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ABSTRACT

Detailed radiative transfer simulations of kilonova spectra play an essential role in multimessenger astrophysics. Using the
simulation results in parameter inference studies requires building a surrogate model from the simulation outputs to use
in algorithms requiring sampling. In this work, we present kilonovanet, an implementation of conditional variational
autoencoders (cVAEs) for the construction of surrogate models of kilonova spectra. This method can be trained on spectra
directly, removing overhead time of pre-processing spectra, and greatly speeds up parameter inference time. We build surrogate
models of three state-of-the-art kilonova simulation data sets and present in-depth surrogate error evaluation methods, which can
in general be applied to any surrogate construction method. By creating synthetic photometric observations from the spectral
surrogate, we perform parameter inference for the observed light-curve data of GW 170817 and compare the results with previous
analyses. Given the speed with which kilonovanet performs during parameter inference, it will serve as a useful tool in

future gravitational wave observing runs to quickly analyse potential kilonova candidates.

Key words: gravitational waves —methods: statistical.

1 INTRODUCTION

Mergers of compact stellar remnants, like neutron stars (NSs) and
black holes (BHs), provide important testbeds for astrophysical
processes, cosmological evolution, and matter under extreme
conditions. In binary merger systems, as companions orbit each
other, their physical separation decays due to energy loss through
the emission of gravitational waves (GWs), which can be detected
by modern ground-based interferometers, like those of the Laser
Interferometer Gravitational-Wave Observatory (LIGO; Aasi et al.
2015), Virgo (Acernese et al. 2015), and Kamioka Gravitational
Wave Detector (KAGRA; Akutsu et al. 2019) experiments. If the
merging system contains one or two neutron stars, neutron star
material can be ejected at high velocities and emit electromagnetic
(EM) waves (Lattimer & Schramm 1974; Li & Paczyniski 1998;
Metzger & Berger 2012; Pian 2021). Using information jointly from
GWs and EM emission is essential for maximizing our understanding
of multiple phenomena: since both GW and EM measurements
are sensitive to parameters of a merging binary, combining them
can yield stronger constraints on properties of the binary (Coughlin
et al. 2017), the neutron-star equation of state (Coughlin et al. 2018;
Radice et al. 2018a), and the expansion rate of the Universe (Schutz
1986; Holz & Hughes 2005; Abbott et al. 2017b).

* E-mail: lukosiutekamile @ gmail.com

© 2022 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

Amidst the neutron-rich material ejected during an NS-containing
merger (Lattimer & Schramm 1974; Rosswog et al. 1998; Metzger
et al. 2010), r-process nucleosynthesis generates heavy nuclei (Bur-
bidge et al. 1957; Cameron 1957). The subsequent decay of these
nuclei drives a kilonova — an ultraviolet-optical-infrared transient,
whose brightness peaks two to three days after a merger (Li &
Paczynski 1998). Most binary neutron star (BNS) systems and some
black hole—neutron star (BHNS) systems are expected to produce a
kilonova (Metzger 2019).

There are two primary channels for mass-ejection during an NS-
containing merger (Metzger 2019) — dynamical ejection (during
merger) and disc wind ejection (after merger). Dynamical ejecta
are further subdivided into two categories — ‘tidal’ and ‘polar.” Tidal
dynamical ejecta outflows occur during the final stage of the inspiral
in both BHNS and BNS systems when the neutron star is disrupted
by the gravitational field of the companion. Polar dynamical ejecta
result from shock heating caused by the direct collision of the neutron
stars in BNS systems only (e.g. Radice et al. 2018b).

The detection of GW170817, the first observed BNS GW event,
marks the onset of the era of multimessenger and GW astronomy
(Abbott et al. 2017a). GW170817 was accompanied by counterparts
across the EM spectrum (e.g. Abbott et al. 2017c, d; Arcavi et al.
2017; Coulter et al. 2017; Drout et al. 2017; Savchenko et al. 2017;
Shappee et al. 2017; Smartt et al. 2017; Soares-Santos et al. 2017;
Valenti et al. 2017; Goldstein et al. 2019). Then during the third
LIGO and Virgo observing run (Run O3), tens of binary black
hole mergers and multiple neutron star-containing mergers were
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detected, including BHNS events (Abbott et al. 2021a, b, ¢). Through
multiple dedicated follow-up electromagnetic observing campaigns
in O3 (Coughlin et al. 2019; Goldstein et al. 2019; Antier et al.
2020; Gompertz et al. 2020; Page et al. 2020; Anand et al. 2021),
one candidate was identified (Graham et al. 2020), but zero were
confirmed.

Accurate and fast models of kilonovae are critical for multiple tasks
in multimessenger and GW astrophysics. First, we need fast models
in order to quickly evaluate candidates during electromagnetic follow
up campaigns (Soares-Santos et al. 2017). Identifying and observing
a candidate in the first few hours is crucial, especially to understand
the origin of early kilonova emission, such as the fast, blue emission
seen in GW 170817 (Arcavi 2018; Chase et al. 2022). After the data
are all collected, analysis, inference can begin; we can use the data
to infer parameters of the NS equation of state (e.g. Coughlin et al.
2018; Radice et al. 2018b; Raaijmakers et al. 2021b), the Hubble
constant (e.g. Abbott et al. 2017b; Coughlin et al. 2020; Dietrich
et al. 2020), and studying r-process nucleosynthesis (e.g. Drout et al.
2017), and the site of rapid neutron capture nucleosynthesis (e.g.
Kasen et al. 2017). For these scientific studies, the most accurate
models will lead to the least biased results.

