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Abstract—Dataset search is emerging as a critical capability
in both research and industry: it has spurred many novel
applications, ranging from the enrichment of analyses of real-
world phenomena to the improvement of machine learning
models. Recent research in this field has explored a new class
of data-driven queries: queries consist of datasets and retrieve,
from a large collection, related datasets. In this paper, we study
a specific type of data-driven query that supports relational data
augmentation through numerical data relationships: given an
input query table, find the top-k tables that are both joinable
with it and contain columns that are correlated with a column
in the query. We propose a novel hashing scheme that allows
the construction of a sketch-based index to support efficient
correlated table search. We show that our proposed approach
is effective and efficient, and achieves better trade-offs that
significantly improve both the ranking accuracy and recall
compared to the state-of-the-art solutions.

Index Terms—dataset search, table search, sketching

I. INTRODUCTION

There is an ever-increasing number of datasets available

on the Web and within enterprises, which typically come in

different structured formats that range from tables embedded

on web pages to CSV and JSON files. Dataset search engines,

repositories, and data catalogs [1]–[7] allow users to search

large collections of datasets through simple keyword-based

queries and faceted search over dataset metadata. These,

however, have limited expressiveness, making it difficult (and

sometimes impossible) to convey specific information needs.

In this paper we study a specific type of query that enables

discovery of datasets that are correlated to an input query table.

To motivate the importance of correlations and correlated

dataset search, we start with an example that shows the

relationship between correlations and linear regression.

The Case for Correlated Data Search. Numerical cor-

relations have many important practical applications, which

range from the use of data analytics for understanding real-

world phenomena and confirming (or refuting) hypotheses [8]–

[11] to improving machine learning models through feature

selection [12], [13]. To illustrate this, we use the example

of simple linear regression [14], one most fundamental and

widely used methods for data analysis.

Linear regression is widely used to estimate the parameters

in a linear equation that predict values of a variable Y based on

another variable X . Formally, we can say that Y = b0+ b1X ,

where b0 is the intercept and b1 is the slope of the line. A

linear regression “learns” the parameters b1 and b0 of the linear

equation predicting an outcome variable, Y , based on values

of a predictor variable, X .

The Pearson’s correlation, which provides a measure of

the strength of association between two variables, is closely

related to linear regression since we can view it as the

standardized slope of the regression line. It can be shown that

b1 = r sX
sY

, where si is the standard deviation of the variable i,
and r is the Pearson’s correlation between X and Y [15].

In other words, the stronger the correlation is, the higher

is the predictive power of a variable. This illustrates that by

finding correlated variables in large dataset collections, we can

discover data that may “explain” or “predict” other variables

of interest. While correlations do not imply causation, discov-

ering data correlations is a starting point for more detailed

analyses that identify true causal data relationships and, in

turn, can be used to improve predictive models.

Scalability Challenges in Dataset Discovery. Methods have

been proposed to support table-driven queries. Given a table

TQ and a collection of tabular datasets D, these queries can,

for example, retrieve tables in D that are semantically similar

to TQ [16], or that can be merged with TQ through relational

join [17]–[19] or union [20] operations. These queries have

been used in data augmentation to improve machine learning

model performance [21], [22] and to enable novel applications

in domains such as political violence modeling [8].

Evaluating these queries over large, heterogeneous data

collections is challenging. For example, joinability queries can

be answered using inverted indexes and query processing tech-

niques [23], but they are orders of magnitude more expensive

than typical web search queries: joinability queries require the

computation of the overlap between the values of columns in

the input table and the values of columns in the data collection.

As a point of comparison, while web search engine queries

are typically short and have an average of only 2.2 terms per

query [24], modern data lakes store tables with thousands of

unique values per column [23]. Recent studies showed that

state-of-the-art query evaluation algorithms are efficient in the

web search setting, but they also reported that mean and tail

latencies quickly increase as the number of terms in the query

grows [25]. For joinability queries, query evaluation becomes

extremely expensive due to the large number of inverted index

look-ups and large posting lists. This increased cost leads to

query times that take up to multiple seconds [23] for retrieving

top-20 joinable tables, while typical document retrieval queries

take only a few milliseconds [25].

Scaling Correlated Dataset Search. One important class of

joinability queries are join-correlation queries [19] which,

given an input query table TQ and a tabular dataset collection

D, retrieves tables in D that are both joinable with TQ and
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contain columns correlated with one or more columns in TQ.
A typical solution to overcome scalability challenges in

joinability queries is to provide approximate answers [17]–

[19], [26] at cost of precision and recall. For correlated dataset

search, there is an additional challenge: besides identifying

possible joins, it is also necessary to compute correlation.

The state-of-the-art solution for join-correlation queries [19]

proposes a two-stage approach that relies on randomized

sketching algorithms: it first retrieves joinable candidate tables

based on join key overlap, and then re-ranks candidates using

approximate correlation estimates computed efficiently with

data sketches. While the sketching-based approach is effective

at estimating correlations, typically there are many more

joinable tables than tables that are both highly joinable and
contain a correlated column. Therefore, by retrieving only the

top-k most joinable tables in the first stage, this approach may

miss highly correlated tables that are not as highly joinable as

other uncorrelated tables.
Our Contributions. In this paper, we propose a new approach

to correlated dataset search. First, we define a more general

version of join-correlation queries that allows users to specify

the balance between joinability and correlation that is required

for specific applications. We propose a new hashing scheme

that enables the retrieval of columns that are both joinable

and correlated in a single step. This leads both to an increase

in recall and overall ranking quality at a smaller storage cost

compared to existing approaches.
Our method is based on a partition of the numerical plane

into quadrants, inspired by a simple correlation estimator

known as Quadrant Count Ratio [27]. This partitioning scheme

allows us to apply an additional hashing step that takes into

account both the join and the numerical attributes of interest.

By doing so, we reduce the problem of finding join-correlated

tables to the simpler problem of set overlap search between

hashes, which our method generates for the query and for the

tables in the data collection.
In summary, our main contributions are:

• We define the new class of weighted join-correlation

queries, of which join-correlation queries are a special

case (Section III);

• We propose a novel hashing scheme and new sketch-

based index – the QCR index – to efficiently support

correlated table search over large collections (Section IV);

• We perform a detailed experimental evaluation (Sec-

tion V) using synthetic and real-world dataset collections

which shows that: 1) Our QCR-based retrieval approach

attains higher precision and recall and a better balance

between ranking accuracy and joinability, when compared

to existing approaches; 2) The QCR index achieves a

better space-accuracy trade-off: for the same level of

recall and ranking accuracy, the QCR index needs sketch

sizes that require only about 1/4 of the storage needed

by existing approaches. Consequently, the QCR index

reduces the number of terms required per table, which

leads to better query processing times when compared to

retrieval strategies that attain a similar retrieval quality.

II. RELATED WORK

This paper studies a problem that lies in the intersection

of multiples research areas, including dataset discovery [28],

table search [29], data sketching [30], and efficient query

processing for web search [31].

Dataset Discovery. One of the lines of works that are closest

to ours is the research on dataset discovery. Recent works

have proposed dataset discovery methods that, given a query

dataset DQ as input, find datasets that can be merged with

DQ through relational operations such as join [17], [18], [23],

[26] and union [20]. More closely related to our work are

the approaches that retrieve datasets that are “joinable” with

the query dataset. To measure joinability, the most common

measure is the Jaccard Containment (JC) similarity, which

is defined as JC(X,Y ) = |X ∩ Y |/|X| where X is the

set of values of the query table join attribute, and Y is

the set of values of the retrieved table join attribute. While

algorithms such as JOSIE [23] provide an exact solution to this

problem, others such as LSH Ensemble [18], GB-KMV [26]

and Lazo [17] propose approximate approaches.

