10A) is taken as standard. As
complementary tracers of bioproductivity, the
biogenic excess is calculated (Tribovillard et al.,
2006; Harris et al., 2018; Dong et al., 2018)
using the formula: Egjq (as presented in the
quoted articles; Egp equivalent above) = Eq,pyp
— [Al sample X E/Aly440)]- Spearman’s rank
correlation coefficient (r) is applied in the study
(see Supplemental Material S3).

General Characteristics

As indicated by Jones and Murchey (1986),
the term “bedded chert” or “radiolarian chert”
commonly denotes rock units that include both
chert and related clayey varieties (see also De
Wever et al., 2001, p. 65-70; Hiineke and Hen-
rich, 2011), which closely match the character of
the siliceous rocks from Bardo. In the binomial
system for classifying fine-grained siliceous sed-
imentary rocks of Jones and Murchey (1986),
the rocks represent mainly argillaceous chert,
with gradation to siliceous mudstone. “Pure”
radiolarian cherts (less than 25% clay content)
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Figure 8. Geochronology, chronostratigraphy, and standard conodont zones of the middle
Famennian to Early Carboniferous time, after Spaletta et al. (2017, their fig. 1; timing after
Ma et al., 2020, their fig. 7, compare Becker et al., 2020, their fig. 22.11; Famennian subages
after Streel et al., 2000, their fig. 6), as a reference for conodont and radioisotopic dating of
the sections Bardo IV and V of SW Poland (see Figs. 1B, 2A, 7, 11, and 12; Table 1).

are likely absent at Bardo, and at least one sam-
ple (IVc/2) is a mudstone (Fig. 11).

In terms of chemical composition (see Supple-
mental Material S3; Table 2), the Bardo cherty
succession is generally uniform. The cherts
have high contents of SiO, (71.08%-89.66%,
median 81.26%), and moderate contents of
ALO; (5.11%-13.49%, median 7.63%) and
Fe,0; (1.76%—5.26%, median 3.02%). These
deposits are impoverished in CaO (0.2%-2.76%,
median 0.49%), and poor in OM, where total
organic carbon (TOC) values are below 0.2%
(median 0.09%).
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When compared with the geochemical stan-
dards, especially with average cherty shale
of Ketris and Yudovich (2009), the chert sam-
ples from Bardo display some notable deple-
tions, especially in As, Mo, Cd, U, Sb, and Hg
(Table 2). Only Mn appears enriched, even if
other standards reveal similar abundances. It is
not surprising that Bavarian and Sudetic radio-
larian cherts show closer geochemical com-
patibility. The impoverishment of As, Hg, Sb,
and Mo, as well as authigenic Mn enrichment
is confirmed by calculated enrichment/deple-
tion factors, but most elements follow roughly
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average estimates (Fig. 10A). The pattern indi-
cates that source rocks delivered to the oceanic
basin had affinity to typical upper continental
crust (see below).

The total rare earth element (REE) and Y
contents (XREE + Y) are in the range of 21.6
to 483.3 ppm (median 71.8 ppm; Fig. S4/1).
The light (L)REE (15.1-325.9 ppm, median
55.9 ppm) abundance is higher than middle
REE (1.5-36.0, median 4.4 ppm) and high (H)
REE (1.2-23.2 ppm, median 2.7 ppm), with (La/
Yb)y values near 1 (0.48-1.51, median 0.95).
The cherts are characterized by average values
of the Eu anomaly and Ce anomaly (defined by
the equation Ew/Eu* (* is the expected normal-
ized concentration when interpolated from an
appropriate combination of near REE neigh-
bors)= Eu,/(Sm,+Gd,)*>, and Ce/Ce* =2
x Ce,/(La,+Pr,), where the subscript “n” indi-
cates REE normalization to PAAS values) ~1.1
(0.89-1.59, median 1.12 and 0.98-1.24, median
1.11, respectively).

Origin of Silica and Diagenetic Overprint

The key biogenic component of radiolar-
ian cherts was composed originally of unstable
amorphous opal A, and the tests are very poorly
preserved in the studied sediments (Figs. 2C
and 9F), an indication of significant solution
and reprecipitation of SiO, during diagenetic
processes (Murray et al., 1992; De Wever et al.,
2001, p. 55-60; Lazarus et al., 2020, p. 218—
224). The Si/(Si + Fe + Al + Ca) ratio varies
between 0.76 and 0.91, which reflects the con-
tent of silica in relation to aluminosilicate phase,
and ferruginous and calcareous minerals (Ran
et al., 2015; Khan et al., 2019). The maximum
proportion of excessive biogenic silica ranges
from 11.1 to 33.6% (median 25.6%), while the
admixture of clay exceeds 50% in three inter-
vals, especially in the basal I-B slice, in which
only siliceous mudstones to mudstones predomi-
nate (Fig. 11).

A covariation between the approximated bio-
silica content and bioproductivity proxies is also
expected for radiolarites (Lei et al., 2019). The
positive relationship with biophile trace metals
is weak (r; = 0.24 for Pb), but a more significant
link is shown by biogenic P (r, = 0.48). In sum-
mary, these data all support a dominantly bio-
genic origin of the studied cherts (see discussion
in Lei et al., 2019), with an insignificant hydro-
thermal silica contribution (compare the jasper
case in Grenne and Slack, 2005).

The essential diagenetic overprint is empha-
sized by Murray et al. (1992) and Murray (1994)
as a leading feature of bedded chert originating
from opaline-clayey muds to lithified quartz-
dominated rocks, with large-scale geochemical
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(A, B) level IVa-3 laminated radiolarian argillaceous
chert

Siliceous rock with numerous degraded radiolarian
tests and clumps of organic matter surrounding
radiolarian tests; occasional occurence of peloid-like
structurless organic matter and pyrite grains.

