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Abstract—Increasing usage of Digital Manufacturing (DM) in
safety-critical domains is increasing attention on the cyberse-
curity of the manufacturing process, as malicious third parties
might aim to introduce defects in digital designs. In general,
the DM process involves creating a digital object (as CAD files)
before using a slicer program to convert the models into printing
instructions (e.g. g-code) suitable for the target printer. As the
g-code is an intermediate machine format, malicious edits may
be difficult to detect, especially when the golden (original) models
are not available to the manufacturer. In this work we aim to
quantify this hypothesis through a red-team/blue-team case study,
whereby the red-team aims to introduce subtle defects that would
impact the properties (strengths) of the 3D printed parts, and
the blue-team aims to detect these modifications in the absence
of the golden models. The case study had two sets of models,
the first with 180 designs (with 2 compromised using 2 methods)
and the second with 4320 designs (with 60 compromised using
6 methods). Using statistical modelling and machine learning
(ML), the blue-team was able to detect all the compromises in
the first set of data, and 50 of the compromises in the second.

I. INTRODUCTION

Digital Manufacturing (DM) is increasingly used in safety-
critical applications across domains such as the aerospace,
automotive, medical, and military sectors [1], [2]. Conse-
quently, the potential target space for malicious third parties is
increasing, with motivations for both espionage (information
theft) and sabotage (compromising machines or model data).

One attractive target for malicious actors in this space is
the g-code files which detail the machine instructions used
to manufacture each part [3], [4]. These files may contain
subtractive drill/mill commands in the case of CNC-style ma-
chines, or filament extrusion commands in the case of additive
manufacturing (AM). The g-code files are often generated
externally to the machines that execute them, and due to the
lossy conversions in their generation, reverse-engineering the
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Fig. 1. The red-team sabotage the g-code instructions prior to printing.
The blue-team aims to detect the compromised files.

original model files for comparison is a difficult process [5].
As such, malicious edits to g-code may go unnoticed.

In this work, we thus examine the design space for attacking
and defending g-code through a red-team/blue-team exercise
(as depicted in Fig. 1). Here, the red-team introduces defects
into a sample set of g-code files and the blue-team detects
the tampered files. The red-team focused on mechanisms to
mutate g-code instructions to reduce part strength in small
numbers of randomly chosen files (simulating a subtle attack).
The blue-team then proposed and utilized statistical analysis
and machine learning (ML) techniques as possible detection
strategies before a blind evaluation. Overall, the red-team
devised 6 different compromise methodologies, and the blue-
team was able to detect 5 of these across two different datasets.

The rest of this paper is organized as follows. Section II
covers the background and related work. Section III then
describes the methodologies used by the red and blue teams.
Section IV evaluates these methodologies and discusses the
limitations of the approaches. Section V then concludes.

II. BACKGROUND AND RELATED WORK

Before 3D CAD model files are converted to g-code
through the use of a slicer program, they must usually
be converted to stereolithography STL files—imperfect
representations of the original data, where curved surfaces
are discretized into tessellated triangles. When converted to
g-code, these surface triangles are then encoded as lines of
filament. Both conversions lose original design information
and present opportunities for malicious actors to introduce
defects into parts that may go unnoticed [6].

As such, just as CAD and STL files may be potential attack
targets [7], g-code files must also be considered vulnerable.
Example attacks have already included compromising the
USB communication between PC and printer [3] and altering
the 3D printer firmware responsible for interpreting the
incoming g-code [8], [9].



While there are proposals for analyzing the g-code
to detect introduced defects through finite element analysis
simulations [5], the process for this analysis is computationally
intensive and difficult, requiring derivation of the original
CAD models. As a result, other approaches have been
investigated, including those from the information security
domain (e.g. cryptographically signing production files to
detect tampering [10]). However, depending on the attack
model, tampering of the g-code data could occur prior to
the signing of the files or after a verification has occurred.

Likewise, detecting compromised g-code has also been
suggested via side-channel analysis: while the initial focus
has been on demonstrating information leakage [11], [12],
these same channels may be used for monitoring of part
defect and malicious edits [13], [14]. Similarly, using a
vision-based ML approach to detect defects during print has
also been proposed [15]. However, these run-time approaches
may only be performed during the printing process, at
which point valuable resources (filament, machine time) have
already been expended. As such, in this work we propose to
detect defects in the g-code prior to the printing process.

1II. METHODOLOGY

In this work we consider compromised g-code in the
absence of the original CAD model files for validation.
This threat vector is possible in manufacturing-as-a-service
(MaaS), where only the production files may be provided to
the manufacturer. The compromise could happen at any stage
before manufacturing, e.g. by a malicious slicer program or
from modifications by a third party transiting the data. A
red-team/blue-team exercise was thus conducted with the two
teams isolated from one another. The red-team, consisting of
the latter three authors of the paper, constructed two datasets
DI and D2 which contained many ‘good’ (non-compromised)
g-code files and a small number of ‘bad’ (compromised)
g-code files. The blue-team, consisting of the first six authors
of the paper, were tasked with isolating the ‘bad’ models.

