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HYPOTHESIS TESTING FOR BLOCK-STRUCTURED
CORRELATION FOR HIGH-DIMENSIONAL VARIABLES

Shurong Zheng!, Xuming He? and Jianhua Guo'

I Northeast Normal University and % University of Michigan

Abstract: Testing the independence or block independence of high-dimensional ran-
dom vectors is important in multivariate statistical analysis. Recent works on high-
dimensional block-independence tests aim to extend their validity beyond specific
distributions (e.g., Gaussian) or restrictive block sizes. In this paper, we propose
a new and powerful test for the block-structured correlation of high-dimensional
random vectors, for sparse or nonsparse alternatives, without strict distributional
assumptions. The statistical properties of the proposed test are developed under
the asymptotic regime that the dimension grows proportionally with the sample
size. Empirically, we find that the proposed test outperforms existing tests for a
variety of alternatives, and works quite well when there are few existing tests at our
disposal.

Key words and phrases: High-dimension, multivariate statistical analysis, non-
sparse alternatives, sparse alternatives, testing block-independence.

1. Introduction

Driven by a wide range of scientific applications, testing the independence
of random vectors is of great importance in multivariate statistical analysis. In
the conventional low-dimensional setting with p/n — 0, where p is the dimension
of the random vector and n is the sample size, complete and block indepen-
dence tests are well established. For complete independence, Anderson (2003)
proposed a likelihood ratio test (LRT) for Gaussian populations. For block in-
dependence, Wilks (1935) and Sugiura and Fujikoshi (1969) developed effective
LRTs for Gaussian populations and derived their asymptotic distributions under
regularity conditions.

In the high-dimensional setting, the classical LRT is invalid or cannot be
defined as the dimension p becomes greater than the sample size n. In recent
years, researchers have made great advances related to high-dimensional indepen-
dence tests. For complete independence, Bai et al. (2009) proposed a corrected
LRT when p/n — y € (0,1). Jiang and Yang (2013) studied the LRT when
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p/n — y € (0, 1]. Schott (2005) developed a test based on the Frobenius norm of
the sample correlation matrix for p > n. Zhou (2007) and Cai and Jiang (2011)
extended the results of Jiang (2004) to obtain the extreme distribution of coher-
ence of the sample correlation matrices. Li and Xue (2015) proposed a quadratic-
type statistic and an extreme-value-type statistic. For high-dimensional block
independence, Jiang, Bai and Zheng (2013) developed a corrected LRT and trace
test when p/n — y € (0,1). Jiang and Yang (2013) studied the LRT for Gaussian
populations when p/n — (0, 1]. Bao et al. (2017) proposed a Schott-type statistic
when the dimension of every block of random variables is less than the sample
size. Yamada, Hyodo and Nishiyama (2017) allowed a more general setting by
using the Frobenius norm of the sample covariance matrix. Paindaveine and
Verdebout (2016) proposed a high-dimensional sign test for the block-structured
correlation between the random variables of two blocks under appropriate sym-
metry assumptions.

This study develops a new and powerful test for the block-structured corre-
lation of a high-dimensional random vector, for sparse or nonsparse alternatives
and with no strict distributional assumptions, under the asymptotic regime of
p/n — y € (0,00). To this end, we propose a two-term test statistic. The first
term is Tj1 = tr[S,, — diag(S11,...,SkK)]?, where the sample covariance matrix
S,, is a natural estimator of the population covariance matrix, and the block-
diagonal matrix diag(Si1,...,SkK) is a population covariance matrix estimator
under a block-structured correlation. The statistic 7},; does not impose any con-
ditions on the dimension because it does not involve a matrix inversion. The
statistic Ty is the sum of the squared entries of S,, — diag(S11,...,SkK), and
captures the overall difference between S,, and diag(Sii,...,Skxk), even if the
individual entries of S,, —diag(S11,...,Skk) are small. That is, T),1, similarly to
the test of Yamada, Hyodo and Nishiyama (2017), has good power for nonsparse
alternatives. The second term is a screening term, T}, which is added to T;,; to
enhance the power under sparse alternatives. Thus, the proposed test statistic
To1 + Tho is effective for both nonsparse and sparse alternatives. To examine the
performance of the proposed test statistic, the limiting null distribution is derived
as p/n — y € (0,00), allowing y to be greater than one. Simulation studies show
that the type-I errors of the proposed test can be well maintained. Moreover,
under the alternative hypothesis, the limiting distribution of the proposed test is
discussed, and the asymptotic unbiasedness of the proposed test is proved. When
the dimension is smaller than the sample size, simulation studies are conducted
to compare our proposed test with existing tests for Gaussian populations. In
the empirical power comparison, our proposed test outperforms other tests de-
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signed for high dimensions. Even when the population is nonGaussian and the
dimension is greater than the sample size, our proposed test performs well.