(C, D) levels RK IVc-3 + IVb-2 radiolarian argi-
llaceous chert

Siliceous rock with numerous degraded radiolarian tests
in dark rim-like envelopes; numerous dark peloid-like
clumps of organic matter; sporadic thin laminae of
organic matter locally enriched in fine mineral (silicates
and quartz) grains; common pyrite cubes and irregular
voids filled with carbonate mineral (dolomite?).

(E, F) level IVc-1 radiolarian siliceous mudstone

Siliceous rock with numerous degraded radiolarian tests
in dark envelopes of organic matter, common peloid-like
clumps of similar organic matter also occur; microproble-
matics are present, some resembling remnants of plank-
tonic unicellular algae; local lenses and indistinct laminae
of organic matter enriched in mineral detritus.

(G) level IVc-8 streaky laminated radiolarian siliceous
mudstone

Siliceous rock with sporadically occur wavy organic matter

laminae. Rare microfossils reminiscent of highly degraded

unicellular algae.

laminated radiolarian siliceous
mudstone

Siliceous rock with degraded radiolaria. Regular lamination
and streakes of organic matter occur. Clumps of
organic matter and sporadic ditrital grains are present.

(H) level IVc-9

(1, J) level IVc-12 argillaceous chert with rare radiolaria

Weakly laminated siliceous rock with rare radiolaria
and other fine skeletal debris mixed with
dispersed organic material micro-particles.

Figure 9. Stratigraphic variation of Famennian chert microfacies in the composite Bardo IV section (for sample locations and petrographic
categories see Figs. 2A and 11).

implications. However, this is undoubtedly true
for rhythmic chert/shaly successions, in which
silica migrated from the host clayey litholo-
gies toward cherty precursors. In the case of an
overall uniform lithological setting, such as in
the Bardo succession, the inter-bed diagenetic
transfer seems less probable. This supposition
is confirmed by a distinctive four-step secular
chemostratigraphical pattern, related to pri-
mary depositional characters (see below). Also,

2384

a significant correlation of biogenic Si and P
(r,=0.61) is a valid test because they are key
elements showing opposite diagenetic tenden-
cies during the formation of cherts: a major
addition of Si and depletion of P (Murray, 1994).
This is the rationale for further chemostrati-
graphic study.

The studied cherts show a good positive
correlation between Al,0; and XREE +Y
(r, = 0.84), and an REE pattern similar to that
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of upper continental crust, given that the ele-
ments are largely derived from terrigenous
sources. The excess YREE +Y contents
caused by adsorption from seawater in open-
ocean basins are higher than those near the
continental margin (Murray et al., 1992). The
cherts have average Ce/Ce* (1.08 £ 0.06) and
Y/Ho (26 + 1.85) values characteristic for rocks
deposited in a continental margin setting. Fur-
thermore, low values of the Mn/Ti ratio (below

Geological Society of America Bulletin, v. 134, no. 9/10
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Figure 10. (A) Enrichment/depletion patterns of selected elements from the Famennian siliceous-clayey rocks at Bardo IV, in SW Poland,
against the average shale of Wedepohl (1971; see Table 2). Three- and ten-fold values of enrichment/depletion ratios are used as thresholds
(see Racki, 2020). (B) Al-Fe-Mn diagram showing samples from the Bardo radiolarian cherts only in the non-hydrothermal (hydrogenous)
field. Hydrothermal and non-hydrothermal fields are after Adachi et al. (1986, their fig. 5), modified by Liao et al. (2019, their fig. 5).

0.5; Udchachon et al., 2017) also suggest the
most nearshore deposition in the lowest interval
(Figs. 12 and Fig. 13B).

Weathering and Climatic Setting in
Sediment Source Areas

Because rapid climate changes are well known
from the terminal Devonian time, culminated in
a short-lived glaciation after a transient green-
house Hangenberg Crisis episode (see sum-
maries of Kaiser et al., 2016 and Aretz, 2020),
select climate proxies were tested in the Bardo
succession. The seventeen proxies analyzed (see
Supplemental Material S3) are sensitive to the
behavior of elements in two climate extremes:
humid/greenhouse and arid/icehouse, and there-
fore they record weathering conditions in source
areas of the clastic contamination in the chert,
in particular intensive rainfalls and chemical
weathering under hot and moist conditions (Rat-
cliffe et al., 2010; Rothwell and Croudace, 2015;
Ferriday and Montenari, 2016; Lash, 2017; Lo
et al., 2017; Craigie, 2018; Racki et al., 2019;
Prajith et al., 2021).

Considering the proxies at the Bardo IV sec-
tion, most of the estimates exhibit the same
major secular trend toward the end-Devonian
icehouse (Kaiser et al., 2016), exemplified by
Ga/Rb ratios (Fig. 12), but in detail obscured
by their irregularly oscillating values. The tracer
especially positively links with nine proxies (r,
> 0.62), such as Th/K, K/Al, and Rb/Al. The
estimates indicate greenhouse pulses of ele-
vated weathering rate, mostly corresponding to
increased detrital input, in particular in the [I-IV
interval, as well as cooling intervals paired with
increased biosiliceous productivity.

