Oxidative DMSO Cyclization Cascade to Bicyclic Hydroxyketonitriles

John Kornfeind, Pravin S. Iyer, Taylor M. Keller, and Fraser F. Fleming **

- a. Department of Chemistry, Drexel University, 3401 Chestnut Street Philadelphia, PA 19104
- b. Innovative Medicines Research, Glenmark Pharmaceuticals Ltd., Mahape, Navi Mumbai, 400710, India.
- c. Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia PA 19122.

fleming@drexel.edu

Abstract

Thermolysis of ω -iodoalkyl- β -siloxyalkenenitriles in DMSO triggers an oxidative cyclization cascade that affords highly oxygenated hydrindanones, decalones, and undecanones. The cyclization cascade is highly unusual on three counts: the cyclization installs a contiguous array of tertiary-quaternary-tertiary centers, thermolysis equilibrates a quaternary center, and the enolsilyl ether crossed-aldol proceeds without a catalyst.

Introduction

Oxygenated natural products occupy a privileged position in pharmaceutical discovery.¹ The degree of oxygenation broadly correlates with bioactivity reflecting the increased affinity of polar functionality to bind the biological machinery controlling favorable medicinal outcomes.² The relationship between oxidation and bioactivity is exemplified within terpenoids where increased oxygenation correlates with

higher incidences of anticancer, antiviral, antibiotic, and immunosuppressive bioactivity compared to less oxidized counterparts.³

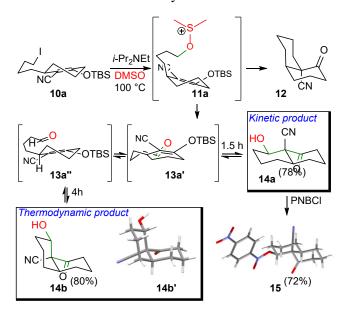
Embedded within oxygenated terpenoids are an important subset of bioactive hydrindanes, decalins, and bicyclo[4.3.0]undecanes containing oxygenated, angular carbons (Fig. 1). These terpenoids vary in the size of the bicyclic core and the degree of oxidation of the angular carbon; representative terpenoids include the nitrous oxide inhibitor 1,⁴ the cytotoxic acutifolone 2,⁵ the reverse transcriptase inhibitor 3,⁶ the anti-leukemic ambrosanolide 4,⁷ and the sestertepenoid 5, an inhibitor of *M. tubercolosis*.⁸

Figure. 1. Representative angularly oxygenated, bioactive terpenoids

Unified synthetic strategies to oxidized hydrindane, decalin, and undecane ring systems are rare.⁹ A conceptually attractive strategy to access oxygenated terpenoid-like cores with three different oxidized carbon was envisaged through an organometallic addition-oxidative cyclization sequence (Scheme 1). The strategy benefits from the efficient conjugate addition-silylation of ω-chloroalkylorganometallics 6 to oxoalkenenitriles 7¹⁰ that generate chloroalkylalkenenitriles 8.¹¹ Conceptually, oxidation of chloride 8 would unmask an intermediate aldehyde poised for an aldol-type condensation to form bicyclic hydroxyketonitriles 9. The modular approach installs carbons at three different oxidation levels, three contiguous stereocenters, with access to varying ring scaffolds suited for elaboration into bioactive targets.¹² Described below is the fulfilment of this direct, stereoselective route to oxygenated hydroxyketonitriles 9.

Scheme 1. DMSO oxidative cyclization strategy.

Results and Discussion


Facile conjugate addition of 4-chlorobutylmagnesium bromide¹³ to oxonitrile **7a**¹⁴ provided rapid access to the oxidative cyclization prototype **8a** (Scheme 2). Attempts to oxidize the chloride **8a** with DMSO were unsuccessful, even in the presence of Bu₄NI or AgBF₄. However, facile chlorine-iodine interchange¹⁵ provided rapid access to **10a** that proved amenable to the oxidative cyclization cascade (Scheme 3).

Scheme 2. Alkenenitrile prototype for oxidative cyclization.

DMSO and amine oxide ¹⁶ oxidation of alkyl iodides ¹⁷ and tosylates ¹⁸ has not been employed in bondforming cascades. ¹⁹ The cyclization cascade of iodide **10a** (Scheme 3) requires precise timing for the
oxidation (**10a** → **11a** → **13**) and cyclization steps (**13a'** → **14a** or **13a''** → **14b**) because a slow
deprotonation of the sulfonium salt **11a** incurs the potential for a premature cyclization of the nucleophilic
enol ether to afford decalone **12**; early oxidative explorations in DMSO with **10a** and amine oxide protocols
afforded only decalone **12**. Switching to thermolysis with **10a** and *i*-Pr₂NEt revealed a thermal window
between 80 and 150 °C for the efficacious oxidation. ²⁰ Monitoring the oxidation of **10a** revealed that
formation of the aldehyde-nitrile **13a** was complete after only 20 minutes at 100 °C (76% yield); at
temperatures lower than 100 °C the reaction became sluggish, stalling at temperatures below 80 °C. ²¹
Continued thermolysis at 100 °C triggered an intramolecular aldol-type condensation to generate primarily
the *trans*-decalone **14a** (78% yield after 1.5 h; the configuration was determined by conversion to the

crystalline PNB ester **15** followed by crystallographic analysis) accompanied by approximately 10% of the diastereomeric *cis*-decalone **14b**. ²²

Scheme 3. DMSO oxidative cyclization to cis- and trans-decalones 14a and 14b.

