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Abstract—Fiber-reinforced composite parts used in drones, 
automobiles, and sports equipment are now being manufactured 
by additive manufacturing (AM), where the material parameters 
such as fiber direction can be changed within a layer or from one 
layer to the other. Non-destructive evaluation methods are 
required to assess the quality of such customized printed parts. In 
this work, a micro-computed tomography (µCT) dataset is 
analyzed to determine the fiber content in a 3D printed composite 
material part using a digital binary image processing method. The 
existing literature on binary image analysis methods to measure 
the fiber volume fraction is limited to continuous fiber reinforced 
composites. Discontinuous fiber reinforced 3D printing filaments 
are popular in manufacturing parts with increased strength. The 
methods developed in this work expands the binary image process 
to scans that show fibers embedded length-wise in different 
directions in the 3D printed layers. An optimized thresholding 
method is trained on the filament sample and then applied to 3D 
printed samples. The results show fiber volume fraction 
measurements with standard deviations below 0.15%. The results 
in this work will be useful for product quality validation. 
 

Index Terms—Additive manufacturing, cyber-physical system, 
non-destructive evaluation, composite material. 
 

I. INTRODUCTION 

Additive manufacturing (AM) technologies continue to make 
advancements in improving the quality of the printed product, 
development of novel materials for printing and increasing the 
printing speed. Many extrusion-based 3D printers can be used 
to print composite material parts by using glass and carbon 
fiber-reinforced composite material filaments [1]. Composite 
material filaments are widely available for use in the fused 
filament fabrication (FFF) 3D printers and there are many 
advantages over traditional filaments [2]. 

Parts printed with fiber-reinforced polymer (FRP) composite 
material can be strong, lightweight, and functional. The 
mechanical strength of these FRP composite parts depends on 
the volume fraction and orientation of reinforcing fibers in the 
structure of the part [3]. These parameters depend on 
controlling the AM process settings such as the toolpath and 
layer thickness, which will lead to different material response  
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under the designated loading conditions [4], [5]. The raster 
angle of each layer of the printed part controls the fibers’ 
orientation and the density of the infill governs the part’s 
overall fiber volume fraction (f). The process of quality 
assessment of these parts, which often cannot be mechanically 
tested, need to be non-destructively tested for verification of 
material and properties. Past work involved reverse engineering 
an AM produced part through machine learning and non-
destructive imaging to determine the fibers’ orientation [6].  

The fiber orientation can vary across each layer in a 3D 
printed composite part and imaging of these short, 
discontinuous fibers often result in a large amount of data. 
Machine learning algorithm is a great tool to help analyze a 
large image dataset with the advantages of automation, easy 
identification of patterns, and continuous improvements in 
accuracy. The successful development of a machine learning 
algorithm is highly dependent on robust training of the 
parameters and being able to confirm the accuracy of the 
results. In digital image analysis of fibers in printed parts, the 
important parameter to optimize is the threshold range to 
correctly separate the fiber, resin, and voids in the image.  

In this work, a FFF 3D printer is used for AM of FRP 
composite specimens, which were subjected to imaging using a 
micro-computed tomography (µCT) scanner. The specimens 
contained short glass fibers mixed with the filament. The image 
dataset obtained from µCT is used to determine the f in the 
specimens using image analysis methods. The successful 
classification of fiber content using non-destructive techniques 
can be expanded to include defect detections in AM produced 
parts for reliable manufacturing.  

II. BACKGROUND 

Determining the f in composite materials has long been of 
interest to manufacturers and researchers. Both destructive and 
non-destructive methods have been used for this purpose. 
Among the destructive methods, burn-off and acid digestion 
tests are commonly used to remove the polymer and the 
remaining fibers are weighed to determine the f. The fiber 
content measured from these methods is useful in obtaining the 
void content in the manufactured part [7], [8]. In addition, the 
f can be used in theoretical modeling with finite element 
analysis for realistic predictions [9]. Since these methods are 
destructive in nature, they cannot be used on the end-use 
production parts. Certain polymers release hazardous gases 
when exposed to high temperatures for a prolong period and 
may not be suitable for burn-off tests.  

