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Abstract—Consider L users, who each holds private data, and
one fusion center who must compute a function of the private
data of the L users. To accomplish this task, each user can
make a single use of a public and noiseless broadcast channel.
In this setting, and in the absence of any additional resources
such as secure links, we study the optimal communication rates
and minimum information leakages on the private user data that
are achievable. Specifically, we study the information leakage of
the user data at the fusion center (beyond the knowledge of the
function output), as well as at predefined groups of colluding
users who eavesdrop one another. We derive the capacity region
when the user data is independent, and inner and outer regions
for the capacity region when the user data is correlated.

I. INTRODUCTION

In this paper, we consider a function computation setting

where the users do not have access to secure links to commu-

nicate among them but only to a public and noiseless broadcast

channel. This setting contrasts with traditional information-

theoretically secure multiparty computation settings, e.g., [2]

and references therein, where each pair of users has unlimited

access to an information-theoretically secure communication

link. Without this assumption, perfect information-theoretic se-

curity of user data is impossible to obtain for the computation

of arbitrary functions. In this context, our goal is to (i) un-

derstand the level of privacy that is attainable, i.e., quantify

the minimum information leakage on the private user data that

is achievable, and (ii) determine optimal communication rates

for the computation of arbitrary functions.

In our setting, we consider L users who each holds private

data, and one fusion center who must compute a function

of their data. Each user can send one message, i.e., an

encoded version of their data, over the public and noiseless

broadcast channel. We are then interested in characterizing

the optimal communication rates, as well as the minimum

information leakage on the private user data that is achievable.

We distinguish two types of information leakage. The first one

is the amount of information that the fusion center can learn

from the public communication about the user data, beyond

the knowledge of the function output. The second one is the

amount of information that a group of colluding users can

learn from the public communication about the data of all the

This work was supported in part by NSF grants CCF-2201824 and CCF-
2201825. Full proofs are available in [1].

other users. The private data of a given user is modeled by

a sequence of independent and identically distributed random

variables. We derive a capacity result when the data of the

users is independent, and inner and outer regions for the

capacity region when the data is correlated. We also derive

a capacity result for the fully decentralized case where a

designated user needs to compute the function instead of the

fusion center.

Note that in the absence of any privacy or security con-

straints, several variants of function computation have been

studied under the same model assumptions as in our setting,

namely, (i) the inputs of the function are sequences of in-

dependent and identically distributed random variables, and

(ii) communication links among users are noiseless, e.g., [3],

[4]. More advanced settings for function computation have

also considered interactive communication, e.g., [5]–[7]. Other

works, e.g., [8], [9], have considered settings related to mul-

tiparty computation but with the additional assumptions that

any pair of users can interactively communicate over secure

noiseless links, and the additional requirement that no user

data leakage is allowed. Specifically, [9] studies the minimum

amount of randomness needed at the users to perform secure

addition, and [8] studies optimal communication rates for

function computation among three users – full characterization

of such optimal communication rates have been established

for the computation of a few functions but remains an open

problem in general. Another line of work has focused on

function computation models when no user data leakage is

allowed but in the absence of secure links, e.g., [10], [11].

In such settings not all functions can be computed. Finally,

the closest setting to our model in this paper is function

computation with privacy constraints, which has also been

studied under assumptions (i) and (ii) in [12]. The main

differences between [12] and our work is that [12] focuses on

the computation of functions with three inputs and considers

a single external eavesdropper, whereas our model considers

computation of functions with an arbitrary number of inputs

and groups of colluding users eavesdrop one another.

II. PROBLEM STATEMENT

Consider L users indexed in L � �1, L�. Consider L finite

alphabets (Xl)l∈L and a probability distribution pXL defined
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Fig. 1. Function computation over a public and noiseless broadcast channel.
ML � (Ml)l∈L and F̂n is an estimate of Fn � (f(XL,i))i∈�1,n�.

over XL �×l∈L Xl with the notation XL � (Xl)l∈L. Con-

sider Xn
L distributed according to

∏n
i=1 pXL and the notation

Xn
L � (XL,i)i∈�1,n�. Assume that Xn

l corresponds to an input

available at User l ∈ L. For a function f : XL → F , define

F � f(XL), Fn � (f(XL,i))i∈�1,n�, and assume that this

function needs to be computed at a fusion center. Assume that

there is a public and noiseless broadcast channel from the users

to the fusion center. Finally, let A be an arbitrary and fixed set

of non-empty, possibly overlapping, subsets of users, such that

any set of colluding users A ∈ A is interested in learning the

inputs of the other users in Ac from the public communication.

