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Abstract—Fiber-reinforced composite parts used in drones,
automobiles, and sports equipment are now being manufactured
by additive manufacturing (AM), where the material parameters
such as fiber direction can be changed within a layer or from one
layer to the other. Non-destructive evaluation methods are
required to assess the quality of such customized printed parts. In
this work, a micro-computed tomography (pnCT) dataset is
analyzed to determine the fiber content in a 3D printed composite
material part using a digital binary image processing method. The
existing literature on binary image analysis methods to measure
the fiber volume fraction is limited to continuous fiber reinforced
composites. Discontinuous fiber reinforced 3D printing filaments
are popular in manufacturing parts with increased strength. The
methods developed in this work expands the binary image process
to scans that show fibers embedded length-wise in different
directions in the 3D printed layers. An optimized thresholding
method is trained on the filament sample and then applied to 3D
printed samples. The results show fiber volume fraction
measurements with standard deviations below 0.15%. The results
in this work will be useful for product quality validation.

Index Terms—Additive manufacturing, cyber-physical system,
non-destructive evaluation, composite material.

L INTRODUCTION

Additive manufacturing (AM) technologies continue to make
advancements in improving the quality of the printed product,
development of novel materials for printing and increasing the
printing speed. Many extrusion-based 3D printers can be used
to print composite material parts by using glass and carbon
fiber-reinforced composite material filaments [1]. Composite
material filaments are widely available for use in the fused
filament fabrication (FFF) 3D printers and there are many
advantages over traditional filaments [2].

Parts printed with fiber-reinforced polymer (FRP) composite
material can be strong, lightweight, and functional. The
mechanical strength of these FRP composite parts depends on
the volume fraction and orientation of reinforcing fibers in the
structure of the part [3]. These parameters depend on
controlling the AM process settings such as the toolpath and
layer thickness, which will lead to different material response
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under the designated loading conditions [4], [5]. The raster
angle of each layer of the printed part controls the fibers’
orientation and the density of the infill governs the part’s
overall fiber volume fraction (¢). The process of quality
assessment of these parts, which often cannot be mechanically
tested, need to be non-destructively tested for verification of
material and properties. Past work involved reverse engineering
an AM produced part through machine learning and non-
destructive imaging to determine the fibers’ orientation [6].

The fiber orientation can vary across each layer in a 3D
printed composite part and imaging of these short,
discontinuous fibers often result in a large amount of data.
Machine learning algorithm is a great tool to help analyze a
large image dataset with the advantages of automation, easy
identification of patterns, and continuous improvements in
accuracy. The successful development of a machine learning
algorithm is highly dependent on robust training of the
parameters and being able to confirm the accuracy of the
results. In digital image analysis of fibers in printed parts, the
important parameter to optimize is the threshold range to
correctly separate the fiber, resin, and voids in the image.

In this work, a FFF 3D printer is used for AM of FRP
composite specimens, which were subjected to imaging using a
micro-computed tomography (uCT) scanner. The specimens
contained short glass fibers mixed with the filament. The image
dataset obtained from pCT is used to determine the ¢ in the
specimens using image analysis methods. The successful
classification of fiber content using non-destructive techniques
can be expanded to include defect detections in AM produced
parts for reliable manufacturing.

IL. BACKGROUND

Determining the ¢ in composite materials has long been of
interest to manufacturers and researchers. Both destructive and
non-destructive methods have been used for this purpose.
Among the destructive methods, burn-off and acid digestion
tests are commonly used to remove the polymer and the
remaining fibers are weighed to determine the ¢. The fiber
content measured from these methods is useful in obtaining the
void content in the manufactured part [7], [8]. In addition, the
¢ can be used in theoretical modeling with finite element
analysis for realistic predictions [9]. Since these methods are
destructive in nature, they cannot be used on the end-use
production parts. Certain polymers release hazardous gases
when exposed to high temperatures for a prolong period and
may not be suitable for burn-off tests.

Non-destructive evaluation (NDE) methods such as
ultrasonic imaging and pCT scanning are widely used for
imaging the specimens and determining the microstructure and
defects. [10], [11]. X-ray pCT have been used for
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microstructural analysis of short fiber reinforced thermoplastics
using an algorithm relying on iterative single fiber
segmentation [12]. Optical microscopy-based image analysis
technique has been proven to be able to characterize ¢ and
show great results when compared with the traditional acid
digestion method [13], [14]. The ¢r of FRP composites has also
been successfully characterized with the use of scanning
electron microscope and digital image processing [15], [16].

Microscopy is a destructive imaging method, where the
surface features may be dependent on the method used for
specimen cutting and preparation. Fiber counting methods
performs the analysis on the cross section of the fibers in the
images and single fibers may be mistakenly segmented into
multiple fibers. Specimens need to be prepared and imaged in a
specific orientation to be able to view the cross sections of
fibers. The burn-off method is not suitable for the filament used
in this work due to the release of hazardous gases, carbon
monoxide and hydrogen cyanide. An NDE imaging approach is
proposed to determine the ¢rin printed tensile test specimens of
two different raster angle. As the selection of the optimal
threshold value for segmenting the fibers in binary image
methods is very subjective, the threshold parameter needs to be
trained for accurate determination of ¢ in printed parts.