Non-destructive evaluation (NDE) methods such as 
ultrasonic imaging and µCT scanning are widely used for 
imaging the specimens and determining the microstructure and 
defects. [10], [11]. X-ray µCT have been used for 
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microstructural analysis of short fiber reinforced thermoplastics 
using an algorithm relying on iterative single fiber 
segmentation [12]. Optical microscopy-based image analysis 
technique has been proven to be able to characterize f  and 
show great results when compared with the traditional acid 
digestion method [13], [14]. The f  of FRP composites has also 
been successfully characterized with the use of scanning 
electron microscope and digital image processing [15], [16].  

Microscopy is a destructive imaging method, where the 
surface features may be dependent on the method used for 
specimen cutting and preparation. Fiber counting methods 
performs the analysis on the cross section of the fibers in the 
images and single fibers may be mistakenly segmented into 
multiple fibers. Specimens need to be prepared and imaged in a 
specific orientation to be able to view the cross sections of 
fibers. The burn-off method is not suitable for the filament used 
in this work due to the release of hazardous gases, carbon 
monoxide and hydrogen cyanide. An NDE imaging approach is 
proposed to determine the f in printed tensile test specimens of 
two different raster angle. As the selection of the optimal 
threshold value for segmenting the fibers in binary image 
methods is very subjective, the threshold parameter needs to be 
trained for accurate determination of f in printed parts.  

III. METHODOLOGY 

A. AM Fiber-reinforced Composite Test Samples 

The computer-aided design (CAD) model of the tensile test 
specimen is designed using SolidWorks 2020 and follows the 
subsize specimen dimensions of the ASTM E8/E8M standard. 
The overall length, thickness, and width of grip section of the 
tensile test specimen samples were 4, 0.25, and 0.375 in, 
respectively. The stereolithography file format of the sample is 
imported into the Ultimaker Cura slicing application. In Cura, 
two different raster angles are set for the printed samples. Fig. 
1 shows the printing direction parameter and Sample A is 
printed with angles of 90° and 0° for each odd and even layer, 
respectively. Sample B is printed with all layers being 
unidirectional in the 0° orientation. The printing parameter of 
both samples include 100% infill density, printing temperature 
of 240°C, build plate temperature of 90°C, and a layer height of 
0.25 mm. Cura outputs a g-code file, which contains all the 
processing parameters and the set of instructions for the 3D 
printer.  

The samples are printed on a FlashForge FFF 3D printer 
using a glass fiber-reinforced acrylonitrile butadiene styrene 
(ABS) filament of 1.75 mm diameter manufactured by      
3DXTECH (Grand Rapids, Michigan, USA). The ABS 
filament contains 10 vol.% of glass fiber. A small piece was cut 
from the ends of the printed sample using a diamond saw blade 
for the µCT scan. Each samples is mounted in a SkyScan 1172 
µCT scanner to obtain the images showing the fibers at each 
layer. The scan was conducted using camera pixel size of 9 µm, 
source voltage of 49 kV, source current of 198 µA, rotation step 
of 0.4° per scan, and 180° rotation. SkyScan’s NRecon 
reconstruction software is used to produce cross-section slices 
of the scanned sample using a smoothing value of 2, ring artifact 
correction value of 10, and beam hardening correction value of 
25%. Sample A and B had a total of 258 and 232 images, 
respectively. The µCT of Sample A was reconstructed without 

 
Fig. 1. shows the print direction of the specimens with Sample A depicting 
layers of alternating angles of 90° (blue) and 0° (green). A unidirectional 
Sample B with all layers printed in 0°. 
 
a region of interest and Sample B had a circular region of 
interest applied to all the images.  

B. Manual Threshold of Samples 

The reconstructed µCT scans are imported as 8-bit images 
into ImageJ, an open source Java image processing software. 
As the µCT images are grayscale by default, there is no need to 
convert these images for the binarization process. Ten µCT 
images are randomly selected from each dataset of Sample A 
and B to manually determine the optimal threshold range to 
capture the pixels that only represents fibers in the printed 
specimen. Each of the 20 images are manually adjusted to find 
the threshold range of best fit for fiber pixels with the dark 
background option enabled. The upper bound threshold value 
was kept at the default value of 255. The lower bound average 
threshold value is 159 and 182 for Sample A and B image 
dataset, respectively.  

