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ABSTRACT

High-rate dynamic systems undergo events of amplitudes greater than 100 g5 in a span of less than 100 ms.
The unique characteristics of high-rate dynamic systems include 1) large uncertainties in the external loads,
2) high levels of non-stationarity and heavy disturbances, and 3) unmolded dynamics generated from changes
in the system configurations. This paper presents a deep learning algorithm consisting of an ensemble of long
short-term memory (LSTM) cells used to conduct high-rate state estimation. The ensemble of LSTMs receives
and transforms the signal into inputs of different time resolutions. Each input vector correlates to an LSTM
cell which predicts the signal in real-time and produces feature vectors. The feature vectors are then processed
through an attention layer and dense layer to predict the physical features of the system. Here, we study
the temporal evolution of the attention layer weights to conduct state estimation, while the LSTM cells are
attempting to conduct measurement predictions. We study the performance of the algorithm on experimental
data generated by DROPBEAR, a dedicated testbed for high-rate structural health monitoring research. State
estimation consists of estimating, in real-time, the location of a cart that moves along a beam. Results show
that the attention layer weights can be used to estimate the cart location but that the beam requires impact
excitations to accelerate the convergence of the algorithm.
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1. INTRODUCTION

High-rate dynamic systems are defined as engineering systems experiencing accelerations of high amplitudes,
typically higher than 100 g,,, over short durations, often less than 100 ms. Examples of such systems include blast
mitigation mechanisms, advanced weaponry, and hypersonic vehicles. The field deployment and safe operation of
high-rate systems require feedback capabilities in the sub-millisecond range and thus high-rate state estimation
capabilities, here termed high-rate structural health monitoring (HRSHM).!

However, the development of HRSHM algorithms is a complex task given the unique characteristics of their
dynamics that combine 1) large uncertainties in the external loads, 2) high levels of non-stationarity and heavy
disturbances, and 3) unmolded dynamics generated from changes in the system configurations.? There have been
notable efforts in literature in developing algorithms enabling HRSHM. For instance, Dodson et al.? proposed
HRSHM using modal decomposition. Joyce et al.* formulated a sliding mode observer-based algorithm to
estimate the position of a dynamic cart moving along a cantilever beam by estimating the system’s natural
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frequency in the time domain. The experimental setup used by the authors, termed DROPBEAR (Dynamic
Reproduction Of Projectiles in Ballistic Environments for Advanced Research), was also used by others to
validated HRSHM algorithms. In particular, Downey et al.® estimated the position of the cart through real-
time model matching using the system’s fundamental frequency extracted through a Fourier transform. Yan et
al.% developed a sliding mode observer to track a reduced-order physical representation of the dynamics and
numerically demonstrated HRSHM applicability.

While these physics-driven techniques showed great promise at HRSHM, they were developed and demon-
strated on dynamics that were typically simpler than those experienced by real-world high-rate systems. Other
works focused on high-rate time series predictions, where data-based techniques showed better applicability. For
instance, Hong et al.! developed a real-time on-the-edge neural network to predict highly non-stationary data
produced by accelerated Drop tower tests. A particularity of the technique is that it leveraged an input space
that varied depending on the time series’ local dynamics. An improvement of the algorithm was proposed in
Barzegar et al.” that consisted of an ensemble of recurrent neural networks (RNNs) with long short-term memory
(LSTM) cells arranged in parallel, where each RNN was constructed with a different input space in order to
provide multi-time resolution capabilities. The algorithm showed great predictive capabilities with an average
computation time of 25 us.

In this paper, we extend our work on the ensemble of LSTM cells and evaluate its capability to perform state
estimation, instead of solely time series prediction. The problem of state estimation is of great interest in the
field of structural health monitoring because these estimates usually provide or map to actionable insights on the
current/future states of structural systems.,? especially insights for state estimation.,'°!! Here, the algorithm
from Barzegar et al.” is applied to DROPBEAR data to study whether this algorithm can be utilized to quickly
determine the position of the dynamic cart. This is done by pre-training each LSTM using the dynamics of the
system under a given fixed position, assembling the pre-trained RNNs through an attention layer, and evaluating
the evolution of the attention layer’s weights from the real-time learning process during a real-time event.