For instance, if L = 3 and A � {{1, 2}, {2, 3}}, then Users 1
and 2 (resp. 2 and 3) could be interested in colluding to learn

information about the private data of User 3 (resp. 1). The

setting is depicted in Figure 1.

Definition 1. A ((2nRl)l∈L, n) computation scheme consists of
• L messages sets Ml � �1, 2nRl�, l ∈ L;
• L encoding functions el : Xn

l → Ml, l ∈ L;
• One decoding function d : ML → F;

and operates as follows:
• User l ∈ L forms Ml and sends it to the fusion center

over the public channel;
• The fusion center forms an estimate F̂n � d(ML) of Fn.

Definition 2. A tuple ((Rl)l∈L,Δ, (ΔA)A∈A) is achievable if
there exists a sequence of ((2nRl)l∈L, n) computation schemes
such that for any A ∈ A

lim
n→∞P[F̂n �= Fn] = 0, (1)

lim
n→∞

1

n
I(Xn

L;ML|Fn) � Δ, (2)

lim
n→∞

1

n
I(Xn

Ac ;ML|Xn
A) � ΔA, . (3)

The set of all achievable tuples ((Rl)l∈L,Δ, (ΔA)A∈A) is
denoted by C(A).

(1) means that the fusion center obtains Fn with a

small probability of error. (2) bounds the difference between

H(Xn
L|Fn) and H(Xn

L|MLFn), i.e., quantifies the leakage of

the inputs Xn
L at the fusion center through the public commu-

nication ML, when accounting for the fact that the fusion cen-

ter is supposed to learn Fn. Similarly, for A ∈ A, (3) bounds

the difference between H(Xn
Ac |Xn

A) and H(Xn
Ac |MLXn

A),
i.e., quantifies the leakage of the inputs Xn

Ac at the set of

colluding users A through the public communication ML,

when accounting for the fact that the set of colluding users

A has access to Xn
A.

Example 1. Suppose A = {{l} : l ∈ L}. Then, the users do
not collude but each user is curious about the inputs of all
the other users.

Example 2. Suppose A = ∅. Then, the users are not interested
in learning the inputs of the other users.

Example 3. Let E and O be the sets of even and odd indices in
L, respectively. Suppose A = {E ,O}. Then, the users with odd
(respectively even) indices are interested in colluding to learn
the inputs of the users with even (respectively odd) indices.

III. MAIN RESULTS

Theorem 1 (Converse). Let PO be the set of probability
distributions pULXL over UL × XL such that US − XS −
XL, ∀S ⊆ L, and H(F |UL) = 0. Next, define

O(A) �
⋃

pULXL∈PO
R(A, pULXL),

with R(A, pULXL)

� {((Rl)l∈L,Δ, (ΔA)A∈A) : ∀S ⊆ L, ∀A ∈ A,

RS � I(US ;XS |USc)− I(US ;USc |XS),
Δ � I(UL;XL|F ),

ΔA � I(XAc ;UAc |XA)}, (4)

where for S ⊆ L, RS �
∑

l∈S Rl, XS = (Xl)l∈S , and US =
(Ul)l∈S . Then, C(A) ⊆ O(A).

Proof. See Section V. �

Theorem 2 (Achievability). Let PI be the set of probability
distributions pULXL over UL × XL such that pULXL =
pXL

∏
l∈L pUl|Xl

and H(F |UL) = 0. Next, define

I(A) �
⋃

pULXL∈PI
R(A, pULXL),

where R(A, pULXL) is defined in (4). Then, C(A) ⊇ I(A).
Proof. See Section VI. �

Note that the condition pULXL = pXL
∏

l∈L pUl|Xl
in

Theorem 2 is more restrictive than the condition US −XS −
XL, ∀S ⊆ L in Theorem 1. There is thus a gap between the

achievability in Theorem 1 and the converse in Theorem 2.

However, as shown in Theorem 3, in the case of independent

inputs at the users, we tighten the converse to obtain the

capacity region and show the optimality of the coding strategy

in the proof of Theorem 2.
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Fig. 2. Function computation over a public and noiseless broadcast channel
with l0 = 1. ML∗ � (Ml)l∈L∗ is the overall public communication, with

L∗ � L\{1}, and F̂n is an estimate of Fn � (f(XL,i))i∈�1,n�.