In previous work [19], we formalized the problem of

join-correlation estimation: how to efficiently estimate the

after-join correlation between numerical columns from a pair

of distinct tables without performing a join between them.

We proposed a sketch data structure that approximates join-

correlations efficiently. In order to search tables in a dataset

collection using sketches, a two-step approach is required:

tables retrieved using an approach for set overlap search (such

as the ones described above [17], [18], [23]) need to be re-

ordered according to correlations estimates computed using the

sketches. In this paper, we introduce a new hashing scheme

that allows searching for joinable and correlated tables in a

single step. In addition, our indexing method is complementary

to approach in [19] as it can replace the set overlap search to

improve ranking quality (as shown in Section V).

At a higher level, there are works that propose end-to-end

dataset search systems. For instance, the Data Civilizer [32]

and Aurum [33] use linkage graphs to help identify relevant

data for a given user task; JUNEAU [34] describes different

data search tasks and table relatedness measures (e.g., column

and row overlap, provenance, textual similarity), and proposes

a method to combine these measures for dataset search in

the Jupyter Notebook platform. Auctus [22] provides dataset

search over tables collected from multiple open-data portals

by automatically profiling and indexing tables using methods

for joinable table search [17].

Some works focus on applying dataset discovery to solve

machine learning problems. ARDA [21], for example, is a

system that focuses on relational data augmentation, i.e., it

automatically joins tables and selects the best features from

tables discovered by dataset search systems to augment an

initial query dataset. Another related system is Visus [35],

which integrates dataset search with an interactive machine

learning model-building workflow guided by humans. Our

work is complementary to these: our methods for efficient
correlated table search could be used to improve these systems.
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Specifically, our method can be used by the dataset search

engines that powers these systems [21], [22], [32]–[34], [36]

to retrieve correlated tables that are more likely to improve

machine-learning models [12], [13], [37].

Finally, our method is also loosely related to the work

of Kumar et. al. [38], [39], where they propose decision

rules to predict when the features obtained through a join

can improve the error of a classification model. While their

approach was developed for classification over categorical

attributes, our methods are designed for numerical attributes.

Besides supporting discovery of tables with correlated numeric

attributes, our techniques could potentially be used to imple-

ment correlation-based feature selection methods [12], [13],

[37] that do not require performing full table joins. We focus

on the fundamental problem of efficient retrieval of corre-

lated columns which has many applications beyond improving

machine learning models (see e.g., [8]–[10]). Exploring these

applications is out of scope for this work and is a direction

we intend to pursue in future research.

Web Tables and Ad-hoc Table Search. Another related line

of work focuses on discovering and performing automatic ex-

tension of web tables that contain entities in textual form [29],

[40]. Zhang et al. [16], [41] formalize the problem of ad-hoc

table retrieval using semantic similarity, and propose machine

learning methods for addressing the problem. While these

works retrieve semantically similar tables that contain entities,

our focus is on retrieving tables that are numerically related,

such as datasets that contain columns that are highly correlated

with a column in the input query dataset.

Search Engine Architectures and Fast Top-k Retrieval. Our

work builds upon prior work on efficient query processing

algorithms for top-k document retrieval [42]–[45]. We refer the

reader to [31] for a comprehensive survey on the topic. While

these techniques have been traditionally used for retrieving

textual documents for scalable web search, we extend them

with data sketching methods to efficiently retrieve correlated

tables. In particular, we use an implementation of the Block-

Max WAND [43] dynamic pruning algorithm for fast re-

trieval of sketches. State-of-the-art top-k query processing

algorithms rely on dynamic pruning algorithms that require

a property known as non-negative monotonicity, which means

that the scores computed for each term in the index cannot

be negative [31], [46]. As we discuss in Section IV-A, this

property prevents the use of these algorithms for correlated

table retrieval. In this paper, we show that by decomposing

the retrieval into two smaller queries, we can leverage these

algorithmic optimizations. Our approach also uses a technique

that has been described as cascading [31]. More specifically,

our proposed hashing method allows for the efficient retrieval

of correlated columns (with a high recall), which can then be

passed onto another cascading layer that re-ranks candidates

using sketches to improve the overall ranking.

III. PRELIMINARIES AND PROBLEM DEFINITION

Let TQ be a query table comprised of a categorical column

KQ and a numerical column Q, and D be a dataset collection

containing multiple tables TC , such that each table has a

categorical column KC and a numerical column C. Columns

KQ and KC are the join attributes of tables TQ and TC
respectively, and they may have overlapping sets of values

that can be used to join TQ and TC , resulting in a new

table TQ��C . Using the relational algebra notation, we say that

TQ��C = πk,qk,ck(TQ ��KQ=KC
TC) = {〈k, qk, ck〉 : k ∈

KQ ∩KC}. Finally, the values of numerical columns Q and

C associated with each key k ∈ KQ ∩KC are denoted as qk
and ck respectively. Note that the above definition assumes

that k uniquely identifies one row in the table. However,

real-world data often contain repeated categorical values (as

illustrated in column KC from table TC of Figure 1). In this

example, the repeated key “a” is associated with the set of

values {5.5, 4.5}. In such cases, we are interested in the table

generated after applying an aggregate function (e.g., AVG,

SUM, MAX, etc.) over the values associated with the repeated

values of k, e.g., ca = AVG({5.5, 4.5}) = 5.0. This is the

desired behavior for applications such as data augmentation

for data analysis and machine learning models, where the goal

is to add new columns (features) to an existing training dataset

while maintaining the same number of rows. Figure 1 shows

a complete example of query and candidate tables, along with

their corresponding join table after value aggregations.

T Q

KQ Q
a 6.0
b 4.0
c 2.0
d 3.0
e 0.5
f 4.0
g 2.0

T C

KC C
a 5.5
a 4.5
b 3.9
b 2.0
c 2.5
d 4.0

T Q��C

KQ��C QQ��C CQ��C

a 6.0 5.0
b 4.0 3.0
c 2.0 2.5
d 3.0 4.0

Fig. 1. An example of a query table TQ, a candidate table TC , and the joined
table TQ��C created after joining TQ with TC , and aggregating repeated keys
using the AVG aggregate function. We are interested in finding candidate tables
TC in a collection D such that the after-join correlation between attributes
QQ��C and CQ��C is high.

Our goal is to query a dataset collection D with a query

table TQ to find other tables TC that are not only joinable

with TQ, but that also contain the top-k numerical columns

correlated with Q after a join.

Definition 1 (Top-k Join-Correlation Query [19]). Given TQ
and an integer k > 0, find the top-k joinable tables TC ∈ D
with the highest (after-join) correlations between numerical
columns QQ��C and CQ��C .

Note that while this definition only focuses on high cor-

relation, many applications might also require a high degree

of joinability. Consider, for instance, the problem of relational

data augmentation [21]: the goal is to find new, relevant candi-

date columns to be included as features in a machine learning

model, augmenting the model’s initial feature table with such

columns. When searching large dataset collections for joinable

tables, it is likely that we will encounter large tables that have

only a few coincidental overlapping values (e.g., |KQ| and

|KC | could have both over a thousand rows, but their overlap

could be only a few values, say |KQ ∩KC | = 3). Yet, a few
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samples can yield very high correlations even tough they may

not be significant and have very low p-values. In this case, a

new column that is highly correlated with the model’s target

may not improve the quality of the initial model if the overlap

between its initial feature table’s keys and the new column’s

keys is too low. Moreover, this would lead to many missing

data entries in the resulting joined table, and deciding how to

handle them (e.g., through a missing data imputation strategy,

or by simply removing them) is not trivial. Therefore, given

two tables with similar correlation levels, the table with the

highest join key overlap is preferred for retrieval.