The remainder of the paper is organized as follows. In Section 2, we propose
the test statistic, derive its limiting distribution under the null and alternative
hypotheses, and present the asymptotic power function to show that the proposed
test is asymptotically unbiased. In Section 3, we conduct simulation studies to
compare the proposed test with several existing tests. A real data set is analyzed
in Section 4 for illustration. Section 5 concludes the paper.

2. Test on Block-Structured Correlation

Let {xi,...,%,} be a random sample from the p-dimensional population
random vector x = (x1,... ,CL‘p)T with mean vector p and covariance matrix 3.
Let x =n"1>" x;and S, = (n — 1)1 30, (x; — X)(x; — X)" be the sample
mean and sample covariance matrix, respectively. Without loss of generality, the
random vector x = (z1,... ,:cp)T can be formulated using K random variable
blocks: {z1,....2p }, {Zpit1s- s Tpitpa b - - s {Tprtpotetpr 141y - s Tp}, Where
p =p1+ -+ pk, and K is permitted to increase with n at some rate. Let

3;j be the covariance matrix of the ¢th and jth random variable blocks. The
population and sample covariance matrices can be partitioned into 3 = <2ij)z‘Kj:1
and S, = (S;;)X

ij=1’
can be formulated as testing

respectively. Testing the block-structured correlation of x

H() Y = diag(EH, ey EKK)a (21)

where diag(X11, ..., X k) is the block-diagonal matrix from K blocks {3k, k =
1,...,K}. A natural estimator of ¥ is S,,. Under the null hypothesis, a natu-
ral estimator of X is diag(S11,...,Skk). For a Gaussian population, the LRT
statistic is Wilks (1935)

log |S,| — log |diag(S11, ..., SkK)|

which is the entropy loss of S, and diag(Sii1,...,Skx). The entropy loss for
the covariance matrix estimation can be found in James and Stein (1961) and
Muirhead (1982). Jiang, Bai and Zheng (2013) proposed the following trace test
statistic for the case of K = 2:

tr [(8111/28128221/2> (8111/28128221/2>T] ’
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which is the quadratic loss of S,, and diag(Si1,S22). The quadratic loss for
the covariance matrix estimation can be found in Olkin and Selliah (1977), Haff
(1980), and Muirhead (1982). For the block-structured correlation, regardless
of the entropy loss or quadratic loss for the covariance matrix estimation, the
inversion of a sample covariance matrix or log-determinant of Sgy is involved; as
a result, the block dimension cannot be larger than the sample size.

We propose a test statistic with two terms, where one term is the distance
between S,, and diag(Sii1,...,Skk), and the other term is a screening term.
Motivated by the Frobenius distance between matrices, we propose the following
statistic:

Ty = tr[S, — diag(S11,...,Skx)]*.

Note that the statistic T},1 as used in Yamada, Hyodo and Nishiyama (2017) is the
sum of the squared entries of S,, —diag(S11,...,Skk), which captures the overall
difference even when the individual entries of S,, — diag(S1; ,..., Sxx) are small
nonzero numbers. Therefore, the statistic 7)1 is not only suitable for low and
high dimensions, but is also expected to perform well for nonsparse alternatives.
Furthermore, to enhance the power of 7,,; when ¥ — diag(31,...,Xxxk) is very
sparse, a screening term T, is added to Tj,1. A similar idea is used in Fan, Liao
and Yao (2015). Let the screening term be

_ 2 )
T00 = D0 pmaxey rayeng 150y 00)? ey 1) 155 (mip))}

where d;y is an indicator function, s*(n,p) is a threshold depending on (n, p),
Sn = (S€1£2)§17£2:17 eelfz = n_l Z?:l[(xfli - jél)(l’gﬂ - jez) - 8£1€2]27 and the set