Theorem 3 (Capacity region for independent inputs). Assume
that pXL =

∏
l∈L pXl

. Let P be the set of probability distribu-
tions pULXLQ = pQpXL

∏
l∈L pUl|XlQ over UL×XL×Q such

that H(F |ULQ) = 0, |Ul|� |Xl|, ∀l ∈ L, and |Q|� L+|A|+2.
Then, the capacity region is given by

C(A) =
⋃

pULXLQ∈P
T (A, pULXLQ),

with T (A, pULXLQ)

�{((Rl)l∈L,Δ, (ΔA)A∈A) : ∀l ∈ L, ∀A ∈ A,

Rl � I(Ul;Xl|Q),

Δ � I(UL;XL|FQ),

ΔA � I(XAc ;UAc |Q)}.

IV. VARIANT OF THE MODEL OF SECTION II

Consider the same notation as in Section II. Fix l0 ∈ L
and define L∗ � L\{l0}. For A ∈ A, define A∗ � A\{l0}
and Ac∗ � Ac\{l0}. We consider the following variant of the

setting of Section II as formalized in Definitions, 3, 4, and

depicted in Figure 2. In this variant, there is no fusion center

and a designated user (User l0) needs to compute a function

of all the users’ private data including its own. Note that the

model of Section II is not a special case of the model described

in this section because the condition (2) is not necessarily

present in this section.

Definition 3. A ((2nRl)l∈L∗ ,n) computation scheme consists of
• L− 1 messages sets Ml � �1, 2nRl�, l ∈ L∗;
• L− 1 encoding functions el : Xn

l → Ml, l ∈ L∗;
• One decoding function d : ML∗ ×Xn

l0
→ F;

and operates as follows:
• User l ∈ L∗ forms Ml and sends it over the public

channel;
• User l0 forms an estimate F̂n � d(ML∗ , Xn

l0
) of Fn.

Definition 4. A tuple ((Rl)l∈L∗ , (ΔA)A∈A) is achievable
if there exists a sequence of ((2nRl)l∈L∗ , n) computation
schemes such that for any A ∈ A

lim
n→∞P[F̂n �= Fn] = 0, (5)

lim
n→∞

1

n
I(Xn

Ac ;ML∗ |F̄nXn
A) � ΔA, , (6)

where F̄n �
{

Fn if l0 ∈ A
∅ if l0 /∈ A . The set of all achievable tuples

((Rl)l∈L, (ΔA)A∈A) is denoted by C(A, l0).
(5) means that User l0 can reconstruct Fn. For A ∈

A, (6) bounds the difference between H(Xn
Ac |F̄nXn

A) and

H(Xn
Ac |F̄nML∗Xn

A), i.e., quantifies the leakage of the inputs

Xn
Ac at the set of colluding users A through the public

communication ML∗ , when accounting for the fact that the

set of colluding users A has access to (Xn
A, F̄

n).

Theorem 4 (Capacity region for independent inputs). Assume
that pXL =

∏
l∈L pXl

. Let P be the set of probability distribu-
tions pUL∗XLQ = pQpXL

∏
l∈L∗ pUl|XlQ over UL∗ ×XL ×Q

such that H(F |UL∗Xl0Q) = 0, |Ul|� |Xl|, ∀l ∈ L∗, and
|Q|� L+ |A|. Then, the capacity region is given by

C(A, l0) =
⋃

pUL∗XLQ∈P
T (A, pUL∗XLQ), where

T (A, pUL∗XLQ)

� {((Rl)l∈L∗ , (ΔA)A∈A) : ∀l ∈ L∗,
Rl � I(Ul;Xl|Q),

ΔA � I(XAc ;UAc |FQXA), ∀A∈A, s.t. A	 l0

ΔA � I(XAc∗ ;UAc∗ |Q), ∀A∈A, s.t. A �	 l0}.
Example 4. Assume L = 2, l0 = 2, pX1X2

= pX1
pX2

, and
A = {{2}}. Let P be as in Theorem 4. Then,

C(A, l0) = {(R1,Δ{2}) : R1 � I(U∗
1 ;X1),

Δ{2} � I(U∗
1 ;X1)− I(F ;X1|X2)},

where I(U∗
1 ;X1) � minpU1X1

∈P I(U1;X1).

As we can see from this example, there is a linear rela-

tionship between communication rate R1 and leakage Δ{2}
as I(F ;X1|X2) is a constant term.

