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A B S T R A C T 
Detailed radiative transfer simulations of kilonova spectra play an essential role in multimessenger astrophysics. Using the 
simulation results in parameter inference studies requires building a surrogate model from the simulation outputs to use 
in algorithms requiring sampling. In this work, we present kilonovanet , an implementation of conditional variational 
autoencoders (cVAEs) for the construction of surrogate models of kilonova spectra. This method can be trained on spectra 
directly, remo ving o v erhead time of pre-processing spectra, and greatly speeds up parameter inference time. We build surrogate 
models of three state-of-the-art kilonova simulation data sets and present in-depth surrogate error e v aluation methods, which can 
in general be applied to any surrogate construction method. By creating synthetic photometric observations from the spectral 
surrogate, we perform parameter inference for the observed light-curve data of GW170817 and compare the results with previous 
analyses. Given the speed with which kilonovanet performs during parameter inference, it will serve as a useful tool in 
future gravitational wave observing runs to quickly analyse potential kilonova candidates. 
Key w ords: gravitational w aves – methods: statistical. 

1  I N T RO D U C T I O N  
Mergers of compact stellar remnants, like neutron stars (NSs) and 
black holes (BHs), provide important testbeds for astrophysical 
processes, cosmological evolution, and matter under extreme 
conditions. In binary merger systems, as companions orbit each 
other, their physical separation decays due to energy loss through 
the emission of gra vitational wa ves (GWs), which can be detected 
by modern ground-based interferometers, like those of the Laser 
Interferometer Gra vitational-Wa ve Observatory (LIGO; Aasi et al. 
2015 ), Virgo (Acernese et al. 2015 ), and Kamioka Gravitational 
Wave Detector (KAGRA; Akutsu et al. 2019 ) experiments. If the 
merging system contains one or two neutron stars, neutron star 
material can be ejected at high velocities and emit electromagnetic 
(EM) waves (Lattimer & Schramm 1974 ; Li & Paczy ́nski 1998 ; 
Metzger & Berger 2012 ; Pian 2021 ). Using information jointly from 
GWs and EM emission is essential for maximizing our understanding 
of multiple phenomena: since both GW and EM measurements 
are sensitive to parameters of a merging binary, combining them 
can yield stronger constraints on properties of the binary (Coughlin 
et al. 2017 ), the neutron-star equation of state (Coughlin et al. 2018 ; 
Radice et al. 2018a ), and the expansion rate of the Universe (Schutz 
1986 ; Holz & Hughes 2005 ; Abbott et al. 2017b ). 
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Amidst the neutron-rich material ejected during an NS-containing 
merger (Lattimer & Schramm 1974 ; Rosswog et al. 1998 ; Metzger 
et al. 2010 ), r-process nucleosynthesis generates heavy nuclei (Bur- 
bidge et al. 1957 ; Cameron 1957 ). The subsequent decay of these 
nuclei drives a kilonova – an ultraviolet-optical-infrared transient, 
whose brightness peaks two to three days after a merger (Li & 
Paczy ́nski 1998 ). Most binary neutron star (BNS) systems and some 
black hole–neutron star (BHNS) systems are expected to produce a 
kilonova (Metzger 2019 ). 

There are two primary channels for mass-ejection during an NS- 
containing merger (Metzger 2019 ) – dynamical ejection (during 
merger) and disc wind ejection (after merger). Dynamical ejecta 
are further subdivided into two categories – ‘tidal’ and ‘polar.’ Tidal 
dynamical ejecta outflows occur during the final stage of the inspiral 
in both BHNS and BNS systems when the neutron star is disrupted 
by the gravitational field of the companion. Polar dynamical ejecta 
result from shock heating caused by the direct collision of the neutron 
stars in BNS systems only (e.g. Radice et al. 2018b ). 

The detection of GW170817, the first observed BNS GW event, 
marks the onset of the era of multimessenger and GW astronomy 
(Abbott et al. 2017a ). GW170817 was accompanied by counterparts 
across the EM spectrum (e.g. Abbott et al. 2017c , d ; Arcavi et al. 
2017 ; Coulter et al. 2017 ; Drout et al. 2017 ; Savchenko et al. 2017 ; 
Shappee et al. 2017 ; Smartt et al. 2017 ; Soares-Santos et al. 2017 ; 
Valenti et al. 2017 ; Goldstein et al. 2019 ). Then during the third 
LIGO and Virgo observing run (Run O3), tens of binary black 
hole mergers and multiple neutron star-containing mergers were 
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detected, including BHNS events (Abbott et al. 2021a, b , c ). Through 
multiple dedicated follow-up electromagnetic observing campaigns 
in O3 (Coughlin et al. 2019 ; Goldstein et al. 2019 ; Antier et al. 
2020 ; Gompertz et al. 2020 ; Page et al. 2020 ; Anand et al. 2021 ), 
one candidate was identified (Graham et al. 2020 ), but zero were 
confirmed. 

Accurate and fast models of kilonovae are critical for multiple tasks 
in multimessenger and GW astrophysics. First, we need fast models 
in order to quickly e v aluate candidates during electromagnetic follow 
up campaigns (Soares-Santos et al. 2017 ). Identifying and observing 
a candidate in the first few hours is crucial, especially to understand 
the origin of early kilonova emission, such as the fast, blue emission 
seen in GW170817 (Arcavi 2018 ; Chase et al. 2022 ). After the data 
are all collected, analysis, inference can begin; we can use the data 
to infer parameters of the NS equation of state (e.g. Coughlin et al. 
2018 ; Radice et al. 2018b ; Raaijmakers et al. 2021b ), the Hubble 
constant (e.g. Abbott et al. 2017b ; Coughlin et al. 2020 ; Dietrich 
et al. 2020 ), and studying r-process nucleosynthesis (e.g. Drout et al. 
2017 ), and the site of rapid neutron capture nucleosynthesis (e.g. 
Kasen et al. 2017 ). For these scientific studies, the most accurate 
models will lead to the least biased results. 

