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Quantile treatment effects are often considered in a quantile regres-  Received 14 January 2020
sion framework to adjust for the effect of covariates. In this study, Accepted 19 May 2021
we focus on the problem of testing whether the treatment effect is KEYWORDS
significant at a set of quantile levels (e.g. lower quantiles). We pro- Quantile regression; rank
pose a regional quantile regression rank test as a generalisation of  .ore- treatment effect:
the rank test at an individual quantile level. This test statistic allows bootstrap

us to detect the treatment effect for a prespecified quantile interval
by integrating the regression rank scores over the region of interest.
A new model-based bootstrap method is constructed to estimate the
null distribution of the test statistic. A simulation study is conducted
to demonstrate the validity and usefulness of the proposed test. We
also demonstrate the use of the proposed method through an anal-
ysis of the 2016 US birth weight data and selected S&P 500 sector
portfolio data.
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1. Introduction

The detection of treatment effects is an important problem in a wide variety of applica-
tions and has been studied by many researchers under different settings. In this paper, we
focus on testing the hypothesis of no treatment effect against the alternative that the effect
is significant for the upper or lower tail of the outcome distribution. There are at least two
reasons why this particular class of alternatives is worth considering. Firstly, in some appli-
cations the evaluation of the treatment effect at one tail is of direct concern. For example,
when financial institutions compare the risks among different portfolios, they need to focus
on the lower tail of the return distribution so that they can be better prepared for the worst
case scenarios. Secondly, there are cases where the treatment effect is minimal except at
low or high quantile levels. In those cases any tests designed to detect mean or median
differences may have poor power. For example, it is shown later in the paper as we analyse
the 2016 US birth data that maternal hypertension is a risk factor for low birth weight, and
the hypertension effect on birth weight is much more obvious at the lower tail of the birth
weight distribution. In such cases, a statistical test aimed at detecting the effect in the lower
tail is more useful than the conventional tests on the mean treatment effects.
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Quantile regression, which was formally introduced by Koenker and Bassett (1978),
is the basis of a natural solution for the above-stated problems. Similar to the least
squares regression where the coefficients are estimated by minimising the squared loss
of residuals, quantile regression employs an asymmetrically weighted absolute loss func-
tion, which enables us to model the conditional quantiles of the responses. Koenker and
Machado (1999) discussed the likelihood ratio test, the Wald test and the rank test for infer-
ence in the quantile regression settings. A common approach is to choose a quantile level
(say 0.9 quantile) and test whether the quantile regression coefficient for the treatment is
significant. However, the test results may be sensitive to the choice of the individual quan-
tile level and the test may lose power when the data are sparse around that quantile level
of choice.

An improvement to individual quantile regression analysis is to consider the treat-
ment effect over a quantile region. He, Hsu, and Hu (2010) proposed a covariate-adjusted
expected shortfall test (COVES), which uses quantile regression to select the observa-
tions that lie in the upper or lower quantiles and compare the covariate-adjusted means
of the selected observations. COVES has been shown to be quite powerful but the test
is designed for randomised trials. Koenker (2010) suggested an alternative test using
regression rank scores over a quantile region, following the quantile rank scores pro-
posed in Gutenbrunner and Jure¢kova (1992) and Gutenbrunner, Jure¢kové, Koenker, and
Portnoy (1993). The distribution of the test statistic under the null hypothesis is approxi-
mated by a chi-square distribution, but the chi-square approximation is valid only for i.i.d
errors.

In this paper, we consider the regional quantile regression rank test in a more realistic
case with the heterogeneous models. In this case the proposed test converges to a mixed
chi-square distribution under the null hypothesis, but the mixture coefficients depend on
the unknown conditional densities of the regression errors over a quantile region, whose
estimates tend to be numerically unstable. An alternative way to carry out the inference is
to use the bootstrap. However, commonly used bootstrap methods in regression are not
directly applicable to this setting. We propose a new model-based bootstrap algorithm
which aims to mimic the data generative procedure. This bootstrap algorithm enables
us to generate the data under the null hypothesis and to consistently estimate the null
distribution of the proposed test statistic.

Applicable beyond the proposed test, our model-based bootstrap is a general bootstrap
algorithm for global quantile regression analysis and is useful for a variety of settings. For
example, the proposed bootstrap can be used to build the confidence band of the quantile
coefficients over certain region. It can also be used in other hypothesis testing problems
because the model-based structure in our bootstrap provides the flexibility to generate data
from a desired model under the null hypothesis.

The rest of the paper is arranged as follows. In Section 2, we briefly review the quan-
tile regression model and the regression rank scores. In Section 3 we propose the regional
quantile regression rank test and the model-based bootstrap algorithm along with its large
sample properties. Results from simulations and real data applications are given in Sec-
tions 4 and 5, respectively. Section 6 concludes this paper with a brief discussion. We
provide the proof of our main theorem in Appendix.
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2. Review of quantile regression rank score

In this section we provide a brief review of quantile regression and regression rank scores.
We refer to Koenker (2005) for a comprehensive introduction.
Consider a random sample of size n that follows the linear model of

Vi :x?ﬁ(t)q#em, i=1,2,....1 (1)

where x; = (xj1, Xi2, . . ., xjp) € RP with x;; = 1 and B(7) = (B1(7), ..., Bp(7)) € RP. For
identifiability, we require that at any quantile level T € (0, 1), the conditional tth quantile
of e;; given x; is 0. Letting Q,(7 | x) be the tth quantile of y given x, we can write (1)
equivalently as Q), (7 | x;) = x}! B(1).

One can assume that Model (1) holds locally at a specific T or globally at any = € (0, 1).
In this paper, we work under the global quantile model since our goal is to detect the
treatment effect over a region of 7. To ensure model validity, we require that x? B(t) bea
monotone increasing function of T given any x;. One important observation is that under
the global quantile model, the function x; B(t) for any 7 € (0,1) determines the condi-
tional distribution of y; given x;. Therefore at the population level, for given x;, we can
express y; as

= x;‘rﬁ(u,v), u; ~ Uniform(0, 1). (2)

In other words, we can view y; as being generated from the quantile process xiT B(u;). Thisis
an important observation for the development of our bootstrap method later in the paper.
The quantile regression estimates of 8(t) are obtained by

B(r) = argmin ) _ pr (i — x; 1), (3)

tckP i1

where p; (u) = u(t — I(u < 0)). This linear optimisation problem can be easily solved for
all 7 in (0,1) as discussed in Koenker (2005).
The optimisation problem in (3) can be transformed into a dual problem

a(t) = argmax{a’y| XTa = (1 — 1)XT1,}, (4)
a[0,1]"

where a(t) = (a;(t),...,a,(t)) is an n-dimensional vector. By the duality between (3)
and (4), we have

1 yi > x} B()
ai(t) =€ (0,1) yi=x/B(x)
0 yi < x?ﬁ(r).