V. PROOF OF THEOREM 1

For l ∈ L and j ∈ �1, n�, we write Xj
l � (Xl,i)i∈�1,j�.

Then, for S ⊆ L, we have

RS
(a)

� 1

n

∑
l∈S

H(Ml)

� 1

n
I(MS ;Xn

S ) (7)

(b)
=

1

n

n∑
i=1

I(MS ;XS,i|Xi−1
S )

(c)
=

1

n

n∑
i=1

I(MSXi−1
S ;XS,i) (8)
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(d)
=

1

n

n∑
i=1

I(MSXi−1
L ;XS,i)

(e)
=

1

n

n∑
i=1

I(US,i;XS,i)

(f)
= I(US ;XS) (9)

= I(US ;XSUSc)− I(US ;USc |XS)
� I(US ;XS |USc)− I(US ;USc |XS),

where (a) holds by Definition 1, (b) holds by the chain

rule with the notation XS,i � (Xl,i)l∈S and Xi−1
S �

(Xi−1
l )l∈S , (c) holds by independence between Xi−1

S
and XS,i, (d) holds because I(Xi−1

Sc ;XS,i|MSXi−1
S ) �

I(Xi−1
Sc ;XS,iMS |Xi−1

S ) � I(Xi−1
Sc ;Xn

S |Xi−1
S ) = 0, (e)

holds with Ul,i � (Ml, X
i−1
L ) and the notation US,i �

(Ul,i)l∈S , (f) holds with Ul � (I, Ul,I) where I is uniformly

distributed over �1, n� and independent of all other random

variables. Next, using Fano’s inequality, the chain rule, the

data processing inequality, and the definition of Ul,i, l ∈ L,

i ∈ �1, n� one can show

o(n) = nH(F |UL). (10)

Next, by (2) we have

Δ � 1

n
I(Xn

L;ML|Fn)

=
1

n
I(Xn

L;ML) +
1

n
I(Xn

L;F
n|ML)− I(XL;F )

(a)
=

1

n
I(Xn

L;ML)− I(XL;F ) + o(1) (11)

(b)
= I(UL;XL)− I(XL;F ) + o(1)

= I(UL;XL|F ) + I(UL;F )− I(XL;F ) + o(1)

(c)
= I(UL;XL|F ) + o(1),

where (a) holds by Fano’s inequality and (1), (b) holds by

the steps between (7) and (9) by choosing S = L, (c) holds

because I(UL;F ) − I(XL;F ) = H(F |XL) − H(F |UL) =
−H(F |UL) = o(1) by (10).

Finally, by (3) we have for A ∈ A

ΔA � 1

n
I(Xn

Ac ;ML|Xn
A)

=
1

n
I(Xn

Ac ;MAc |Xn
A) (12)

(a)
=

1

n
I(Xn

Ac ;MAc)− 1

n
I(Xn

A;MAc)

(b)
= I(XAc ;UAc)− 1

n
I(Xn

A;MAc)

= I(XAc ;UAc)− 1

n

n∑
i=1

I(XA,i;MAc |Xi−1
A )

(c)
= I(XAc ;UAc)− 1

n

n∑
i=1

I(XA,i;MAcXi−1
A )

� I(XAc ;UAc)− 1

n

n∑
i=1

I(XA,i;MAcXi−1
L )

= I(XAc ;UAc)− 1

n

n∑
i=1

I(XA,i;UAc,i)

= I(XAc ;UAc)− I(XA;UAc)

(d)
= I(XAc ;UAc |XA),

where (a) holds because MAc − Xn
Ac − Xn

A, (b) holds

by the steps between (7) and (9) by choosing S = Ac,

(c) holds by independence between Xi−1
A and XA,i,

(d) holds because UAc − XAc − XA since for any

S ⊆ L, US − XS − XL forms a Markov chain because

for any i ∈ �1, n�, we have I(US,i;XL,i|XS,i) =
I(MSXi−1

L ;XL,i|XS,i) � I(Xn
SX

i−1
L ;XL,i|XS,i) = 0,

which implies 0 = I(US,I ;XL,I |XS,II) =
I(US,II;XL,I |XS,I) = I(US ;XL|XS).

VI. PROOF OF THEOREM 2

A. Reduction of the achievability of R(A, pULXL)

Lemma 1. Fix pULXL = pXL
∏

l∈L pUl|Xl
. Then, the set func-

tion gpULXL is normalized, non-decreasing, and supermodular,
where gpULXL : 2L → R,S 
→ I(US ;XL|USc).