Numerical hydrodynamic simulations provide the most detailed
models of matter (i.e. velocity, mass, composition, and opacity)
ejected during mergers (e.g. Dietrich & Ujevic 2017; Perego et al.
2017; Tanaka et al. 2020; Kawaguchi et al. 2021). The results of these
simulations are then incorporated into radiative transfer calculations
to compute observational properties of mergers (e.g. Kawaguchi et al.
2016; Kasen et al. 2017; Wollaeger et al. 2018; Bulla 2019; Korobkin
et al. 2021; Wollaeger et al. 2021) to generate synthetic observations
for comparison with real-sky observations (e.g. Raaijmakers et al.
2021a). Since the simulations are computationally complex, they
take several hours to produce observables for one parameter set
(Bulla 2019).

In order to use the outputs of the simulations in parameter
inference studies, the outputs are trained to produce a ‘surrogate’
model that emulates the output of simulations but run considerably
faster. For example, a commonly used surrogate-construction method
is Gaussian process regression (GPR), a statistical method for
interpolation; this method has been applied in a few GW and EM
studies (Doctor et al. 2017; Coughlin et al. 2018; Dietrich et al.
2020; Ristic et al. 2022). One difficulty with using GPR for kilonova
surrogate models for example is that it does not scale well with the
number of training examples: the evaluation time goes as the square
of the number of training points and the training time goes as the
cube. State-of-the-art radiative transfer simulations, such as those
published in Dietrich et al. (2020) and Anand et al. (2021), output
spectra based on multiple input parameters in hundreds of frequency
bins and with hundreds of time steps. The high-dimensionality of the
inputs and outputs, combined with the grid over physical parameters
means that the simulated sets become large quickly, making GPR
a costly method. Recently, Almualla et al. (2021) presented a
neural network based surrogate modelling framework which greatly
increased inference time for the GW170817 light curve. We present
a complementary approach to their method, instead training directly
on spectra, thereby skipping the dimensional reduction step, and
training one permanent network set, thereby allowing construction
of photometric observations for any band from the surrogate as well
as comparison to spectroscopic data.

kilonovanet is an algorithm for generating surrogate kilo-
nova spectra on tens-of-millisecond time-scales via conditional
variational autoencoders (cVAE) (Kingma & Welling 2014; Rezende,
Mohamed & Wierstra 2014; Sohn, Yan & Lee 2015). We additionally
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present a thorough error evaluation suite to understand the perfor-
mance of kilonovanet across the input parameter space; these
error evaluation methods can also be applied to any future surrogate
construction methods. The code used to produce the results in our
study is available at https://github.com/klukosiute/kilonovanet.

The work is organized as follows. In Section 2, we discuss the
simulated data sets used for constructing the surrogate model. In
Section 3, we discuss the cVAE, its limitations with respect to uncer-
tainty estimation, and our approach for quantifying uncertainties. We
discuss the performance of the cVAE surrogate model in Section 4
and conclude in Section 5.

2 DATA

In this work, we report the construction and testing of surrogate
models for three publicly available data sets of simulated kilonova
— in particular, spectra of the material ejected during a BNS or
BHNS merger: the Kasen BNS simulations (Kasen et al. 2017),
the Dietrich BNS simulations (Dietrich et al. 2020), and the Anand
BHNS simulations (Anand et al. 2021). In the Kasen simulation,
the key physical parameters of the single-component spherically
symmetrically expanding ejecta are the ejecta mass M., the char-
acteristic expansion velocity of the ejecta v.j, and the chemical
composition as indicated by the lanthanide fraction x . Each spectrum
is computed in increments of 0.1 d, from 0.1 to 24.9 d post-merger
and has 1629 logarithmically spaced wavelength bins from 149 A to
99467 A. There are two sets of publicly available parameter grids for
these simulations available: a regularly spaced grid, whose parameter
values are given in Table 1, and a narrower, irregularly spaced set. The
values of the second set lie mostly within the ranges of the regularly
spaced grid but also includes several models with v.j/c = 0.4. This
set was was produced particularly for the study of GW170817. There
are two sets of parameters. We combine the regular grid data (329
parameter sets') and the narrower, irregular grid data (22 parameter
steps) to create our full training data set, resulting in 351 unique
parameter combinations; with 249 time steps per parameter set, this
leads to a total of 87 399 spectra in the Kasen simulated data set.

The Dietrich BNS simulations are generated with POSSIS, a
multidimensional Monte Carlo radiative transfer code (Bulla 2019).
The parameter sets consist of the mass of the dynamical ejecta
M, 4yn, the mass of the post-merger ejecta M., pm, the half-opening
angle of the lanthanide-rich tidal dynamical ejecta ®, and the cosine
of the observer viewing angle cos6,,s. The half-opening angle
@ parametrizes the separation of the dynamical ejecta into two
components: lanthanide-free matter ejected along the poles of the
in-spiral plane above latitudes +®, and lanthanide-rich ejecta tidally
expelled equitorially below latitudes +=®. Each spectrum is computed
at increments of 0.2 d, starting at 0.2 d up to 20 d post-merger and
for 500 evenly spaced wavelength bins from 100 A to 99900 A.
There are in total 2156 combinations of the parameter values listed
in Table 1, including ‘redundant’ simulations for different viewing
angles at ® = 0, 90 deg. We keep these redundant simulations in
the parameter set so that the surrogate models do not have to build
in the spherical symmetry of the system. With 100 time steps for
each parameter combination, this leads to 215600 spectra for this
simulation set.

There are 329 parameter sets rather than the 11 x 5 x 6 = 330 expected
from Table 1 because there exists no Kasen run for (M,;, vj, logiox) = (0.1,
0.3, —1).
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Table 1. Parameter values for each of the three kilonova simulation data sets which we use for training

our surrogate model.