Ao ={(l1,02) : s €{pi1 +1,...,pi}, Le€{pj1+1,...,p;}, 1 <i<j< K},

(2.2)
with p; = p1+ - +pi, X3 = (Jili,. . .,:L‘pl')—r, Ty, = n~t Z?:l Ty, i, and Ty, =
n~13°" | @4, The screening term T, shows that if some s, 4, is sufficiently
large, then T}, is at least of order p?. Thus, the screening term T}y captures
the difference between S,, and diag(Si1,...,Skk), even when ¥ — diag(Zq1, ...,
Y kK) is very sparse. Our proposed test statistic is the sum of the two terms;
that is,

T, =T +Tho (23)

= tr[S,, — diag(S11, .. ., SKK)]2 +1025{max(21,Zg)eA0 n(se10,)2(Besey) -1 >5* (np)}

This is expected to perform well for both nonsparse and sparse alternatives. The
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conditions needed on the threshold s* are given later.
2.1. Limiting null distribution of T,

To facilitate the formulation, we use the following independent component
structure model for the data.

Assumption 1. Let {x;} | satisfy the independent component structure x; =
(14, - - - ,ajpi)T = p+ XV %w;, where w; = (wigy .- -, wm-)T, and all elements {wy; :
j=1,...,p, i = 1,...,n} are independent and identically distributed (i.i.d.)
with E(wj;) =0, E(w?z) =1, and finite fourth moments.

Remark 1. In fact, by (1.8) of Bai and Silverstein (2004), the existence of the
finite fourth moment of wj; implies that there exists a sequence {n,} satisfying
N — 0, npnt/* — 400, and 7];4Ew;1i5(‘wji|>nm/ﬁ) — 0.

Assumption 2. Assume that the number of blocks satisfies Kn2 = o(1). More-
over, the spectral norm of ¥ is bounded uniformly in p. The convergence regime
p/n —y € (0,00), for some constant y, is satisfied.

In Assumption 1, moment conditions are imposed that are distribution free.
For example, the Gaussian distribution and many other distributions readily sat-
isfy the independent component structure. In Assumption 2, K12 = o(1) allows
K to increase with n at some rate. In particular, for the Gaussian distribution,
we have

o B ) S T B 5,

_ O(n—(4+m)n—m/2) _ 0(1)’

n

for any even m, if ;2 = O(n™/(m+4)). Then, K can be of order o(n'~¢), for any
e > 0.

Lemma 1. Under Assumptions 1 and 2, and under Hy specified by (2.1), we
have

A~

T — T —
Tl N0,1) and T H 5 N(0, 1),
o 00

where
(n® = n— D[trS)* - 30, (rZp)?]
n(n —1)2 ’

(n? —n — 1)[(trS,)? = S (trSx)?]
n(n —1)2 ’

H:

o=
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K
02 = 4(n"Hrx?)? — 42(”_1“2%1@)27
k=1
K Pk
02 =02 +4n73 Z(trzkk —trX)? |2tr23, + Bu Z(e&EkkeM ,
k=1 (=1

Bw = E(w};) — 3.

Here, ey is a p-dimensional vector with the £th element equal to one and all other
elements equal to zero, and ey is a pr-dimensional vector with the £th element

equal to one and all other elements equal to zero.

Note that we have suppressed the subscript n in many of the quantities we
use, such as p and o2. The proof of Lemma 1 is provided in supplementary file
1. The asymptotic variance (70 depends on the unknown parameters tr(X?) and
tr(Ekk), for k=1,..., K. However,

(n —2) 7 [tr(S3,) — (n +2) " (trSke)?] — n Htr(T2,) = 0p(1), k=1,..., K,

which can be used to estimate 0(2); see the proof in supplementary file 1. Moreover,

under Hy, we have tr(X?) = Zle tr(X2,); thus,
K
(n—2)7") [tr(S3y) — (n+2) 7 (trSk)?] — ntr(B2) = op(1).
k=1

Therefore, 08 can be consistently estimated by

k=1

K 2
62 =4(n — 2)2{ Z[tr(Szk) —(n+ 2)1(trSkk)2]}

K
—4(n —2)7> [tr(Sy) — (n+2) 7 (trSe) ).
k=1

Bai and Saranadasa (1996) suggested a uniformly minimum variance unbiased
estimator of tr(X?) under the normality assumption, but we have used an asymp-
totic approximation with a finite-sample correction factor to better control type-I
errors. Let

py=p"—pi— - k. (2.4)
The following result provides the asymptotic justification for the proposed test.