To take into account the user preferences regarding join-

ability and correlation, we define a more general class of join-

correlation queries:

Definition 2 (Weighted Top-k Join-Correlation Query).
Given TQ, an integer k > 0, and a user preference weighting
function W (j, r) that combines a joinability score j and
correlation coefficient r, find the top-k joinable tables TC ∈ D
with the highest (after-join) scores assigned by W based on the
correlation r between numerical columns QQ��C and CQ��C

and joinability score j between TQ and TC .

We can define W to express a user’s preferences regarding

the trade-off between joinability and correlation, as follows:

W (j, r) =

{
w if j > 0 (i.e., the tables are joinable)

0 otherwise
(1)

where r is the absolute value of a correlation coefficient such

as Pearson’s correlation,1 j is a joinability score such the

Jaccard Containment (JC), and w is a combination of j and r.

A natural choice for w is a weighted mean of correlation

or joinability. For example, the weighted geometric mean

of a set of real numbers X = {x0, ..., xn} is defined as

(
∏n

i=1 x
αi
i )1/

∑n
i=1 αi , where αi is the weight associated with

each number xi. Applying it to our setting, we get that:

w = (jαjrαr )1/(αj+αr),

where αj is the weight for joinability j and αr is the weight

for correlation r.

Note that we can express the join-correlation query from

Definition 1 using Definition 2 and Equation 1 by defining

αr = 1 and αj = 0, in which case w = r. Similarly, we can

express the “pure” joinable table search objective by defining

αr = 0 and αj = 1, in which case w = j. In the equal-

weights special case where αj = 1 and αr = 1, w becomes

w =
√
j ∗ r.

Defining the weights and combination functions between

correlation and joinability is application-specific and beyond

of the scope this paper. Here, we focus on the version of

correlation queries proposed in [19] (Definition 1), where

w = r, and on an equal-weights case where high correlation

and joinability are equally desirable. Specifically, we propose

1We use the absolute value due to the assumption that both positive and
negative correlations are of interest, but W (j, r) and w can be adjusted
accordingly if this is not case. As we show next, this simplifies the problem.

Fig. 2. An example of the four quadrants, where green points (�) contribute
to positive correlation and blue points (�) contribute to negative correlation.

a new hashing and indexing scheme that allows us to retrieve

tables that maximizes an equal-weight weighting function

(details in Section IV). As we show in Section V, this retrieval

method enables not only discovery of tables with both high

correlation and joinability but also significantly improves the

precision and recall when the objective is high correlation only

(w = r), the objective from Definition 1 discussed in [19].

IV. OUR APPROACH

Our approach to efficiently answer weighted top-k join-

correlation queries is based on a combination of sketching and

query processing algorithms for fast top-k document retrieval

[31]. We propose a new hashing scheme that derives terms

to be indexed in an inverted index, which can then be used

to retrieve the correlated tables. Using this hashing scheme,

the task of retrieving correlated tables is reduced to finding

the top-k candidate tables that have the most hashed terms in

common with the query table. This allows us to apply existing

query processing algorithms for document retrieval [31], [42],

[43] to retrieve correlated tables.

A. The QCR hashing scheme

A challenge in applying document retrieval algorithms to

correlated table search is that these algorithms are based

on term matching (discrete values), whereas correlations are

derived from real numbers. To workaround this problem, pre-

vious approaches [19] proposed to retrieve joinable tables by

matching tables using only the values from the join columns.

This approach forces the introduction of an additional re-

ranking step that detects tables that are joinable but do not

contain correlated columns.

To overcome this problem, we propose a new hashing

scheme that allows considering both the join keys and the

numeric values associated with each keys. Our hashing scheme

is based on the correlation estimator known as Quadrant Count

Ratio (QCR) [27]. The QCR estimator is defined as:

rQCR =
n(I) + n(III)− n(II)− n(IV )

N
,

where n(i) is the number of samples located in the

ithquadrant, and N is the total number of samples. This is

illustrated in Figure 2.

The QCR estimator is simple and has multiple properties in

common with popular correlation coefficients (e.g., Pearson’s,
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Spearman’s and Kendall’s Tau ) [27]. For instance, it yields

numbers in the range [−1, 1]; uncorrelated data has correla-

tion close to 0; and data with perfect positive or negative

correlations according to these measures also have perfect

QCR correlations. Therefore, the QCR not only provides a

good basis to develop a retrieval strategy for these correlation

coefficients but also provides a simple intuition for how to

partition the continuous space of a set of numeric values {x}
into a binary space (e.g., x > 0 and x < 0).

For our problem, finding tables that are both correlated and

joinable, it is not necessary to accurately estimate the rQCR

coefficient for all joinable tables. Instead, to find large positive

correlations, it suffices to find tables that maximize the number

of points in quadrants I and III, while to find large negative

correlations, points need to be in quadrants II and IV.

The absolute rQCR correlation for the joined table TQ��C

is equal to:

|rQCR| =
|N+ −N−|

N∩ , (2)

where N∩ is the number of points after the join (i.e., the

number of rows in the joined table), N+ = n(I) + n(III) is

the number of points in the positive quadrants, N− = n(II)+
n(IV ) is the number of points in the negative quadrants.

Note that Equation 2 violates the non-negative monotonic-

ity property required by the top-k query processing algo-

rithms [31], [46]: encountering a point that lies in the quad-

rants II and IV could lead to a decrease of the current top-k
table scores. However, we can show that to maximize |rQCR|,
it suffices to individually maximize N+

N∩ or N−
N∩ .

To see this, first observe that, by definition, N∩ = N+ +
N−. Thus, N− = N − (N+) and so by maximizing N+ we

are also minimizing N−. Substituting N− = N∩ − N+ (or

N+ = N∩ −N−) in the equation for rQCR, we get that:

rQCR = 2
N+

N∩ − 1 and rQCR = −
(
2
N−

N∩ − 1

)
.

In these equations, it is clear that rQRC > 0 when N+

N∩ > 1
2

and that the absolute correlation |rQCR| assumes maximum

value when N+

N∩ is maximized or minimized. Moreover, max-

imizing |rQCR| is equivalent to maximizing max(N
+

N∩ ,
N−
N∩ ).

In other words, we can split the problem of finding tables

with highest correlation into two sub-problems of finding the

top-k tables that have the maximum between N+

N∩ and N−
N∩ ,

which are monotone functions. In what follows, we propose a

hashing scheme that allows us to achieve this goal.

The QCR hashing scheme builds on the sketching strategy

proposed for join-correlation estimation [19]. For each table

TC = 〈KC , C〉, we first build a correlation sketch L〈KC ,C〉.
The sketch is then used to derive a set of terms TC to

represent the table in the inverted index. To make the paper

self-contained, we will first briefly describe how to build these

sketches (Section IV-B), and then we will describe how to

compute the QCR index terms from sketches (Section IV-C).

B. Building the correlation sketches

A key idea behind correlation sketches is to use hashing

techniques to consistently choose the keys from each table

that are included in the sketch. We use two different hashing

functions, h and hu, to create sketch L〈KC ,C〉. The first of

them, h, is a collision-free hash function that maps the key

values k ∈ KC onto distinct integers, uniformly at random.

Given that the hashed keys h(k) are unique, they are used

as tuple identifiers in the sketch. The second function, hu,

maps the hashed keys h(k) uniformly and randomly onto

the unit range [0, 1]. This allows for the selection of a small

sample of n tuples 〈h(k), ck〉 from a table TC = 〈KC , C〉.
In other words, L〈KC ,C〉 includes the n tuples 〈h(k), ck〉 with

the minimum values of hu(k), i.e., L〈KC ,C〉 = {〈h(k), ck〉 :
k ∈ min(k, hu(k))}, where min is a function that returns a

set containing the keys k with the n smallest values hu(k).
In the case where the set {k} contains repeated keys, the

values ck can simply be aggregated using aggregate functions

as described in Section III.