Thus a;(t) is essentially an indicator whether the ith observation is above the fitted
7-quantile. Let 7; = inf{t : @;(t) > 0}, the ith observations should lie roughly at the ;-
quantile. Namely knowing a;(t) for any t € (0, 1) is equivalent to knowing the relative
position of the ith observation after the covariate is adjusted for. Gutenbrunner and
Jureckové (1992) named a;(t) as the regression rank score, because a;(t) can be inter-
preted as a generalisation of ranks in the regression setting. Notice that a;(r) — (1 — )
is also an approximation of the score function of quantile regression W, (1) = v — I(u <
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0) evaluated at x] B (). The regression rank scores @;(t) have been used to construct
rank-based test in Koenker and Machado (1999) and Wang (2009) among others for the
local quantile models.

In this paper we are interested in detecting the treatment effect over a quantile region,
and we integrate the regression rank score a;(t) against an non-decreasing score function
¢(-). Namely, define b= (51, s EH)T where

n Ty
h:f&ﬁmﬂn (5)

on an interval [z,, 73] that is specified by users. If an observation is above most quantiles
over [1,, Tp] after the covariate adjustment, it is expected to have a relatively large b;.

The score function ¢(-) provides flexibility in assigning different weights at different
quantile levels. Two typical choices of ¢(-) are:

e Wilcoxon score: ¢(t) = t, which assigns weights evenly.
e Normal score: ¢(t) = ® ! (t), which assigns more weights at upper and lower tails.

We use b; to construct the regional quantile regression rank test statistic in the next
section.

3. Proposed method and main results

3.1. Test statistic

In this section, we consider the following model
yi=xB1(0) + xpfo(t) +eir, i=12,..,m, (6)

where x;1 is a p-dimensional vector, x; is a g-dimensional vector. The error e; ; are assumed
to be independent but not necessarily identically distributed with the natural constraint
that Q;, (7 | xi1,,xi2) = 0. We are interested in testing the hypothesis

Hp: Ba(t) =0Vt €(0,1) vs Hj:pa(tr)#0fort € [14, 3],

where [1,, 5] is the user-specified subset of (0,1) and should be chosen to target the region
of interest.

For convenience, write the design matrix of (6) as X = [X;, X;] € R"™ @19, Let X =
X (X ITX i 1X1TX2, which is the projection of X, into the space spanned by the columns of

Xj. If we fit the quantile regression with only X as the explanatory variable, b calculated
under this null model represents the ranks after adjusting for X;. If the null hypothesis
is true, X, — X, is expected to be orthogonal to b asymptotically, since no variations in
b can be further explained by X; — X;. To help understand this orthogonality, we recall
that the residuals are orthogonal to the design matrix in the least squares regression. For
the quantile regression a;(-) plays similar roles as the residuals and can be shown to be
orthogonal to design variables used in the quantile regression. A rigorous argument follows
from Lemma A.2 and Equation (A3) of Appendix.
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Our test statistic is constructed based on the above observation. But instead of using the
integral version of b defined in (5), we employ a grid of points in t and replace b with a
weighted sum. More precisely, consider a set of M ordered and evenly spaced grid points

Si= (T@,T],...,IM), (7)

where [1,, 73] is a proper subset of [19, Tas]. With S and a differentiable score function ¢(-)
specified, we define

bi= Y & @m)(Tm — Tm—1); (®)

Tm €SN Ta,Tp)

where g; is given in (4) but calculated under the null model.

The employment of these grid points in calculating b = (b;, . . ., by) is mainly to facili-
tate the bootstrap used later. Since a;(7) is a piecewise linear function with O(n log n) break
points (Portnoy 1991), Bi defined in (5) can be written as a sum of O(n log n) terms, and b;
is an approximation of b; with a sum of roughly M terms.

It is worth pointing out that only a; evaluated at grid points within [z,, 7] are used in
calculating (8) to focus on our region of interest [7g, 7p]. But the grid points need to be
defined on [19, Tpr], which is strictly larger than [z, 73]. To get reliable estimation of a(-)
at the end points using the bootstrap, B(-) should be estimated accurately over a slightly
larger quantile region.

Now we define our proposed test statistic as

T8 0,55;. (9)
where
Sn=n"2 Xy — X2)'h,
Qn =110 - X)X, — X).

A larger value of T, will be in favour of the alternative hypothesis. We shall show in
Appendix that under some regularity assumptions, S, converges to a zero mean normal
distribution with variance T taking the form
I n
= lim =) " %" ¢, (a2 — X2 — Kimxu) (i — %2 — Kimxn) T,

H—00 1

i=1 1,e8

where ¢;,, is a constant depending on ¢(-) and K;™ is a matrix involves the conditional
densities of y; given x; evaluated at 7,,-quantile. In principle, we could estimate the den-
sities using kernel or spline methods. However, the results are often numerically unstable.
Instead of estimating this covariance matrix to standardise the test statistic, we use the
bootstrap as our preferred approach.

The matrix Q, can be viewed as an approximate standardisation because it can be shown
that ¥ is approximately Q,, times a constant when the model is homogeneous. With the
usage of Q,, T,, behaves closer to a standard chi-square distribution asymptotically and the
resulting test may have better power when the model is close to homogeneous. In theory,
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many choices of Q, would work, but the specific choice used here is consistent with the
common choice for the quantile regression rank tests.

In the proposed test statistics Ty, the quantities M, ¢(-) and [, 7] need to be specified
by the users. Therefore a discussion of how to choose them are in order.

(1) Choice of M: The number of grid points M should be between the order of n'/# and
of n'/? for our theory to work. In practice, the choice of M does not have notable
influence on the result as long as M is not too extreme. For example, we find that 50
or 100 can be a suitable choice for M for a wide range of problems.

(2) Choice of @(-): The score function ¢(-) may influence the power of the test.
Koenker (2010) showed how the optimal score function can be selected under the sim-
pler model with i.i.d errors, if the error density is known. Since the density is unknown
in practise and moreover we allow heterogeneity, it is unrealistic to aim for an opti-
mal score function. We compared the power of our test with the most commonly
used Wilcoxon score and Normal score under a variety of settings by simulation and
the differences are not major. We therefore recommend using the Wilcoxon score for
simplicity.

(3) Choice of [14, Tp]: The quantile region [14, T3] should be used to target the region of
interest, such as the lower tail of birth-weight or the upper tail of the loss from an
investment portfolio. In the typical quantile regression settings, we usually choose a
value 7, whether a specific value of 7 is better than another nearby value of 7 is difficult
to answer. The choice of one interval over another has the same question around it.
But from the numerical results in Sections 4 and 5, we note that the power of our test
is shown to be stable over a range of reasonable choices of [74, 73]. In other words,
choosing a specific value of t in the analysis is associated with less robust analysis
results than choosing an interval [1,, Tp].

3.2. Model-based bootstrap

In this subsection, we propose a model-based bootstrap method to approximate the
distribution of T}, under the null hypothesis.