A. The datasets

To generate each dataset, we take a single STL CAD model
file and perform a rotate-then-slice using Ultimaker Cura. By
using a number of distinct rotations with respect to the build
plate, each generated g-code file is unique (as the g-code
will be optimized for that particular rotation). Dataset D1
consists of a tensile test specimen (Fig. 2) like that in [8].
The CAD model is rotate-then-sliced by 1° 180 times in the
Y direction, with slicer settings (skirt, 0.4mm nozzle, grid
infill pattern, infill line distance 2mm). Dataset D2 consists
of a bracket (Fig. 3) which is rotated 4320 times in total
(rotate-then-slice by 0.25° 1440 times for each face against

Fig. 2. The control specimen for Dataset D1 viewed in Ultimaker Cura.

Fig. 3. The control specimen for Dataset D2 viewed in Ultimaker Cura.

TABLE I
RED-TEAM DATASET VULNERABILITY DESIGNS. ‘N.D1’/‘N.D2’
INDICATES HOW MANY G-CODE FILES WERE COMPROMISED USING THIS
METHOD IN THE 180-MODEL D1 DATASET / 4320-MODEL D2 DATASET
RESPECTIVELY. ‘RANGE’ INDICATES HOW MUCH OF THE G-CODE FILE WAS
ALTERED - EITHER THE MIDDLE 50 %, OR THE ENTIRE 100 %.

ID | n.D1? | n.D2? | Range | Description
Origin in [8].

! 2 10 0% Coverts every 4th G1 command to GO.
Converts every 4th G1 command

2 10 50% to GO, and adds a G1 ‘blob’ extrusion.
Origin in [8].

(v

3 10 100% Reduces extrusion globally by 50%.

4 10 50% Every_4th G1 command ha§ )
extrusion value set to previous extrusion.
Every 4th G1 command has extrusion

3 10 0% value set to previous extrusion + 0.0001.

6 10 50% l?elete§ every 4th G1
line with no replacement.

the print bed), with slicer settings (skirt, 0.4mm nozzle, cubic
infill pattern, infill line distance 4mm).

B. Red-team: Vulnerability insertion

In this work, the compromises were designed similarly to
the methodology for reducing the strength of printed models
presented in [8]. Six different vulnerability strategies were
devised, and are listed in Table I. They function primarily by
altering the g-code G1 (linear move and extrude) command
to introduce gaps (voids) in the printing process by subverting
the absolute frame of reference used within common g-code.
As an example, consider three back-to-back commands (Gl
X1 Y1 E1), (Gl X5 Y1 E2), and (Gl X5 Y5 E3). The
total extruded material is 1Imm after the first command,
2mm after the second (it extrudes 1mm), and 3mm after the
third (it also extrudes 1mm). If the Trojan alters the second
command to (GO X5 Y1), no material is extruded along the
same route. Instead, the third command will now extrude
2mm, such that the total material used remains 3mm.

As such, ID1 and ID2 convert some G1 commands to GO
(linear move) commands, dropping the extrusions. ID2 adds
an additional ‘blob’ extrusion (keeping the head in place and
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Fig. 4. Comparison of good (left) verses compromised (right) g-code in
Dataset 1 by method ID1 when viewed in Ultimaker Cura. The dotted black
box indicates the area with altered print commands.
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Fig. 5. Distribution of G1 commands in Dataset D1. Outliers are in red.
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Fig. 6. Distribution of G1 and G& commands in Dataset D2.

depositing the missing material) at the end of the original
move. ID3 changes all G1 commands to use 50 % less filament.
ID4 and IDS set some of the G1 extrusions to negligible values,
essentially making them GO® commands. Finally, ID6 simply
deletes some of the G1 commands. Fig. 4 depicts ID1 on D1—
with the middle 50 % of the part defective (lacking extrusions).

C. Blue-team: Vulnerability detection

1) Statistical Analysis: The first strategy utilized by the
blue-team was to perform a statistical feature extraction of
the g-code files. These included the number of layers, the
boundaries of the values of X, Y, and Z commands, and the
material length extruded. Given that the two most common
g-code commands are GO and G1, the blue-team reasoned that
any compromise would likely effect the statistical properties
of these commands, and so they also included the number of
the GO / G1 commands. These features were then examined
using matplotlib and seaborn in Python to visually identify
outliers. As can be seen in Fig. 5, this strategy appeared
to identify the two files with anomalous counts. Manual
inspection of the g-code in Ultimaker Cura (e.g. Fig. 4) then
confirmed these files were defective. This ‘Basic Statistical
Analysis’ strategy was thus attempted over the larger Dataset
D2. However, again using Cura, the blue-team determined that
this single-feature approach was now returning false positives.

