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Abstract—Consider L users, who each holds private data, and
one fusion center who must compute a function of the private
data of the L users. To accomplish this task, each user can
make a single use of a public and noiseless broadcast channel.
In this setting, and in the absence of any additional resources
such as secure links, we study the optimal communication rates
and minimum information leakages on the private user data that
are achievable. Specifically, we study the information leakage of
the user data at the fusion center (beyond the knowledge of the
function output), as well as at predefined groups of colluding
users who eavesdrop one another. We derive the capacity region
when the user data is independent, and inner and outer regions
for the capacity region when the user data is correlated.

I. INTRODUCTION

In this paper, we consider a function computation setting
where the users do not have access to secure links to commu-
nicate among them but only to a public and noiseless broadcast
channel. This setting contrasts with traditional information-
theoretically secure multiparty computation settings, e.g., [2]
and references therein, where each pair of users has unlimited
access to an information-theoretically secure communication
link. Without this assumption, perfect information-theoretic se-
curity of user data is impossible to obtain for the computation
of arbitrary functions. In this context, our goal is to (i) un-
derstand the level of privacy that is attainable, i.e., quantify
the minimum information leakage on the private user data that
is achievable, and (ii) determine optimal communication rates
for the computation of arbitrary functions.

In our setting, we consider L users who each holds private
data, and one fusion center who must compute a function
of their data. Each user can send one message, i.e., an
encoded version of their data, over the public and noiseless
broadcast channel. We are then interested in characterizing
the optimal communication rates, as well as the minimum
information leakage on the private user data that is achievable.
We distinguish two types of information leakage. The first one
is the amount of information that the fusion center can learn
from the public communication about the user data, beyond
the knowledge of the function output. The second one is the
amount of information that a group of colluding users can
learn from the public communication about the data of all the
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other users. The private data of a given user is modeled by
a sequence of independent and identically distributed random
variables. We derive a capacity result when the data of the
users is independent, and inner and outer regions for the
capacity region when the data is correlated. We also derive
a capacity result for the fully decentralized case where a
designated user needs to compute the function instead of the
fusion center.

Note that in the absence of any privacy or security con-
straints, several variants of function computation have been
studied under the same model assumptions as in our setting,
namely, (i) the inputs of the function are sequences of in-
dependent and identically distributed random variables, and
(i) communication links among users are noiseless, e.g., [3],
[4]. More advanced settings for function computation have
also considered interactive communication, e.g., [S]-[7]. Other
works, e.g., [8], [9], have considered settings related to mul-
tiparty computation but with the additional assumptions that
any pair of users can interactively communicate over secure
noiseless links, and the additional requirement that no user
data leakage is allowed. Specifically, [9] studies the minimum
amount of randomness needed at the users to perform secure
addition, and [8] studies optimal communication rates for
function computation among three users — full characterization
of such optimal communication rates have been established
for the computation of a few functions but remains an open
problem in general. Another line of work has focused on
function computation models when no user data leakage is
allowed but in the absence of secure links, e.g., [10], [11].
In such settings not all functions can be computed. Finally,
the closest setting to our model in this paper is function
computation with privacy constraints, which has also been
studied under assumptions (i) and (ii) in [12]. The main
differences between [12] and our work is that [12] focuses on
the computation of functions with three inputs and considers
a single external eavesdropper, whereas our model considers
computation of functions with an arbitrary number of inputs
and groups of colluding users eavesdrop one another.

II. PROBLEM STATEMENT

Consider L users indexed in £ = [1, L]. Consider L finite
alphabets (X);cc and a probability distribution px,. defined
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Fig. 1. Function computation over a public and noiseless broadcast channel.
M, e (Ml)lell and F™ is an estimate of F™ £ (f(XE,i))ieﬂl,nﬂ'

over X, 2 X, A with the notation X £ (X))1ec. Con-
sider X7 distributed according to [[_, px, and the notation
X} e (X£.i)ie1,n]- Assume that X' corresponds to an input
available at User [ € L. For a function f : Xy — F, define
F £ f(Xz), F" £ (f(X,,i))ie[1,n]> and assume that this
function needs to be computed at a fusion center. Assume that
there is a public and noiseless broadcast channel from the users
to the fusion center. Finally, let A be an arbitrary and fixed set
of non-empty, possibly overlapping, subsets of users, such that
any set of colluding users A € A is interested in learning the
inputs of the other users in A from the public communication.
For instance, if L = 3 and A = {{1,2},{2,3}}, then Users 1
and 2 (resp. 2 and 3) could be interested in colluding to learn
information about the private data of User 3 (resp. 1). The
setting is depicted in Figure 1.