IIL METHODOLOGY

A. AM Fiber-reinforced Composite Test Samples

The computer-aided design (CAD) model of the tensile test
specimen is designed using SolidWorks 2020 and follows the
subsize specimen dimensions of the ASTM E8/E8M standard.
The overall length, thickness, and width of grip section of the
tensile test specimen samples were 4, 0.25, and 0.375 in,
respectively. The stereolithography file format of the sample is
imported into the Ultimaker Cura slicing application. In Cura,
two different raster angles are set for the printed samples. Fig.
1 shows the printing direction parameter and Sample A is
printed with angles of 90° and 0° for each odd and even layer,
respectively. Sample B is printed with all layers being
unidirectional in the 0° orientation. The printing parameter of
both samples include 100% infill density, printing temperature
0f 240°C, build plate temperature of 90°C, and a layer height of
0.25 mm. Cura outputs a g-code file, which contains all the
processing parameters and the set of instructions for the 3D
printer.

The samples are printed on a FlashForge FFF 3D printer
using a glass fiber-reinforced acrylonitrile butadiene styrene
(ABS) filament of 1.75 mm diameter manufactured by
3DXTECH (Grand Rapids, Michigan, USA). The ABS
filament contains 10 vol.% of glass fiber. A small piece was cut
from the ends of the printed sample using a diamond saw blade
for the uCT scan. Each samples is mounted in a SkyScan 1172
UCT scanner to obtain the images showing the fibers at each
layer. The scan was conducted using camera pixel size of 9 um,
source voltage of 49 kV, source current of 198 nA, rotation step
of 0.4° per scan, and 180° rotation. SkyScan’s NRecon
reconstruction software is used to produce cross-section slices
of the scanned sample using a smoothing value of 2, ring artifact
correction value of 10, and beam hardening correction value of
25%. Sample A and B had a total of 258 and 232 images,
respectively. The pCT of Sample A was reconstructed without
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Fig. 1. shows the print direction of the specimens with Sample A depicting
layers of alternating angles of 90° (blue) and 0° (green). A unidirectional
Sample B with all layers printed in 0°.

a region of interest and Sample B had a circular region of
interest applied to all the images.

B. Manual Threshold of Samples

The reconstructed pCT scans are imported as 8-bit images
into ImagelJ, an open source Java image processing software.
As the uCT images are grayscale by default, there is no need to
convert these images for the binarization process. Ten pCT
images are randomly selected from each dataset of Sample A
and B to manually determine the optimal threshold range to
capture the pixels that only represents fibers in the printed
specimen. Each of the 20 images are manually adjusted to find
the threshold range of best fit for fiber pixels with the dark
background option enabled. The upper bound threshold value
was kept at the default value of 255. The lower bound average
threshold value is 159 and 182 for Sample A and B image
dataset, respectively.

The same procedure is repeated for each of the 20 images to
manually find the optimal lower bound threshold value to
represent both the resin and fiber pixels. The threshold value is
carefully selected to exclude the voids and noises in the pCT
images. The lower bound average threshold value to represent
fiber and resin together is 82 and 12 for Sample A and B image
dataset, respectively.

ImagelJ calculates the area of pixels in the uCT scan after
thresholding using the Analyze Particles command. A macro is
created in Image] to automate the process of applying the
threshold and calculating the areas for all images in the pCT
image dataset. The ¢ is determined by dividing the area of fiber
by the total area of both resin and fiber in each image.

C. Automatic Threshold of Samples

There are algorithms in ImageJ to automatically determine
the threshold ranges in the image. The MaxEntropy algorithm
is used to automatically threshold the pCT images to find all the
pixels that represents fibers by maximizing the inter-class
entropy. The maximum entropy threshold is effective to
segment images with bright objects on a dark background. The
Minimum algorithm is used to select the total area of resin and
fiber pixels in the scanned images. The intensity histogram is
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iteratively smoothed using a running average of size 3 until
there are only two local maxima and the minimum between the
two peaks is the threshold value. A macro containing these
automatic thresholding algorithms is implement on all 490
images to get the area values from both algorithms.

D. Optimized Threshold Technique

The Enhance Contrast function is used to increase the white
pixel intensity using a saturated pixel value of 15% and the
normalize option enabled. Normalization improves the contrast
in the image by recalculating the range of intensity values to
span the maximum range of 0-255 for 8-bit images. The
threshold range is set between 250 and 255 to capture the fiber
pixels. The automatic threshold Minimum algorithm is used to
select the resin and fiber pixels. The optimized threshold
technique is performed on the pCT images to record the
calculated areas.