Theorem 1. Under Assumptions 1 and 2, and under Hy specified by (2.1),
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i Tim it inf( ), varl(eri — By (o, — By lvax(ergvae(eng )2 > 0,
s*(n,p) — 4logpy — +00, and sup;<y<, Eexp(tolzn|™) < oo, for some con-
stants tg > 0 and 0 < mg < 2, then we have

6o (T, — 1) — N(0,1).

Note that T, has the same null distribution as 7},; in the asymptotic sense,
and the second term T}y plays a role mainly when the alternative hypothesis is
true. The one-sided rejection region for Hy at the nominal level « is

{Xl,...,Xn 2Ty — > OA’OQI*OZ}7 (25)

where ¢, is the ath quantile of the standard normal distribution.

Remark 2. To apply the proposed test in practice, we need to choose the thresh-
old s*(n,p). There are many choices for the threshold, as long as it satisfies
s*(n,p) — 4log pg — +00. For simplicity, in this paper, the threshold is taken to
be

s*(n,p) = [4 + (loglogn — 1)?](log po — 0.25loglog po) + q, (2.6)

where ¢ satisfies exp[—(87)"/2exp(—¢/2)] = 0.99. The threshold ensures that
even if n and pg are small, the probability of the event T,,0 = 0 is bounded by
0.01 under Hy, because maxy, ¢,)e A, n(se,0,)? é[jz —4log po +loglog pg converges
to a type-I extreme value distribution, exp[—(87)~/2 exp(—t/2)], under the null
hypothesis (see Xiao and Wu (2013)). The probability of the event T,,0 = 0 be-
comes negligible under Hy when either n or py is moderately large. For example,
if n = 200 and pg = 250, the relevant probability is only 0.002.

Remark 3. Our proposed hypothesis test (2.5) is a global test on correlations
between different blocks. If the null hypothesis is rejected, under the sparsity
assumption, we may use the multiple testing method of Cai and Liu (2016) to
identify individual nonzero correlations in two steps. Let

T, - L= (Tie = T)(@je = 7) (27)
\/ nél-j

where éij =n"! Z?Zl[(ww - fz‘)(mjé - i’j) - Sij]2'

*

Step 1: bootstrap procedure. Let {le, cee a:";n} be a sample drawn randomly
with replacement from {z;i,...,xj,}, for every j € {1,...,p}. Let xj =
(i ,x;‘;e)T, for £ = 1,...,n, and compute the bootstrap test statistic

T from x7,...,x5, as in (2.7). When the above bootstrap procedure is
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repeated N times, we have N bootstrap test statistics T;;-l, e 7T;3' - Let
5 N
an(t) = 722 Z I{|T| > t},
Npo 4
=1 (i,5)€ Ao

where A is given in (2.2).

Step 2: Large-scale correlation tests with bootstrap given in Cai and
Liu (2016). Let

t= inf{O <t < +/4logpy — 2log(log py) :

v (D32 <)
max{z(i,j)er I{’E]| 2 t}a 1} N .

If t does not exist, then let ¢ = \/4logpy. We reject Hy;; : 035 = 0 whenever
|EJ| > tAa for (Za]) S AO-

Remark 4. On the surface, it seems that we need the eighth moment of x; to
calculate the variance of T,;. In fact, Yamada, Hyodo and Nishiyama (2017)
require a finite eighth moment condition. However, our Lemma 1 and Theorem
2 require only the fourth moment of x;.

2.2. Limiting distribution of T,, under the alternative hypothesis

Next, we study the theoretical property of the proposed statistic 7;, under
the alternative hypothesis. Let the difference between the null hypothesis and
the alternative hypothesis be A = £2 — diag(X3,..., 2% ).

Theorem 2. Under Assumptions 1 and 2, we have
o7 (T — i — ) = N(0,1),

where p1 = (n? —n + 2)trA/(n — 1)? and

P
of =0 +4[2n "trA% + Bun? Z (ejAey)?|.
/=1
Here, e is a p-dimensional vector with the £th element equal to one and all other
elements equal to zero, and B, = waj - 3.