The cyclization stereoselectivity showed an intriguing concentration, time, and base dependence. Increasing the reaction concentration from 0.05 mM to a 0.2 mM decreased the efficiency providing 14a (21%), 14b (15%), and 10% of the methylthiomethyl ether 14c (14b, HO = MeSCH₂O), presumably from trapping 14b with the thionium ion derived from dehydration of DMSO.²³ Extending the thermolysis of 10a from 1.5 to 4 h afforded the *cis*-decalone 14b by equilibrating 14a through a retroaldol-aldol process (14a to 13 to 14b). Substituting Proton Sponge for *i*-Pr₂NEt accelerated the cyclization-equilibration process to afford 14b in 81% yield after 4 h. The interconversion of 14a and 14b represents a rare example of an equilibration at a quaternary center.²⁴

The crossed aldol cyclization of **13** can conceivably arise directly from the silyl enol ether or via an enol derived from *i*-Pr₂NEt.HI-induced protodesilylation.²⁵ Isolation of aldehyde **13** allowed thermolysis in DMSO in the absence of *i*-Pr₂NEt or *i*-Pr₂NEt.HI which gave only the *cis*-decalone **14b** (80% yield after 1 h at 100 °C); the enol silyl ether crossed-aldol is unusual in not requiring a catalyst.²⁶ The tentative implication is that the presence of *i*-Pr₂NEt.HI causes protodesilylation of **13** followed by a kinetically

controlled aldol cyclization to *trans*-decalone **14a**. Longer reaction times, or the use of Proton Sponge, facilitates a retro-aldol-aldol equilibration favoring conversion of **14a** to **14b**. The thermodynamic preference for the *cis*-decalone **14b** is consistent with the rather delicately tilted equilibrium in 8a-substituted 1-decalones that favors *cis*-decalones.²⁷

The thermal oxidative cyclization of **10a** established valuable parameters to extend the strategy to other ring systems. The prevalence of *exo*-methylene-containing terpenoids²⁸ stimulated cyclization of the methylene-substituted iodonitrile **10b**, prepared through a copper-catalyzed addition of alkenyllithium **15**²⁹ to oxonitrile **7a** followed by chloride-iodide interchange (Scheme 4). Cyclization of **10b** with DMSO and *i*-Pr₂NEt, at 100 °C provided the *trans*-decalones **16a** and **16b** (58%) accompanied by the *cis*-decalone **16c** (14%). ³⁰

Scheme 4. Oxidative cyclization to *exo*-methylene decalones.

The oxidative cyclization was extended to undecanones via the seven-membered oxonitrile **7b** (Scheme 5). Addition of chlorobutylmagnesium bromide, or the alkenyllithium **15**, to **7b** generated the corresponding β-siloxyalkenenitriles that were subjected to a Finkelstein iodination to afford **10c** and **10d**, respectively. Oxidative cyclization of **10c** afforded the *trans*-undecanonenitriles **17a** and **17b** 67%), whereas **10d** afforded the *trans*-undecanonenitriles **18a** and **18b** (92%).

Scheme 5. Oxidative cyclization to trans-undecanones.

The strategy was extended to a hydrindane through an oxidative annelation with the 5-membered oxonitrile 7c (Scheme 6). Conjugate addition of chlorobutylmagnesium bromide to 7c followed by silylation afforded the chloride 8e whose treatment with NaI provided iodide 10e (Scheme 6). Oxidative cyclization of 10e afforded the *cis*-hydrindanone 19 with the *trans* orientation between the angular nitrile and the vicinal hydroxyl group.³¹

Scheme 6. Oxidative cyclization to the *cis*-hydrindanone **19**.

The potential of the oxidative cyclization cascade is illustrated with the rapid assembly of **20**, a differentially oxidized decalin containing a *gem*-dimethylcyclohexane motif found in many terpenes (Scheme 7).³² An uncatalyzed conjugate addition of a chloroalkylorganozine to oxonitrile **7a** afforded chloride **8f** whose chloride-iodide interchange provided iodide **10f**. Thermolysis of **10f** at 100 °C for 2 h afforded a mixture of alcohol diastereomers that were equilibrated by heating at 150 °C for 1 h, to provide **20** in 85% yield.³³ The rapid formation of **20** illustrates the potential of the oxidative cyclization in generating complex scaffolds with differentially oxidized carbons.

Scheme 7. Assembly of an oxygenated decalone for terpene synthesis.

Conclusions

Thermolytic, oxidative cyclization of β -siloxyalkenenitriles bearing pendant ω -iodoalkyl substituents provides a mild, efficient route to bicyclic hydroxyketonitriles. The DMSO oxidation of the pendant alkyliodide to the corresponding aldehyde initiates a simple cascade that triggers an uncatalyzed, diastereoselective, aldol cyclization. The highly unusual aldol-retroaldol installs a contiguous array of tertiary-quaternary-tertiary stereocenters. The strategy is rapid and modular, and provides rapid access to oxidized hydrindanones, decalones, and undecanones richly decorated with alcohol, ketone, and nitrile groups for target-directed synthesis.

Experimental Section

General Experimental Conditions. All nonaqueous reactions were performed in oven- or flame-dried glassware under a nitrogen atmosphere. All chemicals were purchased from commercial vendors and used as received unless otherwise specified. Anhydrous tetrahydrofuran (THF) was distilled from benzophenone-sodium under N₂ before use, dimethylsulfoxide (DMSO) and N,N-Diisopropylethylamine were obtained from a solvent purification system (Innovative Technology Inc., model PS-MD7). Reactions were magnetically stirred and monitored by thin layer chromatography (TLC) with 250 μm precoated silica gel plates. Reactions with microwave heating

were performed in microwave vials using a Biotage Initator Microwave Synthesizer (Model: Initiator). ¹H NMR and ¹³C{¹H} high resolution nuclear magnetic resonance spectra were recorded on a Varian Inova 400 (400 MHz/101 MHz) instrument. Chemical shifts are reported relative to TMS (δ 0.00) for ¹H NMR and chloroform (δ 77.16) for ¹³C{1H}. IR spectra were recorded as thin films (PerkinElmer Spectrum 100 FT-IR Spectrometer). High-resolution mass spectra were obtained on a Bruker 12.0 Tesla APEX – Qe FTICR-MS with and Apollo II ion source (positive electrospray ionization with an ion cyclotron resonance cell) and a Thermo-Finnigan LTQ-FT 7T FT-ICR spectrometer with an atmospheric pressure chemical ionization (APCI) source with direct infusion run in positive ion mode at 5 kV with an Orbitrap ion trap mass analyzer. All crystallographic data were acquired at 100 Kelvin on a Bruker KAPPA APEX II DUO equipped with a CCD area detector (8.333 pixels/mm) using molybdenum radiation (λ = 0.71073 Å) originating from a sealed fine-focus tube. COSMO (Bruker AXS) was used for collection strategy determination. All frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data was corrected for absorption effects with a multi-scan method using SADABS. All structures were solved and refined using the Bruker SHELXTL software package using full matrix least squares refinement. APEX2/APEX3 and OLEX2 were used as analysis interfaces.