Definition 1. A ((2"%1),c ., n) computation scheme consists of
o L messages sets M; = [1,2"14], [ € L;
o L encoding functions e; : X" — M, l € L;
o One decoding function d : My — F;
and operates as follows:
o User | € L forms M; and sends it to the fusion center

over the public channel; N
o The fusion center forms an estimate F™ = d(M) of F".

Definition 2. A tuple ((R})icc, A, (A a) aen) is achievable if
there exists a sequence of ((2"%),c,n) computation schemes
such that for any A € A

lim P[F"™ # F"] =0, (1)
n—oo
1
lim —1(X2 M |F™) < A, 2
n—oo N
1
3 - nc, n g .
Jim. nI(XA s M| X)) < Aa, 3)

The set of all achievable tuples ((R})icc, A, (Aa)acn) is
denoted by C(A).

(1) means that the fusion center obtains F" with a
small probability of error. (2) bounds the difference between
H(X}?|F™) and H(X}|MF™), i.e., quantifies the leakage of
the inputs X7 at the fusion center through the public commu-
nication M, when accounting for the fact that the fusion cen-
ter is supposed to learn F. Similarly, for A € A, (3) bounds
the difference between H(X7.|X";) and H(X%.|M X"),
i.e., quantifies the leakage of the inputs X'j. at the set of
colluding users A through the public communication M,
when accounting for the fact that the set of colluding users
A has access to X'j.

Example 1. Suppose A = {{l} : 1 € L}. Then, the users do
not collude but each user is curious about the inputs of all
the other users.

Example 2. Suppose A = (. Then, the users are not interested
in learning the inputs of the other users.

Example 3. Let £ and O be the sets of even and odd indices in

L, respectively. Suppose A = {E, O}. Then, the users with odd

(respectively even) indices are interested in colluding to learn

the inputs of the users with even (respectively odd) indices.
IIT. MAIN RESULTS

Theorem 1 (Converse). Let P© be the set of probability
distributions py,x, over Up x Xg such that Us — Xs —
X,VS C L, and H(F|U;) = 0. Next, define

omn)2 | RApux)
pu,x, EPO

with R(A, pu,.x,)

2 {((R)iec,A, (Aa)aen) 1 VS C LVA € A,
Rs > I(Us; Xs|Use) — I[(Us; Use| X s),
AZI(Ug; Xc|F),
Ax > I(Xac;Unc|Xa)}, 4)
where for S C L, Rs = Yies B, Xs = (Xi)ies, and Us =
(Ui)ies- Then, C(A) C O(A).
Proof. See Section V. [

Theorem 2 (Achievability). Let PL be the set of probability
distributions py,x,. over Up x Xp such that py,.x, =
px. [ Liep Pux, and H(F|Uz) = 0. Next, define

U R(A7pUgXC)7
pU.x, EPT
where R(A, pu,.x,) is defined in (4). Then, C(A) D Z(A).
Proof. See Section VI. [

INE

Note that the condition py,x, = px.[l;c,Pu,x, in
Theorem 2 is more restrictive than the condition Us — Xg —
X,,¥S C L in Theorem 1. There is thus a gap between the
achievability in Theorem 1| and the converse in Theorem 2.
However, as shown in Theorem 3, in the case of independent
inputs at the users, we tighten the converse to obtain the
capacity region and show the optimality of the coding strategy
in the proof of Theorem 2.
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Fig. 2. Function computation over a public and noiseless broadcast channel
with o = 1. M« % (M))1ec+ is the overall public communication, with
L£* £ £\{1}, and F™ is an estimate of F™ £ (F(Xz,4))ie[in]-

Theorem 3 (Capacity region for independent inputs). Assume
that px, = [l,c, px,. Let P be the set of probability distribu-

HONS PU,.X.Q = PQPX . Hzec Pu,|x,Q over Up x Xp X Q such
that H(F|U-Q) = 0, |[U|< |X|, V1 € L, and |Q|< L+ |A|+2.