Numerical hydrodynamic simulations provide the most detailed 
models of matter (i.e. velocity, mass, composition, and opacity) 
ejected during mergers (e.g. Dietrich & Ujevic 2017 ; Perego et al. 
2017 ; Tanaka et al. 2020 ; Kawaguchi et al. 2021 ). The results of these 
simulations are then incorporated into radiative transfer calculations 
to compute observational properties of mergers (e.g. Kawaguchi et al. 
2016 ; Kasen et al. 2017 ; Wollaeger et al. 2018 ; Bulla 2019 ; Korobkin 
et al. 2021 ; Wollaeger et al. 2021 ) to generate synthetic observations 
for comparison with real-sky observations (e.g. Raaijmakers et al. 
2021a ). Since the simulations are computationally comple x, the y 
take several hours to produce observables for one parameter set 
(Bulla 2019 ). 

In order to use the outputs of the simulations in parameter 
inference studies, the outputs are trained to produce a ‘surrogate’ 
model that emulates the output of simulations but run considerably 
faster. F or e xample, a commonly used surrogate-construction method 
is Gaussian process regression (GPR), a statistical method for 
interpolation; this method has been applied in a few GW and EM 
studies (Doctor et al. 2017 ; Coughlin et al. 2018 ; Dietrich et al. 
2020 ; Ristic et al. 2022 ). One dif ficulty with using GPR for kilonov a 
surrogate models for example is that it does not scale well with the 
number of training examples: the e v aluation time goes as the square 
of the number of training points and the training time goes as the 
cube. State-of-the-art radiative transfer simulations, such as those 
published in Dietrich et al. ( 2020 ) and Anand et al. ( 2021 ), output 
spectra based on multiple input parameters in hundreds of frequency 
bins and with hundreds of time steps. The high-dimensionality of the 
inputs and outputs, combined with the grid o v er physical parameters 
means that the simulated sets become large quickly, making GPR 
a costly method. Recently, Almualla et al. ( 2021 ) presented a 
neural network based surrogate modelling framework which greatly 
increased inference time for the GW170817 light curve. We present 
a complementary approach to their method, instead training directly 
on spectra, thereby skipping the dimensional reduction step, and 
training one permanent network set, thereby allowing construction 
of photometric observations for any band from the surrogate as well 
as comparison to spectroscopic data. 
kilonovanet is an algorithm for generating surrogate kilo- 

nova spectra on tens-of-millisecond time-scales via conditional 
variational autoencoders (cVAE) (Kingma & Welling 2014 ; Rezende, 
Mohamed & Wierstra 2014 ; Sohn, Yan & Lee 2015 ). We additionally 

present a thorough error e v aluation suite to understand the perfor- 
mance of kilonovanet across the input parameter space; these 
error e v aluation methods can also be applied to any future surrogate 
construction methods. The code used to produce the results in our 
study is available at ht tps://github.com/klukosiut e/kilonovanet . 

The work is organized as follows. In Section 2 , we discuss the 
simulated data sets used for constructing the surrogate model. In 
Section 3 , we discuss the cVAE, its limitations with respect to uncer- 
tainty estimation, and our approach for quantifying uncertainties. We 
discuss the performance of the cVAE surrogate model in Section 4 
and conclude in Section 5 . 
2  DATA  
In this work, we report the construction and testing of surrogate 
models for three publicly available data sets of simulated kilonova 
– in particular, spectra of the material ejected during a BNS or 
BHNS merger: the Kasen BNS simulations (Kasen et al. 2017 ), 
the Dietrich BNS simulations (Dietrich et al. 2020 ), and the Anand 
BHNS simulations (Anand et al. 2021 ). In the Kasen simulation, 
the key physical parameters of the single-component spherically 
symmetrically expanding ejecta are the ejecta mass M ej , the char- 
acteristic e xpansion v elocity of the ejecta v ej , and the chemical 
composition as indicated by the lanthanide fraction χ . Each spectrum 
is computed in increments of 0.1 d, from 0.1 to 24.9 d post-merger 
and has 1629 logarithmically spaced wavelength bins from 149 Å to 
99467 Å. There are two sets of publicly available parameter grids for 
these simulations available: a regularly spaced grid, whose parameter 
values are given in Table 1 , and a narrower, irregularly spaced set. The 
values of the second set lie mostly within the ranges of the regularly 
spaced grid but also includes several models with v ej / c = 0.4. This 
set w as w as produced particularly for the study of GW170817. There 
are two sets of parameters. We combine the regular grid data (329 
parameter sets 1 ) and the narrower, irregular grid data (22 parameter 
steps) to create our full training data set, resulting in 351 unique 
parameter combinations; with 249 time steps per parameter set, this 
leads to a total of 87 399 spectra in the Kasen simulated data set. 

The Dietrich BNS simulations are generated with POSSIS , a 
multidimensional Monte Carlo radiative transfer code (Bulla 2019 ). 
The parameter sets consist of the mass of the dynamical ejecta 
M ej, dyn , the mass of the post-merger ejecta M ej, pm , the half-opening 
angle of the lanthanide-rich tidal dynamical ejecta # , and the cosine 
of the observer viewing angle cos θobs . The half-opening angle 
# parametrizes the separation of the dynamical ejecta into two 
components: lanthanide-free matter ejected along the poles of the 
in-spiral plane abo v e latitudes ±# , and lanthanide-rich ejecta tidally 
expelled equitorially below latitudes ±# . Each spectrum is computed 
at increments of 0.2 d, starting at 0.2 d up to 20 d post-merger and 
for 500 evenly spaced wavelength bins from 100 Å to 99 900 Å. 
There are in total 2156 combinations of the parameter values listed 
in Table 1 , including ‘redundant’ simulations for different viewing 
angles at # = 0, 90 deg. We keep these redundant simulations in 
the parameter set so that the surrogate models do not have to build 
in the spherical symmetry of the system. With 100 time steps for 
each parameter combination, this leads to 215 600 spectra for this 
simulation set. 
1 There are 329 parameter sets rather than the 11 × 5 × 6 = 330 expected 
from Table 1 because there exists no Kasen run for ( M ej , v ej , log 10 χ ) = (0.1, 
0.3, −1). 
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Table 1. Parameter values for each of the three kilonova simulation data sets which we use for training 
our surrogate model. 
Kasen et al. ( 2017 ) 
Parameters Values 
M ej / M # { 0 . 001 , 0 . 0025 , 0 . 005 , 0 . 01 , 0 . 02 , 0 . 025 , 0 . 03 , 0 . 04 , 0 . 05 , 0 . 075 , 0 . 1 } 
v ej / c { 0.03, 0.05, 0.1, 0.2, 0.3 } 
log 10 χ { − 9, −5, −4, −3, −2, −1 } 
Dietrich et al. ( 2020 ) 
M ej, dyn / M # { 0.001, 0.005, 0.01, 0.02 } 
M ej, pm / M # { 0 . 01 , 0 . 03 , 0 . 05 , 0 . 07 , 0 . 09 , 0 . 11 , 0 . 13 } 
# (deg) { 0, 15, 30, 45, 60, 75, 90 } 
θobs { 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 } 
Anand et al. ( 2021 ) 
M ej, dyn / M # { 0 . 01 , 0 . 02 , 0 . 03 , 0 . 04 , 0 . 05 , 0 . 06 , 0 . 07 , 0 . 08 , 0 . 09 } 
M ej, pm / M # { 0 . 01 , 0 . 02 , 0 . 03 , 0 . 040 . 05 , 0 . 060 . 07 , 0 . 08 , 0 . 09 } 
cos θobs { 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 } 