The rest of the paper is organized as follows. Section 2 explains the architecture of the ensemble of LSTM
cells. Section 3 describes the DROPBEAR testbed and the algorithm setup. Section 4 discusses the experimental
results. The paper is concluded in Section 5.

2. ENSEMBLE OF LSTMS ARCHITECTURE

The time series prediction model is a deep learning model built to generate predictions sequentially, developed
primarily to learn non-stationary time series on-the-edge. The model architecture is illustrated in Fig. 1. It
consists of an ensemble of LSTM cells arranged in parallel, where each LSTM samples a different delay vector
XfC at discrete time k to form its input space. The ith delay vector consists of observations sampled with a time
delay 7; and embedded in a vector of dimension d;, with:

Xp = [Th1-diri Thii—(di-t)m 0 Thil-2m Thblon) (1)

where 7 and d are positive integers. Figure 1(left) shows a time series being sampled at different rates to generate
each xj. It follows that the LSTMs extract features h of varying time resolutions. An attention layer assembles
the LSTM outputs by linearly scaling the LSTM features h based on their relevance with the prediction target
(Zg+1). After, a dense layer takes the concatenated vector from the output of the attention layer and condenses
features yielding Zj41 using a linear operation on the extracted features. The weights of each LSTM cell are
updated using backpropagation by minimizing the following loss function.

(Thy1 — Erg1)’
= 2 (2)

where x4 is the measured value, and Z;y; is the predicted value. The feature extractor (i.e., the LSTMs)
weights are kept fixed and are trained using limited training data, as explained in what follows.
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Figure 1: Architecture of the ensemble of LSTMs.

3. METHODOLOGY

The capability of the algorithm at conducting state estimation was verified on data collected from the DROP-
BEAR testbed. DROPBEAR, shown in Fig. 2, consists of a steel cantilever beam equipped with a dynamic cart
moving along the beam and a mass attached with an electromagnet to reproduce sudden and rapidly varying
changes in boundary conditions. An impact hammer is used to excite the beam. In this paper, we only consider
the movement of the cart, which has rollers on top of and below the beam that act as a dynamic pin support.
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Figure 2: DROPBEAR Testbed.°

An accelerometer (PCB 353B17) was placed 400 mm away from the clamp. Acceleration measurements were
recorded at a sampling rate of 25 kHz. Tests were conducted under fixed and dynamic conditions. For the fixed
cart tests, the cart was placed 50 mm, 100 mm, 150 mm, and 200 mm away from the clamp. Five tests per
position were performed and the responses measured following impacts at the tip of the beam. For the dynamic
cart tests, the cart was moved from 50 mm to 250 mm over a period of 100 ms, and back to 50 mm over another
period of 100 ms. Two different settings were used when collecting acceleration time series. In the first setting,
the dynamic cart was the only vibration source, while in the second setting the beam was impacted with the
modal hammer four times during the test. Figure 3(a) plots a typical acceleration time series for the fixed cart
at 50 mm, and Fig. 3(b) plots the acceleration time series during the dynamic cart without impact excitations.

The LSTM cells were constructed and trained on simple physical knowledge, as explained in the upcoming
subsection. Performance of the ensemble model at detecting the cart position through the attention layer weights
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Figure 3: Typical acceleration time-series responses obtained from the DROPBEAR tests for the (a) static cart
positioned 50 mm away from the clamp and (b) dynamic cart without hammer impacts.

was evaluated under both the fixed and dynamic tests. Convergence time was used as a performance metric. It
is defined as the time required for the network to predict the next step under an estimation error threshold of
10%. The fixed cart tests were used to verify the capability of the LSTM ensemble at detecting the cart locations
under vibration signatures that resemble those used for training. The dynamic cart tests were used to evaluate
the performance of the algorithm at detecting the cart position under more complex dynamics.

