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Abstract

Systems experiencing high-rate dynamic events, termed high-rate systems, typically undergo accelerations of amplitudes higher
than 100 g in less than 10 ms. Examples include adaptive airbag deployment systems, hypersonic vehicles, and active blast
mitigation systems. Given the critical functions of such systems, accurate and fast modeling tools are necessary for ensuring
the target performance. However, the unique characteristics of these systems, which consist of 1) large uncertainties in the
external loads, 2) high levels of non-stationarities and heavy disturbances, and 3) unmodeled dynamics generated from changes
in system configurations, combined with the fast-changing environment limits the applicability of physical modeling tools. In
this paper, a neural network-based approach is proposed to model and predict high-rate systems. It consists of an ensemble of
recurrent neural networks (RNNs) with short-sequence long short-term memory (LSTM) cells which are concurrently trained.
To empower multi step-ahead predictions, the input space for each RNN is selected individually using principal component
analysis to extract different resolutions on the dynamics. The algorithm is simulated on experimental data obtained from a
high-rate system. Results showed that the quality of step-ahead predictions is significantly improved with respect to a heuristic
approach in constructing the input spaces.
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1. Introduction

High-rate systems are defined as those experiencing dynamic events of typical amplitudes higher than 100 g over durations
less 10 ms durations. Examples include adaptive airbag deployment systems, hypersonic vehicles, and active blast mitigation
systems. Enabling closed-loop feedback capabilities for high-rate systems could empower their field deployments through
enhanced operability and safety. However, this is a difficult task, as these systems are uniquely characterized by 1) large
uncertainties in the external loads, 2) high levels of non-stationarities and heavy disturbances, and 3) unmodeled dynamics
generated from changes in system configurations [1].

There have been recent research efforts in developing algorithms with real-time capabilities in the high-rate realm, including a
sliding mode observer-based algorithm [2], and frequency-based model updating strategy [3]. Others have studied algorithms
enabling online identification of highly nonstationary time series, without initial pre-training [4], but the algorithm was not
applicable in real-time. Inspired by this algorithm, the authors have proposed an ensemble of recurrent neural networks (RNN)
constructed with short-sequence long short-term memory (LSTM) cells to learn nonstationary time series with minimal pre-
training. The algorithm showed real-time capabilities with an average computation time of 25 µs, but its multi step-ahead
prediction was not evaluated [5]. In this paper, we extend work on the proposed ensemble of RNN for step-ahead prediction.
The algorithm is modified to individually select the input space of each RNN, such that different dynamic features are extracted
from the time series. The extraction method is based on the embedding theorem, as recently used by others in [6], and principal
components analysis (PCA) of the available time series data.

2. Algorithm Architecture

The machine learning algorithm is described in [5]. Briefly, it consists of an ensemble of RNNs constructed with long short-
term memory LSTM cells with transfer learning capabilities to cope with the highly limited availability of training data as it



is typical for high-rate systems. The use of an ensemble of RNNs empowers multi-rate sampling capability to capture multi-
temporal features of the time series, thus enabling modeling of non-stationarities. Also, because the RNNs use short-sequence
LSTMs and are arranged in parallel, the computation time is substantially reduced to the sub-millisecond range. Here, the
procedure to select the inputs of each RNN is altered to provide multi-step-ahead prediction capabilities.

Fig. 1(a) depicts the proposed procedure for extracting individual features in the source domain. At each discrete time step k,
an RNN maps the input space xk = {xk−dτ , xk−(d−1)τ , · · · , xk} to the next discrete value xk+τ , where τ is the time delay and
d the embedding length. The number of extracted features is taken as the number of principal components used in representing
at least 90% of the source domain. For each RNNs, variables τ and d are selected based on the embedding theorem to represent
the essential dynamics of the associated principal components using the mutual information (MI) [7] and false nearest neighbors
(FNN) [8] tests.
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Figure 1: Proposed algorithm: (a) source domain training of the individual RNNs; (b) target domain real-time prediction architecture.

Fig. 1(b) depicts the algorithm for real-time one-step prediction in the target domain. The LSTM cells trained in the source do-
main are transferred to the target domain and run in parallel, each sampling the time series at different rates as data sequentially
becomes available. A multi-resolution sampler at time step k extracts xik for the ith LSTM. Note that data is organized such
that the target prediction value for all of the LSTMs is xk+1. The features extracted in the LSTM layers are linearly scaled in an
attention layer using a linear neuron. The squared error of the prediction is back-propagated to the network to update weights.
Multi-step-ahead prediction is conducted by iterating the algorithm.

3. Simulations on Drop Tower Data

The proposed algorithm was validated using an experimental high-rate dynamic dataset obtained from an accelerated drop
tower test [4]. Briefly, the setup, illustrated in Fig. 2(a), consists of an electronics package with four circuit boards mounted in
a canister on an accelerated drop tower. At each time step k, four accelerometers measure the vibration of the boards sampled
at 1 MHz. In this study, a single time series from accelerometer TS1 is used as the source domain, and five different time series
from accelerometer TS2 produced from five different tests are used for target domain prediction.
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Figure 2: (a) Drop tower experiment setup; and prediction performance metrics MAE (b) and RMSE (c).

A total of 5 RNNs are used. To investigate the performance of the proposed method (’PCA’), a comparison is made with
the case where the input parameters were selected through a grid search (GS) for one step-ahead prediction only, as done in
[5]. Prediction performance was assessed over the range of 1 to 20 steps-ahead using the mean absolute errors (MAE) and
root mean squared-error (RMSE) metrics. Results are plotted in Figs. 2(b-c). As expected, GS over-performed PCA over
small prediction ranges. However, PCA shows more stable performance over the larger prediction horizon, yielding better
performance after approximately 5 steps ahead, attributable to the extracted features enabling modeling of multi-resolution
dynamics. A typical prediction time history is presented in Fig. 3 for 14 steps ahead, where to allow visual interpretation



of results the algorithm is adapted after each 14 steps of prediction. Note that 1000 time steps is equivalent to 1 ms. A flat
section indicates a naive prediction where the algorithm reports the previously predicted value as the current prediction. At the
beginning of the prediction, both methods exhibit a naive behavior, but the PCA quickly improves its predictive performance
as observable in the chaotic event around 500 time steps and after the event passed 600 time steps.
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Figure 3: Comparison of prediction performance for 14 steps ahead.

4. Conclusion

In this paper, a new method for selecting the input space for an ensemble of RNNs was proposed, with the objective of enabling
multi step-ahead prediction for high-rate systems. The selection was conducted based on the embedding theorem conducted on
principal components representing the dynamics of the source domain. The performance of the proposed method was simulated
on a set of experimental data and compared to a grid search method of organizing inputs. Results showed that the proposed
method outperformed the grid search method for long prediction horizons.
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