The Anand BHNS data set is also generated through POSSIS . The 
dynamical ejecta are concentrated within an angle φ = 30 deg abo v e 
and below the equatorial plane, expanding with velocities ranging 
0.1 c to 0.3 c , and with a lanthanide-rich composition. The post-merger 
ejecta are assumed to be spherical, expanding with velocities ranging 
0.025 c to 0.1 c , and with an intermediate lanthanide composition. 
Table 1 lists all the values of these parameters as well as the final 
parameter cos θobs . There are 891 unique parameter combinations 
and again with 100 time steps each. 
3  M E T H O D S  
We use the conditional variational autoencoder (cVAE) to construct 
our surrogate models. We then highlight the subtle but critical 
challenge of deriving uncertainty estimates directly from Gaussian 
cVAE’s, caused by variance shrinkage. Finally, we discuss data pre- 
processing, our training protocol, and our method for e v aluating the 
trained cVAE-based model. 
3.1 Conditional variational autoencoder 
We start with a simplified deri v ation of the variational autoencoder 
(VAE; Kingma & Welling 2014 ), which is a generative model that 
relies on variational Bayesian methods for optimization. We note the 
following definitions: 

(i) x : vector of physical parameters, including those discussed in 
Section 2 , like ejecta mass, velocity, and lanthanide fraction, as well 
as the time step t in the evolution a single kilonova. 

(ii) y : vector of spectral data from a single kilonova. 
(iii) z : vector of latent variables 
(iv) p : generative model 
(v) q : inference model 
(vi) θ : parameters for generative neural model network 2 
(vii) φ: parameters for inference model neural network 
Our goal is to obtain a model to efficiently approximate a 

generative process p ∗( y ) (the radiative transfer model) to predict a 
spectrum y . We seek p θ ( y ) = ∫ p θ ( y | z)d z to approximate p ∗( y ), 
where p θ ( y | z) is part of a deep latent variable model (DLVM) 
and is related to it via the definition of conditional probability. 
2 θobs in §2 is unrelated to θ . 

To e v aluate the integral, an inference model q φ( z | y ) (the encoder) 
is used to approximate the true p θ ( z | y ), which, through Bayes’ 
theorem, approximates p θ ( y | z ). A VAE is a deep neural network- 
based framework for co-optimizing a DLVM and an inference model. 

A model EncoderNeuralNet is trained to return the mean µ and 
the variance σ of a multidimensional Gaussian for a particular data 
input y . The mean and variance are then used for sampling the 
generative model: 
( µ, log σ ) = EncoderNeuralNet φ( y ) 

q φ( z | y ) = N ( z ; µ, diag ( σ )) . (1) 
The optimization objective of the VAE is the Evidence Lower 
Bound (ELBO), which allows the simultaneous optimization of the 
parameters θ (generative model), and the variational parameters φ
(inference model). The loss function is defined as 
L θ,φ( y ) = −D KL ( q φ( z | y ) || p θ ( z )) + E q φ ( z | y ) [ log ( p θ ( y | z ))] , (2) 
where D KL is the Kullback–Liebler Divergence, which measures the 
distance between the probability p and the inference model q , and 
E is the reconstruction loss. Using Monte Carlo sampling and the 
‘reparametrization trick,’ the networks p θ and q φ can be optimized 
using gradient descent methods (Kingma & Welling 2014 , 2019 ; 
Rezende et al. 2014 ). 

The variational autoencoder learns an approximation for the 
distribution p ∗( y ), and the decoder returns the parameters of the 
distribution p θ ( y | z ). After training, the marginal likelihood p( y ) can 
be estimated through importance sampling, where random samples 
are drawn from q φ( z | y ) (Rezende et al. 2014 ): 
p θ ( y ) = E q φ ( z | y ) [p θ ( y , z ) /q φ( z | y ) ] ≈ 1 

L 
L ∑ 

l= 1 
p θ ( y | z ( l) ) p( z ( l) ) 

q φ( z | y ) . (3) 
Through this process, the VAE can learn a multidimensional dis- 
tribution as a data-driven model. This distribution p θ ( y | z ) is then 
the approximation of the p ∗( y ), the true generative model from the 
radiative transfer simulation. 

In this work, we aim to learn a distribution o v er the spectral data 
y . But, importantly, we must condition the VAE model on input 
physical parameters x of the kilonova, transforming the model into 
a cVAE (Sohn et al. 2015 ; Kingma & Welling 2019 ): p θ ( y | x ). The 
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Figure 1. Diagram of the cVAE architecture. There are two neural networks – encoder (left-hand side, grey) and decoder (right-hand side, grey – and a latent 
space ( z , pink). The inputs to the encoder are the physical parameter x and the spectrum y at time step t for a single kilonova event. The outputs from the encoder 
are σ ( x , y ) and µ( x , y ), which are the parameters of the distribution q φ ( z | y , x ) o v er the latent variables z . The inputs to the decoder are z and x , which are used 
to draw a sample from the distribution p θ ( y | z , x ) o v er the spectra. This produces an output ˆ y ( z, x), a new surrogate spectrum. After training, the decoder is used 
as the generator of simulated data for the surrogate model: it takes as input a sample from N (0 , I ) and a set of physical parameters x and predicts a spectrum 
ˆ y ( z , x ). 
optimization objective for the cVAE is the conditional likelihood 
L θ,φ( y | x ) = −D KL ( q φ( z | y , x ) || p θ ( z | x )) 

+ E q φ ( z | y , x ) [( log p θ ( y | z , x ))] . (4) 
A graphical representation of the model is shown in Fig. 1 . 