3.1 Training of the LSTMs

For the construction and training of the LSTM network, we used knowledge of the dynamics for the four fixed
cart positions. Thus, four LSTMs were used in the ensemble, each trained under the dynamics of a given fixed
position. For each LSTM, x was selected to best represent the dynamics of a damped harmonic of frequency
equal to that of the beam’s fundamental frequency under the given cart position. As schematized in Fig. 4, this
was done under 17.8 Hz, 21 Hz, 25 Hz, and 31 Hz vibrations, which covered the range of frequencies experienced
by the dynamic cart. Under each frequency, the time delay T was selected based on the mutual information

(MI) method,'? after which the embedding dimension d was selected heuristically to yield the best prediction
performance out of each LSTM cell.
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Figure 4: Input space selection for each LSTM cell.

Following the input space selection, each LSTM cell was individually trained on damped free vibration time
series of frequency equal to that of the corresponding cart position. The LSTM cells were implemented in Python
3.7 using the Keras package with the mean squared error loss function and hyper-parameters listed in Table 1.



The weights of the LSTM cells were then transferred to the ensemble architecture to predict the dynamics of
DROPBEAR in real-time.

Table 1: Hyperparameters used for training each LSTM cell.
Learning Hidden

LSTM rate units T d
1 0.015 50 367 3
2 0.015 50 315 7
3 0.010 50 261 6
4 0.008 50 215 6

4. NUMERICAL RESULTS

This section reports the numerical results. Results from the fixed cart tests are first presented, followed by those
from the dynamic cart tests.

4.1 Fixed Cart Tests

Figure 5 plots the results taken from a representative test under each cart location. It can be observed from the
acceleration time series (top) and estimation errors (middle) that the ensemble of LSTMs successfully converges
under each case, with the convergence time increasing with the increasing system frequency (i.e., cart position).
Results also show the evolution of the attention layer weights (bottom). Under each fixed location, a single
weight converges at a significantly higher value compared to the other weights post-convergence. Importantly,
the highest weight multiplies the output of the LSTM that was trained with the correct cart location (LSTM 1
for the cart at 50 mm, LSTM 2 for the cart at 100 mm, LSTM 3 for the cart at 150 mm, and LSTM 4 for the
cart at 200 mm). These results suggest that the attention layer weights can be used to determine the fixed cart
locations, where the dominating weight can be linked to the actual position.
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Figure 5: Typical results under each fixed cart location, showing the acceleration time series (top), estimation
error (middle), and evolution of attention layer weights (bottom).



Table 2 lists the average convergence times obtained under the four fixed cart positions. The results are bench-
marked against those reported in,% where the authors developed a model-reference adaptive system (MRAS)-
based real-time algorithm to detect the position of the cart. Results show a convergence time in the hundreds
of milliseconds instead of a desired sub-millisecond realm, attributable to the imposed null initial conditions. It
is hypothesized that less aggressive initial discrepancies would lead to faster convergence; this is left to future
work. It can also be observed that the convergence time achieved by the ensemble of LSTMs increases with
the increasing cart position, and this trend is opposite to that from the results by the MRAS-based algorithm.
This phenomenon may be attributable to the learning rates that provoked a strong initial overshoot of the stiff-
ness estimated by the MRAS-based algorithm at a low frequency, and the initial overshoot diminished with the
increasing frequency.

Table 2: Average convergence time - fixed cart tests.

Fundamental Cart Ensemble of MRAS®
Tests frequency (Hz) position (mm) LSTMs (ms) (ms)
1-5 17.8 50 240 780
5-10 21.0 100 243 400
11-15 25.0 150 300 160
16-20 31.0 200 441 100

4.2 Dynamic Cart Tests

Results from the dynamic cart tests are plotted in Fig. 6, showing the acceleration, error, and attention weights
time series without impact excitations (Fig. 6(a)) and with impact excitations (Fig. 6(b)). The times of the
four impacts can be observed in the acceleration time series (Fig. 6(b), top) occurring at 390, 2170, 4160, 6240
ms. A study of the error plots reveals that convergence of the algorithm is faster with impacts, which can be
attributed to the richer excitations.

Before testing, a Butterworth filter was applied to the data to reduce noise. The Butterworth filter is a high
and low pass filter that flattens the frequency response of the data. This filter keeps the needed features while
limiting the noise from testing. The Butterworth filter used was a first-order high pass with cutoff frequencies
of 10 Hz and 400 Hz, implemented using MATLAB built-in functions. The data was scaled down by a factor of
10~* so the testing data would be similar to the training data.