Lemma 2. Fix pULXL = pXL
∏

l∈L pUl|Xl
. Then,

P(gpULXL ) �
{
(Rl)l∈L ∈ R

L
+ : RS � gpULXL (S), ∀S ⊆ L

}
associated with the function gpULXL defined in Lemma 1, is a
contrapolymatroid, and any point in P(gpULXL ) is dominated
by a point in the dominant face D(gpULXL ), where

D(gpULXL ) �
{
(Rl)l∈L ∈ P(gpULXL ) : RL = gpULXL (L)

}
.

Additionally, by denoting the symmetric group on L by
Sym(L), the dominant face has the following characterization:

D(gpULXL ) = Conv
({

(Cπ(l))l∈L : π ∈ Sym(L)
})

, (13)

with

Cπ(l) � I(Uπ(l);Xπ(l)|Uπ(1:l−1)), ∀π ∈ Sym(L), ∀l ∈ L,

where we used the notation π(i : j) � {π(k) : k ∈ �i, j�)}
for i, j ∈ L.

Lemma 3. Fix pULXL = pXL
∏

l∈L pUl|Xl
and define

ḡpULXL : 2L → R,S 
→ I(US ;XS |USc)− I(US ;USc |XS).

Then, ḡpULXL = gpULXL .

By Lemma 3, P(ḡpULXL ) = P(gpULXL ). Then, by

Lemma 2, to prove the achievability of P(gpULXL ), it is

sufficient to prove the achievability of the corner point

(I(Ul;Xl|U1:l−1))l∈L, as the other corners points can be

achieved similarly by relabelling the users and any point of the

dominant face can be achieved by time-sharing between the

corner points
{
(Cπ(l))l∈L : π ∈ Sym(L)

}
. Hence, since the

constraints in (2) and (3) are preserved under time sharing, the

achievability of ((I(Ul;Xl|U1:l−1))l∈L,Δ, (ΔA)A∈A), with

the notation (U1:l−1) � (U�1,l−1�), implies the achievability

of R(A, pULXL).

2022 IEEE International Symposium on Information Theory (ISIT)

1226Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on September 01,2022 at 15:50:45 UTC from IEEE Xplore.  Restrictions apply. 



B. Achievability of ((I(Ul;Xl|U1:l−1))l∈L,Δ, (ΔA)A∈A)

For n ∈ N, ε > 0, and a probability mass function pXY

defined over X × Y , denote the set of ε-typical n-sequences,

e.g., [3], [13], by T n
ε (pXY ), and define for yn ∈ Yn, the set

of conditionally ε-typical n-sequences by T n
ε (pXY |yn).

Codebook construction. For l ∈ L, consider Rl > 0 and

R̃l > 0 to be defined later in the coding scheme analysis.

Fix pULXL = pXL
∏

l∈L pUl|Xl
such that H(F |UL) = 0,

and construct a codebook C as follows. For each l ∈ L,

generate 2n
˜Rl independent sequences un

l (ωl), indexed by

ωl ∈ �1, 2n
˜Rl�, according to

∏n
i=1 pUl

, and partition the 2n
˜Rl

indices into 2nRl equal-size bins indexed by ml ∈ �1, 2nRl�.

Fix (εl)l∈�0,L� a strictly increasing sequence in R
L+1
>0 .

Encoding at User l ∈ L: Find ωl ∈ �1, 2n
˜Rl� such that

(xn
l , u

n
l (ωl)) ∈ T n

ε0 (pXlUl
) and send the corresponding bin

number ml over the public channel. If multiple sequences are

found, then choose one at random, and if none are found, then

choose ml uniformly at random over �1, 2n
˜Rl�.

Decoding: For l from 1 to L, find the unique ω̂l with bin

number ml such that un
1:l(ω̂1:l) ∈ T n

εL(pU1:l
) – if no such index

exists, then return an error. Note that since H(F |UL) = 0,

there exists a deterministic function F̃ such that F̃ (uL) =
F (xL), for all (uL, xL) such that p(uL, xL) > 0. Then, the

decoder computes F̂n � F̃ (un
L(ω̂L)).