Kasen et al. (2017)

Parameters Values

Mej/M e {0.001, 0.0025, 0.005, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.075, 0.1}
vejlc {0.03, 0.05, 0.1, 0.2, 0.3}

logiox {—=9,-5—4,-3,-2, -1}

Dietrich et al. (2020)

Mej, ayn/Me {0.001, 0.005, 0.01, 0.02}

Mej, pm/Me {0.01, 0.03, 0.05, 0.07, 0.09,0.11, 0.13}

® (deg) {0, 15, 30, 45, 60, 75, 90}

O obs {0,0.1,0.2,0.3,0.4,0.5, 0.6,0.7,0.8,0.9, 1}

Anand et al. (2021)
M ej, dyn/ M ©

M ¢j, pm/ M, O]

€08 Oobs

{0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09}
{0.01, 0.02, 0.03, 0.040.05, 0.060.07, 0.08, 0.09}
{0,0.1,0.2,0.3,0.4,0.5, 0.6,0.7,0.8,0.9, 1}

The Anand BHNS data set is also generated through POSSIS. The
dynamical ejecta are concentrated within an angle ¢ = 30 deg above
and below the equatorial plane, expanding with velocities ranging
0.1cto 0.3¢, and with a lanthanide-rich composition. The post-merger
ejecta are assumed to be spherical, expanding with velocities ranging
0.025¢ to 0.1c, and with an intermediate lanthanide composition.
Table 1 lists all the values of these parameters as well as the final
parameter cos Oops. There are 891 unique parameter combinations
and again with 100 time steps each.

3 METHODS

We use the conditional variational autoencoder (cVAE) to construct
our surrogate models. We then highlight the subtle but critical
challenge of deriving uncertainty estimates directly from Gaussian
cVAE’s, caused by variance shrinkage. Finally, we discuss data pre-
processing, our training protocol, and our method for evaluating the
trained cVAE-based model.

3.1 Conditional variational autoencoder

We start with a simplified derivation of the variational autoencoder
(VAE; Kingma & Welling 2014), which is a generative model that
relies on variational Bayesian methods for optimization. We note the
following definitions:

(i) x: vector of physical parameters, including those discussed in
Section 2, like ejecta mass, velocity, and lanthanide fraction, as well
as the time step 7 in the evolution a single kilonova.

(ii) y: vector of spectral data from a single kilonova.

(iii) z: vector of latent variables

(iv) p: generative model

(v) g: inference model

(vi) 0: parameters for generative neural model network>

(vii) ¢: parameters for inference model neural network

Our goal is to obtain a model to efficiently approximate a
generative process p*(y) (the radiative transfer model) to predict a
spectrum y. We seek py(y) = fpg(ylz)dz to approximate p*(y),
where py(y|z) is part of a deep latent variable model (DLVM)
and is related to it via the definition of conditional probability.

20 ,ps in §2 is unrelated to 6.

To evaluate the integral, an inference model g4(z|y) (the encoder)
is used to approximate the true py(z|y), which, through Bayes’
theorem, approximates py(y|z). A VAE is a deep neural network-
based framework for co-optimizing a DLVM and an inference model.

A model EncoderNeuralNet is trained to return the mean x and
the variance o of a multidimensional Gaussian for a particular data
input y. The mean and variance are then used for sampling the
generative model:

(p,log o) = EncoderNeuralNet,(y)

1

q5(2ly) = N (z; p, diag(0)). M
The optimization objective of the VAE is the Evidence Lower
Bound (ELBO), which allows the simultaneous optimization of the
parameters 6 (generative model), and the variational parameters ¢
(inference model). The loss function is defined as
Lo.s(¥) = —Dg1(qy(2lY)| | po(2) + By, iy [log(pe(¥12))], 2
where Dk, is the Kullback—Liebler Divergence, which measures the
distance between the probability p and the inference model ¢, and
E is the reconstruction loss. Using Monte Carlo sampling and the
‘reparametrization trick,” the networks py and g4 can be optimized
using gradient descent methods (Kingma & Welling 2014, 2019;
Rezende et al. 2014).

The variational autoencoder learns an approximation for the
distribution p*(y), and the decoder returns the parameters of the
distribution py(y|z). After training, the marginal likelihood p(y) can
be estimated through importance sampling, where random samples
are drawn from ¢, (z]y) (Rezende et al. 2014):

Z Po(ylz")p(z")

3
= as(2ly) @

Po(Y) = Egyay) [Po(y. 2)/q4(2ly)] ~

Through this process, the VAE can learn a multidimensional dis-
tribution as a data-driven model. This distribution pg(y|z) is then
the approximation of the p*(y), the true generative model from the
radiative transfer simulation.

In this work, we aim to learn a distribution over the spectral data
y. But, importantly, we must condition the VAE model on input
physical parameters x of the kilonova, transforming the model into
a cVAE (Sohn et al. 2015; Kingma & Welling 2019): py(y|x). The
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Figure 1. Diagram of the cVAE architecture. There are two neural networks — encoder (left-hand side, grey) and decoder (right-hand side, grey — and a latent
space (z, pink). The inputs to the encoder are the physical parameter x and the spectrum y at time step ¢ for a single kilonova event. The outputs from the encoder
are o (x, y) and p(x, y), which are the parameters of the distribution g4(z|y, x) over the latent variables z. The inputs to the decoder are z and x, which are used
to draw a sample from the distribution py(y|z, X) over the spectra. This produces an output y(z, x), a new surrogate spectrum. After training, the decoder is used
as the generator of simulated data for the surrogate model: it takes as input a sample from N0, I) and a set of physical parameters x and predicts a spectrum

¥(z, x).

optimization objective for the cVAE is the conditional likelihood

Ly (y1X) = —Dg1(ge(zly, )| po(z]X))
+ Egyaty.n[(l0g po(ylz, x))]. (4)

A graphical representation of the model is shown in Fig. 1.