Building sketches effectively reduces large tables to a

sample that contains only n tuples, while guaranteeing with

high probability that different sketches will have similar sets

of hashed keys h(k) if their original tables are joinable.

Moreover, a pair of sketches L〈KQ,Q〉 and L〈KC ,C〉 can be

used to compute correlations by creating joined sketch LQ��C

and applying any correlation estimator [19].

C. Building the QCR index terms

Given the sketch for table TC , we derive a set of terms

TC = {tk} to represent TC in the inverted index. Since we

aim to estimate the ratio of points that fall into each quadrant

after the join between tables TQ and TC , our term hashing

scheme must satisfy two constraints. Given two sets of hashed

terms TQ and TC , derived from tables TQ and TC respectively,

any pair of hashed terms ti ∈ TQ and tj ∈ TC must be equal

only if (1) their original join key values are the same, and (2)

their numerical values belong to the same quadrant. To satisfy

these constraints, we derive index terms tk as a function of

the set of numerical values {ck} ∈ L〈KC ,C〉 and of the hashed

key h(k). Specifically, we compute tk as:

tk =

{
h(h(k)⊕+1) if ck − μc > 0

h(h(k)⊕−1) if ck − μc < 0
(3)

where μc is the average of {ck}, and ⊕ denotes concatenation

of a hash h(k) and the quadrant ID. Points which ck−μc = 0
do not contribute to correlation and are ignored.

Note that μc is a reference point used to partition the

quadrants. As illustrated in Figure 3, this operation can be

seen as a translation of the coordinate system to be centered

at zero (mean centering), and most correlation measures are

not affected by this transformation [19].

In the example of Figure 3, our hashing scheme assigns

the same hash value to 〈b, cb〉 ∈ C and 〈b, qb〉 ∈ Q because

their join key is b, and both cb and qb are greater than μc

and μq , respectively. However, it would not assign the same
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Fig. 3. An example of mean centering for two tables TC and TQ. Letters
represent join keys k and the positions along the lines represent values ck .
Yellow circles (�) mean that the keys do not join. Green circles (�) denote
that the keys join and are located in a “positive quadrants” (I and III), and
Dark blue circles (�) mean that the rows join and are in “negative quadrants”
(II and IV). A projection of the table generated after the join onto the plane
is shown in Figure 2.

hash value to cb and qb if, for example, cb were less than μq .

Moreover, note that the terms generated for j and h would not

match the terms for any other point because their key values

are different, and we assume that h is collision-free.

It is worth noting that we estimate μc using the data from

the sketches (i.e., before the join), which assumes that the

mean does not change significantly after the join. While this

assumption may not always hold, it is a required assumption

because we do not have access to necessary data to compute

the after-join mean at indexing time (as it depends on the

query table). A shift in the mean after the join may cause some

terms that belong in the same quadrant to not match. However,

this affects tables with high and low correlation equally.

Moreover, by using correlation estimates computed using the

sketches, we can correct possible errors in a reranking phase.

In practice, our experimental evaluation (Section V) shows that

this approach works well and attains high recall values.

In summary, to index a table TC we first compute its sketch

L〈KC ,C〉 and then use Equation 3 to compute terms TC , which

are ultimately used to represent the table TC in the QCR

inverted index.

D. Querying the QCR index

When a table TQ is provided as a query, we apply a process

similar to the one described in Section IV-C to query the

inverted index. We start by constructing a sketch L〈KQ,Q〉 and

then generate terms to query the index. Note that querying

the index using terms TQ returns only positive correlations

(r > 0). To see this, consider the mean-centered example of

C and Q at the bottom of Figure 3. If a user queries the index

using the terms TC generated for TC , a comparison with terms

TQ would only match the hashes for the (green) join keys a, b,

c, d, e, and f, which have the same join keys and are on the

same side (positive/negative) of the mean-centered line. The

points of a negatively correlated column (r < 0) projected

onto the plane would lie mostly on quadrants II and IV, the

opposite of our query terms TQ.

If one is also interested in retrieving negative correlations,

an additional step is therefore necessary. In this case, we

generate two sets of terms: T+
Q is used to retrieve positive

correlations, and T−
Q , retrieves negative correlations. We set

T+
Q to be equal to TQ, and we compute T−

Q using the

additive inverse of numerical values {qk} ∈ L〈KQ,Q〉 —

i.e., we apply a transformation to {qk} that multiplies all

of its elements by −1. We show in our theoretical analysis

(Section IV-F) that the size of the overlaps s+ = |T+
Q ∩ TC |

and s− = |T−
Q ∩TC | are roughly proportional to N+

N∩ and N−
N∩ ,

respectively, within some error bounds. Therefore, to retrieve

positively and negatively correlated tables, we can issue a

disjunction of two queries — one for each set of terms — and

keep the top-k tables with highest scores of either s+ or s−.

In other words, we find the top-k tables that maximize the

score s = max(s+, s−).

E. Implementation Details

We implemented our algorithms in Java, and we used the

Apache Lucene library [47] to build the indexes and queries.

We construct two queries of type BooleanQuery, one for

T−
Q and another for T+

Q . They are then combined in a single

DisjunctionMaxQuery [48], which picks the top-k tables

with maximum value of either T−
Q or T+

Q . This allows both

queries to be efficiently processed together using Lucene’s

implementation of the Block-Max WAND algorithm [43].

F. Theoretical Analysis

We provide a theoretical analysis to justify our heuristic and

clarify the assumptions behind it. We analyze the s+ and s−

scores and show that the estimator s+/n provides a reasonable

estimate for N+/N∩. More formally, we show that:

Lemma 1. The following bounds hold for a score s+ com-
puted using the QCR hashing scheme and a sketch of size n:

N+

N∩ ρ ≤ E

[
s+

n

]
≤ 2

N+

N∩ ρ (4)

where ρ = N∩
N∪ is the Jaccard similarity between KQ and KC .

To compare our approach with the approach from [19], which

we refer to as CSK, we also extend our analysis to the scores

produced by their method (as both scores are counts of hash

collisions). Before presenting our analysis, we describe CSK.

The CSK indexing scheme. While our QCR approach uses

the set of hashes computed using Equation 3, CSK uses

hashes derived only from the join keys. More specifically, it

recommends constructing correlation sketches for candidate

tables, and then indexing them using their set of hashed keys

TC = {h(k) ∈ L〈KC ,C〉}. At query time, it constructs a

sketch L〈KQ,Q〉 for the query table, which is used to create

the query term set TQ = {h(k) ∈ L〈KQ,Q〉}. The queries

find the top-k tables with highest overlap of hashed keys

s∩ = |TQ∩TC |. This step retrieves highly-joinable tables. The

final step re-ranks the retrieved tables using the correlation

estimate obtained using the complete sketches L〈KC ,C〉 and

L〈KC ,C〉, which then places correlated tables at the top of the

ranked list. This indexing approach based on the hashed keys

of sketches (CSK) was presented informally in [19]. In what

follows, we present an analysis of s∩, which is part of the

contributions of this paper.
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Proof of Lemma 1. Let LA and LB be the sketches com-

puted for the tables TA and TB , respectively. Moreover, let

U = {ki : h(ki) ∈ LA ∪ LB} = {k1, k2, ..., kn, ..., k|LA∪LB |}
where i denotes the index of ki in the order induced by the

hashing function h. Let also TA and TB denote the set of

hashes computed using either the QCR or the CSK strategies

from LA and LB , respectively. Finally, T = {t1, ..., t|LA∪LB |}
denotes the set of hashes computed for each ki. We can now

define a collection of Bernoulli random variables that represent

hash collisions between TA and TB :

ui =

{
1 if ti ∈ TA ∩ TB

0 otherwise.