General conjugate addition (Method A). A THF solution of the appropriate Grignard reagent (1.2 equiv) was slowly added to a -78 °C, THF solution of the oxonitrile (1.0 equiv). After 45 min, the solution was allowed to warm to rt and then solid TBDMSCl (2.0 equiv) was added. After 24 h, saturated, aqueous NH4Cl was added, the phases were separated and the aqueous phase was extracted with ethyl acetate. The combined organic phase was dried (Na₂SO₄) and

concentrated. The crude product was purified on a Reveleris X2 MPLC purification system using a silica gel cartridge (hexanes:ethyl acetate).

General conjugate addition (Method B). A hexanes solution of BuLi (1.6 M, 1.1 eq.) was added to a -78 °C, THF solution of 4-chloro-2-iodo-but-1-ene (1 equiv) or 5-chloro-2-iodo-pent-1-ene (1 equiv). After 5 min, a THF solution of CuCN (1.1 equiv) pre-fused with LiCl (1.1 equiv)³⁴ was added resulting in a yellow solution. Stirring was continued for an additional 15 min at-78°, followed by dropwise addition of the oxonitrile (0.8 eq.) in THF. After 45 min, the solution was allowed to warm to rt and then solid TBDMSCl (2.0 equiv) was added After 24 h, saturated, aqueous NH₄Cl was added, the phases were separated, and then the aqueous phase was extracted with ethyl acetate. The combined organic phase was dried (Na₂SO₄) and concentrated. The crude product was purified on a Reveleris X2 MPLC purification system using a silica gel cartridge (hexanes:ethyl acetate).

2-((tert-Butyldimethylsilyl)oxy)-6-(4-chlorobutyl)cyclohex-1-ene-1-carbonitrile (8a). Following the general conjugate addition method A with 1-oxo-2-cyclohexenyl-2-carbonitrile 6a (1.00 g, 8.25 mmol, in 10 mL THF), ¹⁴ chlorobutylmagnesium bromide¹³ (0.43 M, 21.0 mL in THF), and TBDMSCl (2.50 g, 16.6 mmol) afforded after purification by MPLC (12 g silica cartridge, EtOAc: hexanes, 5:95 to 10:90, 10 min) 1.96 g (72%) of 8a as a clear, light yellow oil spectrally identical to material previously isolated.¹¹ H NMR (400 MHz, CDCl₃) δ 3.54 (td, J = 6.6, 1.2 Hz, 2H), 2.34 – 2.26 (m, 1H), 2.13 (ddd, J = 7.5, 4.6, 2.4 Hz, 2H), 1.88 – 1.68 (m, 5H), 1.64 – 1.48 (m, 2H), 1.48 – 1.23 (m, 3H), 0.97 (s, 9H), 0.22 (s, 3H), 0.22 (s, 3H). ¹³C { ¹H} (101 MHz, CDCl₃) δ 165.7, 118.4, 95.5, 45.0, 35.1, 33.7, 32.5, 30.9, 26.5, 25.5, 23.9, 20.0, 18.1, -3.7, -3.8.

2-((tert-Butyldimethylsilyl)oxy)-6-(4-chlorobutyl)cyclohex-1-ene-1-carbonitrile (8b). Following the general conjugate addition method B with oxonitrile 6a (323 mg, 2.67 mmol, 5 mL THF), 5-chloro-2-iodo-pentene³⁵ (750 mg, 3.26 mmol, 10 mL THF), BuLi (1.60 M, 2.1 mL), a 10 mL THF solution prefused with CuCN (300 mg, 3.35 mmol), LiCl (150 mg, 3.54 mmol, 1.1 eq.), and TBDMSCl (1.00 g, 6.63 mmol) afforded, after purification by MPLC (4 g silica cartridge, EtOAc: hexanes, 2:98 to 10:90, 10 min), 494 mg (55%,) of 8b as a clear oil: IR (ATR) 2210, 1625 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.01 (br. s, 1H), 4.89 (br. s, 1H), 3.68 – 3.46 (m, 2H), 3.05 – 2.95 (m, 1H), 2.23 (dt, *J* = 15.6, 7.6 Hz, 1H), 2.18 – 2.06 (m, 3H), 2.04 – 1.86 (m, 2H), 1.78 – 1.48 (m, 4H), 0.97 (s, 9H), 0.24 (s, 3H), 0.23 (s, 3H). ¹³C { ¹H } (101 MHz, CDCl₃) δ 166.4, 148.0, 118.4, 113.1, 93.5, 44.5, 42.5, 31.0, 30.9, 30.7, 26.6, 25.5, 18.7, 18.1, -3.76, -3.73.; HRMS (+APCl) m/z [M + H+] calcd for C₁₈H₃₁ONClSi 340.1858; found 340.1864.

2-(tert-Butyldimethylsilyl)oxy)-7-(4-chlorobutyl)cyclohept-1-ene-1-carbonitrile (8c). Following the general conjugate addition method A with 1-oxo-2-cycloheptenyl-2-carbonitrile³⁶ (6b) (225 mg, 1.66 mmol, in 10 mL THF), chlorobutylmagnesium bromide¹³ (0.43 M, in 5.0 mL THF) and TBDMSCI (300 mg, 1.99 mmol) afforded after purification by MPLC (4 g silica cartridge, EtOAc: hexanes, 2:98 to 10:90, 10 min), 400 mg (70%,) of 8c as a clear, light yellow oil: IR (ATR) 2204, 1614 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.55 (t, J = 6.7 Hz, 2H), 2.48 (m, 1H), 2.36 – 2.23 (m, 2H), 1.93 – 1.75 (m, 3H), 1.74 – 1.37 (m, 9H), 0.98 (s, 9H), 0.24 (s, 6H). ¹³C { ¹H} (101 MHz, CDCl₃) δ 170.8, 118.9, 98.8, 44.9, 37.5, 35.5, 33.4, 32.5, 31.9, 28.3, 25.5, 25.0, 24.0, 18.1, -3.7, -3.8. HRMS (+APCI) m/z [M + H+] calcd for C₁₈H₃₃ONClSi 342.2015; found 342.2024.