Since sampling from p( z ) = N (0 , I ) produces negligible differ- 
ences in the prediction of new spectra y , we choose to al w ays use the 
same sample (the central value of N (0 , I ), a vector of zeroes) for z 
when predicting spectra. 
3.2 Variance shrinkage of gaussian VAEs 
Using the prescription abo v e, cVAEs can generate multidimensional 
data distributions conditioned on input variables when an appropriate 
likelihood function is chosen. For binary classification, the Bernoulli 
distribution is typically used to describe data that have binary 
outcomes. The log-likelihood is given by the binary cross-entropy 
(BCE) loss, 
log p θ ( y | z ) = − D ∑ 

i= 1 y i log ˆ y i + (1 − y i ) log (1 − ˆ y i ) , (5) 
where D is the dimension of the vector to be predicted, y i is a true 
label, and ˆ y i is a predicted label. 

For real-valued data, like the kilonova spectra in this work, the 
multi v ariate Gaussian with a diagonal cov ariance of fers flexibility 
and mathematical simplicity with a log-likelihood of the form 
log p θ ( y | z ) = D ∑ 

i= 1 −
1 

2 σ 2 
θ,i ( z) || y i − µθ,i ( z) || 2 

− 1 
2 log 2 πσ 2 

θ,i ( z) , (6) 
where σ 2 

θ,i ( z) and µθ , i ( z) are the variance and mean, respectively, for 
the i -th dimension. 

If we used the Gaussian likelihood for our continuous and real 
data outputs, we could consider interpreting the output distribution 
as an uncertainty learned by the model. Ho we ver, it has recently 
been shown that the maximum-likelihood objective is ill-posed for 
continuous models, such as those employing Gaussian distributions 
(Mattei & Frellsen 2018 ). For models trained so that y i ∼ µθ , i ( z), 

the − 1 
2 log 2 πσ 2 

θ,i ( z) term will push the variance to zero before the 
1 

2 σ 2 
θ,i ( z) term can catch up. This can be seen in equation ( 6 ). Therefore, 

a Gaussian cVAE will produce a small variance that does not have 
useful physical interpretation. This ‘variance shrinkage problem’ 
prohibits use of the cVAE model as a probabilistic method (Mattei & 
Frellsen 2018 ; Skafte, Jørgensen & Hauberg 2019 ). 

There are several standard procedures to a v oid the variance 
shrinkage problem in practice (Skafte, Jørgensen & Hauberg 2019 ). 
F or e xample, setting a globally constant variance – e.g. σ 2 = 1 – the 
log-likelihood becomes the mean squared error, and the cVAE loss 
function becomes 
log p θ ( y | z ) = D ∑ 

i= 1 −|| y i − µθ,i ( z) || 2 . (7) 
This uncertainty is predetermined and not learned from the data. 

Because the MSE loss does not provide statistical interpretability, 
the Bernoulli distribution is often used for non-binary data: opti- 
mizing a Bernoulli log-likelihood (the BCE loss in equation 5 ) is 
considerably simpler than optimizing the MSE (Skafte, Jørgensen & 
Hauberg 2019 ). This can be done when the data is scaled to the range 
[0,1]. Ho we ver, the outputs will not have a meaningful statistical 
interpretation because the Bernoulli distribution is meant for discrete 
random variables with a binary outcome. Our initial experiments 
verify that training with BCE loss outperforms the MSE loss in 
terms of accuracy and efficiency. 

The closed-form expression for our optimization objective is thus 
L = −1 

2 
D ∑ 

i= 1 
[
1 + log σ 2 

i − σ 2 
i − µ2 

i ]
−

D ∑ 
i= 1 y i log ˆ y i + (1 − y i ) log (1 − ˆ y i ) , (8) 

where we have used the BCE loss and p( z | x ) = N (0 , I ), as per the 
definition of the VAE model, and where µi and σ 2 

i are the outputs of 
the encoder distribution for passing a data point pair ( x i , y i ), with a 
resulting prediction ˆ y i . While variance shrinkage prevents learning 
of the variance from the data, the cVAE can still reproduce spectral 
data with high fidelity. We pursue estimates of the variance post-facto 
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through measurements of the surrogate model data with respect to 
the original simulated data. 
3.3 Data pr e-pr ocessing 
The original Kasen spectra are in units of erg s −1 Hz −1 , and the 
Dietrich and Anand spectra are in units of erg s −1 cm −2 Å−1 at a 
distance of 10 pc. To use the data sets for network training and to 
e v aluate the surrogate results, we first process all spectra such that 
the y hav e units erg s −1 Å−1 . We then re-scale the input physical 
parameters and the spectra to the range [0,1] so that the data lie in 
the supported range of the sigmoid acti v ation function in the final 
layer of the decoder neural network. Finally, we separate each of the 
three simulation data sets into training, validation, and test sets with 
relative proportions 80:10:10, respectively. We use only the training 
and validation sets to optimize the training and hyperparameters. 
3.4 Training 
For each of the three simulated kilonova spectra data sets, we train a 
distinct cVAE model with the following procedure. 

(i) We use the training and validation data sets from the top-level 
split to perform hyperparameter selection for our final architecture. 
For each simulation data set, we perform a hyperparameter search 
using one of the train-validation data splits. We consider the hyper- 
parameters of the cVAE model to be the dimensionality of the latent 
space z and the dimensionality of the hidden layers of the decoder and 
encoder. Because the encoder is considered the approximate inverse 
of the decoder, we use one hyperparameter for both the hidden layers. 
We perform hyperparameter selection only on these two values; all 
other hyperparameters of the model, such as the learning rate and 
batch size, are fixed across all of our tests and models. We trained 16 
architectures with four values for each hyperparameter. 

(ii) We then split the training and validation sets into nine total 
sets, and train the architecture on these subsets. 

(iii) We then e v aluate all nine models on the test set, which allows 
us to develop a statistical analysis of the model’s predictive capability. 

(iv) We chose one of the nine models at random for the final 
production model that we use to show examples and make publicly 
available. 