Table 3 compares the convergence time of the ensemble of LSTMs to those reported in® using the MRAS-
based real-time algorithm. Remark that the authors in® estimated convergence using the estimated cart position
data instead of the absolute estimation error of the acceleration. Impact 1 was not compared between the two
real-time algorithms since both algorithms had different initial conditions. The study shows that the ensemble
of LSTMs compares well with the MRAS-based algorithm.

Table 3: Average convergence time - dynamic cart tests.
Impact 2 Impact 3 Impact 4

Ensemble of LSTMs (ms) 68 343 391

MRAS® (ms) 144 289 264

The use of the dominating attention layer weight showed promise in tracking the cart over time. Without
the impact excitations, the weight associated with the 200 mm position dominates between 1285 and 3621 ms,
while the weight associated with the 50 mm position dominates after 3769 ms. With the impact excitations,
weights converge only post-impacts, with the weight associated with the 200 mm position dominating between
1271 and 4137 ms and 50 mm dominating after 6540 ms, and with the 100 mm weight slightly higher than others
over 4402 and 6356 ms. It also appears that using a weighted average of positions when no weight is clearly
dominating, or when weights are being adapted, may yield a better estimation of the cart position. This can be
observed under no impact excitations when the cart moves from 200 to 50 mm, where the 200 mm weight ramps
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Figure 6: Results under dynamic cart location, showing the acceleration time series (top), estimation error
(middle), and evolution of attention layer weights (bottom) for the system (a) without impact excitations and
(b) with impact excitation.

down while the 50 mm weight ramps up. This is also shown during the movement from 50 mm to 200 mm, yet
far less clearly given that weights had not yet initially converged. This relationship at the 50-200 mm transition
is more clearly observable under the impact excitations, because the first impact enabled the initial convergence
of weights. On the other and, the 200-50 mm transition is more overlooked by the weights.

Overall, the results support the hypothesis that the attention weights can be used to estimate the cart position
even before the system converges. However, the main goal for this real-time algorithm is to predict high-rate
dynamics, and a quick convergence time is desired. While further development of the algorithm could alleviate
this shortcoming, the ensemble of LSTM cells could be used to conduct state estimation pre- and post-impact of
a given dynamic system, for example, the state of an aircraft subjected to ballistic impacts. Another important
remark is that the ensemble-of-LSTMs algorithm was designed for highly non-stationary systems, as discussed
in.” The purpose of the study was to evaluate, on a simpler system, if the architecture of the ensemble of LSTMs
could be leveraged for system identification. Otherwise, there exist better machine learning techniques that could
be used for the purpose of estimating the cart position. For example, a more traditional RNN architecture could
have been trained to directly output the estimated cart location.

5. CONCLUSION

This paper presented a real-time learning approach to high-rate state estimation. The approach consisted of
an ensemble of LSTM cells trained using limited physical knowledge and joined by an attention layer used
to predict time series. State estimation was conducted by investigating the evolution of the weights on the
algorithm’s attention layer. The performance of the algorithm was evaluated using experimental data acquired
from DROPBEAR, a dedicated testbed for HRSHM research. Here, the state of interest was the position of a
cart. Prior physical knowledge consisted of four different fundamental frequencies arising from four possible cart
positions. Thus, four different LSTM cells were trained in the ensemble, each on a simple damped harmonic
time series of appropriate frequency. Subsequently, the algorithm was adapted in real-time to conduct one-step
ahead prediction of the measured acceleration time series. This was done on two sets of experiments. The first
set used fixed cart locations, while the second set moved the cart back-and-forth along the beam.

Results on the fixed cart experiments showed that the dominating LSTM weight in the ensemble corresponded
with the correct cart location. In the case of the dynamic cart, the correct cart location was observable post-
convergence of the ensemble of LSTMs, which occurred quickly post impacts in the range of tens of milliseconds.
A study of the evolution of attention weights showed that it was difficult to estimate the cart location while



moving. Convergence times compared well with those reported in the literature, and showed faster in the case
of the dynamic cart after each impact.

Future work includes further developments of the algorithm to improve state estimation capabilities through
the attention weights, in particular, while the cart is moving and the assessment of the algorithm on dynamics
of higher complexity.
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