There are quite a few established bootstrap methods under the quantile regression set-
ting. The paired bootstrap, the generalised bootstrap (Chatterjee and Bose 2005) and the
wild bootstrap (Feng, He, and Hu 2011) are examples of those methods that have been
implemented in the R package quantreg. However these methods cannot be directly applied
here.

The paired bootstrap does not generate bootstrap samples under Hy when the data are
not from the null model. The same goes with the generalised bootstrap. One possible solu-
tion is to keep xj unchanged and sample (y},x};) with replacement from (y;, xi1). The
resulting bootstrap data set would be (3}, x};, xi2). But the correlation between x;; and xp
can not be preserved under such a subsampling scheme.

The wild bootstrap uses the coefficients 8; and residuals &;; obtained from tth quan-
tile regression fitted under Hy. The bootstrap data set will be (¥}, xj1, xi2) where y} =
xi];ﬂﬂ(r) + wjléj¢ |, and w; is generated independently from a specially designed distribu-
tion to make sure the bootstrap is consistent at the t-quantile. The wild bootstrap is useful
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for inference at a single quantile level. Since our test statistic consists of estimation from
multiple quantiles, no weight distribution would work in this framework.

We propose a new bootstrap scheme that generates data globally under Hy. The key idea
is that as shown in (2), we can write our linear quantile regression model equivalently as
Vi = x}r B(u;), where u; ~ Uniform(0, 1). We keep x;; and x;; fixed and generate bootstrap
samples y¥ from x}| Bi(u;). Namely, we view x; Bi(-) asa quantile process for the bootstrap,
where B (-) is estimated under the null model.

Although the quantile function x! B(-) is monotonously increasing at any x;, the esti-
mate xT B(-) is only guaranteed to be monotone at x = x. Thus x!—T1 Bi() may not be a valid
quantile process. This is the reason why we introduce the set of grid points S defined in (7).
Let fB1(t) be the linear interpolation of {B;(tm), m € S}. Neocleous and Portnoy (2008)
showed that when M increases in the order between n'/4 and n'/2, the probability that
xé‘; Bi1() is monotonously increasing converges to 1. At the same time, Bi() is a good
enough approximation to f;(-). Thus we propose to generate y{ from an asymptotically
valid quantile process x}; B1(u;). The detailed algorithm of this model-based bootstrap
method is given as follows:

(1) Fit the linear quantile regression under Hy and obtain the estimator ,(t) for 7 €
SN [1g, Tpr). Calculate T,, using Equation (9).
(2) Let Bi(t) be the linear interpolation of {B1(z,y), m € S}. Namely (1) = == F

Tm+1—Tm

Bi(tm) + Tmi_lt_‘"rm Bi(Tms1) When Ty < T < Tppyy; m=0,...,M — 1. Let Bi(r) =

Bi (o) for T < 19, and B1(t) = Bi(zy) for T > Tar.

(3) Fori=1,...,n, generate u; ~ Uniform(0, 1) independently, and then construct a
bootstrap sample (¥}, xi1, xi2), where y/ = x,-li,él(u,-).

(4) Calculate T;; from Equation (9) with the bootstrap sample.

(5) Repeat Steps (3) and (4) for B times to get {T,,T,,,..., T, 5}, where B is a pre-

specified integer. The resulting p-value is calculated by B~! 3", I(T), > T5):

The model-based bootstrap can be used for other forms of test statistics. For
example, the same bootstrap method can be used to approximate the distribution of
SUP . csn[r,, ] | B>(t)| under Hy, which may also be used as a test statistic for regional
treatment effect detection. This supremum-based test is discussed in more detail in
Section 4.

3.3. Asymptotic properties

Let f; be the density of y; given x;. To study the asymptotic properties of the proposed test,
we impose the following regularity conditions:

(C1) max; || x; | < L, where L is a positive constant and || - || denotes the L2 norm.

(C2) The densities f; are bounded away from 0 and infinity at x! 8(z) uniformly for i and
T € [19, Tpr), where 0 < 19 < 1, and 7 < 1Ty < 1. Furthermore, |fi(c;) — fi(c2)| =
O(|c; — ¢;|) uniformly in ias |c; — ¢;| — 0.

(C3) The limits Q := lim,,_, o, % Zx;x;‘r and DJ := lim,_, o % Yy f,—(xlr B (1')}95,-3«:?r exist,
and are positive definite at any T € [1g, T].



306 (@) Y.SUNANDX.HE

(C4) ¢(-) is a nondecreasing differentiable function with bounded variation.
(C5) S= (10, Ti>...,Tm) is a set of ordered and evenly spaced grid points where nl/* «
M « n'/2.

The regularity conditions are stated under fixed designs. When x; is a random variable,
all the calculations can be carried out conditioning on x;. Replacing (C1) and (C3) with
corresponding moment conditions, our results hold for random designs as well.

Condition (C1) assumes that the covariate space lies within a compact set. This assump-
tion is necessitated by heterogeneity because if the quantile regression model is linear over
an unbounded set of x at multiple t values, the quantile functions x” 8(;) and x” B(1;)
may cross unless they are vertical shifts. (C2) and (C3) are common sufficient conditions
used to establish the uniform Bahadur representation for the quantile regression estimates.
We restrict our attention to [1y, Tas], a subset of (0, 1), because the asymptotic behaviour of
B(7) as T approaches 0 or 1 may be different, especially when B(1) become unbounded at
one or both tails. For our study, we work with a set slightly larger than our region of interest
[Ta> Tp], which can be chosen to be another compact subset of (0, 1). On the other hand, in
the cases where y; takes values in a bounded interval, 8(t) stay bounded for t € [0, 1] by
(C1). In this case, the proposed test can be applied even to all the quantile levels including
Ta—=0and 15— L

Theorem 3.1: With regularity conditions (C1)-(C4), we have under Hy,

(i) T, = x2 a mixed chi-square distribution as a weighted sum of q chi-square variables
of one degree of freedom.
Further assume (C5) holds, then
(ii) The bootstrap estimator ﬁi“(r) is a consistent estimator of B1(t) uniformly fort € SN
[tas Tl
(iii) Given the data, the conditional distribution of T, converges to the same mixed chi-
square distribution x?.

Theorem 3.1(i) shows that our test statistic converges to a mixed chi-square distribution
under Hp while Theorem 3.1(ii) and (iii) show that the conditional bootstrap distribution
approximates to the same mixed chi-square distribution. Hence our model-based boot-
strap is consistent for inference. The proof of these results relies on the empirical process
theory and is given in Appendix.

4. Simulation

In this section, we present some empirical results of our proposed test by Monte Carlo
simulations.