Geological Society of America Bulletin, v. 134, no. 9/10

Hydrothermal Activity, Redox Conditions,
and Bioproductivity

Chalco- and siderophile constituents are
not characterized by enrichments in the Bardo
clayey cherts (Table 1; Fig. 10A), but a coher-
ent group, including such elements as Mo, Cu,
7Zn, Pb, U, and As as well as Co, Ni, V, and Sb
in part (see Supplemental Material S3) reveals
significant mutual associations (r, > 0.5). The
elements are notably independent in distribution
from the aluminosilicate phase. Thus, they may
be considered an authigenic biogenic-dominated
constituent (Tribovillard et al., 2006; Algeo and
Liu, 2020; Bennett and Canfield, 2020). How-
ever, the constituents may be also affected by
differential fluid delivery from the sea-floor
vents (Grenne and Slack, 2005; German and
Von Damm, 2006; Fig. 12), and by erup-
tive gaseous emissions (Oppenheimer, 2014;
Yudovich and Ketris, 2015). Several geochemi-
cal proxies, such as moderate iron and manga-
nese values (Fe,O; < 5.3%, MnO, < 0.4%;
Fig. 10; Table 2), relatively high values of the
Al/(Al + Fe + Mn) ratio (>0.6; Fig. 12), and
low Hg contents (median 30.7 ppb; Fig. 10A)
suggest that the cherts largely originated from
marine water without significant hydrothermal
and volcanic inputs (Murray et al., 1992; Grasby
etal., 2019; Jones et al., 2019; Hou et al., 2021).

The very low TOC contents, mostly ~0.1%,
characterize the studied cherts, and the post-
depositional processes, especially weathering,
could bias all OM and pyrite hosted trace metals
(Derkowski and Marynowski, 2018). However,
this impoverishment characterized some black
Paleozoic radiolarian cherts (table 4 in Cress-
man, 1962), as well as dark cherty strata from
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the D-C transition in southeastern China (Shijia
section; Racki, 2020, Supplemental Material
3 therein) and Bavarian cherts (Table 2). Oce-
anic siliceous sediments are overall depleted in
OM due to degradation within the water col-
umn (tables 18 and 22 in Ronov et al., 1991).
The first-order trend is certainly preserved, as
reflected in the organic-enriched Bardo IVa
samples (TOC content 0.5%—1.3%; see below).
Thus, oligotrophic regimes and low primary pro-
duction levels are thought to have dominated in
the middle Famennian basin.

A tendency toward some basin restriction,
of the Black Sea type, is suggested by the
composite proxy of Cd/Mo versus Co x Mn
(Fig. 13A), that was proposed—on the actualis-
tic basis—by Sweere et al. (2016; see also Yang
et al., 2021). On the other hand, analogies with
the Arabian Sea are remarkably recorded in the
end-Famennian interval. The sea shows only
seasonal upwelling and a less distinct oxygen
minimum zone (OMZ), and therefore its sedi-
ments have lowered OM contents. Furthermore,
a similar conclusion derives from distribution of
Mo (<23 ppm), V (<5 ppm), and U (>1 ppm)
enrichments, i.e., diagnostic of oxic regimes
“beneath the core of a perennial OMZ environ-
ment” (Bennett and Canfield, 2020). Accord-
ingly, it is likely that the more advanced anoxia
only transiently developed in the Bardo Basin.

Provenance and Tectonic Setting

The clear differentiation of depositional and
igneous signatures (see Supplemental Material
S3) indicates that the contemporaneous erup-
tive activity only episodically contributed direct
input to the oceanic basin (see below). However,
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Figure 11. Stratigraphical trends of selected geochemical proxies for major elements, bioproductivity/redox states, climate, and paleoge-
ography in the composite siliceous-clayey Bardo IV succession of SW Poland (see Figs. 2A and 8). Note information gaps corresponding to
tectonic contacts and extended sampling intervals, as well as fragmentary IVa succession limited to the sampled interval. The maximum
CaCO; contents are estimated approximately from the CaO concentrations; correlative links between Ca and Mn, due to presence of Mn-
enriched calcite (M. Szczerba, email communication, 2020), are notably. Petrographic categories of siliceous-clayey rocks after Jones and
Murchey (1986, their fig. 1). The medians of 22 samples from the supplementary topmost Famennian Bardo V section (Fig. 1B), thought as
environmental complementation in the tectonic gap in the Bardo IV succession (Fig. 8), are added. Note the logarithmic scale for As, Mo,

and Cu. TOC—total organic carbon.

the various provenance proxies proposed in the Weathered and eroded substrates were gener-
literature give somewhat ambiguous results (see  ally similar in composition to the average upper
their critical review in Armstrong-Altrin and  continental crust (i.e., andesite-like), as exem-
Verma, 2005). plified by Cr/Nb and Th/Sc time series (Fig. 12;

see Cullers, 2000; Srodofi et al.,

2014). The

same affinity with average shale standards
is shown by Th/Sc versus Zr/Sc (McLennan
et al., 1993), and relationships between K,O
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and Table 3) and Rudnick and Gao (2003). Note reversed scale for the Al-based hydrothermal proxy and logarithmic scales for generally
impoverished Hg and As (see Fig. 10A).

and Rb, La/Th versus Hf, and Th/Ni versus
Zr/Ni (adopted from Ran et al., 2015; Fran-
covschi et al., 2020, and references therein).

The application of Th, Sc, Cr, and La ratios as  a source with a felsic to intermediate composi-
provenance indicators (La/Sc, Th/Sc, Th/Cr, tion (see Table 3). Small positive Ce anomalies
and Eu/Eu* normalized to chondrite) confirm  and a negligible LREE depletion with respect to
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Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/134/9-10/2373/5684137/b35971.1.pdf
bv Princeton Universitv user



Racki et al.