Iv. RESULTS

In the reconstructed pCT images, glass fibers are represented
with white pixels, ABS resin matrix is shown as the gray pixels,
and voids from the printing process are shown as black pixels.
Fig. 2 shows that there is a peak in frequency near the pixel
intensity value of 0, 130, and 255 which corresponds with
voids, resin, and fibers, respectively. Image binarization is the
process of separation of pixels into two distinct groups based
on the pixel grayscale intensity value.

Two methods for manual and automatic binarization are used

on the image dataset to train the thresholding parameter for the
characterization of ¢in 3D printed parts. The manual threshold
method of choosing the value to represent a group of pixels is
very subjective and the determination of ¢is influenced by user
bias. This can be seen by the overestimation of ¢ by the manual
threshold method in both Sample A and B compared to the
reported 10% ¢y by the manufacturer. This overestimation is a
result of selecting a low threshold range to represent fibers by
the user. The automatic threshold methods also overestimate the
@ because these techniques are not optimized for the
characterization of ¢. The automatic threshold Minimum
function did capture most of the pixels representing the fiber
and resin in the image while leaving out the voids.
An optimized threshold method is derived from the results of
the manual and automatic techniques. It was determined that the
reconstructed pCT leaves intermediate shades of gray in the
background and during the threshold method to determine
fibers, it results in noise at the perimeter of the specimen. This
issue is presented in the pCT reconstruction of Sample A and it
is corrected in Sample B by taking a circular crop of the
specimen. The contrast of the pnCT image is increased and a
narrower threshold range is used to better capture the fibers.
The higher and smaller pixel intensity range ensures that only
the white pixels are selected. The manual threshold selection
method was including too many gray pixels that did not
represent fibers. The Minimum algorithm is used for the
optimized method to capture the area of both fibers and resin.

Fig. 3 shows all three threshold techniques for a single pCT
image taken from the Sample A dataset. The manual and
automatic thresholding to determine fibers and resin are very
similar with both showing extraneous pixels exterior to the
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Fig. 2. Histogram of a pCT image from Sample A showing the distribution of
pixels with varying pixel grayscale intensity value.

specimen. The image contrasting caused the optimized
threshold method to overestimate the fibers at the corners which
can be eliminated with a region of interest. Fig. 4 shows the
threshold results for Sample B. The fibers presented in the
optimized approach shows improvements over the manual
threshold methods. The average ¢rfrom Sample A and B dataset
is shown in Table I. The grof Sample A and B by the manual
method shows a big difference mainly due to the user bias in
selecting the threshold value. The algorithm in the automatic
method is not providing accurate ¢ for Sample B and shows a

higher standard deviation in Sample B than in Sample A.
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Fig. 3. A comparison of manual, automatic, and optimized threshold techniques
on a uCT image of Sample A. (a) uCT of specimen showing fiber, resin, and
voids. (b) Thresholding of only fibers. (¢) Thresholding of both fiber and resin.

TABLE I
FIBER VOLUME FRACTION COMPARISON OF SAMPLE A AND B
Sample A Sample B
Standard Standard
Threshold Average Deviation Average Deviation
Manual 3291 1.06 25.25 349
Automatic 32.61 1.23 36.55 3.63
Optimized 22.42 0.52 10.63 0.13

The optimized threshold method is tested on several other
UCT dataset shown in Fig. 5. The same images from Sample A
dataset were cropped with the reconstruction software and
tested using the optimized threshold method. A tensile test
specimen was printed with unidirectional layers of 30° angle
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and another sample was printed with alternating angles of
45°/135° angles between each layer. A single piece of the glass
fiber-reinforced ABS filament was scanned and shows the fiber

cross-section in the uCT image. The calculated ¢ based on the
.

(a) Original pCT scan
| g T

(c) Manual threshold of fibers (d) Optimized Ill}eﬂlm]d of fibers
Fig. 4. A result of the threshold methods in determining the area of fibers and
resins for a pCT image of Sample B.

optimized threshold method is shown in Table II. The ¢
calculated from different uCT dataset agree with one another.
The higher ¢ in the filament dataset shows that the process can
further be optimized. Overall, the results proved to be reliable
in optimizing the threshold range in binary image analysis and
can be the basis for the development of a machine learning
algorithm.

(b) Specimen printed at 30°

(c) Specimen printed at 45° (d) Glass fiber filament
Fig. 5. shows the four pCT image dataset of printed specimen and filament to
test the optimized threshold method.

TABLE II
FIBER VOLUME FRACTION COMPARISON OF TEST DATASET
Sample A ROI 30° 45° Filament
Average 10.60 10.83 10.61 12.91
Std Dev 0.09 0.15 0.12 0.14
V. CONCLUSIONS

Advancements in 3D printing has made it challenging to
assess the quality of the printed parts and determine their
properties. This paper demonstrates that using thresholding
techniques, the ¢ of the composites could be determined,
which is vital in estimating the mechanical properties of the
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composite. Future work will involve using these results as
training data on which machine learning algorithms could be
developed to generate predictive models to obtain ¢ of any
novel raw pCT images without the need to manually process
the uCT scans in an image processing tools every time.
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