4.1. Settings

The number of replications in each simulation and the bootstrap replication size are both
set to 1000 throughout this section. We first generated our data from the following model
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that was considered in He et al. (2010),
Yi=54+xy +xp+ (1 + yl(e; > 0)I(d; = {]))e,-, i=1,...,m+n, (10)

where the treatment indicatord; = 1 fori=1,...,mandd; =0fori=m+1,...,m+
n.Let y = 0 under Hp and y = 1.35 under H;. We consider testing whether the coefficient
of the treatment indicator y is zero. By design, the treatment effect only exists in the upper
tail under the alternative. We considered the following three different settings based on
Model (10):

(i) x5 ~ Uniform(5, 12), xpp ~ N(8,8) and e; ~ N(0,5), and they are mutually inde-
pendent. This represents a randomised trial with i.i.d errors.

(i1) xs1 ~ Uniform(5,12) when d; = 1, but xj; ~ Uniform(5, 20) when d; = 0. In addi-
tion, x; ~ N(8,8) and e; ~ N(0, x;1) are independently generated. This represents a
non-randomised trial with heterogeneous errors.

(iii) x;; ~ Uniform(5, 12) when d; = 1; otherwise x;; is generated from the ¢ distribution
truncated to [0, 250] with 2 degrees of freedom and non-centrality parameter equal
to 15. The variables {x;;} and {e;} are generated from the same distributions as (ii).
Compared to (ii), x;; is generated from a distribution with heavier tails.

Under these settings, {xj2} is generated from a normal distribution, which violates (C1)
that {x;} should lie in a compact set. However, since the coefficient of x;; is a constant of ¢
in these settings, we still have valid quantile functions even when the range of x;; extends
to the whole line, so our theory applies to the model with trivial modifications.

In addition, we also evaluated the performance of the proposed method when the effect
of multiple covariates are simultaneously tested in the following model:

(iv)
Yi = Po(ui) + xi1 B1(ui) + xppfa(ui) + xi3B3(ui), i=1,...,n,

where u; ~ Uniform(0, 1), x;; ~ Uniform(0,2), x;3 ~ Uniform(0,2), and x;; ~
Uniform(1, 3) when x;; < 1 but x;; ~ Uniform(0, 2) when x;, > 1. Furthermore, let
Bo(t) = ® (1), B;(r) = 2. Under Hy, we use B,(t) = B3(t) = 0. Under H;, we
use By(1) = % and B;3(1) = %. As shown in Figure 1, the
effect of x;; and x;; are larger at the upper tail under the alternative by design.

We consider the problem of testing the null hypothesis Hp: B2(t) = B3(t) =0,V 7 €
(0, 1), but the test focus on upper quantiles.

We first compared the proposed regional quantile regression rank (RQRR) test with the
quantile regression rank (QRR) test that focuses on one fixed quantile proposed by Koenker
and Machado (1999) to see if we can benefit from considering a quantile region. To show
the necessity of the proposed bootstrap method, we also considered the proposed RQRR
test statistic with the critical value approximated by the chi-square distribution based on
the working assumption of i.i.d errors.

When g = 1, we further compared the performance of our test to other three methods
that focus on the overall treatment effect: the COVES test proposed by He et al. (2010);
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Figure 1. Curves of quantile coefficients of Model (iv) in simulation under the alternative.

the test based on simultaneous confidence band; the supremum-based test. The latter two
methods are described as follows.

To build simultaneous confidence bands, we use a method similar to what is considered
in Chernozhukov and Ferniandez-Val (2005). A level 1 — « confidence band of 8;(-) over
[t4, Tv] can be built based on the statistic

Tyt = sup |Vnpa(v)l,

re[ta7]

where B (t) is the linear interpolation of the coefficient estimate B (7). The distribution
of B(t) is approximated by the m out of n bootstrap, where m = 20 4 n'/2. The null
hypothesis is rejected if 0 is contained nowhere in the confidence band.
To carry out the supremum-based test, we use the model-based bootstrap scheme
introduced in Section 3.2 to generate the bootstrap sample (¥}, x1i,x2;) where y; =
ﬂl(u;) with Bi(-) estimated under the restricted model. The bootstrap test statistic
Ti“ V= supre[ra Fb] [v/n ,B2 ()| can then be obtained from the bootstrap sample. The null

distribution of Ty, © is approximated by the empirical distribution of T, *"".

Both the test based on simultaneous confidence bands and the supremum-based test
utilise the test statistics T, *. The difference is that the bootstrap is conducted under
the full model to build the confidence band while the bootstrap is conducted under the
null hypothesis for the supremum-based test. Also notice that the difference between the
supremum-based test and the RQRR test lies in the test statistics. Thus comparing these
two tests is basically comparing the performance of a supremum-based statistic versus a
rank-based statistic under our settings.

4.2. Results

We first set the quantile region to be [0.7, 0.99] and [0.85, 0.99] to compare the performance
of the proposed RQRR test with the QRR test at one quantile level, the RQRR test with the
chi-square approximation, and the COVES test. The results are summarised in Table 1.
For the randomised trail we considered in Model (i), all the tests have reasonable type
I error rates. For Model (ii), both the COVES and the RQRR with chi-square approxima-
tions are not valid theoretically. According to our simulation results, COVES fails to control
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Table 1. Comparison of the empirical type | error rate and the power out of 1000 simulation samples.

Model (i) Model (ii)
m=n=50 m=n = 100 m=n = 50 m=n= 100

o level power o level power o level power o level power
QRR(0.70) 0.050 0327 0.047 0.586 0.041 0.273 0.052 0.524
QRR(0.80) 0.050 0.567 0.046 0.889 0.047 0.493 0.037 0.797
QRR(0.85) 0.041 0.682 0.046 0.953 0.041 0.576 0.049 0.889
QRR(0.90) 0.035 0.723 0.042 0.983 0.038 0.622 0.043 0.926
QRR(0.95) 0.036 0.431 0.025 0.974 0.024 0.488 0.034 0.891
COVES 0.066 0.909 0.052 0.998 0.070 0.917 0.088 0.999
RQRR(0.70,0.99) 0.043 0.712 0.048 0.960 0.045 0.628 0.046 0.917
RQRRy(0.70,0.99) 0.047 0.707 0.049 0.956 0.047 0.627 0.046 0.908
RQRR(0.85,0.99) 0.041 0.816 0.044 0.995 0.041 0.702 0.046 0.970
RQRRy(0.85,0.99) 0.045 0.834 0.046 0.994 0.048 0.725 0.051 0.972

Model (iii) Model (iv)
m=n= 100 m = n = 300 n =100 n = 200

o level power o level power o level power w level power
QRR(0.70) 0.064 0.162 0.048 0.338 0.045 0.356 0.048 0.657
QRR(0.80) 0.058 0.290 0.065 0.571 0.042 0.494 0.040 0.844
QRR(0.85) 0.062 0.358 0.064 0.675 0.042 0.532 0.043 0.892
QRR(0.90) 0.053 0.428 0.074 0.752 0.041 0.537 0.040 0.897
QRR(0.95) 0.046 0.438 0.057 0.789 0.034 0.384 0.037 0.784
COVES 0.522 0.943 0.915 1.000 NA NA NA NA
RQRR(0.70,0.99) 0.115 0.557 0.148 0.868 0.042 0.619 0.047 0.930
RQRR,(0.70,0.99) 0.056 0.381 0.058 0.724 0.048 0.629 0.047 0.930
RQRR(0.85,0.99) 0.102 0.678 0.128 0.930 0.049 0.625 0.040 0.944
RQRRy(0.85,0.99) 0.061 0.551 0.063 0.853 0.052 0.657 0.040 0.947