1
[@T@@]@ﬁﬁwﬁty qﬁ) @
<C maximal estimates for
i &/ Cd < detection level
751 ¥ (IVb-IVc sections)
= accurrate estimates for Mo
< and Cd > detection level
= (IVa section)
2
% I Q 0o O ©
= o1 JEl <L) o
o] upwelling .
s
"_3-
| @] o = )
1 BLACK SEA
- 0]
[@W@ﬂﬂ@m
0.01
0.1 1 10
Co x Mn (log)
10
o
P bedded.argillaceous cherts
® Py E:ardo sections
— IVb-IVe
Eﬂ =) . ... Hva
~ o s
Q o
= Hangenberg
= . Black,Shale
@) /
~N
Q
- Island Arc
& Old Continental Crust
Continental Margin
3

0.6

0.7
Aleg/(A|203 + F8203)

0.8 0.5

Figure 13. Discrimination diagrams illustrating environmental setting of the cherty rocks
from the Bardo IV locality in SW Poland; note distinctly specific position the Hangenberg
Black Shale. (A) Environmental distinction based on Cd/Mo and Co x Mn proxies (adopted
fig. 7 from Sweere et al., 2016). Note mostly approximate Cd/Mo ratios of samples IVb and
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sibly at the pelagic area (based on fig. 16 of Ran et al., 2015; Zong et al., 2016, their fig. 6);

the fields are from Murray (1994).

HREE for the samples from the Bardo sections
point to an origin within a continental margin
setting (Fig. S4/1). However, in the Fe,0,/TiO,
versus Al,O5/(Al,O5 + Fe,0;) and Lay/Cey
versus Al,O5/(Al,O; + Fe,0;) discrimination
diagrams, the studied chert samples plot almost
entirely in the subfields defined by sediment
derived from old upper continental crust and
rocks from the basalt-andesite series of island
arcs (Figs. 13B and 14A, see also the La-Th-
Sc and (Th-Sc-Zr)/10 diagrams in Fig. S4/2).
In brief, most of the tracers suggest andesitic
to granodioritic debris composition shed from
proximal continental-island arc areas. Thus,
Cadomian orogenic crust could be a source
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for the Famennian allochthon sediments of the
Bardo Unit, as proposed by Mazur et al. (2015).

FAMENNIAN VOLCANIC ACTIVITY

Intercalations of white kaolinite-rich shales
were noted in siliceous Brzeznica beds by Oberc
(1957, p. 30), but never considered as a volcanic
signature. At least 15 pale-yellow volcaniclastic
intercalations are recognized in the Brzeznica
beds in the Bardo IVc section (Figs. 2 and 4B),
and the igneous activity can be presumed for the
middle Famennian (Fig. 8).

Several trace elements are considered to be
immobile during diagenetic alteration and reli-
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able proxies of petrogenetic processes (Huff,
2016; Pointon et al., 2018). Whole-rock geo-
chemical data from six tephra samples point to
their Al-bentonite assignment (see K,O versus
Al,O diagram of Kiipli, 2021; Fig. 15A), that
characterized the likely initial stage of this
Variscan volcanism. In terms of tectonic envi-
ronment, the Al bentonites are suggestive of
a convergent margin origin (Figs. 15B-15D;
Fig. S4/3) and correlate well with Devonian
metavolcanites of the Western Volcanic Belt
(Janousek et al., 2014) and some ashes of the
Variscan belt, including pre-Hangenberg vol-
caniclastics from the Holy Cross Mountains.
(Pisarzowska et al., 2020). Interestingly, the
late Viséan bentonites from the autochthonous
section of the Bardo Unit (Paprotnia Beds)
also record explosive andesite-rhyolitic mag-
matic sources from a continental margin setting
(Kryza et al., 2011).

OCEANIC RECORD OF THE
HANGENBERG BLACK SHALE

The black slate horizon (IVa/2) in the highest
part of the Bardo IV cherty succession represents
a unique lithology (Fig. 3B) that is clearly dis-
tinct from the organic-poor siliceous-clayey dep-
ositional background of the section (Figs. 11-13;
Table 3). Its distinguishing features include:

* Mo- and U-based proxies indicating a hypoxic
oceanic event.

* Flourishing primary production indicated by
high OM content (TOC = 1.3%). High Cu
and P/Al values as well as Zn and Pb spikes
suggest an increase in eutrophication.

e The transient turnover of bioproductivity
which corresponds to the growing detri-
tal supply observed not only in the slightly
increased clay content, but also in the mixed
marine-terrestrial palynofacies (Fig. 6).
Increased aeolian activity is therefore sug-
gested by the increased supply of mud-class
quartz fraction with higher Zr/Al and Zr
x Hf /Al ratios (Calvert and Pedersen, 2007).
However, in the middle Famennian interval
III WYV, at least two episodes of more intense
atmospheric dust transport and/or pyroclastic
addition were recognized.

* As for the provenance, the shale consistently
reveals the most continental “old” felsic
sources (from an uplifted block?), as exempli-
fied by Th/Sc ratios and Cr/Nb ratios (Fig. 12;
Table 3). This conclusion is supported by Hf
versus La/Th (Fig. 14B), as well as La/Sc, Th/
Cr, and Eu/Eu* ratios.