We will first analyze the expected value of each ui indepen-

dently. Then, we will calculate the sum s =
∑|LA∪LB |

i=1 ui and

analyze its expected value E[s]. For convenience, we will also

denote s(a, b) =
∑b

i=a ui.

Both scores s+ and s∩ are summations as in s, with their

only difference being their probability of collisions. Note that

ti ∈ TA∩TB if and only if the keys used to compute the hashes

collide in their original sets and if the hashes are selected for

inclusion in both sketches. For instance, in CSK the strategy,

ti ∈ TA ∩ TB iff ki ∈ KA ∩KB and ki ∈ LA and ki ∈ LB .

The probabilities the keys being included in the sketches

(i.e., P{ki ∈ LA and ki ∈ LB}) depend on the sketch size n
and are not uniform for the set of all i’s. In fact, as proven

in [49], P{ki ∈ LA and ki ∈ LB} = 1 for all i ≤ n
when sketches have size n, given that P{ki ∈ LA} = 1
and P{ki ∈ LB} = 1. Thus, we divide the analysis

in two cases: {u1, ..., un} and {un+1, ..., u|LA∪LB |}. First,

note that s can be decomposed into the sum of the parts:

s = s(1, n) + s(n + 1, |LA ∪ LB |). Then, due to linearity of

expectation, we have that:

E[s] = E[s(1, n) + s(n+ 1, |LA ∪ LB |)]
= E[s(1, n)] + E[s(n+ 1, |LA ∪ LB |)]

= E

[
n∑

i=1

ui

]
+ E

⎡
⎣|LA∪LB |∑

i=n+1

ui

⎤
⎦

=
n∑

i=1

E[ui] +

|LA∪LB |∑
i=n+1

E[ui]

Each ui is a Bernoulli random variable, thus we know that

E[ui] = P{ui = 1}. Let I denote the event that ki is included
in both sketches and C denote the event that a hash collision
happens. Then, we have that: P{ui = 1} = P{I | C} ·P{C}.

Using the facts that the probability of inclusion is 1 for i ≤ n
and P{C} is constant for all i, we get:

E[s(1, n)] =
n∑

i=1

P{I | C} · P{C}

=
n∑

i=1

1 · P{C}

= nP{C} (5)

For the remaining i ∈ {n+1, |LA∪LB |}, we use the the fact

that P{I|C} can be at most 1 to get the upper bound:

E[s(n+ 1, |LA ∪ LB |)] =
|LA∪LB |∑
i=n+1

P{I | C} · P{C}

≤
|LA∪LB |∑
i=n+1

1 · P{C}

≤ nP{C} (6)

Combining Equations 5 and 6, we get that:

nP{C} ≤ E[s] ≤ nP{C}+ nP{C}
nP{C} ≤ E[s] ≤ 2nP{C} (7)

P{C} ≤ E

[ s
n

]
≤ 2P{C} (8)

The final step is to obtain the collision probabilities for

each hashing scheme. For CSK, we have that P{C} = N∩
N∪

and whereas for QCR, P{C} = N+

N∪ . Combining these with

Equation 8, we obtain the following bounds:

N∩

N∪ ≤ E

[
s∩

n

]
≤ 2

N∩

N∪ for CSK, and (9)

N+

N∪ ≤ E

[
s+

n

]
≤ 2

N+

N∪ for QCR. (10)

To get the results from Lemma 1, note that the following

equality holds: N+

N∪ = N+

N∩
N∩
N∪ .

G. Discussion

As shown earlier, using a QCR index is sufficient to retrieve

correlated columns in a single step. In contrast to CSK, which

retrieves tables that roughly maximize the Jaccard similarity

(Equation 9), our QCR maximizes both the Jaccard similarity

and the ratio N+

N∩ . Therefore, our method is a heuristic that

uses the Jaccard similarity as a proxy to Jaccard containment.

Note, however, that our hashing scheme is complementary

to the sketches proposed in [19] and they can be used in

a cascading fashion: one can first retrieve tables using the

QCR index, as described in Section IV-C, and then pass the

retrieved candidates to another layer that re-ranks the candidate

tables using estimates produced by correlation sketches [19].

At this re-ranking stage, one can estimate any correlation

measure (e.g., Pearson’s, Spearman’s, and others) and the

Jaccard Containment. Therefore, the re-ranking can optimize

any weight combination as discussed in our Definition 2.

In addition to re-ranking using direct correlation estimates

computed from sketches, additional information stored at

indexing time can be used to further improve the ranking.

For instance, scoring functions that take intro account the

risk of estimation error could be used to avoid placing false-

positives in the top of the ranked list (as done in [19]). Note,

however, that these improvement are only applicable to the re-

ranking phase (i.e., they are orthogonal to the approach and

experimental results we present in this paper), and while they

may improve final ranking, they cannot impact the retrieval

recall (which is one to the main benefits of QCR indexes).
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In our experiments (Section V), we consider both the single-

stage approach as well as the cascading approach. We show

that QCR indexes improve both the ranking accuracy and

recall compared to the CSK approach [19]. Moreover, we

show that the QCR-based hashing works well for retrieving

candidate correlated tables according to a different correlation

estimator such as Pearson’s.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Dataset Collections. Our evaluation uses one synthetic and

one real-world collection. Each of them is composed of two

distinct sets of tables which we refer to as query set and corpus
set. We describe these collections in more detail below.

(1) Synthetic Table Corpus (STC). In order to have more

control of the data properties, we automatically generated a

corpus containing tables with varying degrees of joinability

and correlation. Our corpus generation method proceeds as

follows. We first generate 1,000 table queries by generating

unique keys and drawing numbers from a Gaussian distribution

with parameters N (0, 1). Next, for each query, we synthet-

ically generate 100 candidate tables with high correlation

and 400 with low correlation with varying levels of Jaccard

containment between their keys and the keys of the query

table. Specifically, we draw the correlation level r, uniformly

at random, from the the range [1.0, 0.25] or [−1.0,−0.25]
for high-correlation tables, and from the range (0.25,−0.25)
for low-correlation tables. The Jaccard Containment is drawn

from random and uniformly from [0.1, 1.0]. The final table

collection includes 1,000 queries and 500,000 candidate tables,

totaling approximately 250 GB of storage.

(2) NYC Open Data (NYC). The tables from this dataset

contain data published by New York City agencies and their

partners [50]. We used a snapshot that includes 1,505 different

CSV files with a varying number of columns. From each file,

we generated 289,487 two-column tables (i.e., 〈KC , C〉) by

extracting all pairs of categorical and numerical data columns

from each file. A brute-force approach to estimate join-

correlations between all pairs of these tables would require

over 41 billion join and correlation computations. To generate

a query set, we randomly selected 1,000 tables. The remaining

tables are assigned to the corpus set.

Evaluation Metrics. Ideally, table retrieval approaches should

be able to find the largest number possible of correlated tables

and, at the same time, place highly correlated and highly

joinable tables at the top of list. To measure different aspects

of retrieval quality, we use the following evaluation metrics:

(1) Normalized Cumulative Gain (nDCG) [51]: measures the

ability of placing highly relevant items at the top of the

ranking. As a relevance measure, we use the actual absolute

Pearson’s correlation (|r|) between the numerical columns of

the query and the candidate tables after a full table join. There-

fore, nDCG values assess the retrieval quality with respect to

the correlation only objective (αr = 1 and αj = 0). We report

the nDGC at positions 5, 10, and 50 of the ranked list (referred

to as nDCG@5, nDCG@10, nDCG@50, respectively).

(2) Recall: measures the percentage of relevant tables retrieved

relative to the total of relevant tables. Recall is also computed

with respect to correlation |r| only (i.e., αj = 0, αr = 1)).