Note: In the table, QRR(z) stands for the quantile regression rank test conducted at the tth quantile proposed in Koenker
and Machado (1999); RQRR(t,,1,) stands for the regional quantile regression rank test with chi-square approximations
at the quantile region [4,T5], while RQRR(t4,75) stands for the proposed regional quantile regression rank test with the
model-based bootstrap. For COVES, the cutoff quantile level is set to be 0.75 as in He et al. (2010).

the type I errors, and the RQRR test with chi-square approximations is acceptable. This is
actually consistent with our knowledge that the RQRR with chi-square approximations is
reasonably robust under heterogeneity (Kocherginsky, He, and Mu 2005). For the more
extreme example where x;; has a heavy right tail in Model (iii), however, it is obvious that
both COVES and the RQRR with chi-square approximations are not valid anymore, while
our proposed RQRR has empirical type I errors close to the nominal level. The results from
Model (iv) show that our proposed test also has satisfactory performance when testing the
effect of multiple continuous covariates simultaneously. Overall our proposed test works
more broadly than the COVES and the RQRR with the chi-square approximation. In par-
ticular, the proposed test remains valid under heterogeneous cases where the other two
tests may fail.

Table 1 also illustrates the advantages of the proposed RQRR over the QRR test at one
quantile level in terms of power stability. Firstly, we observe that the empirical power of
the QRR test heavily depends on the choice of 7. Its power tends to increase as 7 increases
to some value because the magnitude of treatment effect also increases. But the power will
decrease if we further increase t due to the inflation in variance. On the other hand, it is
quite obvious from our results that the proposed RQRR test is less sensitive to the choice of
the quantile region. Secondly, the proposed RQRR test with a reasonably-chosen quantile
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Table 2. Comparison of the empirical type | error rate and
power out of 1000 simulation samples for the tests based on
simultaneous confidence bands (CF), the supremum-based
test (Max), and the RQRR test over [1g4, 1p].

Model (ii)
m=n =50 m=n =100

o power o power
RQRRy(0.70,0.95) 0.047 0.571 0.042 0.895
RQRR(0.85,0.95) 0.043 0.701 0.051 0.955
RQRRy(0.70,0.99) 0.047 0.627 0.046 0.908
RQRRy,(0.85,0.99) 0.048 0.725 0.051 0.972
CF(0.70,0.95) 0.015 0.399 0.018 0.767
CF(0.85,0.95) 0.021 0.448 0.021 0.785
CF(0.70,0.99) 0.071 0.516 0.083 0.810
CF(0.85,0.99) 0.074 0.530 0.084 0.811
Max(0.70,0.95) 0.052 0.605 0.045 0.924
Max(0.85,0.95) 0.057 0.607 0.049 0.923
Max(0.70,0.99) 0.090 0.546 0.147 0.871
Max(0.85,0.99) 0.092 0.547 0.150 0.871

interval is more powerful than the QRR test at many individual quantile levels. For exam-
ple, the power for the proposed RQRR test with quantile region [0.85,0.99] is higher than
the QRR test with = 0.90 for all the settings we considered. Therefore we can benefit
from utilising the extra information provided over a quantile region to achieve more stable
statistical power.

We then set the quantile region to be [0.7,0.95], [0.85,0.95], [0.7, 0.99] and [0.85, 0.99]
to compare the performance of the proposed RQRR test with the methods based on
simultaneous confidence bands and the supreme-based test. For this comparison, we only
present the results under Model (ii) in Table 2. The results under Model (i) and (iii) tell a
similar story.

From Table 2, we notice that the methods based on simultaneous confidence bands and
the supremum-based test do not control the type I error well when we set the upper quantile
level to be 0.99. This is because the estimation of the coefficients are unreliable when
is close to one for data with moderate sample sizes. The RQRR test can be roughly seen
as analysing the average treatment effect over the quantile region, so it is able to handle
relatively extreme tails better.

5. Real data
5.1. Birth weight data

In this section, we illustrate the power of the proposed RQRR test with the 2016 US birth
weight data. Because the size of the full data is large, we are able to conduct the proposed
RQRR test and the QRR test at one quantile level with sub-samples of the full data set and
compare their number of rejections.

The 2016 US birth weight data set is produced by the National Center for Health Statis-
tics and is available to the public online.! The data set contains the infant and maternal
health characteristics along with paternal demographic information of the births occurred
in the US during 2016. In particular, we restrict our focus to 32,169 white mothers whose
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Figure 2. 95% pointwise confidence band of the hypertension effect.

ages are between 36 and 40 and we aim to study the relationship between birth weight
and the maternal history of hypertension. Besides the indicator for maternal hyperten-
sion, mothers’ education level, mothers’ weight before delivery and indicator for smoking
during pregnancy are included as confounding variables. Notice that these variables were
also considered in the birthweight data collected at Baystate Medical Center during 1986
(Hosmer and Lemeshow 2000).

We first fit linear quantile regressions with the full data set at different 7. From Figure 2,
we can see that the coefficient of hypertension is significantly less than zero at all the quan-
tile levels and the hypertension effect decreases in magnitude as the quantile level increases.
Namely hypertension has a negative effect on birth weight and its effect is more severe at
the lower tail. Given the size of the data, we view the full data estimates as good proxies to
the true parameters.

In the next step, we subtract the median hypertension effect estimated with the full data
from the birth weight to check whether the quantile coefficient varies with t. To compare
the performance of the proposed RQRR test with the QRR test at on quantile level when we
have limited sample sizes, we sub-sample (n = 200 to 800) from the full data and compare
the number of rejections out of 500 sub-sampled data sets.