* This end-Famennian interval was marked by
a fluctuating climatic setting (Kaiser et al.,
2016), more or less confirmed by several

Geological Society of America Bulletin, v. 134, no. 9/10
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TABLE 2. MEDIAN CONCENTRATIONS OF SELECTED ELEMENTS IN THE BARDO |V SECTION UNDER STUDY, SW POLAND

Element Average Post-Archean Australian ~ Saxo-thuringian Average cherty shale Average Upper Famennian Bardo
shale shale (PAAS) Famennian shale (Ketris and Yudovich, siliceous continental crust radiolarian cherts  radiolarian
(Wedepohl,  (Taylor and McLennan, (Romer and 2009, major elements mudstone (Rudnick and of Bavaria* cherts
1970, 1971) 1985) Hahne, 2010) after Ronov et al., 1991%)  (Barrett, 19815) Gao, 2003) (median) (median)
Major elements (%)
Al 8.9 10.0 12.0 2.4 41 8.16 2.7 4.0
Si 277 29.4 24.3 38.5 38.9 313 39.2 38.0
Ca 1.6 0.93 0.5 1.02 0.06 2.55 0.05 0.37
Mg 1.6 1.33 1.41 0.56 0.71 1.49 0.46 0.75
Fe 4.8 5.05 6.76 179 2.68 3.92 1.62 2.1
K 3.0 3.07 3.65 0.91 1.44 2.32 0.90 1.03
Na 1.2 0.89 0.47 0.33 0.05 2.42 0.46 0.32
Corg 0.7* X 0.54 0.5 X X 0.1 0.1
Minor and trace elements (ppm)
Ti 4600 6000 9440 2100 (1680) 1740 3840 1350 1400
P 704 700 785 1200 (675) 352 660 242 240
Mn 850 900 1517 250 (2325) 1006 774 1890 1400
) 130 150 148 250 X 97 35 32
Zn 95 85 114 160 74 67 24 525
Pb 22 20 4.2 12 6 11 2 1.7
Cu 45 50 X 100 35 28 40 30.2
Co 19 23 23 1 30 17.3 8 13.7
Ni 68 55 64 63 72 47 20 27.7
Mo 1.3 1 0.3 29 X 1.1 0.4 0.2
Cd 0.13 X X 9 X 0.1 <0.1 <0.1
] 3.7 3.1 2.2 13 X 2.7 0.7 1.2
As 10 X X 30 X 4.8 2 0.6
Sb 1.5 X 0.7 8.8 X 0.4 <0.1 0.2
Hg 0.4 X X 0.18 X 0.05 <0.01 0.03**
Ba 580 650 1010 740 140 628 131 236
Rb 140 160 156 47 88 112 42 442
Cr 90 110 106 86 31 92 46 36
Zr 160 210 234 140 61 193 41 54.4
Hf 2,8 5 X 3.1 X 5.3 1.2 15
Th 12 14.6 13.2 4.2 X 10.5 3.2 3.6
Cs 5.5 15 6.5 3 X 4.9 17 2.2
Nb 18 19 X 17 6 12 4.6 44
La 40 38 41 31 X 31 13 15.7
Y 41 27 X 25 15 21 10.2 10.1
Sc 13 16 20 12 X 14 6 9
Ga 19 20 30 14 X 175 5.3 7.7

Notes: Against three average shales, coeval Saxothuringian shale and cherts, and upper continental crust abundance levels (x—not determined); above three-fold
depletion against average cherty shale for minor and trace elements in light gray, and anomalous depletion above ten-fold values in dark gray, and above three-fold
enrichment in yellow (Fig. 10A). C,,;—organic carbon; *C, is calculated from data in Wedepohl (1970).

tThe major element values (italicized) refer to siliceous rock of “continental geosynclines” (table 15 in Ronov et al., 1991).

SUpper mudstone bed in tables 1 and 2 in Barrett (1981).

#Based on five samples of radiolarian cherts from the Rauheberg locality in the Frankenwald (northern Bavaria, Kiessling and Tragelehn, 1994; Supplemental Material S3).

**According to atomic absorption spectrometry data (but <0.01 ppm in inductively coupled plasma—mass spectrometry results).

proxies, e.g., Th/Rb, Al/Ti, St/Ba, and Mg/
Al ratios.

Intense eruptive activity can be inferred from
the coupled anomalous Hg enrichments and
higher Hg/TOC ratios (see discussion in
Pisarzowska et al., 2020 and Racki, 2020),
as well as from the enrichment factor of Cs
spike and high As concentrations (Ratcliffe
et al., 2010; Racki et al., 2019). Occurrence
of miospore tetrads (Fig. 6: see nos. 9 and

10) confirm extreme high-stress conditions,
possibly even ultraviolet driven mutagen-
esis (Filipiak and Racki, 2010; Marshall
et al., 2020).

Considering all these features as well as
the age constraints, we can correlate the shale
intercalation in the topmost Bardo IV section to
the worldwide Hangenberg Black Shale (HBS,
Fig. 16), they key event in a multi-stage global

TABLE 3. THE PROVENANCE RATIOS (CULLERS, 2000) CALCULATED FOR THE FAMENNIAN
CHERT, BENTONITE, AND SHALE SAMPLES FROM THE BARDO |V LOCALITY, SW POLAND

Proxy UCC PAAS Range of sediment Range of sediment Chert Bentonite HB
from felsic sources from mafic sources (n=21) (n=16) Black shale
fine fraction fine fraction (h=1)

La/Sc 221 239 0.7-27.7 0.4-1.1 147-3.23 0.66-3.79 3.03
(avr.2.03) (avr. 1.42)

Th/Sc 0.79 0.91 0.64-18.1 0.05-0.4 0.43-1.07 0.67-1.08 11
(avr.0.55) (avr.0.87)

Th/Cr 0.13  0.13 0.067-4.0 0.002-0.045 0.05-0.26  0.36-0.91 0.2
(avr.0.11)  (avr. 0.67)

Eu/Eu* 0.65 0.65 0.32-0.83 0.7-1.02 0.58-0.88 0.63-0.73 0.64
(avr.0.72) (avr.0.67)

Note: Eu/Eu*—chondrite-normalized after McLennan (2001); UCC—upper continental crust; PAAS—Post
Archean Australian Shale; HB—Hangenberg; avr.—average.
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change (see Pisarzowska et al., 2020; Racki,
2020; Aretz et al., 2021).