Then, the capacity region is given by
ca)= U Tl puoxeq)

PU,x,.QEP

with T (A, pu,x,.0)
SL((R)iecsA, (Aa)aen) s VI € LVAE A,
R > I(Ui; Xi|Q),
AZI(Ug; Xc|FQ),
Aa > 1(Xae;Unc|Q)}.
IV. VARIANT OF THE MODEL OF SECTION II

Consider the same notation as in Section II. Fix [y € £
and define £* = L\{ly}. For A € A, define A* = A\{lp}
and A% £ A°\{lo}. We consider the following variant of the
setting of Section II as formalized in Definitions, 3, 4, and
depicted in Figure 2. In this variant, there is no fusion center
and a designated user (User [y) needs to compute a function
of all the users’ private data including its own. Note that the
model of Section II is not a special case of the model described
in this section because the condition (2) is not necessarily
present in this section.

Definition 3. A (27%4),c 0+ ,n) computation scheme consists of
o L — 1 messages sets M, = [1,2"F], | € £*;
o L —1 encoding functions e; : X' — M, | € L*;
e One decoding function d : Mg~ x X" — F;
and operates as follows:
o User | € L* forms M; and sends it over the public

channel; N
o User ly forms an estimate ™ = d(Mg«, X7!) of F™.

Definition 4. A mple ((Ry)icc+, (Aa)aca) is achievable
if there exists a sequence of ((2"F)jcr+,n) computation
schemes such that for any A € A

lim P[E" # F™] =0, (5)
: 1 n . n Yy n
_ F”L 7
where ™ 2 lf bo A. The set of all achievable tuples
0 iflo¢ A

((Ri)iec, (AA)aeca) is denoted by C(A,lp).

(5) means that User [y can reconstruct F". For A €
A, (6) bounds the difference between H(X'{.|F"X}) and
H(X.|F"Mg-X'), i.e., quantifies the leakage of the inputs
X'} at the set of colluding users A through the public
communication M«, when accounting for the fact that the
set of colluding users A has access to (X'}, F™).

Theorem 4 (Capacity region for independent inputs). Assume
that px, = [],c . px,. Let P be the set of probability distribu-

tions pu,. x.qQ = PQPx, [ l1cr- Puix,0 over Upx x Xp x Q
such that H(F|Uz-X,Q) = 0, [U|< |X|, VI € L* and

|Q|< L + |Al. Then, the capacity region is given by

ca)= |J

PUf x,.Q€EP

T(A, pu,.x.q), where

T(A7pUL* XLQ)
£ {((R)iec+

—~

AA)AEA) 1Vl e E*,

Ry = I(Uy; X4|Q),
Ap 2 I(Xac; Upe| FQX 4),YAEA, 5.1 AS1y
AA = I(X_AC*,U_AL* Q),VAGA,S.L A % lo}

Example 4. Assume L = 2, lp = 2, px,x, = Px,Px,, and
A = {{2}}. Let P be as in Theorem 4. Then,
C(Alp) = {(R1,Aq2y) : Ry > I(U]; Xy),
Aoy 2 I(U7; X1) — I(F; X1|X2)},
where 1(Uf; X1) £ miny,,  ep I(U; X1).
As we can see from this example, there is a linear rela-

tionship between communication rate R; and leakage Aoy
as I(F; X1]|X5) is a constant term.

V. PROOF OF THEOREM 1

For [ € £ and j € [1,n], we write le £ (Xii)ien
Then, for S C L, we have

a1

(a) 1
Rs > *ZH(Mz)
s

1
> QI(M&XYSL) (N

(b)ln i—1
= — I(Ms:; Xs | X
=" 1(Ms; Xsal X5

i=1

1 -
= - S I(MsX5 s Xs.) (8)
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I(MsXi' Xs)

II=
3=
i-

Q
Il
-

I(Us,i; Xs,i)