We report the recall considering different correlation levels as

relevant: |r| > 0.25, |r| > 0.50, and |r| > 0.75. In order to

compute the recall, we pooled all retrieved candidate tables

by merging the lists associated to all retrieval strategies, and

then reported the fraction of relevant tables retrieved by each

specific retrieval strategy compared to all pooled tables.

(3) Average Jaccard Containment (Avg. JC) Similarity: to

measure the ability of prioritizing highly joinable tables, we

report the average JC similarity at different positions of the

ranked list (i.e., αj = 1, αr = 0). The JC similarity is

computed over the join keys of the complete tables, i.e.,

JC(KQ,KC) = |KQ∩KC |/|KQ|, where KQ and KC are the

sets of join keys of the original tables TQ and TC respectively.

We report the average JC at positions 5, 10, and 50.

(4) Average Weighted Means (AAM, AGM, AHM): To evaluate

queries with respect to weight preferences (Definition 2), we

compute the weight w for the candidate table at each position

in the ranked list, and then calculate the average from the first

position up to a maximum position i. We use as combination

functions the arithmetic, geometric and harmonic means (de-

noted as AAM@i, AGM@i, and AHM@i, respectively).

(5) Harmonic Mean (HM): We also use the harmonic mean

to evaluate how good each retrieval method is with respect to

multiple metrics. The HM is defined as HM(a, b) = 2ab
a+b ,

where a and b are scores for two different evaluation metrics

(e.g., nDCG, Recall, or Avg. JC).

All these metrics are in the interval [0, 1], and larger values

are preferred over smaller values. We use the HM to combine

metrics because it is intuitive and equivalent to the well-known

F1-score, which also uses the HM to quantify the trade-offs

between precision and recall in binary classification tasks.

When compared to the arithmetic (AM) and the geometric

(GM) means, the HM is strictly smaller. This means that HM

scores are “harsher” than if we were using the GM to evaluate

an equal-weight linear combination of Avg. JC and nDCG.

Baselines and Parameter Settings. We compare our ap-

proach against the CSK approach from [19] under multiple

parameter settings. As discussed in Section IV-F, this type

of index can yield two baselines: the first, which retrieves

and ranks tables according to the score s∩ (referred to as

CSK-Overlap), roughly optimizes for finding tables with high

joinability (αr = 0, αj = 1); the second, which ranks retrieved

tables using sketch estimates (referred to as CSK-Correlation),

optimizes the final ranking for correlations (αr = 1, αj = 0).

Similarly, we consider two possible ranking strategies for

our QCR indexes: ranking tables based on the overlap of

the QCR keys (namely, QCR-Overlap), which simultaneously

prioritizes joinability and correlations (αr = 1, αj = 1);

and a second strategy that re-ranks the retrieved tables us-

ing estimates, computed using the sketches (namely, QCR-
Correlation). While QCR-Correlation roughly optimizes for

both correlation and joinability in the first step, the re-ranking

step optimizes for correlation (αr = 1, αj = 0).
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TABLE I
RANKING SCORES FOR DIFFERENT INDEX AND RANKING PARAMETERS ON THE NYC OPEN DATA (NYC) COLLECTION.

Parameters nDCG Recall Harmonic Mean (nDCG, Recall)

n top-k index ranking @5 @10 @50 r > .25 r > .50 r > .75
r > .5

@10

r > .5

@50

r > .75

@10

r > .75

@50

256

50

CSK
Overlap 0.386 0.401 0.474 0.378 0.357 0.353 0.330 0.368 0.308 0.344

Correlation 0.766 0.734 0.582 0.378 0.357 0.353 0.412 0.400 0.388 0.375

QCR
Overlap 0.754 0.732 0.743 0.487 0.590 0.672 0.630 0.637 0.680 0.686

Correlation 0.853 0.845 0.780 0.487 0.590 0.672 0.663 0.649 0.714 0.697

100

CSK
Overlap 0.386 0.401 0.474 0.606 0.540 0.496 0.422 0.476 0.385 0.433

Correlation 0.794 0.776 0.724 0.606 0.540 0.496 0.568 0.573 0.509 0.516

QCR
Overlap 0.754 0.732 0.743 0.769 0.851 0.897 0.781 0.788 0.805 0.812

Correlation 0.851 0.853 0.865 0.769 0.851 0.897 0.837 0.850 0.855 0.870

512

50

CSK
Overlap 0.380 0.397 0.472 0.378 0.357 0.353 0.326 0.367 0.305 0.343

Correlation 0.776 0.743 0.585 0.378 0.357 0.353 0.413 0.400 0.390 0.375

QCR
Overlap 0.759 0.737 0.747 0.488 0.596 0.678 0.636 0.642 0.685 0.691

Correlation 0.866 0.858 0.787 0.488 0.596 0.678 0.671 0.655 0.723 0.704

100

CSK
Overlap 0.380 0.397 0.472 0.603 0.542 0.493 0.417 0.475 0.379 0.430

Correlation 0.808 0.790 0.732 0.603 0.542 0.493 0.573 0.575 0.510 0.515

QCR
Overlap 0.759 0.737 0.747 0.770 0.862 0.905 0.788 0.795 0.810 0.817

Correlation 0.868 0.870 0.876 0.770 0.862 0.905 0.849 0.860 0.866 0.879

1024

50

CSK
Overlap 0.381 0.397 0.472 0.380 0.356 0.354 0.326 0.366 0.306 0.343

Correlation 0.781 0.749 0.586 0.380 0.356 0.354 0.413 0.399 0.392 0.376

QCR
Overlap 0.763 0.742 0.749 0.490 0.594 0.680 0.637 0.642 0.689 0.694

Correlation 0.870 0.860 0.788 0.490 0.594 0.680 0.670 0.654 0.723 0.706

100

CSK
Overlap 0.381 0.397 0.472 0.603 0.540 0.496 0.416 0.473 0.379 0.430

Correlation 0.815 0.797 0.736 0.603 0.540 0.496 0.571 0.573 0.513 0.517

QCR
Overlap 0.763 0.742 0.749 0.772 0.863 0.909 0.791 0.797 0.813 0.820

Correlation 0.873 0.874 0.879 0.772 0.863 0.909 0.852 0.862 0.870 0.883

Note that the re-ranking strategies (CSK-Correlation and

QCR-Correlation) incur a small additional computational over-

head, as they need to load the sketches from the storage,

compute estimates, and then re-order the table candidates

using the Pearson’s correlation estimates. They also require

an additional storage overhead for storing the sketches. For a

collection with d documents and sketches of size n, they need

d ∗ n ∗ (sizeof(h(k)) + sizeof(c)) bytes in addition to

storage required for the inverted index.

Besides the aforementioned index types and ranking strate-

gies, we also evaluate the effect of various parameters such as

sketch size (the larger the sketch size, the larger the amount

of storage space needed and the larger the index size), and the

number of candidate tables retrieved (top-k). These parameters

are applicable to both QCR and CSK indexes.

B. Retrieval of Highly Correlated Tables

Our first experiment focuses on retrieval quality with respect

to correlations (αr = 1, αj = 0) (same as in [19]). We built

an inverted index for several combinations of index parameter

settings and data collections, and then used all tables in the

query sets to issue queries against the index. We report the

evaluation metric scores for the NYC and STC collections in

Tables I and II respectively.
1) Ranking Accuracy: The results show that our QCR-

based methods significantly improve over the baseline meth-

ods. The top performing method, QCR-Correlation, substan-

tially increases ranking quality in terms of nDCG scores

across all possible parameter settings, with particularly good

results at the top-5. We note also that the QCR-Overlap

method achieves nDCG scores that are very close to the best-

performing approach (QCR-Correlation), suggesting that our

indexing and retrieval approach provides scores that are well-

correlated with the Pearson’s correlation, even though the QCR

estimator is only a crude estimator of this coefficient.