Notably, two contrasting types of the D-C
passage beds are documented in the Bardo
Unit, considered to be the easternmost part of
the waning Saxothuringian Ocean (Figs. 17 and
18). First, the carbonate-dominated section in the
inner Bardo Ocean (Wapnica, Gotogtowy; Hay-
dukiewicz, 1979; Matyja et al., 2021; see also
the Zdanéw 1 borehole section in Chorowska
et al., 1992), and second, the cherty succession
in the outer basin (Fig. 18C). In light of biostrati-
graphical data of Matyja et al. (2021; Fig. 6:
see nos. 22-25), the occurrence of the HBS is
assumed in both domains. Thus, as shown above,
the main environmental disruption took place in
the Sudetic domain just ahead of the D-C bound-
ary during this global anoxic event. In addition, a
difference in provenance is recognized between
the autochthonous and allochthonous succes-
sions, i.e., intermediate to felsic source for the
Bardo site, and intermediate to mafic source
for the Wapnica section (Fig. 14B). This is a
plausible corollary considering that the Wapnica
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(see Table 2).

succession onlaps the Nowa Ruda gabbroic mas-
sif that belongs to the Central Sudetic Ophiolite.

EVENT CHEMOSTRATIGRAPHY AND
ENVIRONMENTAL EVOLUTION

Considering geochemical time series and
other multiproxy data in the interrupted middle
and latest Famennian framework (Figs. 11 and
12), four intervals are distinguished in the Bardo
IV section (Fig. 16). The subdivision of this suc-
cession is not based on rapid temporal changes
to key elements and is therefore not defined in
terms of chemozones (sensu Craigie, 2018), but
rather the subdivision corresponds to develop-
mental stages of the basin.

Because volcanic ashes were not recorded in
other Famennian sections of the Bardo Moun-
tains (Oberc, 1957; Haydukiewicz, 1979;
Cymerman et al., 2015), their lowest occurrence
in the Bardo IV locality is therefore seen as
onset of regional volcanic activity. The middle
Famennian explosive outburst and intensified
hydrothermal processes were determined in the
transgressive and likely highly productive basin
during the II-IW interval (Fig. 11). The activ-
ity gradually waned in the III-WV slice, while
a well-known paroxysm revived in the Hangen-
berg crisis time (Menor-Salvéan et al., 2010;
Pisarzowska et al., 2020; Racki, 2020).

Geochemical data for the Bardo V section
correspond well with the upper IIl WV interval,
complementing the facies evolution recognized
in the tectonized Bardo IV succession (Figs. 8,
10B, 11, and 12; Figs. S4/1-2). The HBS is
absent in the site, likely due to a tectonic gap.
Only single horizons indicate either a more
oxygen-depleted regime or an increased volca-
nic ash delivery in the latest Famennian. Thus,
an overall monotonous biosiliceous-clayey

2390

deposition is assumed throughout the middle-
latest Famennian in the Bardo Basin.

DISCUSSION

Several controversial aspects of the paleogeo-
graphic affinities with the Bavarian segment of
the Saxothuringian Zone may be partly verified
(Fig. 17), in association with the Variscan volca-
nic activity in front of the NE shelf of Gondwana
(Kryza et al., 2004; Mazur et al., 2006, 2015;
Franke et al., 2017; Golonka, 2020). Toward a
more precise definition of the composite Bardo
Ocean (Wajsprych, 1986, 1995, 2008), the term
“outer Bardo Ocean” is applied here to the
parental “lost” pelagic sedimentary basin, as
fragmentarily preserved by the allochthonous
Bardo series, versus the “inner Bardo Ocean”
recorded in the autochthonous succession.

Siliceous Facies of the Bardo Basin

The multiproxy data comprehensively docu-
ment the evolving deep-water deposition in the
outer Bardo Ocean (Fig. 18), which has dis-
tinctive oceanic attributes comparable to other
fluctuating but mostly oligotrophic regimes
with low primary production levels, influenced
by weak upwellings below the perennial oxy-
gen minimum zone. The factors controlled by
interplay between biosiliceous and—generally
declining—siliciclastic deposition. Episodic
eutrophication and recurrent radiolarian blooms,
thought to be tied to orbital cycling (De Wever
et al., 2001, p. 67), were likely also associated
with the circulation of nutrient-rich cold cur-
rents, as assumed for the Kulm facies (Randon
and Caridroit, 2008). The basin was at least 1 km
deep, in line with the hypothesis of the carbon-
ate compensation depth at that time (Racki and
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Cordey, 2000, their fig. 3), conodont palmato-
lepid biofacies (Table 1; Haydukiewicz, 1998,
2002), and supposed graptoloids (Fig. 2D), and
microfacies characters (Fig. 9). The first-order
control included regional tectonic and volcanic
activity, superimposed on the global climatic
and oceanographic trends (Menor-Salvdn et al.,
2010; Kaiser et al., 2016; Aretz, 2020). The fac-
tors controlled the evolving dynamics between
fine clastic delivery via wind, and perhaps by
diluted tempestite/turbidite currents (Fig. 2B),
and biosiliceous production, limited by the avail-
able Si nutrient reservoir (Racki and Cordey,
2000; De Wever et al., 2001, p. 46-54; Hiineke
and Henrich, 2011; Cecil, 2015; Lazarus et al.,
2020, p. 217-225). Similar hemipelagic deposi-
tion can be assumed for other Famennian sili-
ceous successions in the Saxothuringian Zone,
based on geochemical data from Bavarian cherts
(Table 2), as well as similar coeval cherty strata
in China (Zhang et al., 2020). However, very
poor preservation of opaline tests suggest fluc-
tuations in silica saturation in the water column
in the outer Bardo Ocean (see De Wever et al.,
2001, p. 37-39; Lazarus et al., 2020, p. 218—
222), unlike the Bavarian Ocean (see fig. 3 in
Kiessling and Tragelehn, 1994).