The results are summarised in Table 3, which is consistent to what we observe in the
simulations. The power of both the proposed RQRR test and the QRR test depends on
the choice of quantile interval/level. Though the treatment of hypertension becomes more
significant at lower tails, the QRR test suffers from low power if we choose t to be as
small as 0.01 due to higher variances in those quantile estimates. For the RQRR test, the
intervals [0.01,0.1] and [0.01, 0.15] are better choices compared to the interval [0.05, 0.25].
Comparing the RQRR test with the QRR test, the former is less sensitive to the choice of
the quantile interval/level. Even when the quantile interval is chosen to be [0.05,0.25], the
power of the RQRR test is not much worse. When both the quantile interval and the quan-
tile level are reasonably chosen, the RQRR test tends to perform better than the QRR test in
general. The least squares regression is included in the comparison, and its power is clearly
lower than the RQRR test, because it aims to detect the difference in the mean, which is
less obvious than in the lower tail of the birthweight distribution.
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Table 3. Number of rejections out of 500 sub-sampled birthweight

data sets.
Counts of rejection at 0.05 level

Test n = 200 n = 400 n = 800
RORR,(0.01,0.10) 103 150 223
RORR,(0.01,0.15) 94 141 216
RORR,(0.05,0.25) 72 92 171
QRR(0.07) 44 54 76
QRR(0.05) 81 120 194
QRR(0.10) 69 108 185
QRR(0.20) 40 65 104
Least squares 50 63 69

5.2. Value-at-risk for S&P 500 sectors

In this subsection, we examine some of the market factors that impact the value-at-risk
(VaR) of the S&P 500 sectors with our proposed method. An 100«% VaR of a portfolio is
given by the a-quantile of its return distribution, and is an important risk measure with
small values of ar.

Fama and French (1993) proposed the following three-factor model to describe the
relationship between portfolio return and market factors:

Rf — Rpr =a+ b(RMt T Rpt) =+ SSMBr + hHMLf + €, (I].)

where R; is the stock/portfolio return, Ry is the risk-free return, Rpy; is the return on the
value-weighted market portfolio, SMB; is the difference between the returns on diversified
portfolios of small and big stocks, HML; is the difference between the returns on diversi-
fied portfolios of high and low book to market ratio stocks, and e; represents idiosyncratic
error. Fama and French (2015) proposed a five-factor model and added two extra factors
RMW;and CMA; to (11), where RMW; is the difference between the returns on diversified
portfolios of stocks with robust and weak profitability, and CMA; is the difference between
the returns on diversified portfolios of the stocks of conservatively invested and aggressive
invested firms.

We wish to test if the extra two factors added in Fama and French (2015) are useful
in explaining the VaR of different S&P 500 sectors. We collected the S&P 500 indices of
the energy, information technology and health care sectors between January 2, 2014 to
December 29, 2018 from Yahoo Finance, which has a total of 1007 trading days. The return
R; for a given portfolio is calculated by 100 log é—‘T where x; be the value of the portfolio
(or index) at time f. The market factors are obtained from the data library of Kenneth R.
French’s website.

To be more specific, we consider the following Fama-French five-factor model in the
quantile regression framework:

Rt — Rpt = a(t) + b(t)(Rpy — Ryy) + s(v)SMB; + h(t) HML;
+ r(T)RMW; + ¢(t)CMA; + e z. (12)

We assume that e;,; are independent over time given the explanatory variables. This
assumption is reasonable as the autocorrelation in R; can be fully explained by the market
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Table 4. P-values from the of the proposed RQRR test at a quan-
tile region and the QRR test at individual quantile levels for the
significance of two additional factors in the Fama-French model.

Energy Information Health
RQRRy(0.01,0.05) 0.014 0.001 0.000
QRR(0.01) 0.102 0.014 0.295
QRR(0.05) 0.003 0.000 0.000

Note: The columns represent S&P 500 sector portfolios.

factors, analogous to the common assumptions in autoregressive models. We are interested
in testing

Hy:r(t)=c(r) =0 Vre(,l) vs
Hy:r(t) #0 or c(r) #0 forsomet € [0.01,0.05].

We focus on the lower tail of t € [0.01,0.05], and use the proposed RQRR test at the
quantile interval [0.01, 0.05] as well as the QRR test at = 0.01 and 0.05; see the results
summarised in Table 4.

The results from Table 4 show that the QRR test at T = 0.01 often lacks the power to
detect the effect of the two additional factors in the five-factor model, but the RQRR test
on the quantile interval [0.01, 0.05] confirms the statistical significance, at the level of 0.05,
of the five-factor model at the lower tail for each of the S&P 500 sectors considered here.
This example further validates the power and stability of the proposed RQRR test discussed
earlier.

6. Conclusion

We have proposed a regional quantile regression rank test that is designed to detect the
treatment effect in the upper or lower tails of the outcome distribution. Our test is valid
under heterogeneous models, and outperforms existing methods in a variety of settings.
One innovation of the work is the model-based bootstrap algorithm proposed for the
implementation for the test. The main idea is to sample from the conditional quantile func-
tions estimated under the null hypothesis but over a slightly wider region then the target
quantile region in the alternative hypothesis.

Because our model-based bootstrap is able to approximate the data generative proce-
dure consistently and uniformly over a given region of t, it can be used to approximate the
null distribution for other test statistics. For example, in the simulation we combined the
model-based bootstrap with an alternative supremum-type statistics. There are scenarios
when such test statistics are preferred. For example, if the treatment effect is negative at
lower 7 but positive at upper 1, the power of the proposed rank test may suffer when it
targets the average over this region, but the supremum-based test may work well. We hope
that the model-based bootstrap method becomes a valuable tool in a variety of hypothesis
testing problems in quantile regression.
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Notes

1. The data set is available for download at https://www.cdc.gov/nchs/data_access/vitalstats
online.htm
2. https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Appendix. Proof of Theorem 3.1

We first study the limiting distribution of the test statistic T}, as shown in Theorem 3.1(i). Let Z,, =
ﬁ(ﬁ(t) — PB(1)). Let d; be any [-dimensional vector that is uniformly bounded and write D;d =
% v f;(x?ﬁ(r))d;xf . We plug in d; = x; and d; = Xi7 — x;3 in the latter part of the proof. Notice
that by conditions (C1) and (C3), the limit of D} ; exists and is positive definite when d; = x; and
di = Xp — Xi.

Let (A}ﬁ{t) =n"12Y dll(y; < x?t} and G4(t) = n~12 Y d;F,-(xf-t). Lemma A.l below shows
that GZ(#) is a good approximation of (A}ﬁ(t) using results from the empirical process theory (van
der Vaart and Wellner 1996). Furthermore define Wﬁ =n"123"di(a;(tr) — (1 — 1)) and W,‘f =
n~12 ¥ di(@;(r) — (1 — 1)) where a;(t) = I(y; > xT B(1)). Recall a;(t) ~ I(y; > xT f(1)) is the
main component of our test statistic and a;(t) follows i.i.d binomial distributions which is easy to
analyse. Lemma A.2 establishes the relationship between Wff and W,‘f. Theorem 3.1(i) then follows
from Lemmas A.1 and A.2.

Lemma A.1: sup, <, <, [IGH(B(r)) — GZ(B(x)) — GL(B()) + GL(B())]|= 0p(1).

Proof: For any I-dimensional vector v, define the class of function G over a compact set 7 € RF4
as

G= ide;]I(y; <xIf), te T}.