Since sampling from p(z) = N(0, I) produces negligible differ-
ences in the prediction of new spectra y, we choose to always use the
same sample (the central value of A/(0, I), a vector of zeroes) for z
when predicting spectra.

3.2 Variance shrinkage of gaussian VAEs

Using the prescription above, cVAEs can generate multidimensional
data distributions conditioned on input variables when an appropriate
likelihood function is chosen. For binary classification, the Bernoulli
distribution is typically used to describe data that have binary
outcomes. The log-likelihood is given by the binary cross-entropy
(BCE) loss,

D
log po(ylz) = — Y _ yilog 9 + (1 — y;) log(1 — $1), ©)
i=1

where D is the dimension of the vector to be predicted, y; is a true
label, and ; is a predicted label.

For real-valued data, like the kilonova spectra in this work, the
multivariate Gaussian with a diagonal covariance offers flexibility
and mathematical simplicity with a log-likelihood of the form

D

1
log po(ylz) = » ————Ilyi — ne.i @I
g Po lzzlj 2092'1_(1) 0
1
-3 log 2oy .(2), (©6)

where ‘792, ;(z) and py, ;(z) are the variance and mean, respectively, for
the i-th dimension.

If we used the Gaussian likelihood for our continuous and real
data outputs, we could consider interpreting the output distribution
as an uncertainty learned by the model. However, it has recently
been shown that the maximum-likelihood objective is ill-posed for
continuous models, such as those employing Gaussian distributions
(Mattei & Frellsen 2018). For models trained so that y; ~ g (2),
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the —4 log 2707 (z) term will push the variance to zero before the
a Gaussian cVAE will produce a small variance that does not have
useful physical interpretation. This ‘variance shrinkage problem’
prohibits use of the cVAE model as a probabilistic method (Mattei &
Frellsen 2018; Skafte, Jorgensen & Hauberg 2019).

There are several standard procedures to avoid the variance
shrinkage problem in practice (Skafte, Jgrgensen & Hauberg 2019).
For example, setting a globally constant variance — e.g. 0> = 1 — the
log-likelihood becomes the mean squared error, and the cVAE loss
function becomes

term can catch up. This can be seen in equation (6). Therefore,

D

log po(ylz) =  —Ilyi — .. )

i=1

This uncertainty is predetermined and not learned from the data.

Because the MSE loss does not provide statistical interpretability,
the Bernoulli distribution is often used for non-binary data: opti-
mizing a Bernoulli log-likelihood (the BCE loss in equation 5) is
considerably simpler than optimizing the MSE (Skafte, Jgrgensen &
Hauberg 2019). This can be done when the data is scaled to the range
[0,1]. However, the outputs will not have a meaningful statistical
interpretation because the Bernoulli distribution is meant for discrete
random variables with a binary outcome. Our initial experiments
verify that training with BCE loss outperforms the MSE loss in
terms of accuracy and efficiency.

The closed-form expression for our optimization objective is thus

D
1
L= -5 ; [1+logo? — o7 — ]
= > " yilogHi+ (1 — yi)log(l — $1), ®)

i=1

where we have used the BCE loss and p(z|x) = N(0, I), as per the
definition of the VAE model, and where p; and aiz are the outputs of
the encoder distribution for passing a data point pair (x;, y;), with a
resulting prediction y;. While variance shrinkage prevents learning
of the variance from the data, the cVAE can still reproduce spectral
data with high fidelity. We pursue estimates of the variance post-facto
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through measurements of the surrogate model data with respect to
the original simulated data.

3.3 Data pre-processing

The original Kasen spectra are in units of erg s~! Hz™!, and the
Dietrich and Anand spectra are in units of erg s™' cm™2 A~" at a
distance of 10 pc. To use the data sets for network training and to
evaluate the surrogate results, we first process all spectra such that
they have units erg s~' A~!. We then re-scale the input physical
parameters and the spectra to the range [0,1] so that the data lie in
the supported range of the sigmoid activation function in the final
layer of the decoder neural network. Finally, we separate each of the
three simulation data sets into training, validation, and test sets with
relative proportions 80:10:10, respectively. We use only the training
and validation sets to optimize the training and hyperparameters.

3.4 Training

For each of the three simulated kilonova spectra data sets, we train a
distinct cVAE model with the following procedure.

(i) We use the training and validation data sets from the top-level
split to perform hyperparameter selection for our final architecture.
For each simulation data set, we perform a hyperparameter search
using one of the train-validation data splits. We consider the hyper-
parameters of the cVAE model to be the dimensionality of the latent
space z and the dimensionality of the hidden layers of the decoder and
encoder. Because the encoder is considered the approximate inverse
of the decoder, we use one hyperparameter for both the hidden layers.
We perform hyperparameter selection only on these two values; all
other hyperparameters of the model, such as the learning rate and
batch size, are fixed across all of our tests and models. We trained 16
architectures with four values for each hyperparameter.

(i) We then split the training and validation sets into nine total
sets, and train the architecture on these subsets.

(iii) We then evaluate all nine models on the test set, which allows
us to develop a statistical analysis of the model’s predictive capability.

(iv) We chose one of the nine models at random for the final
production model that we use to show examples and make publicly
available.

We train each model — both when performing hyperparameter
selection and when training each of the nine data split models — for
200 epochs. The final training losses for the Kasen, Dietrich, and
Anand data, averaged over the nine data split models, respectively,
are 48.54, 11.23, and 8.20. The training during the hyperparameter
search required ~24 h, and the final nine experiment models required
approximately 26 h of training on the same GPU — both on an
Nvidia GeForce 1080Ti GPU. The prediction of 100 spectra of the
trained network from unique parameter sets requires approximately
10 ms on one Intel ® Core™ i7-7700HQ CPU. We use PyTorch for
implementation (Paszke et al. 2019) and Adam as our gradient-based
optimizer (Kingma & Ba 2015).