The asymptotic power function of T, is 1, (A) = P(T, — t > 60q1—-a)-
We have P(T, — i > 60q1-a) — [I — ®(07 (00q1-a — 111))] = o(1). Because



HYPOTHESIS TESTING FOR BLOCK-STRUCTURED CORRELATION 727

trA = tr¥? — YK try?, = D 1<k ko< T8k Dok, > 0, 1t is easy to see
that J% > 08 and p1 > 0. If the population covariance matrix departs from
the null hypothesis (in the sense that trA > ¢y > 0, for any positive constant
€), then o7 > ag and p; > 0. Under such an alternative hypothesis, we have

(00G1—a — 111)/01 < q1_q; that is,
ﬂTn(A) > .

Thus, the proposed test T,, is asymptotically unbiased. In fact, when n is suffi-
ciently large, 81, (A) is an increasing function of trA, where trA measures the
departure from the null hypothesis.

Theorem 3. Under Assumptions 1 and 2 and £? = diag(X?,,..., 2% ) + A,

(1) we have Br, (A) > a when n is sufficiently large; in particular, when trA >
€0 > 0, for any positive constant €y, we have Br, (A) > « for sufficiently
large n; and

(2) if trA tends to infinity or P(max(y, ¢,y a, n(se,0,)%(00,0,) "1 > 5*(n,p)) con-
verges to one, then we have fr, (A) — 1 as n — oo.

Theorem 3 shows that the proposed test T;, is asymptotically unbiased. If the
absolute value of at least one entry of A is greater than 4/ (logpglogn)/n, then
there exists (f1,0s) € Ag such that n(sge,)%(0e,e,)"" (s*(n,p))~" ~ clogn/log
logn converges to infinity in probability under the conditions of Theorem 1.
Thus, P(max (g, ¢,)c4, n(se,e,)?(0,0,)"" > s*(n,p)) — 1 holds by Remark 2, and
the power converges to one.

Remark 5. Support recovery of 3: Following the proof of Theorem 5 in Cali,
Liu and Xia (2013), under the conditions

p .
— =y € (0,4+00), min 6;;(040;;
n Y ( ) (i) Ao ii(0ii0j5)

E|(zj1 — Ezj1)(0j;) 2P < o, V1< j <p,

—1/2 > T,

for some ¢y > 0, € > 0, 7 > 0, with the set Ay defined in (2.2), we have

liminf P(¥ = ) — 1,
YeW,

where

Y {(Z,]) 1045 75 0, (Z,j) S Ao},
U = {(5,7) : n(sij — 045)*(Bi5) "' > 4log po, (4, 7) € Ao},
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Woz{z: min n2]oy|(05)2 > 4 logpo,u,j)er},
(3,7)€V

with ¥ = (dij)f’j:l and p2 = p*> — p? — -+ — p% given in (2.4).

3. Simulation Studies

In this section, we evaluate the finite-sample performance of the proposed
test in terms of its type-I error rates and power. Because the proposed test
uses the Frobenius distance between the covariance matrices, we denote it as
FDS. The test proposed by Paindaveine and Verdebout (2016) was developed for
variables with mean zero. When applied to the centered variables (by removing
the sample mean) in high dimensions, the test has seriously inflated type-I errors;
therefore, we exclude it from the comparisons. The test used by Jiang, Bai and
Zheng (2013) is the same as the test of Bao et al. (2017) when K = 2, but has
slightly poorer performance when K = 3; thus, we include the latter test only.
The following three competing tests are used in our comparisons:

e “CLRT”: the test of Jiang and Yang (2013);
o “BHPZ”: the test of Bao et al. (2017);
e “YHN”: the test of Yamada, Hyodo and Nishiyama (2017);

We generate samples of size n from x; = 1, + 12w, fori=1,...,n, where
1, is a p-dimensional vector with all elements equal to one, w; = (w1, ..., wpi)T,
and {wj;,i = 1,...,n,7 = 1,...,p} are i.i.d. as N(0,1). To consider differ-
ent structures of 3, we use ¥ = 0.2I, + Z?:1 0;3; for some values (61,62, 63),
where ¥ = (0.5‘11_3’|)f,j:1 is approximately sparse in structure, ¥o = I, +
0.5(5{|i_j|:1})£j:1 is sparse, and 33 = 0.98I, + 0.021plg is a dense structure.
For each setting, we conduct 5,000 Monte Carlo simulations. For the type-I error
estimates, the standard errors are approximately 0.006.