C. Coding scheme analysis

Error probability and rates: First, one can show that

P[{(Un
1:L(Ω1:L), X

n
L) /∈ T n

εL(pU1:LXL)}]
n→∞−−−−→ 0 (14)

by choosing

R̃l � I(Ul;Xl) + δ(εl−1), ∀l ∈ L. (15)

Then, by (14) and by choosing

Rl > R̃l − I(Ul;U1:l−1) + δl(εL), ∀l ∈ L (16)

for some δl(εL) such that limεL→0 δl(εL) = 0, one can show

that P[F̂n �= Fn]
n→∞−−−−→ 0, and by (15), (16). Finally, by the

Markov chain Ul −Xl − U1:l−1, we have

Rl > I(Ul;Xl|U1:l−1) + δ(εl−1) + δl(εL). (17)

Leakage at the fusion center: We have

1

n
I(Xn

L;ML|FnC)
(a)

� 1

n

∑
l∈L

H(Ml) + o(1)− I(XL;F )

(b)

�
∑
l∈L

I(Ul;Xl|U1:l−1) + o(1)− I(XL;F )

(c)
=

∑
l∈L

I(Ul;XL|U1:l−1) + o(1)− I(XL;F )

= I(UL;XL) + o(1)− I(XL;F )

(d)
= I(UL;XL|F ) + o(1),

where (a) can be obtained with Fano’s inequality, (b) holds

by (17), (c) holds because Ul − (Xl, U1:l−1) − XL\{l}, (d)
holds because H(XL|UL) = H(XLF |UL) = H(XL|FUL)+
H(F |UL) = H(XL|FUL).

Leakage at colluding users in A ∈ A: Define Υ �
1{(Un

L(ΩL), Xn
L) ∈ T n

εL(pULXL)}. We have

1

n
I(Xn

Ac ;ML|Xn
AC)

� 1

n
I(Xn

Ac ;MLUn
L(ΩL)|Xn

AC)

=
1

n
I(Xn

Ac ;Un
L(ΩL)|Xn

AC)
= H(XAc |XA)−H(Xn

Ac |Un
L(ΩL)Xn

AC)
(b)

� H(XAc |XA)− P[Υ = 1]H(Xn
Ac |Un

L(ΩL)Xn
AC,Υ = 1)

n→∞,εL→0−−−−−−−−→ −H(UAc |XAc) +H(UAc |XA)
= I(UAc ;XAc |XA),

where (a) holds because conditioning reduces entropy, and the

limit holds by (14) and because for (un
L, x

n
L) ∈ T n

εL(pULXL)

p(xn
Ac |un

L, x
n
A) =

p(xn
L)p(u

n
L|xn

L)
p(xn

A)p(u
n
A|xn

A)p(u
n
Ac |xn

Au
n
A)

(b)
=

p(xn
Ac |xn

A)
∏

l∈Ac p(un
l |xn

l )

p(un
Ac |xn

Au
n
A)

(c)
=

p(xn
Ac |xn

A)p(u
n
Ac |xn

Ac)

p(un
Ac |xn

A)
(d)

� 2−n(H(XAc |XA)+H(UAc |XAc )−2δ(εL))

× (1− εL)
−12n(H(UAc |XA)+δ(εL)),

where (b) holds because for any l ∈ L, Un
l (Ωl) − Xn

l −
(Xn

L\{l}, U
n
L\{l}(ΩL\{l})), (c) holds because Un

Ac(ΩAc) −
Xn

A − Un
A(ΩA) forms a Markov chain, (d) holds for

some δ(εL) such that limεL→0 δ(εL) = 0 because

p(xn
Ac |xn

A) � 2−n(H(XAc |XA)−δ(εL)) from the proper-

ties of typical sequences since xn
L ∈ T n

εL(pXL) ,

and p(un
Ac |xn

A) � (1 − εL)2
−n(H(UAc |XA)+δ(εL)) and

p(un
Ac |xn

Ac) � 2−n(H(UAc |XAc )−δ(εL)), which is obtained us-

ing that (un
L, x

n
L) ∈ T n

εL(pULXL) similar to [13, Lemma 12.3].

VII. CONCLUDING REMARKS

We considered a function computation setting among multi-

ple users where only a public and noiseless broadcast channel

is available to the users. We focused on studying optimal

communication and information leakage rates on the private

user data for two models. In the first one, a fusion center needs

to compute a function of the private user data. In the second

one, there is no fusion center and a specific user must compute

a function of the private data of all the users, including theirs.

For both settings, we derived a capacity region when the data

of the users is independent. We derived inner and outer regions

for the capacity region of the first setting when the data of the

users is correlated. We note that such inner and outer regions

can also be derived for the capacity region of the second setting

and are not reported here.
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