3.5 Model evaluation and quantifying prediction uncertainties

For each simulation data set, we have constructed a surrogate cVAE-
based model with which we can generate data under the supported
ranges of the physical input variables x and output spectra y.

We next seek to generate uncertainties associated with the pre-
dictions of the spectra. Variance shrinkage and the resulting training
choices dictate that the cVAE cannot produce statistically meaningful
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Figure 2. An example original spectrum (orange) and its smoothed version
using a Gaussian kernel with o = 2.5 (blue). This spectrum is from the
Dietrich data set and corresponds to the parameters Mej, ayn/Mo = 0.01,
Mej, pm/Me = 0.07, & = 30.0°, cos Ogps = 0.5,7=1.8d.

variances. Therefore the errors in the resulting surrogate models still
need to be characterized. We use the cVAE only as a method to
produce more samples of the original radiative transfer simulations
with which the cVAE was trained: we do not seek to improve upon
or extrapolate beyond those simulations. In the following sections,
we discuss error sources and procedures for quantifying them.

3.5.1 Sources of error

We examined and estimated multiple sources of error with respect to
the original simulations. First, for systematic error, we account for
the bias of the predicted spectra as a function of input parameters by
comparing predictions to the truth generated by the radiative transfer
simulations. The surrogate model is generated to minimize bias in
reconstructing spectra, so the model (with its chosen hyperparameter
values) is designed to minimize this bias. Secondly, we account for
statistical error of the predictions over the space of input parameters
and different trained models, as we discuss in detail below.

3.5.2 Error metrics

The statistical error present in the training simulations will propagate
to the surrogate data. Predicting synthetic observables from radiative
transfer simulations results in Monte Carlo noise, leading to noisy
spectra (Kasen et al. 2017; Bulla2019): this represents the floor of the
statistical noise. A surrogate model could recreate the noise present
in the training data, but no surrogate model, even a hypothetical
model with infinite capacity, will be able to perfectly predict the
noise within the unseen test set. Therefore, the Monte Carlo noise
from the radiative transfer simulations leads to a source of error in
the final test set predictions. We would like to know the value of
the error that is incurred because of the Monte Carlo noise present
in the test data set. Estimating the true Monte Carlo noise would
require simulating the observables for each parameter simulation
several times and then computing residuals from the mean spectrum
(Bulla, Sim & Kromer 2015) — a process that is computationally
expensive. To estimate the error, we emulate the mean spectrum by
smoothing each spectrum using a Gaussian smoothing method. We
cannot know which value of the Gaussian kernel represents the true
mean spectrum best, so we perform Gaussian smoothing for several
values of the Gaussian kernel. We then visually inspect the spectra
to check for an approximate best fit, which occurs at a value of
o = 2.5. Fig. 2 shows an original smoothed spectra and its smoothed
counterpart. In Section 4, we compare our estimated fractional Monte
Carlo noise with the errors of the kilonovanet predictions.
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Figure 3. Three original spectra (orange) and corresponding cVAE predic-
tions (blue) for physical parameters Mej, ayn/Mo = 0.02, Mej, pm/Me = 0.05,
® =45.0°, cos Oyps = 0.8, and times (a) 0.2 d, (b) 4.2 d, and (c) 14.2 d. The
corresponding median spectral errors across the whole spectra (a) 12.91, (b)
0.37, and (c) 0.20.

We evaluate the model performance using three metrics: the spec-
tral error, the bolometric luminosity error, and the band magnitude
error.

The spectral error is the fractional error between the model
prediction in a given wavelength bin yyeq(1) and the value of the
original test data point yq(1):

ypred()t) - ylesl()‘)
Veest(4)

To connect with photometric survey observations, we quantify the
bolometric luminosity error as

— _f.))lared()L)d)L - fy{esl()\)d)L
J Yies(W)dA

We also evaluate the performance of the surrogate model by
constructing broad-band light curves at a distance of 40 Mpc for
each of the unique parameter sets in our test data set. Broad-band
AB magnitudes from simulated spectra are computed by convolving
the flux with the broad-band filters at a chosen distance (40 Mpc in
this work). The distance is chosen to correspond to the distance of
GW170817 which allows us to compare with past analyses. These
light curves are computed as AB magnitudes in each band,* of which
examples are shown in Fig. 7. We compute and evaluate the error in
the AB magnitude in each band as

&) = (C)]

€ (10)

Am = Myand,pred — Mband, test » (11)

where Mpand, prea 18 the AB magnitude in a band at a given time step
predicted by kilonovanet, and mpang, st 1 magnitude found from
the corresponding spectrum in the test set.

Finally, we will evaluate the performance of the surrogate model
by performing a representative inference task and comparing with
previously published results. We perform parameter estimation using

3We use the LSST filters provided at http://svo2.cab.inta-csic.es/svo/theory
/fps3/
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nested sampling with the dynesty (Speagle 2020) sampler on the
GW170817 light-curve data using our surrogate models. We compare
the differences in the best-fitting parameters between our fit using
the same data set, which was first collated in Coughlin et al. (2018)
and previously published fits for the same BNS kilonova models but
using a different surrogate construction methods.

4 RESULTS

We present the results of training and evaluating the cVAE on the
three simulated data sets. For each simulated data set, we have nine
trained models (one for each data-splitting experiment as described
in Section 3.3. We pass the test data sets — i.e. the pairs of input (x)
and output (y) values that were not used in any aspect of training or
model selection — through the decoders of each model to obtain a
predicted spectrum. We compare the predictions and the true values
of the spectra by computing the values presented in Section 3.5.2.