At the sample size n = 200, we consider the dimension p = 60, 120, 180, and
the number of blocks K = 2, 3, with block sizes p; = --- = px = p/K. The ROC
curves for the competing tests are plotted in Figure 1 under the null hypothesis
¥ = 0.2I, and the alternative hypotheses 3 = 0.2I, + X;, for ¢ = 1,2, 3, at
n = 200 and p; = py = ps = 20. Clearly, the FDS test performs best for the
non-dense . When X is dense, FDS and YHN are similar, but YHN is the worst
performer for the sparse alterative. Moreover, the empirical size and power of
each test are listed in Table 1 for a variety of settings. All methods maintain
type-1 errors well. The proposed FDS test outperforms the other tests in terms
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of power. In particular, when (p1,p2,p3) = (20,20,20) and ¥ = 0.2I, + 3,
the empirical power of the FDS test is about 98%, and that of the other tests is
between 36% and 53%. For (p1,p2,p3) = (60,60,60) and X = 0.2, + X9, the
empirical power of the FDS test is about 88%, whereas that of the other tests
ranges between at most 10% and 14%. Overall, the proposed FDS test is more
powerful than its competitors. When ¥ is dense, FDS and YHN are similar, and
both lead the comparison.

When the dimension is much greater than the sample size, we examine the
performance of FDS, BHPZ, and YHN only, because CLRT cannot handle such
cases. In the simulation, the null hypothesis is 3 = 0.2I, and the alternative
hypothesis is X = 0.2I,4 6121 4+ 0225+ 0333, where 35 = Ip+p0(5{|i_j‘:1})f7j:1,
with pg = 0.3+0.3 exp(0.009p)/(0.154exp(0.009p)) and #; = O or 1, for i = 1,2, 3.
The distribution of wj; is taken to be N (0, 1) or Gamma(4, 2)-2. In this study, we
consider the sample sizes n = 150, 300, dimensions p = 180, 360, 900, and number
of blocks K = 2,3, with block sizes py = --- = px = p/K. The empirical size
and power of each test are listed in Tables 2 and 3. The type-I errors are all close
to the nominal level of 0.05. Moreover, as the dimension increases, the empirical
power of the tests increases with n. For example, when ¥ = 0.2I, 4 X5, p = 180
and K = 2, the power of FDS increases from 71.24% to 99.96% quickly as the
sample size increases from n = 150 to 300, whereas that of other tests rises much
less. To save space, Table 3 is given in supplementary file 1.

Note that the proposed FDS test does not always dominate the others when
p is small. We refer to the ROC curve in Figure 1 under the null hypothesis
3 = 0.2I, and the alternative hypotheses ¥ = ¥, = 1.21p+0.18(5{|i_]~‘:1})£j:1+
0.1((5{|i,j|:3})£j:1, with a sample size n = 200, dimension p = 6, and K = 3
blocks of equal sizes, p1 = ps = p3 = 2. In this case, the population is Gaussian
and the likelihood is correctly specified, so it is not surprising that CLRT shows
slightly better performance than FDS.

To check the sensitivity of the threshold s*(n,p) and any scaled version of
Tho, we consider the rejection region

{x1,...,xp : Th(er, 02) — 1> Goqi—a}s (3.1)
which is similar to (2.5), where i and ¢ are in (2.4), and
Ty(c1,e2) = Tor + 1 - Tho(c2),

Wlth Tnl = tI‘[Sn - diag(sll7 sy SKK)]2 and



730 ZHENG, HE AND GUO

1.0
1.0

0.8
0.8

0.6
=0
=
&
=)
=

True positive rate
=
z 3z
True positive rate
0.6
o
EEZ
“ZR A
=]

0.4
0.4

0.2
0.2

0.0
0.0

0.0 02 04 06 08 10 0.0 02 04 06 08 10
False positive rate False positive rate

1.0
1.0

0.8
\
\

0.8

0.6

N\

0.4

True positive rate
0.4

True positive rate

0.2
0.2

0.0
0.0

0.0 02 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
False positive rate False positive rate

Figure 1. The first three ROC curves are the results from three simulation settings given
in Section 3 with different specifications 31 (upper left panel), 3o (upper right), 3s
(lower left), with w;; being i.i.d from N(0,1), (n,p) = (200, 60), and p1 = p2 = p3 = 20.
The ROC curve in the lower-right panel refers to the case of (n,p) = (200,6) with K =3
equal block sizes and ¥4. The curves for FDS and YHN are nearly identical in the
lower-left panel and lower-right panel.