We train each model – both when performing hyperparameter 
selection and when training each of the nine data split models – for 
200 epochs. The final training losses for the Kasen , Dietrich , and 
Anand data, averaged over the nine data split models, respectively, 
are 48.54, 11.23, and 8.20. The training during the hyperparameter 
search required ∼24 h, and the final nine experiment models required 
approximately 26 h of training on the same GPU – both on an 
Nvidia GeForce 1080Ti GPU. The prediction of 100 spectra of the 
trained network from unique parameter sets requires approximately 
10 ms on one Intel R ©Core TM i7-7700HQ CPU. We use PyTorch for 
implementation (Paszke et al. 2019 ) and Adam as our gradient-based 
optimizer (Kingma & Ba 2015 ). 
3.5 Model evaluation and quantifying prediction uncertainties 
For each simulation data set, we have constructed a surrogate cVAE- 
based model with which we can generate data under the supported 
ranges of the physical input variables x and output spectra y . 

We next seek to generate uncertainties associated with the pre- 
dictions of the spectra. Variance shrinkage and the resulting training 
choices dictate that the cVAE cannot produce statistically meaningful 

Figure 2. An example original spectrum (orange) and its smoothed version 
using a Gaussian kernel with σ = 2.5 (blue). This spectrum is from the 
Dietrich data set and corresponds to the parameters M ej, dyn / M # = 0.01, 
M ej, pm / M # = 0.07, # = 30.0 ◦, cos ( obs = 0 . 5, t = 1.8 d. 
variances. Therefore the errors in the resulting surrogate models still 
need to be characterized. We use the cVAE only as a method to 
produce more samples of the original radiative transfer simulations 
with which the cVAE was trained: we do not seek to impro v e upon 
or e xtrapolate be yond those simulations. In the following sections, 
we discuss error sources and procedures for quantifying them. 
3.5.1 Sources of error 
We examined and estimated multiple sources of error with respect to 
the original simulations. First, for systematic error, we account for 
the bias of the predicted spectra as a function of input parameters by 
comparing predictions to the truth generated by the radiative transfer 
simulations. The surrogate model is generated to minimize bias in 
reconstructing spectra, so the model (with its chosen hyperparameter 
values) is designed to minimize this bias. Secondly, we account for 
statistical error of the predictions o v er the space of input parameters 
and different trained models, as we discuss in detail below. 
3.5.2 Error metrics 
The statistical error present in the training simulations will propagate 
to the surrogate data. Predicting synthetic observables from radiative 
transfer simulations results in Monte Carlo noise, leading to noisy 
spectra (Kasen et al. 2017 ; Bulla 2019 ): this represents the floor of the 
statistical noise. A surrogate model could recreate the noise present 
in the training data, but no surrogate model, even a hypothetical 
model with infinite capacity, will be able to perfectly predict the 
noise within the unseen test set. Therefore, the Monte Carlo noise 
from the radiative transfer simulations leads to a source of error in 
the final test set predictions. We would like to know the value of 
the error that is incurred because of the Monte Carlo noise present 
in the test data set. Estimating the true Monte Carlo noise would 
require simulating the observables for each parameter simulation 
several times and then computing residuals from the mean spectrum 
(Bulla, Sim & Kromer 2015 ) – a process that is computationally 
e xpensiv e. To estimate the error, we emulate the mean spectrum by 
smoothing each spectrum using a Gaussian smoothing method. We 
cannot know which value of the Gaussian kernel represents the true 
mean spectrum best, so we perform Gaussian smoothing for several 
values of the Gaussian kernel. We then visually inspect the spectra 
to check for an approximate best fit, which occurs at a value of 
σ = 2.5. Fig. 2 shows an original smoothed spectra and its smoothed 
counterpart. In Section 4 , we compare our estimated fractional Monte 
Carlo noise with the errors of the kilonovanet predictions. 
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Figure 3. Three original spectra (orange) and corresponding cVAE predic- 
tions (blue) for physical parameters M ej, dyn / M # = 0.02, M ej, pm / M # = 0.05, 
# = 45.0 ◦, cos ( obs = 0 . 8, and times (a) 0.2 d, (b) 4.2 d, and (c) 14.2 d. The 
corresponding median spectral errors across the whole spectra (a) 12.91, (b) 
0.37, and (c) 0.20. 

We e v aluate the model performance using three metrics: the spec- 
tral error, the bolometric luminosity error, and the band magnitude 
error. 

The spectral error is the fractional error between the model 
prediction in a given wavelength bin y pred ( λ) and the value of the 
original test data point y test ( λ): 
εs ( λ) = y pred ( λ) − y test ( λ) 

y test ( λ) . (9) 
To connect with photometric surv e y observations, we quantify the 

bolometric luminosity error as 
εb = ∫ y pred ( λ)d λ −

∫ 
y test ( λ)d λ∫ 

y test ( λ)d λ . (10) 
We also e v aluate the performance of the surrogate model by 

constructing broad-band light curves at a distance of 40 Mpc for 
each of the unique parameter sets in our test data set. Broad-band 
AB magnitudes from simulated spectra are computed by convolving 
the flux with the broad-band filters at a chosen distance (40 Mpc in 
this work). The distance is chosen to correspond to the distance of 
GW170817 which allows us to compare with past analyses. These 
light curves are computed as AB magnitudes in each band, 3 of which 
examples are shown in Fig. 7 . We compute and e v aluate the error in 
the AB magnitude in each band as 
+m = m band , pred − m band , test , (11) 
where m band, pred is the AB magnitude in a band at a given time step 
predicted by kilonovanet , and m band, test is magnitude found from 
the corresponding spectrum in the test set. 

Finally, we will e v aluate the performance of the surrogate model 
by performing a representative inference task and comparing with 
previously published results. We perform parameter estimation using 
3 We use the LSST filters provided at ht tp://svo2.cab.int a-csic.es/svo/theory 
/fps3/

nested sampling with the dynesty (Speagle 2020 ) sampler on the 
GW170817 light-curve data using our surrogate models. We compare 
the differences in the best-fitting parameters between our fit using 
the same data set, which was first collated in Coughlin et al. ( 2018 ) 
and previously published fits for the same BNS kilonova models but 
using a different surrogate construction methods. 
4  RESULTS  
We present the results of training and e v aluating the cVAE on the 
three simulated data sets. For each simulated data set, we have nine 
trained models (one for each data-splitting experiment as described 
in Section 3.3 . We pass the test data sets – i.e. the pairs of input ( x ) 
and output ( y ) values that were not used in any aspect of training or 
model selection – through the decoders of each model to obtain a 
predicted spectrum. We compare the predictions and the true values 
of the spectra by computing the values presented in Section 3.5.2 . 