The improvements of QCR-Correlation over CSK-

Correlation are due to the base QCR retrieval strategy, which

makes more correlated tables available to the re-ranking

strategy, allowing the re-ranking phase to place more relevant

tables at the top of the ranked list. In addition, because the

QCR index tends to return items that are highly joinable

(as shown in Section V-C), the accuracy of the correlation
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TABLE II
RANKING SCORES FOR DIFFERENT INDEX AND RANKING PARAMETERS ON THE SYNTHETIC TABLE CORPUS (STC) COLLECTION.

Parameters nDCG Recall Harmonic Mean (nDCG, Recall)

n top-k index ranking @5 @10 @50 r > 0.25 r > 0.50 r > 0.75
r > .50

@10

r > .50

@50

r > .75

@10

r > .75

@50

256

50

CSK
Overlap 0.133 0.137 0.196 0.234 0.208 0.188 0.149 0.199 0.138 0.184

Correlation 0.839 0.708 0.373 0.234 0.208 0.188 0.319 0.265 0.290 0.242

QCR
Overlap 0.921 0.900 0.815 0.747 0.788 0.822 0.839 0.801 0.857 0.817

Correlation 0.994 0.987 0.847 0.747 0.788 0.822 0.875 0.816 0.895 0.833

100

CSK
Overlap 0.133 0.137 0.196 0.471 0.420 0.379 0.190 0.263 0.182 0.252

Correlation 0.936 0.887 0.582 0.471 0.420 0.379 0.567 0.486 0.523 0.453

QCR
Overlap 0.921 0.900 0.815 0.931 0.941 0.951 0.919 0.873 0.924 0.877

Correlation 0.998 0.996 0.957 0.931 0.941 0.951 0.967 0.949 0.972 0.954

1024

50

CSK
Overlap 0.135 0.141 0.197 0.235 0.209 0.188 0.152 0.201 0.140 0.185

Correlation 0.841 0.710 0.374 0.235 0.209 0.188 0.320 0.266 0.290 0.242

QCR
Overlap 0.927 0.906 0.849 0.798 0.832 0.860 0.866 0.840 0.881 0.853

Correlation 0.995 0.991 0.879 0.798 0.832 0.860 0.903 0.854 0.919 0.868

100

CSK
Overlap 0.135 0.141 0.197 0.471 0.420 0.377 0.194 0.264 0.186 0.253

Correlation 0.936 0.888 0.583 0.471 0.420 0.377 0.567 0.487 0.522 0.452

QCR
Overlap 0.927 0.906 0.849 0.976 0.981 0.986 0.942 0.910 0.944 0.912

Correlation 0.999 0.999 0.985 0.976 0.981 0.986 0.990 0.983 0.992 0.985

TABLE III
AVERAGE WEIGHTED MEANS AT DIFFERENT RANK POSITIONS FOR DIFFERENT PARAMETERS ON THE NYC OPEN DATA (NYC) COLLECTION.

n top-k index ranking AAM@5 AAM@10 AAM@k AGM@5 AGM@10 AGM@k AHM@5 AHM@10 AHM@k

512

50

CSK
Overlap 0.185 0.181 0.159 0.093 0.090 0.075 0.069 0.066 0.053

Correlation 0.296 0.266 0.159 0.135 0.123 0.075 0.099 0.089 0.053

QCR
Overlap 0.306 0.280 0.226 0.139 0.125 0.094 0.101 0.089 0.063

Correlation 0.326 0.306 0.226 0.140 0.130 0.094 0.099 0.091 0.063

100

CSK
Overlap 0.185 0.181 0.146 0.093 0.090 0.066 0.069 0.066 0.045

Correlation 0.301 0.276 0.146 0.129 0.119 0.066 0.091 0.084 0.045

QCR
Overlap 0.306 0.280 0.201 0.139 0.125 0.081 0.101 0.089 0.052

Correlation 0.320 0.303 0.201 0.128 0.121 0.081 0.087 0.082 0.052

estimates produced by the sketches might also significantly

improve: the more joinable the sketches, the larger the sample

size for correlation estimation.

Note also that while it may seem that the gap between CSK

and QCR is not very large for top-5 results, CSK is expected

to lead to the discovery of correlated tables only eventually.

The event of finding a correlated columns when optimizing

for JC is close to random [19]. Thus, the probability of such

events is highly dependent on the distribution of the number

of correlated tables in the collection. In large collections with

very few correlated tables, it will be much harder to find

correlated tables using CSK index than in smaller collections.

For instance, notice the big change in recall between the

STC and NYC collections, which have different underlying

generating processes. In the STC collection which has approx-

imately 100 tables with r > 0.25 and 400 tables with r < 0.25
for each query, QCR is able to retrieve twice as many tables

as CSK (recall of 93.1% compared to 47.1%, respectively) for

k = 100 and n = 256. For smaller k = 50, the difference is

more than 3 times larger (74.7% compared to 23.4%).

2) Recall: The results also show that QCR indexes dra-

matically improve the recall of correlated columns. A partic-

ularly interesting trend is that, while retrieving columns by

overlap of correlation sketch keys (CSK-Overlap and CSK-

Correlation), the recall progressively decreases as we increase

the correlation level. The opposite happens for the QCR index:

the recall becomes better for higher correlation levels. This

confirms that QCR indexes are particularly good at retrieving
highly-correlated tables (r > 0.75).

Another interesting result is that retrieving a longer list of
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TABLE IV
AVG. JC SCORES ON THE STC TABLE COLLECTION.

nDCG Avg. JC HM(nDCG, Avg. JC)

@5 @50 @5 @50 @5 @50

CSK-Overlap 0.133 0.197 0.994 0.954 0.215 0.322

CSK-Correlation 0.936 0.582 0.908 0.908 0.921 0.707

QCR-Overlap 0.925 0.835 0.925 0.882 0.924 0.857

QCR-Correlation 0.999 0.973 0.749 0.827 0.854 0.894

candidate tables yields better results than increasing the sketch

sizes. We can see this, for instance, by comparing the Recall

scores obtained by the QCR index in the NYC collection:

retrieving the top-100 tables using a sketch size of n = 256
leads to scores in the range [0.769, 0.897], while retrieving

top-50 tables with n = 1024 only leads to scores in the range

[0.490, 0.680]. Note that this is a two-fold increase in the top-

k compared to a four-fold increase in the sketch size n. This

suggests that increasing the number top-k retrieved tables has
a higher impact on recall than increasing the sketch size n. As

we will show in our efficiency evaluation, this is particularly

good because an increase in the sketch size results in a larger

number of query terms, which has a bigger impact on query

processing times than increasing the number of top-k results.

The results also indicate that QCR indexes are more space-
efficient than CSK indexes: a comparison of different sketch

sizes (n = 256 vs. n = 1024) for the same number of top-k
tables (top-k=100) shows that QCR attains better recall with

smaller sketches. For example, the best recall for r > 0.75
attained by CSK is 0.496 (with the settings n = 1024 and

k = 100), whereas QCR is able to attain a higher recall of

0.897 (with n = 256 and k = 100). This suggests that QCR
indexes need less than 1/4 of the storage size needed by CSK
indexes (due to smaller sketches) to achieve the same recall.

3) Overall Ranking: Besides nDCG and Recall, we also

report the harmonic mean of nDCG and Recall scores for

different ranked list positions and correlation levels in Ta-

bles I and II. These results, along with results from Sec-

tions V-B1 and V-B2, confirm that the QCR-based retrieval

strategies are able to achieve a better overall ranking quality

using smaller sketch sizes.