2-((tert-Butyldimethylsilyl)oxy)-7-(4-chlorobutyl)cyclohept-1-ene-1-carbonitrile (8d). Following the general conjugate addition method B with oxonitrile 6b (250 mg, 1.85 mmol), 5-chloro-2-iodo-pentene³⁵ (500 mg, 2.17 mmol), BuLi (1.60 M, 1.50 mL, 1.1 eq.), a 10 mL THF solution pre-fused with CuCN (220 mg, 2.46 mmol), LiCl (100 mg, 2.36 mmol), and TBDMSCl (750 g, 4.98 mmol) afforded after purification by MPLC (4 g silica cartridge, EtOAc: hexanes, 2:98 to 10:90, 10 min), 353 mg (54%,) of 8d as a clear oil: IR (ATR) 2206, 1616 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.01 (br. s, 1H), 4.97 (br. s, 1H), 3.57 (t, J)

= 6.5 Hz, 2H), 3.06 – 2.98 (m, 1H), 2.38 (br t, J = 5.6 Hz, 2H), 2.32-2.11 (m, 2H), 2.03-1.92 (m, 2H), 1.92 – 1.77 (m, 2H), 1.77 – 1.67 (m, 1H), 1.67 – 1.58 (m, 3H), 0.98 (s, 9H), 0.25 (s, 6H); 13 C { 1 H} (101 MHz, CDCl₃) δ 170.6, 147.2, 119.2, 112.3, 97.5, 44.6, 44.5, 35.2, 31.6, 30.7, 29.9, 26.3, 25.5, 23.7, 18.1, -3.68, -3.73; HRMS (+APCI) m/z [M + H+] calcd for C₁₉H₃₃ONClSi 354.2015; found 354.2025.

2-((tert-Butyldimethylsilyl)oxy)-5-(4-chlorobutyl)cyclopent-1-ene-1-carbonitrile (8e). Following the general conjugate addition method A with oxonitrile 6c (226 mg, 2.11 mmol, in 10mL THF),³⁷ chlorobutylmagnesium bromide¹³ (0.43 M, in 6.0 mL THF) and TBDMSCI (706 mg, 4.68 mmol) afforded after purification by MPLC (4 g silica cartridge, EtOAc: hexanes, 2:98 to 10:90, 10 min), 350 mg (53%,) of 8e as a clear, oil: IR (ATR) 2204, 1625 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.55 (t, J = 6.6 Hz, 2H), 2.81 (m, 1H), 2.42 – 2.33 (m, 2H), 2.14 (m, J = 12.9, 1H), 1.88 – 1.75 (m, 2H), 1.70 (m, 1H), 1.63 – 1.53 (m, 1H), 1.53 – 1.39 (m, 2H), 1.39 – 1.26 (m, 1H), 0.96 (s, 9H), 0.24 (s, 6H). ¹³C{}^{1}H} (101 MHz, CDCl₃) δ 170.2, 116.6, 92.5, 44.8, 41.8, 34.3, 33.6, 32.5, 27.2, 25.3, 23.8, 18.1, -3.99, -4.01.; HRMS (+APCI) m/z [M + H+] calcd for C₁₆H₂₉ONClSi 314.1703; found 314.1702

2-(tert-Butyldimethylsiloxy)-6-((2-methyl-5-chloro)-2-pentyl)-1-cyclohexenyl-1-carbonitrile (8f). A THF solution (40 mL) of ZnCl₂ (3.32 g, 24.4 mmol) was slowly added (45 min) to a refluxing dark green, THF solution (20 mL) formed by the addition of finely cut Li metal (339 mg, 48.8 mmol) to naphthalene (666 mg, 5.20 mmol). The solution was refluxed for an additional 1.25 h and then the Zn metal was allowed to settle overnight. The supernatant was removed by syringe and the Zn metal was washed with THF (15 mL). The Zn was suspended in THF (40 mL), 5-chloro-2-iodo-2-methylpentane (4.00 g, 16.3 mmol) was added and then the resultant mixture was heated to reflux for 2 h. The solution was allowed to cool (1.5-2 h) during which time the excess zinc metal settled on the bottom of the flask. The organozinc iodide was removed by syringe and added to a -78 °C, THF solution (100 mL) of oxonitrile 6a (2.00 g, 16.3 mmol) over 30 min. After 4 h solid TBDMSCl (3.68 g, 24.39 mmol) was added, and then the solution was allowed to stir for 12 h. Saturated, aqueous NH₄Cl was added, and the then crude product was extracted with EtOAc. Concentration of the crude material and purification by column

chromatography (5:95 EtOAc:hexanes) gave 4.51 g (78%) of **8f** as a clear, viscous liquid: IR (film) 2947, 2203, 1614 cm-1; 1 H NMR (300 MHz, CDCl₃) δ 3.56 (ddd, J = 17, 10.5, 6.4 Hz, 1H), 3.51 (ddd, J = 17, 10.5, 6.9 Hz, 1H), 2.33-2.38 (m, 1H), 2.10-2.15 (m, 2H), 1.41-1.91 (m, 8H), 1.03 (s, 3H), 0.99 (s, 12H), 0.25 (s, 3H), 0.23 (s, 3H); 13 C{ 1 H} (75 MHz, CDCl₃) δ 168.8, 120.3, 92.8, 45.7, 43.1, 38.0, 37.0, 31.2, 27.6, 26.0, 25.8, 25.6, 24.0, 21.2, 18.2, -3.7; MS m/e 355 (M+H).

General Chloride-Iodide Exchange. An anhydrous acetone solution (5-10 mL) of NaI (5 equiv) and the appropriate chloride intermediate (1 equiv) was heated in a microwave reaction vial (10-20 mL) at 100 °C. After 2.5 h, the solution was allowed to cool to ambient temperature, and then saturated, aqueous NH₄Cl was added. The phases were separated and then the aqueous phase was extracted with ethyl acetate. The combined organic phase was dried (Na₂SO₄) and concentrated. The crude product was purified on a Reveleris X2 MPLC purification system using a silica gel cartridge (hexanes:ethyl acetate).