We report a detailed analysis of the surrogate model for the 
Dietrich BNS data set and then report only key values for the Anand 
and Kasen data sets; the analysis is the same for all three data sets. 
We focus on the Dietrich data set, because we have observational 
data for a single BNS event, and the Dietrich model is a newer BNS 
kilonova simulation set. 
4.1 Quantifying uncertainties 
4.1.1 Spectral error 
We first compute median x ,λεs ( λ) and mean x ,λεs ( λ) for each of the 
nine data-split experiments. We calculate the median and mean over 
all sets of test input parameters (including the time parameter) and 
o v er all wav elengths in the spectra y . We then compute the mean and 
standard deviation of the aforementioned means and medians o v er 
all nine data-split experiments. 

We report the median and mean of the absolute value of ε( λ) s : 
0.067 ± 0.20 and 6620 ± 3180, where the error is given as 
the standard deviation o v er the aforementioned nine test splits. 
mean x ,λεs ( λ) is heavily skewed by o v erpredictions when the true 
value is close to zero for a few outlier values and is therefore not 
a true representation of the of the typical error. Although it is not 
representative, we report the mean so that we may look for skew of 
the error distribution. Because the mean is greater than the median, 
the distribution of errors is skewed high towards o v erprediction or 
slightly brighter kilonovae. The corresponding values for the Anand 
and Kasen data sets are given in Table 2 . 

We then perform the same set of operations on the absolute 
value of the spectral error: the mean and variance of this value is 
0.285 ± 0.004, where the variance is again o v er all nine experiments. 
We estimate the median absolute fractional Monte Carlo noise using 
smoothing via a Gaussian kernel with σ = 2.5 and find it to be 0.214. 
The size of the median spectral error median x ,λ| εs ( λ) | is due to the 
cVAE surrogate learning the general shape of the spectra but not the 
Monte Carlo noise. We leave the interpretation and impact of the size 
of the error for when we discuss errors in broad-band filters. 

In Fig. 3 , we present the spectrum of a BNS kilonova and its 
corresponding surrogate model predictions for the input parameters 
M ej, dyn / M # = 0.02, M ej, pm / M # = 0.05, # = 45.0 ◦, and cos ( obs = 
0 . 8 at three different time steps (i) 0.2 d, (ii) 4.2 d, and (iii) 14.2 d. 
The respective median λ| εs | for these spectra are 12.91, 0.37, and 
0.20. Fig. 3 (a) shows significant differences between the original 
and the surrogate model where the spectrum is non-zero. In general, 
we find that all spectra at t = 0.2 d are poorly predicted by the cVAE. 
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Figure 4. Median of | εs | o v er all the spectra in the Dietrich data set for the predictions of the cVAE (purple), along with the absolute spectral error from the 
Gaussian smoothed spectra for a Gaussian kernel with σ = 2.5 (black). 

Figure 5. Mean of | εb | across all nine data-split models of the Dietrich data 
set. The two times at which the model is least accurate is at t = 0.2 and 20 d. 
Ho we ver, there is general simulation uncertainty at early times due 
to a lack of atomic data (Banerjee et al. 2020 ): due to the lack of 
detailed simulations of these light curves and the current lack of 
wide-field, rapid response UV telescopes to detect them, we can 
safely defer impro v ement of early-time simulation data to future 
work. In contrast, the spectra produced by the cVAE model at t ! 
1 d are much more faithful to the original simulations, as evidenced 
by panels (b) and (c) in Fig. 3 and their lower median | εs | . 

Fig. 4 shows the median median x | εs ( λ) | i.e. the median absolute 
spectral error o v er all e xamples in the test set, including time. There 
are nine lines plotted for the medians, corresponding to the nine data 
split cVAE models. In addition, we show the estimate of the absolute 
fractional Monte Carlo noise using smoothing via Gaussian kernel 
with σ = 2.5 as a function of wavelength. The computation of the 
fractional Monte Carlo noise is the same as the computation of | εs | 
and the values can thus be compared directly. The Monte Carlo noise 
estimate traces the bottom of the errors produced by the cVAE. This 
could imply that the Monte Carlo noise sets a lower limit for | εs | of 
the cVAE or perhaps any surrogate model. 
4.1.2 Bolometric luminosity error 
Next, we discuss the errors in the bolometric light curves. For 
Dietrich , mean x | εb | = 0 . 033 ± 0 . 005, where the error is the standard 
deviation across all nine data split experiments. 

An investigation into the outliers in the Dietrich data set shows that 
the spectra with the largest bolometric luminosity error occur at times 
t = 0.2 and t = 20. The spectra with the highest bolometric luminosity 
error (of 1.56) is shown in Fig. 3 (a), which also corresponds to t = 
0.2. The spectra at t = 20 are also often o v erpredicted, leading to εb 
values of approximately 0.7. The outliers at t = 0.2 and t = 20 are the 

most prominent features across all nine data-split models in the plot 
of mean bolometric luminosity error mean M ej , dyn ,M ej , pm ,#, cos θobs | εb | as 
a function time, which is shown in Fig. 5 . The correlations with 
time are different for the other two data sets. The light curves of the 
Kasen set have a tendency to quickly fall to zero after ∼14 d: the 
errors increase rapidly at about that time. The Anand data set also 
exhibits a large error peak at t = 0.2, but since BHNS kilonovae dim 
more slowly, the errors remain consistently low even at t = 20 d. 
4.1.3 Broad-band magnitude error 
Finally, we e v aluate the performance of the surrogate model in broad- 
band magnitudes, ugrizy . We construct light curves for each set of 
input parameters in the test data set and compute the mean magnitude 
differences. We report the mean of the magnitude differences 
mean x +m , where a mean is taken across all sets of input parameters 
in the test set, where time is also treated as an input parameter. We 
report the values for Kasen and Anand in Table 2 . 

For the Dietrich test set, we additionally show the distribution of 
mean M ej , dyn ,M ej , pm ,#, cos θobs +m for selected time steps of the data set. 
Fig. 6 shows these distributions of + m for all six bands. In general, 
for the time steps other than t = 0.2, the width of the distributions of 
+ m is correlated with brightness. Overall, most of the predictions are 
within 0.1 mag of the test data set. This is well within the commonly 
assumed 1 mag uncertainty in other KN light-curve modelling fitting 
(Coughlin et al. 2018 ). The least accurate predictions occur for the 
Anand data set in u -band, with a median difference of 0.451 mag. 
Since the Anand data set is of a BHNS model, the model does not 
contain a lanthanide-free (‘bluer’) component and would thus be 
practically undetectable in the blue bands, leading to high errors in 
the surrogate model. 