C. Balanced Retrieval of Correlated & Joinable Tables

So far, we discussed ranking quality in terms of accuracy

and recall. We now consider the ability of our QCR index

to place tables that are simultaneously highly correlated and

joinable at the top of the ranked list. For this evaluation, we

use as w the weighted mean of the Jaccard Containment (j)

and the absolute Pearson’s correlation (r). We compute w for

the candidate table at each position in the ranked list, and then

calculate the average from the first position up to a maximum

position i. We denote the arithmetic, geometric and harmonic

means as AAM@i, AGM@i, and AHM@i, respectively. The

absence of @i means that the average is over all top-k retrieved

tables. The results are reported in Table III (we only show n =

TABLE V
AVG. JC SCORES ON THE NYC TABLE COLLECTION.

nDCG Avg. JC HM(nDCG, Avg. JC)

@5 @50 @5 @50 @5 @50

CSK-Overlap 0.303 0.374 0.223 0.190 0.173 0.185

CSK-Correlation 0.622 0.570 0.180 0.175 0.216 0.209

QCR-Overlap 0.582 0.570 0.218 0.185 0.239 0.213

QCR-Correlation 0.658 0.666 0.170 0.168 0.208 0.210

512 because other settings are similar). They confirm that QCR

indexes lead to better performance than CSK indexes, specially

when the size of the ranked list grows. Also, the correlation

sketch estimates improve the performance regardless of the

index, but the best results are achieved when QCR index is

used because it makes more correlated tables available to the

re-ranking step.

We also computed the Average Jaccard Containment (Avg.

JC) attained at different positions of the ranked list, as well

as the harmonic mean between the Avg. JC and nDCG. The

results are reported in Tables IV and V (we also include nDCG

values for an easier comparison). We only report scores for

sketch size n = 512 and for queries that retrieve the top-100
candidate tables. However, other settings led to similar results.

As expected, the CSK-Overlap strategy is the best perform-

ing in terms of Avg. JC in both table collections. Moreover,

while the QCR-Correlation is the best strategy in terms of

nDCG, its Avg. JC is considerably lower than other methods’.

This is not surprising as this strategy only uses the correlation

estimate in the re-ranking stage. In contrast, QCR-Overlap is

able to maintain a good balance between correlation and join-

ability: its Avg. JC scores are not too far below when compared

to the CSK-Overlap strategy, nor are its nDCG scores. As a

result, QCR-Overlap is able to obtain the best balance between
the two metrics as confirmed by their harmonic mean.

Note also the difference between the overall Average JC

scores for different table collections: Avg. JC tends to be

higher for the synthetic collection (STC) compared to smaller

values in the NYC collection. This difference is due to the

underlying data generation process of the collections. In the

STC collection we generate the tables in such a way that there

are always joinable candidates for every query. In contrast, in

the NYC collection, where we select query tables randomly

from the data, we notice a significant skew in the distribution

of JC for the retrieved tables, with some query tables having

few joinable columns. Nonetheless, we can see that the general

trends in the results are still the same, with QCR-Overlap

attaining the best scores in terms of HM(nDCG, Avg. JC).

D. Performance Evaluation

To evaluate performance, we executed all queries in the

query set and measured their total execution time, including

the time to create sketches (and terms T+
Q and T−

Q ) for

the query table, processing the query, reading the candidate

tables’ sketches and re-ranking the results based on sketch
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TABLE VI
RUNNING TIME FOR DIFFERENT PARAMETER SETTINGS ALONG WITH

THEIR RANKING SCORES ON THE NYC COLLECTION.

nDCG/Rec nDCG/JC Time

index ranking top-k n @10, r > 0.75 @10 Avg.

1 QCR Correlation 100 1024 0.870 0.136 28.554

2 QCR Correlation 100 512 0.866 0.132 19.704

3 QCR Correlation 100 256 0.855 0.127 13.944

4 QCR Overlap 100 1024 0.813 0.155 27.763

5 QCR Overlap 100 512 0.810 0.153 19.492

6 QCR Overlap 100 256 0.805 0.151 13.568

7 QCR Correlation 50 512 0.723 0.148 18.431

8 QCR Correlation 50 1024 0.723 0.150 26.963

9 QCR Correlation 50 256 0.714 0.144 12.940

10 QCR Overlap 50 1024 0.689 0.155 26.689

11 QCR Overlap 50 512 0.685 0.153 18.102

12 QCR Overlap 50 256 0.680 0.151 12.721

13 CSK Correlation 100 1024 0.513 0.139 17.033

14 CSK Correlation 100 512 0.510 0.136 12.488

15 CSK Correlation 100 256 0.509 0.131 9.837

16 CSK Correlation 50 1024 0.392 0.148 14.132

17 CSK Correlation 50 512 0.390 0.146 10.700

18 CSK Correlation 50 256 0.388 0.143 8.655

correlation estimates (when applicable). Given that Lucene’s

implementation makes heavy use of caching and memory

mapping mechanisms to speed up query execution, we ran

all queries 5 times and discarded the first execution. We

omit query times for the synthetic collection. While their

query times are higher due to their query distribution size,

we observed similar results.

In Table VI, we report the average query time for all queries

in the NYC collection along with the ranking metric scores

obtained by the same parameter settings. Results are sorted

by the harmonic mean between nDCG@10 and Recall at

r > 0.75, in decreasing order, to make it easier to find the

running time of the best performing settings. In general, we

can see that the higher the sketch size n and the number of

retrieved candidates, the higher the running time. Moreover,

we can see that, for a fixed top-k and sketch size n, the query

times for QCR methods are roughly twice as high as for their

CSK counterparts. This is not surprising, since QCR queries

need to process twice as many terms (in order to retrieve

positive and negative correlations) as CSK queries. Another

interesting result is that even the settings of the QCR methods

that use the smallest sketch sizes, which are as good as the

best CSK methods, have running times that are either lower

or comparable to the best CSK approaches. This suggests

that QCR strategies are more efficient than CSK’s for a fixed
retrieval quality level.

To better visualize the trends in these results, consider the

plot in Figure 4. In this plot, the best methods are the ones

located closer to top-left corner, i.e., the region of better metric

Fig. 4. Runtime versus retrieval quality scores for different parameter settings.

scores (top) and lower running time (left). Here, it is easy to

see that increasing the number of retrieved candidate tables

from 50 (�) to 100 (�) significantly improves retrieval quality,

at only a small runtime cost. Conversely, increasing the sketch

size incurs a significant runtime penalty. This suggests that in

order to improve the results, it is more resource-efficient to

increase the length of the retrieved list than the sketch size.

VI. CONCLUSION

We proposed a generalization of join-correlation queries that

consider both joinabilty and correlation. This new approach

led to the development of an indexing and retrieval method

for correlated table search based on our novel QCR hashing

scheme. We provide theoretical analysis of algorithms and we

show that our approach improves the retrieval of correlated

tables in terms of both ranking accuracy and recall through an

extensive experimental evaluation.

There are multiple open problems in this line of research

that are worth studying in future work. For instance, a nat-

ural question that may arise is how to discover correlations

between other types of data (e.g., images, text). A natural

approach is to encode such data as numerical variables. For

example, text could be encoded using techniques such as

TF-IDF, topic modeling (LDA) [52], or deep-learning-based

approaches (e.g., BERT [53]). A challenge here is that this

would significantly increase the dimensionality of the data (as

each text column would be converted into potentially hundreds

to thousands of columns) and thus impact the performance.

We would also like to explore the application of our methods

to downstream applications [21], [35], dataset search engines,

and data catalogs [6], [22], [32]. In terms of performance, it

would be interesting to evaluate other fast algorithms for top-k
retrieval [25], [45], and set overlap search [23].
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