The same procedure is repeated for each of the 20 images to 
manually find the optimal lower bound threshold value to 
represent both the resin and fiber pixels. The threshold value is 
carefully selected to exclude the voids and noises in the µCT 
images. The lower bound average threshold value to represent 
fiber and resin together is 82 and 12 for Sample A and B image 
dataset, respectively.  

ImageJ calculates the area of pixels in the µCT scan after 
thresholding using the Analyze Particles command. A macro is 
created in ImageJ to automate the process of applying the 
threshold and calculating the areas for all images in the µCT 
image dataset. The f is determined by dividing the area of fiber 
by the total area of both resin and fiber in each image. 

C. Automatic Threshold of Samples 

There are algorithms in ImageJ to automatically determine 
the threshold ranges in the image. The MaxEntropy algorithm 
is used to automatically threshold the µCT images to find all the 
pixels that represents fibers by maximizing the inter-class 
entropy. The maximum entropy threshold is effective to 
segment images with bright objects on a dark background. The 
Minimum algorithm is used to select the total area of resin and 
fiber pixels in the scanned images. The intensity histogram is 

Authorized licensed use limited to: New York University. Downloaded on February 14,2022 at 18:23:55 UTC from IEEE Xplore.  Restrictions apply. 



1943-0663 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LES.2022.3140417, IEEE Embedded
Systems Letters

 
 

 

3

iteratively smoothed using a running average of size 3 until 
there are only two local maxima and the minimum between the 
two peaks is the threshold value. A macro containing these 
automatic thresholding algorithms is implement on all 490 
images to get the area values from both algorithms.  

D. Optimized Threshold Technique 

 The Enhance Contrast function is used to increase the white 
pixel intensity using a saturated pixel value of 15% and the 
normalize option enabled. Normalization improves the contrast 
in the image by recalculating the range of intensity values to 
span the maximum range of 0-255 for 8-bit images. The 
threshold range is set between 250 and 255 to capture the fiber 
pixels. The automatic threshold Minimum algorithm is used to 
select the resin and fiber pixels. The optimized threshold 
technique is performed on the µCT images to record the 
calculated areas. 

IV. RESULTS  

In the reconstructed µCT images, glass fibers are represented 
with white pixels, ABS resin matrix is shown as the gray pixels, 
and voids from the printing process are shown as black pixels. 
Fig. 2 shows that there is a peak in frequency near the pixel 
intensity value of 0, 130, and 255 which corresponds with 
voids, resin, and fibers, respectively. Image binarization is the 
process of separation of pixels into two distinct groups based 
on the pixel grayscale intensity value.  

Two methods for manual and automatic binarization are used 
on the image dataset to train the thresholding parameter for the 
characterization of f in 3D printed parts. The manual threshold 
method of choosing the value to represent a group of pixels is 
very subjective and the determination of f is influenced by user 
bias. This can be seen by the overestimation of f by the manual 
threshold method in both Sample A and B compared to the 
reported 10% f by the manufacturer. This overestimation is a 
result of selecting a low threshold range to represent fibers by 
the user. The automatic threshold methods also overestimate the 
f because these techniques are not optimized for the 
characterization of f. The automatic threshold Minimum 
function did capture most of the pixels representing the fiber 
and resin in the image while leaving out the voids.  
An optimized threshold method is derived from the results of 
the manual and automatic techniques. It was determined that the 
reconstructed µCT leaves intermediate shades of gray in the 
background and during the threshold method to determine 
fibers, it results in noise at the perimeter of the specimen. This 
issue is presented in the µCT reconstruction of Sample A and it 
is corrected in Sample B by taking a circular crop of the 
specimen. The contrast of the µCT image is increased and a 
narrower threshold range is used to better capture the fibers. 
The higher and smaller pixel intensity range ensures that only 
the white pixels are selected. The manual threshold selection 
method was including too many gray pixels that did not 
represent fibers. The Minimum algorithm is used for the 
optimized method to capture the area of both fibers and resin. 