We report a detailed analysis of the surrogate model for the
Dietrich BNS data set and then report only key values for the Anand
and Kasen data sets; the analysis is the same for all three data sets.
We focus on the Dietrich data set, because we have observational
data for a single BNS event, and the Dietrich model is a newer BNS
kilonova simulation set.

4.1 Quantifying uncertainties

4.1.1 Spectral error

We first compute mediany ;€,(A) and meany ;€,(A) for each of the
nine data-split experiments. We calculate the median and mean over
all sets of test input parameters (including the time parameter) and
over all wavelengths in the spectra y. We then compute the mean and
standard deviation of the aforementioned means and medians over
all nine data-split experiments.

We report the median and mean of the absolute value of €(%);:
0.067 = 0.20 and 6620 + 3180, where the error is given as
the standard deviation over the aforementioned nine test splits.
meany ;€(A) is heavily skewed by overpredictions when the true
value is close to zero for a few outlier values and is therefore not
a true representation of the of the typical error. Although it is not
representative, we report the mean so that we may look for skew of
the error distribution. Because the mean is greater than the median,
the distribution of errors is skewed high towards overprediction or
slightly brighter kilonovae. The corresponding values for the Anand
and Kasen data sets are given in Table 2.

We then perform the same set of operations on the absolute
value of the spectral error: the mean and variance of this value is
0.285 =+ 0.004, where the variance is again over all nine experiments.
We estimate the median absolute fractional Monte Carlo noise using
smoothing via a Gaussian kernel with o = 2.5 and find it to be 0.214.
The size of the median spectral error mediany ; |€,(1)| is due to the
cVAE surrogate learning the general shape of the spectra but not the
Monte Carlo noise. We leave the interpretation and impact of the size
of the error for when we discuss errors in broad-band filters.

In Fig. 3, we present the spectrum of a BNS kilonova and its
corresponding surrogate model predictions for the input parameters
My, ayn/Mg = 0.02, Myj /Mo = 0.05, ® = 45.0°, and cos Ogps =
0.8 at three different time steps (i) 0.2 d, (ii) 4.2 d, and (iii) 14.2 d.
The respective median; |€,| for these spectra are 12.91, 0.37, and
0.20. Fig. 3(a) shows significant differences between the original
and the surrogate model where the spectrum is non-zero. In general,
we find that all spectra at t = 0.2 d are poorly predicted by the cVAE.
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Figure 5. Mean of |€;| across all nine data-split models of the Dietrich data
set. The two times at which the model is least accurate is at = 0.2 and 20 d.

However, there is general simulation uncertainty at early times due
to a lack of atomic data (Banerjee et al. 2020): due to the lack of
detailed simulations of these light curves and the current lack of
wide-field, rapid response UV telescopes to detect them, we can
safely defer improvement of early-time simulation data to future
work. In contrast, the spectra produced by the cVAE model at ¢ 2
1 d are much more faithful to the original simulations, as evidenced
by panels (b) and (c) in Fig. 3 and their lower median |e;]|.

Fig. 4 shows the median mediang|e;(A)] i.e. the median absolute
spectral error over all examples in the test set, including time. There
are nine lines plotted for the medians, corresponding to the nine data
split cVAE models. In addition, we show the estimate of the absolute
fractional Monte Carlo noise using smoothing via Gaussian kernel
with o = 2.5 as a function of wavelength. The computation of the
fractional Monte Carlo noise is the same as the computation of |e ]
and the values can thus be compared directly. The Monte Carlo noise
estimate traces the bottom of the errors produced by the cVAE. This
could imply that the Monte Carlo noise sets a lower limit for |e,| of
the cVAE or perhaps any surrogate model.

4.1.2 Bolometric luminosity error

Next, we discuss the errors in the bolometric light curves. For
Dietrich,meany|€,| = 0.033 4 0.005, where the error is the standard
deviation across all nine data split experiments.

An investigation into the outliers in the Dietrich data set shows that
the spectra with the largest bolometric luminosity error occur at times
t=0.2 and r = 20. The spectra with the highest bolometric luminosity
error (of 1.56) is shown in Fig. 3(a), which also corresponds to r =
0.2. The spectra at r = 20 are also often overpredicted, leading to €,
values of approximately 0.7. The outliers at # = 0.2 and 7 = 20 are the

most prominent features across all nine data-split models in the plot
of mean bolometric luminosity error meany, ., Mej . ®,cos funs €5 | a8
a function time, which is shown in Fig. 5. The correlations with
time are different for the other two data sets. The light curves of the
Kasen set have a tendency to quickly fall to zero after ~14 d: the
errors increase rapidly at about that time. The Anand data set also
exhibits a large error peak at t = 0.2, but since BHNS kilonovae dim
more slowly, the errors remain consistently low even at t = 20 d.

4.1.3 Broad-band magnitude error

Finally, we evaluate the performance of the surrogate model in broad-
band magnitudes, ugrizy. We construct light curves for each set of
input parameters in the test data set and compute the mean magnitude
differences. We report the mean of the magnitude differences
meany Am, where a mean is taken across all sets of input parameters
in the test set, where time is also treated as an input parameter. We
report the values for Kasen and Anand in Table 2.

For the Dietrich test set, we additionally show the distribution of
MEATM,; 4o, Mej pm, @05 0o, A1 fOI selected time steps of the data set.
Fig. 6 shows these distributions of Am for all six bands. In general,
for the time steps other than # = 0.2, the width of the distributions of
Am is correlated with brightness. Overall, most of the predictions are
within 0.1 mag of the test data set. This is well within the commonly
assumed 1 mag uncertainty in other KN light-curve modelling fitting
(Coughlin et al. 2018). The least accurate predictions occur for the
Anand data set in u-band, with a median difference of 0.451 mag.
Since the Anand data set is of a BHNS model, the model does not
contain a lanthanide-free (‘bluer’) component and would thus be
practically undetectable in the blue bands, leading to high errors in
the surrogate model.