— i
Note that G is a V C subgraph class and E(g?) is bounded for any g € G.
Thus vT(aﬁ (1) — G‘g (t)) is stochastically equicontinuous over 7 with semi-metric
27 1/2
p(t, ) = {E(Vde]I(}'i <xt)) —vdl(y; < x,sz}) } :
Since

p(ti,)? < (vd)2E (]I(-’C,sz <yi<xit)+Ixt <y < xle‘z})

=20 d)*o(|t, — t2))
= O("tl - t2"}:

and ﬁ (t) is a consistent estimator of B(t) uniformly for T € [zp, Tas] (This result can be proved using
similar and easier argument to that used in the proof of Theorem 3.1(ii).), we have

sup o7 (GAA() — GEB@) — 7 (GB () + GLB@N)| = 0p(1),
THST<Ty
by the definition of equicontinuity. The lemma is hence proved since v is arbitrary. |

Lemma A.2: IIW,‘f — W,‘f + D} ,Z,||= O(ﬁliﬁ(r} — B>+ 0p(1) uniformly over t € [19, Tm].

Proof: By simple manipulation, we can write
Wg — Wﬂ — D;dz,, +R; —R; —R;3,
where
Ry =n~'2 3 " dil(y; = x{ B(1))ai(x),
Ry = GH(B(1)) — Gi(B(1)) — Gi(B(¥)) + G (B(T)),
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Rs = GX(B(1)) — GI(B(1)) — DLyZy.

Because y; is continuous, y_ I(y; = x?ﬁ(t}) = p + q almost surely for any 7. Since |a;(t)] < 1 and
d; bounded, R, = O(n~/?) uniformly.

By Lemma A.1, R; is uniformly o0,(1).

Now consider R3. By Taylor expansion,

GUB(x) +n2A) — G(B(x)) - D A
1 1
==Y dn 12 ,-TA[(;,-T + 1 2(xT Ays) — fi(xT )ds"
ﬁE n 2 (x )0 filxi B(x) + n~2(x] A)s) — filx] B(7))
1 1
- _E din~ 172 ,.T,Afo “12(xTA ds”
ﬁ " (x )0 (n (x }s)

1 B
e ﬁZdiO(n L A)?)

= o 2| Al%).

We have the desired result letting A = ﬁ(ﬁ(t) — B(1)). m

Proof of Theorem 3.1(i): Set d; = x;. By the constraints in (4), W;‘ =n~Y2 Y x(a(r) —
(1 — 7)) = 0. Thus from Lemma A.2, we have

DY, Zn = Wi 4+ O(/1]|B(7) — B + 0p(1).
Namely,

Zn(1+ 0p(1)) = (D)™ Wy + 0p(1).

By similar argument as in Lemma A.1, W = {xj(@;(t) — (1 — 7)), t € [, T;m]} isa VC subgraph
class with bounded envelope. Then we have Z, = Op(1) since the limit of Dy, is positive definite by
(C3). Therefore we have the uniform Bahadur representation

Zy = (DL) ' Wi + 0p(1). (A1)
By Lemma A.2 and (A1),

Wi = wé _ DL (DL) ' W* 4 0,(1). (A2)
Notice that the above derivation holds for linear quantile regression model in (1) generally. Now we

consider the model under Hy where only x;; is included. Set d; = xj — Xj2, from (A2) we get

n n
n 2N (i — &) @i(T) — (1 — 1) = 72 "(xyi — Fai — KExpi) @i(x) — (1 — 1)) + 0p(1),
i=1 i=1
. (A3)
where K = (X; — X)X (XTT2X1) ! and 'Y = diag(fi (x}, B1 (7).
Since (A3) holds uniformly for T € [tp, Tar],

n
n 2N " (i — ai)by

—1

=723 "N " (i — &y — Kyrxna) (@i(m) — (1 — Tm)) @ (Tn) (T — Tme1) + 0p(1). (A4)

i=1 T,y<S
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By the Lindeberg-Feller centre limit theorem, (A4) converges to a normal distribution of mean 0
and variance

s :

& 2 2 ~ - T

nlﬂ%oZ E E (T (Tm — Tm—1)"(1 — Tm) T (x2i — X2i — Ki"x1) (%20 — X2 — K1) .
i=1 T,eSs

Thus T, = .'SJ?JQ],TI.'Sﬂ converges to a mixed chi-square distribution. O

We now want to study the consistency of our model-based bootstrap. Parallel to the notations in
the original sample space, we have the following notations in the bootstrap space:

W,‘f* =n~Y2Y " di(a¥(r) — (1 — v)) where a¥(t) is the regression rank score under Hy for the
bootstrap sample.

W — n=12 3" i@ (r) — (1 — 1)) where @ (1) = L(y? > x! B1(1)).

G (t) = i~ 2 Y dl(y} < «T1).

GH(t) = n~12 Y dE*1(y} < x]1).

Zy = J/a(Bt (@) — i (1))

We first show that ﬁi" (t) is a consistent estimator of 8;(t). The relationship corresponding to
Lemma A.2 under the bootstrap space is given in Lemma A.3. Combining the above results, we can
establish the consistency of our bootstrap algorithm in Theorem 3.1(iii).

Proof of Theorem 3.1(ii): Write §; = xl?;,gl (u;), where B (-) is the linear interpolation of { 81 (t,), m €
§}. By the law of large numbers,

“ %E* (3 peGi— B =3 peGi — xh A1 D)

_% (Z pe (i — x5 B1) — Zp;{:}‘f — x?{_gl(r}))“ = 0p(1). (A5)

Note that the expectation above is taken with respect to u;. Because

‘% (E peGi— x5 B1) — Y peGi — x;{ﬁl(r)))

5 (S0~ E et 7o)

T '
<qalt—t|l+alp—58I

%(Z pr(yi — x;‘;ﬁl} Y o (i — xaﬁ 1(1))) is stochastically equicontinuous. Thus the conver-
gence in (A5) is uniform over t € [1,, Tp] and B; in a compact set 3. We know that

Bi(x) = argﬁminZPr()'f —xhB1) — peGi — x 1 (),
1

Pu(o) = axgminE* (1 peGi— xhp0) = pcGi — xh1(0)).
1

The minimiser ,él (t) is also unique for T € [1,, 7p]. Notice that

1 . 1
=2 peGi—xB) —— > Py —xﬂﬁl)"

:o(% > Iy —?il)
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= O(|| Bi(x) — B1(D) |- (A6)

Since sup, _ <y, Il B1(x) — B1(¥) |= 0p(1), sup, —,—,, || B1(¥) — B1(T) ||= 0p(1). Thus by (A5)
and (A6),

lEt (Z pe(Fi — x} 1) — Zpr{j‘; —xgﬁl(r)))

n

sup
t€[ra,1p].01€8B

1 i _
== (3" et —xiB) = Y peGi — A1 (2)) H = 0j (1) + op(1). (A7)
By writing o;( 1) + 0p(1), we mean that the left hand side of Equation (A7) is o;(l) with probability

going to 1 in the original sample space. Let 33(51 (1)) be a ball of radius § centred at ﬁl (t) with L™
norm. For any b(t) in the boundary of Bs(8;(1)).