Fig. 3 shows all three threshold techniques for a single µCT 
image taken from the Sample A dataset. The manual and 
automatic thresholding to determine fibers and resin are very 
similar with both showing extraneous pixels exterior to the  

 
Fig. 2. Histogram of a µCT image from Sample A showing the distribution of 
pixels with varying pixel grayscale intensity value.  
 
specimen. The image contrasting caused the optimized 
threshold method to overestimate the fibers at the corners which 
can be eliminated with a region of interest. Fig. 4 shows the 
threshold results for Sample B. The fibers presented in the 
optimized approach shows improvements over the manual 
threshold methods. The average f from Sample A and B dataset 
is shown in Table I. The f of Sample A and B by the manual 
method shows a big difference mainly due to the user bias in 
selecting the threshold value. The algorithm in the automatic 
method is not providing accurate f for Sample B and shows a 
higher standard deviation in Sample B than in Sample A. 

 
Fig. 3. A comparison of manual, automatic, and optimized threshold techniques 
on a µCT image of Sample A. (a) µCT of specimen showing fiber, resin, and 
voids. (b) Thresholding of only fibers. (c) Thresholding of both fiber and resin. 
   

TABLE I 
FIBER VOLUME FRACTION COMPARISON OF SAMPLE A AND B     

  Sample A Sample B 

Threshold Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Manual 32.91 1.06 25.25 3.49 
Automatic 32.61 1.23 36.55 3.63 
Optimized 22.42 0.52 10.63 0.13 

 
The optimized threshold method is tested on several other 

µCT dataset shown in Fig. 5. The same images from Sample A 
dataset were cropped with the reconstruction software and 
tested using the optimized threshold method. A tensile test 
specimen was printed with unidirectional layers of 30° angle 
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and another sample was printed with alternating angles of 
45°/135° angles between each layer. A single piece of the glass 
fiber-reinforced ABS filament was scanned and shows the fiber 
cross-section in the µCT image. The calculated f based on the 

 
Fig. 4. A result of the threshold methods in determining the area of fibers and 
resins for a µCT image of Sample B.  

 
optimized threshold method is shown in Table II. The f 
calculated from different µCT dataset agree with one another. 
The higher f in the filament dataset shows that the process can 
further be optimized. Overall, the results proved to be reliable 
in optimizing the threshold range in binary image analysis and 
can be the basis for the development of a machine learning 
algorithm. 

 
Fig. 5. shows the four µCT image dataset of printed specimen and filament to 
test the optimized threshold method. 

 
TABLE II 

FIBER VOLUME FRACTION COMPARISON OF TEST DATASET 

  Sample A ROI 30 45  Filament 
Average 10.60 10.83 10.61 12.91 
Std Dev 0.09 0.15 0.12 0.14 

V. CONCLUSIONS 

Advancements in 3D printing has made it challenging to 
assess the quality of the printed parts and determine their 
properties. This paper demonstrates that using thresholding 
techniques, the f  of the composites could be determined, 
which is vital in estimating the mechanical properties of the 

composite. Future work will involve using these results as 
training data on which machine learning algorithms could be 
developed to generate predictive models to obtain f  of any 
novel raw µCT images without the need to manually process 
the µCT scans in an image processing tools every time. 

ACKNOWLEDGMENT 

The authors thank the NYU Tandon School of Engineering 
Makerspace for providing µCT facilities and Kaushik 
Yanamandra for helping with the µCT of specimens.  

     REFERENCES 
[1] X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, “3D printing of polymer 

matrix composites: A review and prospective,” Composites Part B: 
Engineering, vol. 110, pp. 442-458, 2017. 

[2] A. K. Singh, B. Patil, N. Hoffmann, B. Saltonstall, M. Doddamani, and 
N. Gupta, "Additive Manufacturing of Syntactic Foams: Part 1: 
Development, Properties, and Recycling Potential of Filaments," JOM, 
vol. 70, pp. 303-309, 2018. 