2-((tert-Butyldimethylsilyl)oxy)-6-(4-iodobutyl)cyclohex-1-ene-1-carbonitrile (10a). Following the general chloride-iodide exchange procedure with chloride 8a (450 mg, 1.37 mmol) and NaI (1.000 g, 6.67 mmol) afforded after purification by MPLC (4 g silica cartridge, EtOAc: hexanes, 2:98 to 10:90, 10 min), 520 mg (90%,) of 10a as a clear oil: IR (ATR) 2206, 1624 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.27 – 3.13 (m, 2H), 2.37-2.28 (m, 1H), 2.18-2.09 (m, 2H), 1.98 – 1.65 (m, 5H), 1.65 – 1.20 (m, 5H), 0.98 (s, 9H), 0.23 (s, 3H), 0.22 (s, 3H); ¹³C{¹H} (101 MHz, CDCl₃) δ 165.7, 118.4, 95.5, 35.0, 33.33, 33.31, 30.9, 27.5, 26.6, 25.5, 20.0, 18.1, 7.1, -3.73, -3.72 HRMS (+APCI) m/z [M + H+] calcd for C₁₇H₃₁ONISi 420.12141; found 420.1225.

2-(tert-Butyldimethylsilyl)oxy)-6-(4-iodobutyl)cyclohex-1-ene-1-carbonitrile (10b). Following the general chloride-iodide exchange with chloride 8b (201 mg, 0.59 mmol) and NaI (450 mg, 3.00 mmol) afforded after purification by MPLC (4 g silica cartridge, EtOAc: hexanes, 2:98 to 10:90, 10 min), 219 mg (86%,) of 10b as a clear, light yellow oil: IR (ATR) 2210, 1626 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ

5.01 (s, 1H), 4.89 (s, 1H), 3.31 – 3.12 (m, 2H), 3.03-2.95 (m, 1H), 2.27 – 2.05 (m, 4H), 2.05-1.90 (m, 2H), 1.76 – 1.48 (m, 4H), 0.98 (s, 9H), 0.25 (s, 3H), 0.24 (s, 3H); 13 C{ 1 H} (101 MHz, CDCl₃) δ 166.4, 147.6, 118.3, 113.3, 93.4, 42.5, 34.6, 31.5, 30.9, 26.6, 25.5, 18.7, 18.1, 6.7, -3.6, -3.7.; HRMS (+APCI) m/z [M + H+] calcd for C₁₈H₃₁ONISi 432.1214; found 432.1223.

2-((tert-Butyldimethylsilyl)oxy)-7-(4-iodobutyl)cyclohex-1-ene-1-carbonitrile (10c). Following the general chloride-iodide exchange with chloride 8c (220 mg, 0.64 mmol) and NaI (500 mg, 3.34 mmol) afforded after purification by MPLC (4 g silica cartridge, EtOAc: hexanes, 2:98 to 10:90, 10 min), 200 mg (72%,) of 10c as a clear oil: IR (ATR) 2202, 1613 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.20 (t, J = 7.0 Hz, 2H), 2.47 (ddd, J = 15.5, 9.7, 2.4 Hz, 1H), 2.35 – 2.22 (m, 2H), 1.92 – 1.80 (m, 3H), 1.75 – 1.56 (m, 5H), 1.54 – 1.41 (m, 4H), 0.98 (s, 9H), 0.24 (s, 6H); ¹³C{¹H} (101 MHz, CDCl₃) δ 170.8, 118.9, 98.8, 37.4, 35.5, 33.4, 33.0, 31.9, 28.6, 28.3, 25.5, 24.0, 18.1, 6.9, -3.7, -3.8. HRMS (+APCI) m/z [M + H+] calcd for $C_{18}H_{33}ONISi$ 434.1371; found 434.1384.

2-((tert-Butyldimethylsilyl)oxy)-7-(4-iodobutyl)cyclohept-1-ene-1-carbonitrile (10d). Following the general chloride-iodide exchange with chloride 8d (179 mg, 0.51 mmol) and NaI (450 mg, 3.00 mmol) afforded after purification by MPLC (4 g silica cartridge, EtOAc: hexanes, 2:98 to 10:90, 10 min), 200 mg (89%,) of 10d as a clear, light yellow oil: IR (ATR) 2206, 1643, 1615 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.02 (s, 1H), 4.97 (s, 1H), 3.30 – 3.15 (m, 2H), 3.05-2.98 (m, 1H), 2.49-2.35 (m, 2H), 2.27 – 2.08 (m, 2H), 2.07 – 1.94 (m, 2H), 1.94 – 1.77 (m, 2H), 1.75 – 1.56 (m, 4H), 0.98 (s, 9H), 0.25 (s, 6H); ¹³C{¹H} (101 MHz, CDCl₃) δ 170.9, 146.7, 119.3, 112.5, 97.4, 44.4, 35.2, 35.0, 31.4, 29.9, 26.3, 25.6, 23.7, 18.1, 6.6, -3.6, -3.7; HRMS (+APCI) m/z [M + H+] calcd for C₁₉H₃₃ONISi 446.1371; found 446.1387.

2-((tert-Butyldimethylsilyl)oxy)-6-(4-iodobutyl)cyclohex-1-ene-1-carbonitrile (10e). Following the general chloride-iodide exchange with chloride 8e (204 mg, 0.65 mmol) and NaI (580 mg, 3.87 mmol) afforded after purification by MPLC (4 g silica cartridge, EtOAc: hexanes, 2:98 to 10:90, 10 min), 207 mg (78%,) of 10e as a clear oil: IR (ATR) 2204, 1626 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.20 (td, J=

6.9, 2.1 Hz, 2H), 2.86 - 2.76 (m, 1H), 2.43 - 2.35 (m, 2H), 2.23 - 2.07 (m, 1H), 2.02 - 1.76 (m, 2H), 1.76 - 1.63 (m, 1H), 1.63 - 1.54 (m, 1H), 1.53 - 1.26 (m, 3H), 0.97 (s, 9H), 0.25 (s, 3H), 0.24 (s, 3H). 13 C{ 1 H} (101 MHz, CDCl₃) δ 170.2, 116.6, 92.5, 41.8, 33.9, 33.6, 33.3, 27.5, 27.3, 25.3, 18.1, 6.9, -3.97, -3.99 HRMS (+APCI) m/z [M + H+] calcd for C₁₆H₂₉ONISi 406.1058; found 406.1062.