We present three examples for light curves produced by the cVAE,
along with the original light curves and absolute differences between
the prediction and original in Fig. 7. The three randomly chosen
examples are representative of the remainder of the test set in that
they show that the cVAE predictions in bands are smooth and that
the predictions become unreliable when the light curve is too faint.
Fig. 7(c) shows an example for a model free of lanthanide rich ejecta,
since the half opening angle ® of the equatorial component is zero.
This particular example peaks quickly and dims quickly, and below
mag~27, the cVAE fails to predict the original data. However, the
kilonova at a distance of 40 Mpc would not be detectable at such a
magnitude; for example, the design single-visit limiting magnitude
for the LSST u-band is 23.9 (Ivezi¢ et al. 2019). Fig. 7(c) shows

MNRAS 516, 1137-1148 (2022)

220z Jaquiardag |0 uo Jesn uebiyol 1o Ansiaaiun Aq $285299//€ 1 L/L/91S/ao1le/Seluw/wod dno olwapeoe//:sdiy Woll papeojumo(]


art/stac2342_f4.eps
art/stac2342_f5.eps

1144 K. Lukosiute et al.

u r
1 14 il 14
B -l -1 -1 4

T T T T T T T T T T T T T T T T T T
02 1.2 42 62 102 16.2 02 1.2 42 62 102 16.2 02 12 42 62 102 16.2
i z

14 i 1 J,
E oA $ P T 0 -* b S B 0
-1 -1 -1

T T T T T T
0.2 1.2 42 6.2 10.2 16.2
Time (days)

L] T T T T T
02 12 42 6.2 10.2 16.2
Time (days)

T T T T T T
02 12 42 6.2 10.2 16.2
Time (days)
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Figure 7. Three example light curves from the Dietrich BNS data sets for the original data set (dashed lines) and the cVAE predictions (solid lines) for the six
ugrizy bands (colours black through yellow), as well as the residuals between original and prediction for each light curve and band. The three parameter sets are
(@) Mej, ayn/Me = 0.01, Mej, pm/Me = 0.09, @ = 30.0, cos Ogps = 0.3, (b) Mej, dyn/Me = 0.001, Mej, pm/Me = 0.11, @ = 75.0, cos Ogps = 0.0, (c)Mej, ayn/Mp =
0.02, Mej, pm/Me = 0.01, ®: 0.0, cos Ogps = 0.3. The lower panels indicate the differences between the predicted light curve and the original as a function of

time, for each light curve.

Table 2. Summary of errors for all models.

les] MC noise estimate €5.mean €5, med l€p]
Dietrich  0.285 £ 0.004 0.214 6620 £ 3180 0.067 £0.20  0.033 £ 0.005
Anand 0.292 £ 0.005 0.241 1280000 £ 95900  0.114 £0.016  0.027 &+ 0.004
Kasen 0.202 £ 0.005 0.127 0.213 £ 0.044 0.009 £ 0.014  0.057 £ 0.008
[Am]y [Am]|g |Am|, |Am]; |Am|, [Am]y
Dietrich  0.281 £ 0.016 0.164 £0.014 0.099 +£ 0.028 0.075 £0.019  0.065£0.019 0.052 £+ 0.006
Anand 0.462 £0.016 0.263 £ 0.016 0.145 £ 0.009 0.101 £0.013  0.088 £0.014 0.081 £+ 0.009
Kasen 0.176 £ 0.007 0.136 £ 0.014 0.094 £ 0.011 0.090 £ 0.015 0.083 £0.010 0.092 +£0.010

the limitations of the model, especially at the edges of the parameter
space, but we emphasize that that the errors primarily occur when
the kilonova has dimmed beyond detectability.

4.2 Fitting AT2017gfo

We test the performance of the surrogate model in the scien-
tific context that it will be used: we use the Dietrich-based sur-
rogate model to perform kilonova parameter estimation on the

MNRAS 516, 1137-1148 (2022)

object AT2017gfo (counterpart to the event GW170817) with
the data collated in Coughlin et al. (2018) from the sources of
Andreoni et al. (17ed), Arcavi et al. (2017), Chornock et al.
(2017), Cowperthwaite et al. (2017), Drout et al. (2017), Evans
et al. (2017), Kasliwal et al. (2017), Tanvir et al. (2017), Pian
et al. (2017), Troja et al. (2017), Smartt et al. (2017), Utsumi
et al. (2017). We use flat priors that extend over the published
data range and therefore the range of supported parameter by the
surrogate model 1log;o(0.001) < logio(Mej, ayn/Mo) =< log;(0.02),
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Figure 8. Light curves for AT2017gfo. Observed values (points and trian-
gles, where the latter are lower bound observations) and the prediction based
inferred parameters using the Dietrich-based cVAE surrogate model (solid
lines). The shaded bands represent the 90 per cent confidence interval of light
curves constructed from the posterior samples. The dashed lines represent the
1 mag tolerance typically used to represent modelling error of kilonova light
curves.

loglo(OOI) < lOglO(Mej,pm/MO) < 10g10(0.13), 0<cos(®)<1,and
0<cos(@)<1.

We use the dynesty sampler and the log-likelihood (up to a
constant) of

1 N (mi pred — M obs)2
logﬁz—fZﬁ, 12)
i=1 i,0bs sys
where i indexes observations, m; peq is the magnitude of each
proposed sample, m; o is the magnitude of each observation, and
0 obs 1S the uncertainty of each observation. The likelihood is
Gaussian with an additional systematic uncertainty of o s, = 1 mag
added to account for the modelling uncertainty, as used in Coughlin
et al. (2018). Fig. 8 shows the light curves derived from the fit,
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and Fig. 9 shows the parameter posteriors, as well as the best-fitting
median values on the same data set obtained by Dietrich et al. (2020).