_ 2 .
Tno(Cg) =b 5{maX(£1 o)eag TSty e5)* (0, 0,) 71> (n,p,c2) }

s*(n,p,c2) = ca - [4+ (loglogn — 1)2](10gp0 —0.25loglog po) + q.

We have s*(n,p) = s*(n,p, 1), Tho = Tho(1), and T;, = T,,(1,1). We consider the
sample size n=200, dimension p = 60, 120, 180, and number of blocks K = 2,3,
with block sizes p1 = -+ = px = p/K. The parameters c¢; and cp are taken
as ¢ = 0.001,0.5,2 and cs = 0.5,1,2. The empirical test sizes and power for
different values of ¢; and ¢y are listed in Tables 4 and 5. The simulation results
in Table 4 show that when c¢; is small or large, the empirical test sizes and
empirical power values are similar for the different values of ¢;. The simulation
results in Table 5 show that when cy is small, the empirical test size cannot be
controlled. Furthermore, when co is large, although the empirical test size can
be controlled, the empirical power decreases. Thus, the penalty T;,¢ is somewhat
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Table 1. Empirical test sizes and power (in percentage) for comparison of four methods
with n = 200, (p1,...,px) = (p/K,...,p/K), and K = 2,3 for Gaussian variables. The
vector (01, 62, 603) specifies the ¥ matrix. The rejection region is given in (2.5).

(61,02,03) Methods p =60 120 180 60 120 180
K=2 K=3
Empirical test sizes

(0, 0,0) FDS 4.50 4.95 4.94 5.10 4.85 4.88
CLRT 4.74 5.52 4.86 5.02 5.30 5.12

BHPZ 4.58 5.12 4.52 4.88 5.09 4.68

YHN 4.64 5.07 5.07 5.18 4.94 4.88

Empirical powers

(1,0,0) FDS 87.86  76.52 69.28 98.06 93.20 88.42
CLRT 19.52 9.40 6.98 38.74 14.28 8.38

BHPZ 17.46 8.80 6.64 36.08 14.72 9.55

YHN 27.28 13.22 9.72 5248 22.78 14.83

(0, 1, 0) FDS 86.70  75.52 68.62 97.50 92.68 88.02
CLRT 38.28 13.26 7.86 7542 24.86 10.92

BHPZ 30.86  11.82 7.82 66.78 23.62 13.26

YHN 15.68  92.50 7.60 26.12 14.18 10.02

(0,0,1) FDS 32.46  69.86 90.90 3848 7890 95.32
CLRT 12.82 12.38 878 15.62 15.90 11.70

BHPZ 11.92  11.32 9.00 18.10 20.20 17.62

YHN 32.62 70.20 91.02 3896 79.16 95.42

sensitive for the threshold s*(n,p), but is not sensitive for the scaled version of
Tho. Moreover, to show that our test is valid for p/n — y = 0, Table 6 presents
simulation results with n = 500, 750, 1,000 and p = 6,12, 18. To save the space,
Tables 4-6 are given in supplementary file 1.

4. Demonstration with a Real-Data Example

To further demonstrate the power of the proposed test, we use data from
a major supermarket in northern China (see Wang (2009)). In the data set,
each record contains the daily sales volume of individual products over a 463-day
period. We are interested in understanding the correlation between vegetable
sale volumes and dairy sale volumes. We have 26 major vegetables and 58 dairy
products in the study; that is, (p1, p2) = (26, 58).

To evaluate the power of various tests at small sample sizes, we randomly
draw the sale volumes of vegetables and dairy products using p1 + p2 + 2 days;
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Table 2. Empirical test sizes and power (in percentage) for comparison of three methods
with (p1,...,px) = (p/K,...,p/K) and K = 2,3 for Gaussian variables. The vector
(01,04, 03) specifies the ¥ matrix. The rejection region is given in (2.5). When a test is
not applicable, the corresponding entries are marked —.