2-((tert-Butyldimethylsilyl)oxy)-6-(5-iodo-2-methylpentan-2-yl)cyclohex-1-ene-1-carbonitrile (10f). Neat chloride **8f** (2.47 g, 7.0 mmol) was added to room temperature, acetone solution (100 mL) of sodium iodide (5.21 g, 35 mmol) and then the mixture was heated to reflux. After 24 h the reaction was allowed to cool, concentrated, washed with water, extracted with CH_2Cl_2 and dried (Na_2SO_4). Concentration, and radial chromatography (1:19 EtOAc/hexanes) of the resulting yellow oil, provided 2.82 g (85 %) of **14** as a colorless oil: IR (film) 2205 cm⁻¹; 1H NMR ($CDCl_3$) δ 3.30 -3.50 (m, 2H), 2.56-2.61 (m, 1H), 2.37-2.41 (m, 2H), 1.99-2.21 (m, 4H), 1.54-1.89 (m, 4H), 1.29 (s, 3H), 1.26 (s, 3H), 1.26 (s, 9H), 0.53 (s, 3H), 0.51 (s, 3H); $^{13}C\{^1H\}$ (75 MHz, C_6D_6) δ 193.5, 94.6, 44.3, 43.1, 37.8, 27.2, 26.8, 25.6, 19.2-2.5; HRMS (ESI) calcd for (M+Na) $C_{19}H_{34}INOSi$ 470.1347, found 470.1351.

General DMSO Cyclization Procedure. A dry DMSO solution (5 mL) of the iodide (1 equiv) and *i*-Pr₂NEt (5 equiv) or proton sponge (5 equiv) was heated in a microwave reaction vial (10-20 mL) at 100 °C in a microwave reactor. After 1.5-4.0 h, the solution was allowed to cool to ambient temperature, and then deionized water was added. The phases were separated and then the aqueous phase was extracted (3 x 15 mL) with ethyl acetate. The combined organic phase was washed with brine, dried (Na₂SO₄), and concentrated. The crude product was purified on a Reveleris X2 MPLC purification system using a silica gel cartridge (hexanes:ethyl acetate) or ternary (hexanes: ethyl acetate: dichloromethane) with gradient elution.

2-(tert-Butyldimethylsilyl)oxy)-6-(4-butanal)cyclohex-1-ene-1-carbonitrile (13a). Following the general DMSO cyclization, iodide 10a (225 mg, 0.54 mmol) and i-Pr₂NEt (0.50 mL, 2.86 mmol) with microwave heating for 20 min at 100 °C afforded, after purification by MPLC (4 g silica cartridge,

hexanes: ethyl acetate, 90:10), 125 mg (76%,) of **13a** as a clear oil: IR (ATR) 2206, 1723, 1624 cm⁻¹; 1 H NMR (400 MHz, CDCl₃) δ 9.78 (t, J = 1.5 Hz, 1H), 2.57 – 2.39 (m, 2H), 2.38 – 2.27 (m, 1H), 2.18 – 2.09 (m, 2H), 1.84 – 1.70 (m, 4H), 1.65 – 1.54 (m, 2H), 1.47 – 1.25 (m, 2H), 0.97 (s, 9H), 0.22 (s, 3H), 0.22 (s, 3H); 13 C{ 1 H} (101 MHz, CDCl₃) δ 202.1, 165.8, 118.4, 95.2, 43.9, 35.1, 34.0, 30.9, 26.5, 25.5, 20.0, 19.1, 18.1, -3.7, -3.8. HRMS (+APCI) m/z [M + H+] calcd for C₁₇H₃₀O₂NSi 308.2040; found 308.2040.

(4S*, 4aS*, 8aS*)-4-hydroxy-5-oxooctahydronaphthalene-4a(2H)-carbonitrile (14a). Following the general DMSO cyclization with iodide 10a (39 mg, 0.09 mmol), i-Pr₂NEt (0.10 mL, 0.57 mmol), and microwave heating for 1.5 h at 100 °C afforded, after purification by MPLC (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 5:95, 10 min), 14 mg (78%) of **14a** as a clear oil: IR (ATR) 3496, 2359, 2236, 1720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.94 (ddd, J = 11.7, 4.3, 2.9 Hz, 1H), 3.29 (d, J =3.2 Hz, 1H), 2.92 (td, J = 13.7, 6.6 Hz, 1H), 2.52 - 2.42 (m, 1H), 2.22 - 2.13 (m, 1H), 2.05 - 1.54 (m, 9H), 1.42 - 1.26 (m, 1H); ${}^{13}C\{{}^{1}H\}$ (101 MHz, CDCl₃) δ 205.7, 116.6, 70.0, 60.9, 46.5, 39.1, 29.6, 29.1, 28.5, 26.4, 22.8. HRMS (+APCI) m/z [M + H+] calcd for C₁₁H₁₆O₂N 194.1176; found 194.1176. **Procedure** for the cyclization of 10a on a 1 mmole scale: Following the general DMSO cyclization with iodide 10a (421 mg, 1.00 mmol), i-Pr₂NEt (0.9 mL, 5.15 mmol), and heating in an oil bath for 4 h at 100 °C afforded, after purification by MPLC (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 5:95, 10 min), 142 mg (73%,) of **14a** and 23 mg (12%,) of **14b** spectroscopically identical to material previously isolated as described below. Procedure for the cyclization of 10a at 0.2 mM: Following the general DMSO cyclization with iodide 10a (438 mg, 1.04 mmol), i-Pr₂NEt (0.9 mL, 5.15 mmol), and microwave heating 1.5 h at 100 °C afforded, after purification by MPLC (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 5:95, 10 min), 43 mg (21%,) of **14a** and 30 mg (15%,) of **14b** spectroscopically identical to material previously isolated along 25 mg (10%) of 14c as a white solid that was recrystallized by diffusion of hexanes into a chloroform whose structure was solved by crystallographic analysis (CDC#2104386). For $(4R^*, 4aS^*, 8aS^*)$ -4-((methylthio)methoxy)-5-oxooctahydronaphthalene-4a(2H)carbonitrile (14c). mp 114.2 - 116.2 °C: IR (ATR) 2243, 1720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.66