In the context of the changing middle Paleo-
zoic marine conditions in the Central Sudetic
domain, macro-morphological and lithological
similarity of the Famennian cherts to the early
Silurian radiolarites from the Bardo Mountains
does not imply a similar depositional environ-
ment for these rocks. In particular, lamination
in the Silurian cherts, expressed by the pres-
ence of benthic microbial mats, is common,
well-developed and regular, while only fine
hemipelagic lamination is recognizable in the
Devonian oceanic rocks (Figs. 9A and 9H; com-
pare e.g., siliceous turbidites of Nisbet and Price,
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1974). The Silurian and Devonian cherts differ
also in silica content. In the early Silurian pure
radiolarites, the content of silica is significant,
exceeding 95% SiO,. Devonian cherts contain

Geological Society of America Bulletin, v. 134, no. 9/10

70 to 90% SiO,. In fact, Silurian black cherts
are products of shallow to moderately deep epi-
continental seas, within the photic zone up to
400 m, but probably much shallower (Kremer
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and Kazmierczak, 2005; Kremer, 2020). Silu-
rian radiolarites are composed predominantly of
remains of radiolarian and well-preserved cya-
nobacterial mats, even at the level of individual
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coccoid cells. Particularly frequent are acritarchs
and other unicellular algae, including ones that
inhabited the water column. The microbial com-
munity indicates high primary productivity of
the early Silurian sea compared to the Famen-
nian ocean.

Toward a Tectonic Model

The Bardo Basin was initiated in the late Fra-
snian, not later than 10 m.y. after the emplace-
ment of the Central Sudetic nappes and cessation
of regional metamorphism (post-early Givetian;
Hladil et al., 1999). The basin partly onlaps the
Goéry Sowie Massif (Chorowska et al., 1992),
the most prominent Central Sudetic nappe
(Mazur et al., 2006), that had been exhumed
from mantle depths starting from the Early
Devonian (O’Brien et al., 1997; Tabaud et al.,
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2021). Continental subduction of the Géry
Sowie Massif was related to the consumption
of an unknown early Paleozoic oceanic domain.
This process was coeval with the opening of the
Devonian short-lived Central Sudetic Ocean
(Awdankiewicz et al., 2021). The oceanic crust
of this basin must have been obducted already
by the late Frasnian time since the Bardo Basin
onlaps part of the Central Sudetic Ophiol-
ite (Nowa Ruda Massif, e.g., Bederke, 1924;
Mazur, 1987). Consequently, the metamorphic
substratum of the Bardo Basin must have been
exhumed and consolidated by the Late Devonian
time. Detritus from the Géry Sowie Massif had
been delivered to the inner Bardo Ocean from
early Viséan (Haydukiewicz, 1990) or late Tour-
naisian (Wajsprych, 1995) onwards, constrain-
ing the time the basement units framing the basin
were eventually exhumed to the surface.
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Although the Central Sudetic Ocean was
closed in the Late Devonian, deposition in the
Saxothuringian Ocean, outboard of the Sax-
othuringian Terrane, continued until the latest
Devonian or earliest Carboniferous as shown by
paleontological evidence from the Kaczawa Unit
(Baranowski et al., 1990) and the Bardo Basin
(Haydukiewicz 1990, 1998; this study). Both
units, despite dissimilar tectonic history and
geological setting, comprise remnants of Paleo-
zoic pre-Variscan basins containing fragments
of lower Paleozoic—Devonian deep marine sedi-
ments. Conversely, the inner Bardo Basin hosted
relatively shallow water sedimentation until the
late Viséan (334 &+ 3 Ma, Kryza et al., 2011;
Paprotnia Beds). Only afterwards, sedimenta-
tion changed to hemipelagic with deposition
of extensive flysch and wild-flysch series and
emplacement of olistostromes (Wajsprych, 1978,
1986, 1995). Consequently, it is unlikely that the
Famennian deep marine sediments described
here, along with other Devonian and early Paleo-
zoic olistoliths, were initially deposited in the
present-day Bardo Basin. Even assuming sub-
stantial post-Variscan erosion, the coexistence of
shallow- and deep-water facies in the latest Devo-
nian would require a basin several orders of mag-
nitude larger than its present size. Furthermore,
all rocks older than Givetian would not have
avoided regional metamorphism. Therefore, we
propose that all deep-water pre-Carboniferous
lithologies, possibly along with some Lower Car-
boniferous flysch sequences (Wajsprych 1986,
2008), were delivered to the Bardo Basin through
gravitational sliding from the outer oceanic basin
at the end of Early Carboniferous.

The presence of pyroclastic interbeds in the
Famennian strata that have a continental arc
geochemical signature indicates a possible link
to a continental magmatic arc, the remnant of
which is preserved within the Vrbno Group
of the East Sudetes, ~80 km SE of the Bardo
Basin (Patocka and Valenta, 1996; JanouSek
et al., 2014; Figs. 15 and S4/3). The low-grade
volcano-sedimentary complex of the Devonian
Vrbno Group, up to 3000 m thick, occurs in
two ~NE-SW-trending belts, separated by tec-
tonic slices of the Cadomian para-autochthon
(Janousek et al., 2014). The basic-intermediate
lavas of the calc-alkaline Western Volcanic
Belt came from a moderately depleted mantle
(*%Nd ~+3). Rare rhyolites (374.0 + 1.7 Ma)
were derived most likely from immature crust
or by extensive fractionation of primary basal-
tic melts. This rock association is interpreted as
a vestige of a deeply dissected continental arc
(Janousek et al., 2014; Figs. 17 and 18). The
Eastern Volcanic Belt mainly consists of con-
temporaneous (371.0 = 1.4 Ma) felsic alkaline
lavas with geochemical signatures typical of a