N
Il
-

=
Sy

—~
)
—

I(Us; Xs)
( SyXSUS")_I(US;USc|X5)
(US7XS|USC) - I(Us; USC|X8)7

5

€))

where (a) holds by Definition 1, (b) holds by the chain
rule with the notation Xg 2 (X1i)ies and Xg_l £
(X "ies, (¢) holds by independence between X5 !
and XSZ, (d) holds because I(XSC ,XSZ|M3X§ D)
1055 Xs Ms|X5 ) < I(X5 G XEXEY = o, (
holds with U ; £ (Ml,XZ 1) and the notation Us;
(Upi)ies» (f) holds with U; = (I,U; ;) where I is uniformly
distributed over [1,n] and independent of all other random
variables. Next, using Fano’s inequality, the chain rule, the
data processing inequality, and the definition of U, | € L,
i € [1,n] one can show

> //\

o(n) =nH(F|Ug). (10)
Next, by (2) we have
A > I(XE: M |F™)
n
1 1
= EI(XZ;ML) + EI(XZ;F"|M£) — (X F)
a) 1
@ —I(X}: Me) = I(Xe5 F) + o(1) (an
(®
& I(Ug: Xe) ~ I(Xe: F) + (1)
=1(Ug; Xc|F) + 1(Ug; F) = I(Xg; F) 4+ o(1)

C

I(Ug; Xc|F) +o(1),

where (a) holds by Fano’s inequality and (1), (b) holds by
the steps between (7) and (9) by choosing S = L, (¢) holds

because I(Up; F) — I(Xp; F) = H(F| X)) — H(F|Uz) =
—H(F|Uz) = o(1) by (10).
Finally, by (3) we have for A € A
Ay > %I(XAC,MAXA)
%I(XAL,MAL\XA) (12)
(@ %I(XAC, M) — %I(X”;MAC)

b 1 "

—
=

1 & i
= I(Xae;Unc) =~ D I(Xag Mae| X
i=1

1 & i
I(X 4e;Uge) — gZI(XA,Z-;MACXA D)

i=1

1 & .
I(XasiUns) =~ S I(Xuis Mac X

i=1

IS

1 n

— I(Xae:Upe) — =S I(X45:Use s

(Xae; Uac) n;(%\, Ac i)
=1(Xae;Uae) = 1(Xa;Uae)
(4)
= I(Xae; Une| X a),
where (a) holds because My — X7 — X7, (b) holds
by the steps between (7) and (9) by choosing & = AS,
(¢) holds by independence between Xf[l and X 4,
(d) holds because Uge — Xy — X4 since for any
S C L, Us — Xs — X, forms a Markov chain because
for any i € [1,n], we have I(Us;;X,ilXs)
I(MsXp ' XeilXs) < I(X2XE ' XeilXs) =
which  implies 0 = IUs 1; Xz 1| Xs.11)
I(Us,1I; X 1| Xs 1) = I(Us; X | Xs).

=

VI. PROOF OF THEOREM 2

A. Reduction of the achievability of R(A, pu,x,)

Lemma 1. Fix py,x, = px. [l,c, Pu|x,- Then, the set func-
tion gy, . . is normalized, non-decreasing, and supermodular,
where gy, . 128 5 R, S I(Us; Xz |Use).

Lemma 2. Fix py.x, = px. [l,c Pu|x,- Then,

P(gpu,x,) = {(Rl)lea €RL : Rs > gy, x, (S),VS C ,c}

associated with the function gy, . defined in Lemma 1, is a
contrapolymatroid, and any point in P(gp,, Xc) is dominated
by a point in the dominant face D(gp% Xj, where

D(gpuex,) 2 {(Ridier € Plgp, ) Re = Gy (L)} -

Additionally, by denoting the symmetric group on L by
Sym(L), the dominant face has the following characterization:

D(9py, x,) = Conv ({(Cﬂ(l))leg iTE Sym(L)}) ;o (13)
with

Crty £ I(Ur); Xy |Un(1:0-1), V7 € Sym(L), VI € L,
where we used the notation w(i : j) = {m(k) : k € [i,j])}
fori,j € L.
Lemma 3. Fix py.x, = px, [l,c, Pu,|x, and define

Opu,x, 25 = RS I(Us; Xs|Use) — I(Us; Use| Xs).