(ABq, $\Delta v = 44.8$ Hz, J = 12.0 Hz, 2H), 4.41 (dd, J = 8.5, 3.7 Hz, 1H), 2.81 – 2.47 (m, 3H), 2.08 (s, 3H), 2.04 – 1.58 (m, 10H); 13 C{ 1 H} (101 MHz, CDCl₃) δ 202.3, 119.0, 72.3, 70.5, 42.9, 37.7, 27.1, 26.5, 26.4, 26.2, 24.4, 19.3, 13.9; HRMS (+APCI) m/z [M – OCH₂SCH₃] calcd for C₁₁H₁₄NO 176.1070; found 176.1070.

(4R*, 4aS*, 8aS*)-4-hydroxy-5-oxooctahydronaphthalene-4a(2H)-carbonitrile (14b). Following the general DMSO cyclization with iodide 10a (40 mg, 0.10 mmol), i-Pr₂NEt (0.1 mL, 0.57 mmol), and microwave heating for 4 h at 100 °C afforded after purification by MPLC (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 5:95, 10 min) 15 mg (81%) of 14b as a white solid that was recrystallized by diffusion of hexanes into a chloroform solution of 14b to give a white crystalline solid (mp 145.0-146.1 °C) whose structure was solved by crystallographic analysis (CDC# 2104380); IR (ATR) 3456, 2359, 2243, 1717 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.32 (d, J = 8.5 Hz, 1H), 2.68 – 2.48 (m, 3H), 2.16 - 1.98 (m, 2H), 1.95 (s, 1H), 1.92 - 1.62 (m, 7H), 1.58 - 1.49 (m, 1H); ${}^{13}C\{{}^{1}H\}$ (101 MHz, CDCl₃) δ 202.7, 118.0, 68.1, 42.4, 37.7, 31.5, 29.7, 27.0, 26.1, 24.4, 19.4; HRMS (+APCI) m/z [M + H+] calcd for C₁₁H₁₆O₂N 194.1176; found 194.1176. Procedure for the oxidative cyclization of 10a with Proton Sponge as the base: Following the general DMSO cyclization with iodide 10a (31 mg, 0.07 mmol), Proton Sponge (94 mg, 0.44 mmol), and microwave heating for 4 h at 100 °C afforded after purification by flash chromatography (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 5:95, 10 min) 15 mg (81 %) of 14b spectroscopically identical to material previously isolated. Procedure for the formation of 14b by thermolysis of aldehyde 13a: Thermolysis of a DMSO solution (5 mL) of aldehyde 13a (30 mg, 0.10 mmol) at 100 °C (microwave heating) for 1 h afforded, after purification by flash chromatography (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 5:95, 10 min), 15 mg (80 %,) of 14b spectroscopically identical to material previously isolated. Preparation from 14b by equilibration: A methanolic solution (5 mL) of 14b (20 mg, 0.10 mmol) and K₂CO₃ (117 mg, 0.85 mmol) was maintained at rt for 4 days. Water was added and the resulting mixture was then extracted with ethyl acetate. The organic extracts were dried (Na₂SO₄), concentrated, and purified by MPLC (4 g silica

cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 50:50, 10 min) to afford 15 mg (75 %) of **14a** spectroscopically identical to material previously isolated.

(18*, 4aR*, 8aS*)-8a-cyano-8-oxodecahydronaphthalen-1-yl-4-nitrobenzoate (15). Dimethylaminopyridine (19 mg, 0.16 mmol), p-nitrobenzoylchloride (29 mg, 0.16 mmol) and i-Pr₂NEt (0.05 mL, 0.29 mmol) were added to a dry CH₂Cl₂ solution (2 mL) of 14a (25 mg, 0.13 mmol). After 24 h the solution was quenched with water, extracted with ethyl actetate, concentrated and purified by MPLC (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 50:50, 10 min) to afford 32 mg (72 %) of 15 as a white crystalline solid, recrystallized from EtOAc/hexanes by evaporation, whose structure was determined by crystallographic analysis (CDC#2104384), mp: 165.5-168.5 °C: IR (ATR) cm⁻¹ 2357, 1731, 1529, 1271 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.23 (m, 2H), 8.23 – 8.15 (m, 2H), 5.39 (dd, J = 11.7, 4.7 Hz, 1H), 3.01 (ddd, J = 13.8, 13.0, 6.5 Hz, 1H), 2.49 – 2.40 (m, 1H), 2.30 – 2.15 (m, 2H), 2.12 –1.96 (m, 1H), 1.94 –1.62 (m, 7H), 1.56 – 1.40 (m, 1H); 13 C (1 H) (101 MHz, CDCl₃) δ 200.7, 163.1, 150.6, 135.0, 130.9, 123.5, 116.5, 71.1, 58.5, 47.8, 38.9, 29.0, 28.8, 28.3, 26.9, 22.6. HRMS (+APCI) m/z [M + H+] calcd for C₁₈H₁₉N₂O₅ 343.1289, found 343.1290.

(4 R^* , 4 aS^* , 8 aS^*)-4-hydroxy-1-methylene-5-oxooctahydronaphthalene-4a(2H)-carbonitrile (16a). Following the general DMSO cyclization with iodide 10b (406 mg, 0.94 mmol) and i-Pr₂NEt (1.0 mL, 5.73 mmol) and microwave heating for 1.5 h at 100 °C afforded a crude mixture of alcohols that were purified by MPLC (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 5:95, 10 min) to afford 98 mg (50%,) of 16a, 16 mg (8%,) of 16b and 24 mg (14%,) of 16c. For 16a: recrystallization from by evaporation EtOAc/hexanes provided a crystalline material whose structure was solved by crystallographic analysis (CDC# 2104378): mp 90.5-92.0 °C; IR (ATR) cm⁻¹ 3529, 2234, 1718; ¹H NMR (400 MHz, CDCl₃) δ 5.07 (s, 1H), 4.14 (s, 1H), 4.14 (dt, J = 12.0, 3.7 Hz, 1H), 3.34 (d, J = 3.3 Hz, 1H), 2.92 (td, J = 13.8, 6.5 Hz, 1H), 2.57 – 2.39 (m, 2H), 2.30 – 2.19 (m, 2H), 2.19 – 1.97 (m, 4H), 1.84 – 1.63 (m, 2H). 13 C{ 1 H} (101 MHz, CDCl₃) δ 205.5, 143.1, 115.9, 111.8, 70.0, 61.1, 49.0, 38.9, 32.6, 30.8, 25.7, 24.5; HRMS (+APCI) m/z [M + H+] calcd for C₁₂H₁₆O₂N 206.1176, found 206.1176. **Procedure for**