We present three examples for light curves produced by the cVAE, 
along with the original light curves and absolute differences between 
the prediction and original in Fig. 7 . The three randomly chosen 
e xamples are representativ e of the remainder of the test set in that 
they show that the cVAE predictions in bands are smooth and that 
the predictions become unreliable when the light curve is too faint. 
Fig. 7 (c) shows an example for a model free of lanthanide rich ejecta, 
since the half opening angle # of the equatorial component is zero. 
This particular example peaks quickly and dims quickly, and below 
mag ∼27, the cVAE fails to predict the original data. Ho we ver, the 
kilonova at a distance of 40 Mpc would not be detectable at such a 
magnitude; for example, the design single-visit limiting magnitude 
for the LSST u -band is 23.9 (Ivezi ́c et al. 2019 ). Fig. 7 (c) shows 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/1/1137/6675824 by U
niversity of M

ichigan user on 01 Septem
ber 2022

art/stac2342_f4.eps
art/stac2342_f5.eps


1144 K. Luko ̌siute et al. 

MNRAS 516, 1137–1148 (2022) 

Figure 6. Distributions of magnitude errors + m between the predictions and the test data set for five time steps in the Dietrich simulation set. The horizontal 
lines for each violin represents the median of the distribution, and the endpoints of the vertical lines represent the 95 per cent confidence interval. 

Figure 7. Three example light curves from the Dietrich BNS data sets for the original data set (dashed lines) and the cVAE predictions (solid lines) for the six 
ugrizy bands (colours black through yellow), as well as the residuals between original and prediction for each light curve and band. The three parameter sets are 
(a) M ej, dyn / M # = 0.01, M ej, pm / M # = 0.09, # = 30.0, cos ( obs = 0.3, (b) M ej, dyn / M # = 0.001, M ej, pm / M # = 0.11, # = 75.0, cos ( obs = 0.0, (c) M ej, dyn / M # = 
0.02, M ej, pm / M # = 0.01, # : 0.0, cos ( obs = 0.3. The lower panels indicate the differences between the predicted light curve and the original as a function of 
time, for each light curve. 

Table 2. Summary of errors for all models. 
| εs | MC noise estimate εs, mean εs, med | εb | 

Dietrich 0.285 ± 0.004 0.214 6620 ± 3180 0.067 ± 0.20 0.033 ± 0.005 
Anand 0.292 ± 0.005 0.241 1280000 ± 95900 0.114 ± 0.016 0.027 ± 0.004 
Kasen 0.202 ± 0.005 0.127 0.213 ± 0.044 0.009 ± 0.014 0.057 ± 0.008 

| #m | u | #m | g | #m | r | #m | i | #m | z | #m | y 
Dietrich 0.281 ± 0.016 0.164 ± 0.014 0.099 ± 0.028 0.075 ± 0.019 0.065 ± 0.019 0.052 ± 0.006 
Anand 0.462 ± 0.016 0.263 ± 0.016 0.145 ± 0.009 0.101 ± 0.013 0.088 ± 0.014 0.081 ± 0.009 
Kasen 0.176 ± 0.007 0.136 ± 0.014 0.094 ± 0.011 0.090 ± 0.015 0.083 ± 0.010 0.092 ± 0.010 

the limitations of the model, especially at the edges of the parameter 
space, but we emphasize that that the errors primarily occur when 
the kilonova has dimmed beyond detectability. 
4.2 Fitting AT2017gfo 
We test the performance of the surrogate model in the scien- 
tific context that it will be used: we use the Dietrich -based sur- 
rogate model to perform kilonova parameter estimation on the 

object AT2017gfo (counterpart to the event GW170817) with 
the data collated in Coughlin et al. ( 2018 ) from the sources of 
Andreoni et al. (17ed), Arcavi et al. ( 2017 ), Chornock et al. 
( 2017 ), Cowperthwaite et al. ( 2017 ), Drout et al. ( 2017 ), Evans 
et al. ( 2017 ), Kasliwal et al. ( 2017 ), Tanvir et al. ( 2017 ), Pian 
et al. ( 2017 ), Troja et al. ( 2017 ), Smartt et al. ( 2017 ), Utsumi 
et al. ( 2017 ). We use flat priors that e xtend o v er the published 
data range and therefore the range of supported parameter by the 
surrogate model log 10 (0.001) ≤ log 10 ( M ej, dyn / M #) ≤ log 10 (0.02), 
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Figure 8. Light curves for AT2017gfo. Observed values (points and trian- 
gles, where the latter are lower bound observations) and the prediction based 
inferred parameters using the Dietrich -based cVAE surrogate model (solid 
lines). The shaded bands represent the 90 per cent confidence interval of light 
curves constructed from the posterior samples. The dashed lines represent the 
1 mag tolerance typically used to represent modelling error of kilonova light 
curves. 
log 10 (0.01) ≤ log 10 ( M ej, pm / M #) ≤ log 10 (0.13), 0 ≤ cos ( # ) ≤ 1, and 
0 ≤ cos ( θ ) ≤ 1. 

We use the dynesty sampler and the log-likelihood (up to a 
constant) of 
log L = −1 

2 
N ∑ 

i= 1 
( m i, pred − m i, obs ) 2 

σ 2 
i, obs + σ 2 

sys , (12) 
where i inde x es observations, m i , pred is the magnitude of each 
proposed sample, m i , obs is the magnitude of each observation, and 
σ i , obs is the uncertainty of each observation. The likelihood is 
Gaussian with an additional systematic uncertainty of σ sys = 1 mag 
added to account for the modelling uncertainty, as used in Coughlin 
et al. ( 2018 ). Fig. 8 shows the light curv es deriv ed from the fit, 

and Fig. 9 shows the parameter posteriors, as well as the best-fitting 
median values on the same data set obtained by Dietrich et al. ( 2020 ). 