Geological Society of America Bulletin, v. 134, no. 9/10
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within-plate igneous setting. The petrology and
Nd-Sr isotopic data point to anatexis of a young
metagranitic crust, resembling the Cadomian
(Brunovistulian) basement (Janousek et al.,

Geological Society of America Bulletin, v. 134, no. 9/10

2014). The associated metasediments com-
prise a succession of predominantly deep-water
siliciclastic, siliceous, and calcareous slates.
Paleontologic dating of crystalline limestones
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suggests that much of the Vrbno volcano-sed-
imentary succession was deposited between
end Givetian and latest Frasnian times (Hladil,
1986). Although the pyroclastic horizons dated
at Bardo are somewhat younger (middle Famen-
nian) than the Vrbno Group (i.e., early Famen-
nian at best; Fig. 8), scarce isotopic, elemental
(Figs. 15B-D and S4/3B), and paleontological
data from the latter possibly allow for a wider
time span of eruptive activity, expected espe-
cially in the western belt.

The similarity to the Bavarian facies and the
Kaczawa Unit suggests that the Bardo allochtho-
nous succession represents the Saxothuringian
Ocean that was eventually closed at the transi-
tion from Devonian to Carboniferous (Franke
and Zelazniewicz, 2000; Mazur and Aleksand-
rowski, 2001; Franke et al., 2017). In contrast to
the other settings, the outer Bardo Ocean succes-
sion avoided regional metamorphism and erosion,
providing unique information on the environmen-
tal conditions established in this ancient oceanic
basin at the end of the Devonian. The Bardo
cherty sediments studied here give an exceptional
opportunity to look into paleoenvironmental prox-
ies and reconstruct the hemipelagic facies evolu-
tion (Fig. 16) in the ocean that preceded accretion
of the Variscan belt, information lost elsewhere
due to a pervasive tectonic and metamorphic over-
print. The Bardo Basin may have been preserved
owing to its possible pull-apart origin that was
related to synsedimentary activity of the Intrasu-
detic Fault (Franke et al., 1993).

Paleogeography of the Saxothuringian
Ocean

The general facies architecture of the Bardo
Basin shows its western polarity (Wajsprych,
1995, 2008), in agreement with a general WNW-
ward polarity of the Central and West Sudetes
(e.g., Mazur et al., 2006). Paleogeographic
reconstruction of this convergent margin is hin-
dered by the allochthonous position of the Vrbno
volcanic arc (Moravian Terrane, Fig. 17) and
general E-W shortening of the Sudetic orogenic
wedge (Mazur et al., 2015). On the whole, the
Saxothuringian Ocean was subducted beneath
the western margin (present-day coordinates)
of the Brunovistulian Terrane that was already
amalgamated with Laurussia in Devonian
time (Belka et al., 2002). The original locus
of an active margin remains unknown since
the western margin of the Brunovistulian Ter-
rane is composed of mostly allochthonous units
(Moravo-Silesian Zone). In the Early Devonian,
the subduction zone was jammed by a peri-
Gondwana microcontinent, being a precursor to
the Gory Sowie Massif and Ktodzko Unit and
jumped farther west (Fig. 17).
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However, eastward subduction beneath the
Brunovistulian margin still continued, as evi-
denced by the Vrbno Group volcanic arc and
pyroclastic inliers in the Bardo Basin. The sec-
tion of the Saxothuringian Ocean parental to the
Bardo allochthonous succession (outer Bardo
Ocean herein; Fig. 18) was eventually short-
ened and uplifted during continental collision
between the Saxothuringian Terrane, Central
Sudetes, and Brunovistulian terrane, in the earli-
est Carboniferous (Mazur and Aleksandrowski,
2001; Konopadsek et al., 2019).

CONCLUSIONS

(1) The Al-bentonite-rich cherty-clayey mid-
dle to late Famennian succession at Bardo offers
an exceptional opportunity to look into the lost
ocean that preceded accretion of the Variscan
belt in the Central Sudetes. We documented the
evolving depositional regimes in the hemipe-
lagic Bardo Basin, with distinctive oceanic attri-
butes such as fluctuating but mostly oligotrophic
regimes and low primary production levels influ-
enced by weak upwellings below the perennial
oxygen minimum zone.

(2) The Hangenberg Black Shale has been
identified in the Bardo oceanic setting in accor-
dance with many characteristics known world-
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wide, such as anoxia, high productivity, warm-
ing, and volcanogenic mercury enrichment. A
tectonic uplift of the source area near the D-C
boundary, recorded by the distinguished felsic
provenance signal of old continental crust, was
paired with a global transgression in the inter-
glacial episode.

(3) The distal record of Famennian explo-
sive volcanic activity in the Bardo Ocean basin
is likely related to a continental magmatic arc
the remnant of which is preserved as the Vrbno
Group of the East Sudetes. On the other hand, the
Vrbno volcanism spans the Frasnian-Famennian
boundary interval and may have contributed to
the biotic crisis (see discussion in Racki, 2020).

(4) The allochthonous sediments from
the Bardo Unit are interpreted as part of an
accretionary prism that was gravitationally
redeposited into the late orogenic basin in front
of advancing Variscan nappes. The “lost” outer
Bardo Ocean is thought to represent a tract of
the waning Saxothuringian Ocean in the Peri-
Gondwanan paleogeographic domain that was
eventually subducted beneath the Brunovistulian
margin of Laurussia.
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