1 1 _
=P —x1b(™) = = 3 pe (] —x1f1(0))
1 1 =
> ~E' ) peOf —xb(@) — ~E* ) pe(yf — % Ai(1) — g5(1) — 0p(1)
> e(t) — o} (1) — 0p(1),

where €(7) > 0 and the inequality is strict for some t € [y, Tar]. Namely,

r* inf su (v —xhb(x)) = Y pe(yF —xLBi(r)) <0) ) = 0
(5upiﬁ1(r)—b(r)|:5 re[rfr“(z Vi il Z (¥ i )

in P. By the convexity of p,,

P! ( inf sup ](Z pe(yf —xjb(1)) — " pe(yf — x Bi(7)) < o)) -0

up |B1(1)—b(1)|25 el

in P. Also notice that ,51 (t) = Bi(r) for t € S. Thus we have the desired result. O

Lemma A.3: With probability going to 1 in the sample space, G&* (B (1)) = G¥*(f,(v)) — Df Zy +
oW |l Bf(x) — Bi(x) IH + 0p+ (1) uniformly for t € SN [14, Tp).

Proof: Write G¥*(B,(7) +8) — GI*(B(1)) = A1 + A, where

Ay =n"'2Y dE? (]I(u; < 1) (I(x} 1 (w0) < x5 (B1(x) + )
—I(x} Br(z0) < x;'];,él(f))))
2y g (]I{u,- > ra) (1< B (oan) < 5 (B (o) +8)
— (i A1 (zan) < x;l;ﬁl(l'))))’

Ay =512 deE*(]I(TO < ui < ) (I(xy B (wi) < Xy (Bu(T) +8))

—I(x} Br(wi) < x:?;»él{"))))'

From Theorem 1 of Neocleous and Portnoy (2008), x}[ Bi(1) is strictly monotone uniformly on
[70, Tm] with probability tending to 1. Therefore for T € [74, T3], Ay is 0p(1) for any § — 0.
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Let A = B1(u;) — B1(u;), write Aj as
n1/2 Zd,-E*(]I{ro < U < rM)(][(xi];ﬁ(us) + x;‘;ﬁ) < xf;,él{r) - x}{é‘)
— (] Br(ui) + x5 A) < xﬁﬁl(r)))
e Zd,—E"(]I(ro < ui < tl(x Bi(x) — 2 A < ] Br(u)
< xhBi(r) —xh A — £ 8)(x}8 < 0))
+n 2y gEr (]I(rg. < ui < )l(x Bi(x) — xhA —x18 < L Bi(ui)
< x1h1(x) — A (] s > 0)).

We only need to consider the case when x;§ < 0, since the situation when x| 8 > 0 is symmetric.
When x}8 < 0,

/2 Ea’sE*(]l(ro < uj < t)l(xfi 1 (x) — x| A < x]) 1 (w)) < K Br(2) — x| A —xﬁﬁ))

min{x] By (t)—x}; A—x}}3, <] B1 (ta1)}

—n 1Y g f (o) de

max{x]; B (r)—x]| A, x| B1 (o)}

:n_lﬁzdjf

max{x}; B1(r)—x}; A, xj; f1 (o)}

min{x} By (z)—x] A—x} 8, x3) B1 (zan)} T T
filx;1B1(1)) + O(lc — x;3 B1(T)]) de
=g WY, (dm(xﬁﬁltr)}( — max{x}} f1(t) — x}1 A, 1 B1(10)}
+ min{xﬂﬁl(r} == xEIA — xﬂﬁ, xf{ﬁl (rM)})
+O( ANl +odl 8 1%+ odl i) — Bu() llll 8 ||))
=n" 2" dfih pr(0)(—xh8) + OWn | Al 8 )+ OW/n || 8 1)
+ 01 || Bi(r) — Bu(o) Il 8 D) + Ry,

where
Rj=0 (n—lﬁ Zd,-_ﬁ(xf;ﬁl(r)) (]l(xfiﬁl(r} _xE;A = x};ﬁl(rn))
(] Bi () — xh A — 15 > x}[ﬁl(rM)))) )

For T € [14, 13], Ry converges to zero in probability if A and § are o(1).

Recall A = ﬁl(u,'} — B1(u;), which is Op(n_lﬁ) uniformly over u; € [7g, Ty] by Theorem 1 of
Neocleous and Portnoy (2008). Letting § = Ai“{t) = ﬁl(r} = 0p=(1) + 0p(1) for € SN [14, 73], we
have

Ay = DL, Z3 4 Op(/n || B*(x) — B(@) M) + 0p(1) + 0p(1).
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Proof of Theorem 3.1(iii): Similar to Lemma A.1,

G (Bt (1)) — GH*(Bi(1)) — G (B (1)) + GH*(Bi(1))

| = 0p*(1) + 0p(1).

sup ‘
TeSN[1y,Th]

This is because
G* = {deg][(y;" < xg-t), Tal Ti

is a VC subgraph class and ﬁl*(t) is consistent for ﬁl(r) uniformly over T € SN [14, 7]. Thus we
have

Wit Wi =DF o B o) B,

n n
where

R} = n~'2 Y " dill(y} = x B ()i} (2),

R} = G* (B} (1)) — G (Bi(1) — G (B} (1) + G (B1(1)),

R} = Gi*(Bf (1)) — Ga(B1(1)) — DLz
Since R} and R are op+(1) + 0p(1), by Lemma A.4, we have

W = W — DL,Z3 + Op(V || B} (x) — Br(T) %) + 0 (1) + 0p(1).
Setd; = x;1,
D}, Zyy = Wit + 0p(/1 || B*(x) — B(1) I1P) + 0pe (1) + 0p(1).
Thus Z} = (D) ™' W + 05+ (1) + 0p(1) and
W& = Wi — DL (DL) ' WE* + 0pe (1) + 0p(1).

Set dj = X — xn»

n 2N " (xip — &)@} (r) — (1 - 1))

=n""2 "(xp — ko — Ky x1i) @ (7) — (1= 1)) + 0p(1) + (D).
i
Therefore

n
Sp=n""23"% " (xi2 — & — Kimxin )@ (tm) — (1 — Tn))@ () (Tm — Tm—1) + 0px (1) + 0p(1).
i=1 tmes

(A8)

Comparing Equation (A3) with (A8), their right hand sides are exactly the same except that we
have &} instead of @; for the bootstrapped test statistics. Recall @;(t) = I(y; > x‘?; B(r)) and @} (r) =
Iy = xi]; B1(1)). Consider a set D where xl?; B1(7) is strictly monotone for T € [tg, Tpr]. On D, a(r)
given data independently follows the same binary distribution as @;(t). Therefore the conditional
distribution of T} given data will convergence to the same limiting distribution as T, on D. We then
have the desired results since P(D) — 1asn — 00 by Theorem 1 of Neocleous and Portnoy (2008).
i