(61,02,03) n Methods  p=180 360 900 180 360 900
K=2 K=3
FEmpirical test sizes
(0,0,0) 150 FDS 5.11 4.72 4.22 4.86 4.78 4.48
BHPZ 4.62 — — 5.08 4.76 —
YHN 5.50 4.94 5.06 5.26 4.86 5.24
300 FDS 5.08 4.92 4.93 5.08 5.08 5.02
BHPZ 5.08 4.70 — 5.26 5.30 —
YHN 5.04 5.08 5.33 5.42 5.32 5.12
Empirical powers

(1,0,0) 150 FDS 38.22 25.78 14.06 57.02 38.85 21.80
BHPZ 6.14 — — 7.84 5.26 —
YHN 8.74 6.22 5.44 12.41 7.66 5.66
300 FDS 97.74 94.16 87.52 99.95 99.51 97.74
BHPZ 8.74 5.92 — 13.76 7.48 —
YHN 12.42 8.14 6.60 22.86 11.36 7.72
(0,1,0) 150 FDS 71.24 59.54 41.78 89.52 80.20 61.92
BHPZ 9.32 — — 20.72 7.10 —
YHN 7.68 5.86 5.32 10.22 7.18 5.24

300 FDS 99.96 99.88 99.74 100 100 100
BHPZ 32.22 10.50 — 74.24 27.82 —
YHN 10.42 7.2 6.70 16.02 9.85 7.00

(0,0,1) 150 FDS 76.18 98.48 100 84.28 99.38 100
BHPZ 7.24 — — 11.20 6.48 —

YHN 76.87 98.52 100 84.56 99.46 100

300 FDS 99.36 100 100 99.82 100 100
BHPZ 14.84 9.16 — 34.16 21.02 —

YHN 99.34 100 100 99.82 100 100

that is, the sample size is n = p; + ps + 2. Based on 10,000 random draws at this
sample size, FDS and YHN reject the null hypothesis that the sale volumes of veg-
etables and dairy products are uncorrelated 100% of the time. The tests CLRT
and BHPZ reject the null hypothesis 58.71% and 84.22% of the time, respec-
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tively. For the sensitivity analysis with (¢1,c2) = (0.001,1),(5,1),(1,0.5),(1,2),
the proposed FDS test still rejects the null hypothesis 100% of the time.

When we take a small number of days randomly from the data set, auto-
correlation is negligible. To use the whole sample to understand or confirm the
correlation between the prices of these two products, we use an autoregressive
AR(1) model to fit the data, and then examine the residuals. In this case, all the
tests we considered reject the null hypothesis of no correlation at the level 0.001.
The fact that the proposed test is able to detect the correlation with high power,
even when the sample size is slightly above the total dimension, indicates that
the test is valuable in the analysis of moderately high-dimensional problems.

5. Discussion

We have proposed a test for detecting block-structured correlation in high-
dimensional variables. The validity of the test is established under a framework
where the dimension of the variables grows linearly with the sample size. For
an explanation of why the framework of p/n tending to a constant is useful
for high-dimensional data analysis, refer to Marcenko and Pastur (1967) and
Bai and Silverstein (2010). The test can be used in a wide range of problems
for Gaussian or nonGaussian variables, and attains good power for sparse or
nonsparse alternatives. Our simulations show that the proposed test performs
very well in terms of both the type-I error rate and power relative to existing
tests, when the latter are applicable. Unlike the other tests, the proposed method
does not invert any covariance matrices and requires only finite fourth moments
of the random variables. More importantly, the proposed test performs quite
well, even when the dimension exceeds the sample size. When p is small and n
is large, and the data are Gaussian, the proposed test loses some power against
the LRT, but the loss of power is limited even in these situations in our empirical
studies.

Supplementary Material

The first online Supplementary Material file contains proofs of Lemma 1 and
Theorems 1-3. The second file contains three lemmas and detailed proofs of
(52.6)—(S2.8) in the first file. These proofs are conducted under Assumptions
1-2. The sample covariance matrix S,, of 84 major vegetables and 58 dairy
products in Section 4 is available at https://math127.nenu.edu.cn/shuxue/

HData/webpage/covariancematrix.zip.


https://math127.nenu.edu.cn/shuxue/HData/webpage/covariancematrix.zip
https://math127.nenu.edu.cn/shuxue/HData/webpage/covariancematrix.zip
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