[3] B. Brenken, E. Barocio, A. Favaloro, V. Kunc, and R. B. Pipes, “Fused 
filament fabrication of fiber-reinforced polymers: A review,” Additive 
Manufacturing, vol. 21, pp. 1-16, 2018. 

[4] J. Kiendl, and C. Gao, “Controlling toughness and strength of FDM 3D-
printed PLA components through the raster layup,” Composites Part B: 
Engineering, vol. 180, p. 107562, 2020.  

[5] G.D.Goh, W. Toh, Y.L.Yap, T.Y.Ng, and W.Y.Yeong, “Additively 
manufactured continuous carbon fiber-reinforced thermoplastic for 
topology optimized unmanned aerial vehicle structures,” Composites Part 
B: Engineering, vol. 216, p. 108840, 2021. 

[6] K. Yanamandra, G. L. Chen, X. Xu, G. Mac, and N. Gupta, “Reverse 
engineering of additive manufactured composite part by toolpath 
reconstruction using imaging and machine learning,” Composites Science 
and Technology, vol. 198, p. 108318, 2020. 

[7] M. H. Hassan, A. R. Othman, and S. Kamaruddin, “Void content 
determination of fiber reinforced polymers by acid digestion method,” 
Advanced Materials Research, vol. 795, pp. 64-68, 2013. 

[8] M. H. Hassan, A. R. Othman, and S. Kamaruddin, “The use of response 
surface methodology (RSM) to optimize the acid digestion parameters in 
fiber volume fraction test of aircraft composite structures,” The 
International Journal of Advanced Manufacturing Technology, vol. 90, 
pp. 3739 – 3748, 2017. 

[9] U. S. Gupta, M. Dhamarikar, A. Dharkar, S. Tiwari, and R. Namdeo, 
“Study on the effects of fibre volume percentage on banana-reinforced 
epoxy composite by finite element method,” Advanced Composites and 
Hybrid Materials, vol. 3, pp. 530-540, 2020. 

[10] M. A. Caminero, I. García-Moreno, G. P. Rodríguez, and J. M. Chacón, 
“Internal damage evaluation of composite structures using phased array 
ultrasonic technique: Impact damage assessment in CFRP and 3D printed 
reinforced composites,” Composites Part B: Engineering, vol. 165, pp. 
131 – 142, 2019. 

[11] Q. He, H. Wang, K. Fu, and L. Ye, “3D printed continuous CF/PA6 
composites: Effect of microscopic voids on mechanical performance,” 
Composites Science and Technology, vol. 191, p. 108077, 2020. 

[12] P. A. Hessman, T. Riedel, F. Welschinger, K. Hornberger, and T. Böhlke, 
“Microstructural analysis of short glass fiber reinforced thermoplastics 
based on x-ray micro-computed tomography,” Composites Science and 
Technology, vol. 183, p. 107752, 2019. 

[13] M.C. Waterbury, and L.T. Drzal, “Determination of fiber volume 
fractions by optical numeric volume fraction analysis,” Journal of 
Reinforced Plastics and Composites, vol. 8, pp. 627–636, 1989. 

[14] M. T. Cann, D. O. Adams, and C. L. Schneider, “Characterization of fiber 
volume fraction gradients in composite laminates” Journal of Composite 
Materials, vol. 42, pp. 447–466. 2008. 

[15] C. N. Morales, G. Claure, J. Álvarez, and A. Nanni, “Evaluation of fiber 
content in GFRP bars using digital image processing,” Composites Part 
B: Engineering, vol. 200, p. 108307, 2020.  

[16] X.-W. Yu, H. Wang, and Z.-W Wang, “Analysis of yarn fiber volume 
fraction in textile composites using scanning electron microscopy and x - 
ray micro-computed tomography.” Journal of Reinforced Plastics and 
Composites, vol. 38, pp. 199–210, 2019. 

Authorized licensed use limited to: New York University. Downloaded on February 14,2022 at 18:23:55 UTC from IEEE Xplore.  Restrictions apply. 