Then, Jpu,x, = Ipupx,p-

By Lemma 3, P(gp,,,) = P(gpy,x,). Then, by

Lemma 2, to prove the achievability of P(gp,, ), it is
sufficient to prove the achievability of the corner point
(I(Uy; X3)U1.1-1))iec, as the other corners points can be
achieved similarly by relabelling the users and any point of the
dominant face can be achieved by time-sharing between the
corner points { ())iec : ™ € Sym( )} Hence, since the
constraints in (2) and (3) are preserved under time sharing, the
achievability of (( (Ul,Xl|U11 1))l€£7A (A.A).AGA) with
the notation (Uy;i—1) £ (Up1,—17), implies the achievability
of R(A7pULXL)'
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B. Achievability Of ((I(Ul; X1|U1;l,1))leg, A, (A.A).AEA)

For n € N, € > 0, and a probability mass function pxy
defined over X x )/, denote the set of e-typical n-sequences,
e.g., [3], [13], by 7" (pxy), and define for y™ € V", the set
of conditionally e-typical n-sequences by 7" (pxv|y™).
__Codebook construction. For [ € L, consider R; > 0 and
R; > 0 to be defined later in the coding scheme analysis.
Fix pu.x, = px, HZELPUHXL such that H(F|UL) =0,
and construct a codebook C as follows. For each [ € L,
generate 2" independent sequences uj'(w;), indexed by
wy € [1,2"7], according to [}, pu,, and partition the 2™%
indices into 2" equal-size bins indexed by m; € [1,2"%].
Fix (El)le[[o, ] a strictly increasing sequence in Rggl.

Encoding at User [ € £: Find w; € [1,2"] such that
(27, ui(wr)) € To(px,u,) and send the corresponding bin
number m; over the public channel. If multiple sequences are
found, then choose one at random, and if none are found, then
choose m, uniformly at random over [1,2"f].

Decoding: For [ from 1 to L, find the unique @; with bin
number m; such that uf,; (@1.) € 7.7 (pu,.,) — if no such index
exists, then return an error. Note that since H(F|Uz) = 0,
there exists a deterministic function F such that F(u;) =

F(xzr), for all (uc,xg) such that p(uz,zz) > 0. Then, the
decoder computes F™ £ F(u'(&r)).

C. Coding scheme analysis

Error probability and rates: First, one can show that

P{(ULL(Q1:0), X2) ¢ T2 (o x )] =20 (14)
by choosing
Ry 2 I(Ui; X)) + 6(e-1), VI € L. (15)
Then, by (14) and by choosing
Ry > Ry — I(Uj;Uy—1) + 0y(eL), VI € L (16)

for some 0;(er,) such that lim,, 0 d;(e,) = 0, one can show
n— o0

that IE”[F” £ F"] —> 0, and by (15), (16). Finally, by the
Markov chain U; — — Ujy.;—1, we have
Ry >I(UI;X1|U1:1_1)+5(61_1)+51(6L). (17)
Leakage at the fusion center: We have
(X Mel )

()1

ZH Ml I(X[j,F)
"iec
b)
< ZI(U”XllUl:lfl) +o(1) = I(X,; F)
lec
2 ZI(UUXAUM—O +o(1) = I(Xz; F)
lec
=1(Ug; Xz) +o(1) — (X F)

d
D LU X2 |F) + 0(1),

where (a) can be obtained with Fano’s inequality, (b) holds
by (17), (c) holds because U; — (X;,U14-1) — Xr\q13» (d)
holds because H(X|U;) = H(X F|U;) = H(X|FU;) +
H(F|U) = H(X.|FU.).

Leakage at colluding users in A € A: Define T £
L{(UZ£(Qr), X7) € T} (pusx, )} We have

1
S 1(X s M| X50)
n

1
S I(XGes MU (Q2)1X4C)

1 n n n
= EI(XAc; Ur(Qc)|X%0)
= H(X4e|Xa) — H(X}|UZ(Q2)X5C)
H(Xac|X4) — P[T = 1H (X7 |U(Q0) XUC, T = 1)

n—o0,er, —0

_H(UAC|XAC) —+ H(UAC
=T(Uge; Xae| X a),

X4)

where (a) holds because conditioning reduces entropy, and the
limit holds by (14) and because for (u},2’:) € 7" (pu.x,)

p(a})p(up|z})
p()p(ul|z7)p(u’ye
®) P(&clel) [Tieae P(u
p(ue|zumy)
© P(@le|2)p(ulelae)
p(ulhe|2y)
(d)