There are some key differences to note for this comparison. The
fit performed by Dietrich et al. (2020) on the light curve data uses as
a prior gravitational wave and pulsar observations. In addition, they
used different allowed ranges of the kilonova model parameters. With
all these differences in mind, the agreement between our parameter
recovery and the fit presented in their analysis shows remarkable
consistency, with each of the medians of their recovered parameters
lying within 1o of our median recovered parameters, as shown in
Fig. 9. The parameter inference performed with dynesty for this
data set required 3.5 min on an Apple M1 Pro chip.

In the Appendix, we include a more directly comparable fit using
the Kasen model as well. An additional test would involve generating
light curves from injected parameters and seeing whether the same
parameters are recovered through a sampling-based fit. This has been
performed in LukoSiute (2021) using the surrogate constructions
described in this work for the Dietrich and Anand data sets with
success; see LukoSiute (2021) for details.

5 CONCLUSION

In this work, we presented an implementation of the conditional
variational autoencoder (cVAE) as a method for surrogate model
construction of kilonova spectra. We discussed the method’s potential
to produce complex, high-dimensional data, including the theoretical
and practical limitations, especially with respect to uncertainty
quantification. We applied the method to three commonly used
kilonova spectra model data sets — those published in Kasen et al.
(2017), Dietrich et al. (2020), and Anand et al. (2021). Because the
model is unable to learn its own uncertainties, we delineated potential
sources of error and developed a suite of metrics tailored to these
specific data sets and their scientific uses.

We evaluated the surrogate model’s performance in the context
of directly predicting spectra, as well as on downstream products
like the bolometric luminosities and ugrizy broad-band magnitudes.
As a final test of the model, we applied it in a typical scientific use
case: measuring the physical parameters of the kilonova associated
with GW170817. While the cVAE method is limited by variance
shrinkage, it can still quickly produce spectra with high fidelity to
the original training simulations. Kilonova models that are published
in the future can have a surrogate pre-trained and be used for fast
inference for any set of photometric bands.

We leave for future work studying how to address the variance
shrinkage problem so that the variance of the surrogate can be learned
and the uncertainty incorporated into Bayesian analyses. Some
potential avenues include using the CombVAE (Skafte, Jorgensen &
Hauberg 2019) or the QR-VAE (Akrami et al. 2020), or other machine
learning methods that allows for accurate density estimation, such
as normalizing flows (Dinh, Krueger & Bengio 2015; Rezende &
Mohamed 2015). We leave also for future work how to incorporate
the errors incurred due to surrogate modelling into scientific analyses.
Nevertheless, we have shown that the cVAE can already serve as a fast
and accurate surrogate model for kilonova spectra and have evaluated
uncertainty without modelling variance directly. We release the final
trained models for the three data sets and user-friendly code to
produce spectra at https://github.com/klukosiute/kilonovanet.
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APPENDIX A:

In addition to performing parameter estimation for AT2017gfo for
the Dietrich model, we also perform parameter estimation for the
single component Kasen model. Most literature agrees that more
than one component is present in kilonova outflows (Kasen, Bad-
nell & Barnes 2013; Dietrich & Ujevic 2017; Coughlin et al. 2018;
Raaijmakers et al. 2021a). We aim to compare the performance of
our surrogate model directly to another published result. Therefore,
we present this particular parameter estimation to compare with the
parameter inference presented in Coughlin et al. (2018). We use the
same likelihood (equation 12), sampling software (dynesty), and
observational data set for the light curve of AT2017gfo as we used for
the parameter inference for the Dietrich model (Speagle 2020). We
use flat priors: 1og;¢(0.001) < log;o(M,;/Ms) < logip(0.1), 0.03¢ <
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Figure Al. Corner plot for the inferred posterior distribution of the Kasen
model parameters mass of the ejecta M,;, velocity of the ejecta v,;, and
lanthanide fraction x from the observations of AT2017gfo as collected in
Coughlin et al. (2018) at 10 per cent, 32 per cent, 68 per cent, and 95 per cent
confidence. The dashed lines in the 1D distributions, as well as the values
given in the titles, represent 68 per cent confidence interval, with the median
lying between the two dashed lines representing the median value. The orange
solid lines indicate the median values from the results of the fit performed
in Coughlin et al. (2018) using the same data set and kilonova model but a
different surrogate construction and prior. The orange dashed lines indicate
the ranges presented in Coughlin et al. (2018).

ve; < 0.3¢, and —9 <logjo(x) < —1. The results for our fit are shown
in Figs Al and A2. We find relatively good agreement between our
inferred parameters and those presented in Coughlin et al. (2018):
all of their parameters fall within 1o of our parameters. Some of the
disagreement in fit is likely explained by the slight differences in
the data that our surrogate was trained on and the prior ranges. We
use both the systematic parameter survey and the narrower survey
and combine them for our training set to construct the surrogate
for the Kasen model, so our surrogate model uses more data than
the surrogate model used in Coughlin et al. (2018). Additionally,
Coughlin et al. (2018) use a wider prior that extends outside the
ranges of the kilonova models published in Kasen et al. (2017).

MNRAS 516, 1137-1148 (2022)

i oo R o]
18 OCD

v °Ooo'oo
20 =)

22 = T T T T T
0.0 2.5 5.0 7.5 10.0 125

Time (days)

Figure A2. Comparison of the observed light curve for AT2017gfo (points)
and the prediction from inferred parameters using the cVAE surrogate model
(solid lines) using the Kasen model. The shaded bands represent the 90
percent confidence interval of light curves constructed from the posterior
samples. The dashed lines represent the 1 magnitude tolerance often used to
represent modelling error of kilonova light curves.
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