There are some key differences to note for this comparison. The 
fit performed by Dietrich et al. ( 2020 ) on the light curve data uses as 
a prior gravitational wave and pulsar observations. In addition, they 
used dif ferent allo wed ranges of the kilonova model parameters. With 
all these differences in mind, the agreement between our parameter 
reco v ery and the fit presented in their analysis shows remarkable 
consistency, with each of the medians of their reco v ered parameters 
lying within 1 σ of our median reco v ered parameters, as shown in 
Fig. 9 . The parameter inference performed with dynesty for this 
data set required 3.5 min on an Apple M1 Pro chip. 

In the Appendix, we include a more directly comparable fit using 
the Kasen model as well. An additional test would involve generating 
light curves from injected parameters and seeing whether the same 
parameters are reco v ered through a sampling-based fit. This has been 
performed in Luko ̌siute ( 2021 ) using the surrogate constructions 
described in this work for the Dietrich and Anand data sets with 
success; see Luko ̌siute ( 2021 ) for details. 
5  C O N C L U S I O N  
In this work, we presented an implementation of the conditional 
variational autoencoder (cVAE) as a method for surrogate model 
construction of kilonova spectra. We discussed the method’s potential 
to produce complex, high-dimensional data, including the theoretical 
and practical limitations, especially with respect to uncertainty 
quantification. We applied the method to three commonly used 
kilonova spectra model data sets – those published in Kasen et al. 
( 2017 ), Dietrich et al. ( 2020 ), and Anand et al. ( 2021 ). Because the 
model is unable to learn its own uncertainties, we delineated potential 
sources of error and developed a suite of metrics tailored to these 
specific data sets and their scientific uses. 

We e v aluated the surrogate model’s performance in the context 
of directly predicting spectra, as well as on downstream products 
like the bolometric luminosities and ugrizy broad-band magnitudes. 
As a final test of the model, we applied it in a typical scientific use 
case: measuring the physical parameters of the kilonova associated 
with GW170817. While the cVAE method is limited by variance 
shrinkage, it can still quickly produce spectra with high fidelity to 
the original training simulations. Kilonova models that are published 
in the future can have a surrogate pre-trained and be used for fast 
inference for any set of photometric bands. 

We leave for future work studying how to address the variance 
shrinkage problem so that the variance of the surrogate can be learned 
and the uncertainty incorporated into Bayesian analyses. Some 
potential avenues include using the CombVAE (Skafte, Jørgensen & 
Hauberg 2019 ) or the QR-VAE (Akrami et al. 2020 ), or other machine 
learning methods that allows for accurate density estimation, such 
as normalizing flows (Dinh, Krueger & Bengio 2015 ; Rezende & 
Mohamed 2015 ). We leave also for future work how to incorporate 
the errors incurred due to surrogate modelling into scientific analyses. 
Nev ertheless, we hav e shown that the cVAE can already serv e as a fast 
and accurate surrogate model for kilonova spectra and have e v aluated 
uncertainty without modelling variance directly. We release the final 
trained models for the three data sets and user-friendly code to 
produce spectra at ht tps://github.com/klukosiut e/kilonovanet . 
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Figure 9. Inferred posteriors of model parameters M ej, dyn , M ej, pm , # , and cos θobs from the observations of AT2017gfo (as collated in Coughlin et al. 2018 ) 
at 10 per cent, 32 per cent, 68 per cent, and 95 per cent confidence intervals. The median values and 90 per cent confidence intervals are shown as vertical solid 
and dashed lines and abo v e each column, where the orange lines indicate the 90 per cent confidence interval from Dietrich et al. ( 2020 ) using the same data set 
and kilonova model but a different surrogate construction and prior and the black lines indicate our 90 per cent confidence interval. 
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APPENDI X  A :  
In addition to performing parameter estimation for AT2017gfo for 
the Dietrich model, we also perform parameter estimation for the 
single component Kasen model. Most literature agrees that more 
than one component is present in kilonova outflows (Kasen, Bad- 
nell & Barnes 2013 ; Dietrich & Ujevic 2017 ; Coughlin et al. 2018 ; 
Raaijmakers et al. 2021a ). We aim to compare the performance of 
our surrogate model directly to another published result. Therefore, 
we present this particular parameter estimation to compare with the 
parameter inference presented in Coughlin et al. ( 2018 ). We use the 
same likelihood (equation 12 ), sampling software ( dynesty ), and 
observational data set for the light curve of AT2017gfo as we used for 
the parameter inference for the Dietrich model (Speagle 2020 ). We 
use flat priors: log 10 (0.001) ≤ log 10 ( M ej / M #) ≤ log 10 (0.1), 0.03 c ≤
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Figure A1. Corner plot for the inferred posterior distribution of the Kasen 
model parameters mass of the ejecta M ej , velocity of the ejecta v ej , and 
lanthanide fraction χ from the observations of AT2017gfo as collected in 
Coughlin et al. ( 2018 ) at 10 per cent, 32 per cent, 68 per cent, and 95 per cent 
confidence. The dashed lines in the 1D distributions, as well as the values 
given in the titles, represent 68 per cent confidence interval, with the median 
lying between the two dashed lines representing the median value. The orange 
solid lines indicate the median values from the results of the fit performed 
in Coughlin et al. ( 2018 ) using the same data set and kilonova model but a 
different surrogate construction and prior. The orange dashed lines indicate 
the ranges presented in Coughlin et al. ( 2018 ). 
v ej ≤ 0.3 c , and −9 ≤ log 10 ( χ ) ≤ −1. The results for our fit are shown 
in Figs A1 and A2 . We find relatively good agreement between our 
inferred parameters and those presented in Coughlin et al. ( 2018 ): 
all of their parameters fall within 1 σ of our parameters. Some of the 
disagreement in fit is likely explained by the slight differences in 
the data that our surrogate was trained on and the prior ranges. We 
use both the systematic parameter surv e y and the narrower surv e y 
and combine them for our training set to construct the surrogate 
for the Kasen model, so our surrogate model uses more data than 
the surrogate model used in Coughlin et al. ( 2018 ). Additionally, 
Coughlin et al. ( 2018 ) use a wider prior that extends outside the 
ranges of the kilonova models published in Kasen et al. ( 2017 ). 

Figure A2. Comparison of the observed light curve for AT2017gfo (points) 
and the prediction from inferred parameters using the cVAE surrogate model 
(solid lines) using the Kasen model. The shaded bands represent the 90 
per cent confidence interval of light curves constructed from the posterior 
samples. The dashed lines represent the 1 magnitude tolerance often used to 
represent modelling error of kilonova light curves. 
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