< 2 HXae | X)+H(Uae | Xae)=20(er))

p(laelug, 2%) =

Thu)
rler)

|2

x (1— 6L)—lgﬂ(H(UAC\XA)‘f‘5(€L))7

where (b) holds because for any [ € £, U() — X' —
(X ﬁ\{l},Uﬁ\{l}(Qg\{l})) (c) holds because U’.(24c) —
% — U%(Q4) forms a Markov chain, (d) holds for
some 6(6L) such that lim., ,0d(e) = 0 because
platlzn) < 2 nHXaclX)=d(er) from the proper-
ties of typical sequences since z} € T'(px.) .
and p(uelz?) = (1 — en)2” n(H{U | X.A)+0(er)) and
p(ule|an.) < 27 HWUaclXae)=d(eL)) " which is obtained us-
ing that (u}, z}) € T} (pu,x ) similar to [13, Lemma 12.3].

VII. CONCLUDING REMARKS

We considered a function computation setting among multi-
ple users where only a public and noiseless broadcast channel
is available to the users. We focused on studying optimal
communication and information leakage rates on the private
user data for two models. In the first one, a fusion center needs
to compute a function of the private user data. In the second
one, there is no fusion center and a specific user must compute
a function of the private data of all the users, including theirs.
For both settings, we derived a capacity region when the data
of the users is independent. We derived inner and outer regions
for the capacity region of the first setting when the data of the
users is correlated. We note that such inner and outer regions
can also be derived for the capacity region of the second setting
and are not reported here.
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2022 IEEE International Symposium on Information Theory (ISIT)

REFERENCES

[11 R. A. Chou and J. Kliewer, “Function computation without secure links:
Information and leakage rates,” arXiv preprint arXiv:2201.11891, 2022.

[2] R. Cramer, I. Damgard, and J. Nielsen, Secure Multiparty Computation.
Cambridge University Press, 2015.
[3] A. Orlitsky and J. Roche, “Coding for computing,” IEEE Transactions

on Information Theory, vol. 47, no. 3, pp. 903-917, 2001.

[4] M. Sefidgaran and A. Tchamkerten, “Distributed function computation
over a rooted directed tree,” IEEE Transactions on Information Theory,
vol. 62, no. 12, pp. 7135-7152, 2016.

[5] N. Ma and P. Ishwar, “Some results on distributed source coding for
interactive function computation,” IEEE Transactions on Information
Theory, vol. 57, no. 9, pp. 6180-6195, 2011.

[6] N. Ma, P. Ishwar, and P. Gupta, “Interactive source coding for function
computation in collocated networks,” IEEE Transactions on Information
Theory, vol. 58, no. 7, pp. 4289-4305, 2012.

[71 N. Ma and P. Ishwar, “The infinite-message limit of two-terminal
interactive source coding,” IEEE Transactions on Information Theory,
vol. 59, no. 7, pp. 40714094, 2013.

[8] D. Data, V. M. Prabhakaran, and M. M. Prabhakaran, “Communication
and randomness lower bounds for secure computation,” IEEE Transac-
tions on Information Theory, vol. 62, no. 7, pp. 3901-3929, 2016.

[9] E. J. Lee and E. Abbe, “Two Shannon-type problems on secure multi-
party computations,” in 52nd Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), 2014, pp. 1287-1293.

[10] D. Data, G. R. Kurri, J. Ravi, and V. M. Prabhakaran, “Interactive se-
cure function computation,” IEEE Transactions on Information Theory,
vol. 66, no. 9, pp. 5492-5521, 2020.

[11] H. Tyagi, P. Narayan, and P. Gupta, “When is a function securely
computable?” IEEE Transactions on Information Theory, vol. 57, no. 10,
pp. 6337-6350, 2011.

[12] W. Tu and L. Lai, “On function computation with privacy and secrecy
constraints,” IEEE Transactions on Information Theory, vol. 65, no. 10,
pp. 6716-6733, 2019.

[13] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge
University Press, 2011.

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Ddwdid&Bied on September 01,2022 at 15:50:45 UTC from IEEE Xplore. Restrictions apply.