As such, the outlier detection was expanded to include
both G1 and GO, as depicted in Fig. 6. From here it can be
concluded that files may have either ‘too few’ GO commands,
‘too many’ G1 commands, or both. From this, it was possible
to identify a total of 30 files that seemed to have defects
when viewed in Cura. A further anomaly was identified
when considering the extrusion values E. The vast majority
of the files had 5 decimal points, however, some files had E
commands with more or fewer decimals. These files were thus
determined to be corrupted creating two distinct categories:
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Fig. 7. Dataset D1 outlier detection using Principle Component Analysis
and Agglomerative Clustering. Outliers in red.
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Fig. 8. Dataset D2 outlier detection using Principle Component Analysis
and Mean Shift Algorithm. The two major clusters are the blue circles and
orange down-arrows. Other cluster colors/shapes indicate outlier groups.
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Fig. 9. Plot of the number of clusters using DBSCAN. Detected outliers are
marked with green circles/red squares depending on their final correctness
(not provided to blue-team).

Files that were given extra extrusion distance; and files that
were given less extrusion distance. For each category, 10 more
files were found for a total of 50 files. The blue-team termed
this complete analysis the ‘Combined Statistical Analysis’.
2) Machine learning (ML) based approach: The first ML-
based method examined for identifying outliers involved using
Principal Component Analysis (PCA) followed by various
clustering algorithms. Here, the g-code files were converted
to data frames using the gcodeparser package [16]. These
data frames were then analyzed to produce a count of each
command type along with the total count of lines present in the
file. PCA was then utilized to reduce the dimensions of each
data frame from 11 to 2. Following this, various clustering
algorithms like agglomerative clustering, mean shift algorithm,
etc. were used and scatter plots were obtained of the clusters
for each dataset D1 (Fig. 7) and D2 (Fig. 8). Here, although the
outliers from D1 were again identified, the D2 outliers were
less consistent with the previously identified defective files.
An alternative approach was thus devised using clustering-
based unsupervised learning, specifically, “density-based
spatial clustering of applications with noise” (DBSCAN).
Here, the earlier data frames were clustered in Python using
scikit’s DBSCAN to produce Fig. 9. Here, outliers are



TABLE 11
OVERALL DETECTION RESULTS
Dataset D1 Dataset D2
‘ Method T.P. ‘ F.P ‘ T.N ‘ FN | T.P. ‘ F.P. ‘ T.N. ‘ F.N.
‘ (Correct Value) 2 ‘ 0 ‘ 178 ‘ 0 60 ‘ 0 ‘ 4260 ‘ 0
Single Statistical Analysis 2 0 178 | 0 29 21 4260 | 10
Combined Statistical Analysis | 2 0 178 | 0 50 0 4260 | 10
PCA and Clustering 2 0 178 | 0 28 7 4232 | 32
DBSCAN 1 0 178 | 1 35 7 4253 | 25

represented as spikes on the graph. However, while this
method had some overlap with the results from the statistical
approach, there were also other files identified.

IV. EVALUATION

The overall detection strategy results are presented in
Table II, with each method paired with the detection results
True Positive (T.P.) (i.e. defect present in g-code file and
algorithm correctly detected this as an outlier), False Positive
(FP) (i.e. no defect but wrongly identified as an outlier),
True Negative (T.N.) (i.e. no defect and correctly identified as
not an outlier), False Negative (F.N.) (i.e. defect present but
wrongly identified as not an outlier) for each of the datasets
D1 and D2. As can be seen, the different strategies proved
largely successful at identifying the defects (outliers) in DI.
However, none of the methods identified all defects in D2.
The best approach, ‘Combined Statistical Analysis’, was able
to detect all compromised files by all defect strategies other
than those compromised by ID3 (which reduced extrusion
globally by 50 %)—indeed, none of the detection strategies
detected any files by ID3. This was a surprising result,
as previous work [8] determined that this methodology
of g-code compromise would be the most obvious when
considering post-manufacturing checks. This is likely because
the defect was global, and so none of the algorithms saw
sudden changes in the files caused by the defect. Finally,
while the machine-learning-based approaches show some
promise, it appears they need further refinement before they
will function as well as the ‘Combined Statistical Analysis’.

Limitations: In this work the datasets were synthetically
generated from the original models presented in Fig. 2 and 3.
While the g-code for each individual rotation was quite
distinct (e.g. Fig. 5 and 6), it is likely that the conceptual
similarities between each model aided in the detection strate-
gies. Further, our attack model assumed that a small minority
of files would be compromised by the attackers. Future
work could aim to evaluate both of these cases—(1), where
datasets include models with unrelated geometries, and (2)
some datasets where a majority or all files are compromised.

V. CONCLUSIONS

Automatically detecting defects in g-code is an important
step towards the cybersecurity of Manufacturing-as-a-Service
(MaaS) production processes. Here, models may be required to
be validated without access to the original design files. In this
work we approached this challenge as a red-team/blue-team
exercise, and demonstrated how statistical and machine-
learning-based approaches can identify faults. While the blue-
team were able to identify most outliers (i.e. defective g-code

files), the machine-learning-based approaches had reduced
accuracy, indicating that further training data is required.
Future work in this area should focus on improving and re-
fining the selected algorithms in conjunction with an expansion
of the defect methodologies. In addition, it would be interest-
ing to determine if there are any CAD features that might
effect the overall success of the defect detection strategies.
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