cyclization at 0.2 mM: Following the general DMSO cyclization with iodide 10b (472 mg, 1.09 mmol) and i-Pr₂NEt (0.9 mL, 5.15 mmol) and microwave heating for 3 h at 100 °C afforded a crude mixture of alcohols that were purified by MPLC (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 5:95, 10 min) to afford 55 mg (24%,) of **16a**, 16 mg (7%,) of **16b** and 56 mg (25%,) of **16c**. For **16b**: recrystallization by evaporation from EtOAc/hexanes provided a crystalline material whose structure was solved by crystallographic analysis (CDC# 2104379): mp: 86.0-87.5 °C: IR (ATR) cm⁻¹ 3532, 2233, 1721; ¹H NMR (400 MHz, CDCl₃) δ 5.05 (br. s, 1H), 4.90 (br. s, 1H), 4.52 (q, J = 3.0 Hz, 1H), 3.26 (dd, J = 3.2, 2.2 Hz, 1H), 2.99 – 2.83 (m, 2H), 2.55-2.39 (m, 2H), 2.30 – 2.15 (m, 2H), 2.11 – 1.96 (m, 3H), 1.94 – 1.83 (m, 1H), 1.78 - 1.69 (m, 1H); ${}^{13}C\{{}^{1}H\}$ (101 MHz, CDCl₃) δ 205.4, 145.1, 116.6, 110.4, 66.7, 58.4, 44.5, 39.2, 30.3, 29.2, 25.4, 24.6; HRMS (+APCI) m/z [M + H+] calcd for C₁₂H₁₆O₂N 206.1176, found 206.1178. For 16c: recrystallization by evaporation from EtOAc/hexanes provided a crystalline material whose structure was solved by crystallographic analysis whose structure was solved by crystallographic analysis (CDC# 2104375): mp: 165.5-168.0 °C: IR (ATR) 3545, 2360, 2339, 1720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.98 (br. s, 1H), 4.97 (br. s, 1H), 4.45 (dd, J = 11.2, 4.2 Hz, 1H), 2.98 (dd, J = 12.6, 4.3 Hz, 1H), 2.67 - 2.56 (m, 2H), 2.49 - 2.35 (m, 2H), 2.25 - 2.13 (m, 2H), 2.12 - 1.96 (m, 1H), 1.88 - 1.71(m, 4H). ${}^{13}C\{{}^{1}H\}$ (101 MHz, CDCl₃) δ 201.4, 142.7, 116.9, 114.1, 68.56, 63.5, 51.8, 37.2, 33.2, 28.7, 26.8, 25.0; HRMS (+APCI) m/z [M + H+] calcd for C₁₂H₁₆O₂N 206.1176; found 206.1176.

(4R*, 4aS*, 9aS*)-4-hydroxy-5-oxodecahydro-4aH-benzo[7]annulene-4a-carbonitrile (17a) and (4S*, 4aS*, 9aS*)-4-hydroxy-5-oxodecahydro-4aH-benzo[7]annulene-4a-carbonitrile (17b). Following the general DMSO cyclization with iodide 10c (125 mg, 0.29 mmol), i-Pr₂NEt (0.25 mL, 1.43 mmol) and microwave heating for 1.5 h at 100 °C afforded a 3.1:1 ratio (as determined by ¹H NMR analysis of the crude reaction mixture) of an inseparable mixture of alcohols 17a and 17b that were purified by MPLC (4 g silica cartridge, hexanes: ethyl acetate, 95:5 to 5:95) to afford 35 mg (59%) of 17a and 5 mg (8%) of 17b as colorless oils: IR (ATR) cm⁻¹ 3447, 2239, 1709; HRMS (+APCI) m/z [M + H+] calcd for C₁₂H₁₈O₂N 208.1332, found 208.1332. For 17a ¹H NMR (400 MHz, CDCl₃) δ 4.23 - 4.21 (m, 1H), 3.15

-3.04 (m, 1H), 2.76-2.58 (m, 1H), 2.20 (br. s, 1H), 2.12 -1.28 (m, 12H), 2.23 -1.06 (m, 1H); 13 C{ 1 H} (101 MHz, CDCl₃) δ 205.2, 117.7, 71.3, 63.7, 43.3, 42.6, 35.5, 30.3, 30.1, 25.6, 22.9, 21.8. For **17b**: 1 H NMR (400 MHz, CDCl₃) δ 4.39 (d, J = 2.7 Hz, 1H), 2.87 -2.78 (m, 2H), 2.76 -2.58 (m, 1H), 2.32 -2.23 (m, 1H), 2.12 -1.28 (m, 12H); 13 C{ 1 H} (101 MHz, CDCl₃) δ 209.4, 118.1, 71.7, 59.3, 43.2, 35.9, 35.0, 31.0, 29.7, 27.8, 24.0, 18.9.

(IR*, 4aS*, 9aS*)-9a-cyano-9-oxodecahydro-1H-benzo[7]annulen-1-yl 4-nitrobenzoate (17a') and 9aR*)-4a-cyano-4-oxodecahydro-1H-benzo[7]annulen-5-yl 4-nitrobenzoate (17b'). (4aS*. 5R*. Dimethylaminopyridine (102 mg, 0.83 mmol), p-nitrobenzoyl chloride (150 mg, 0.81 mmol), and i-Pr₂NEt (1.0 mL, 5.73 mmol) were added to a CH₂Cl₂ solution (5 mL) of a 1:4 mixture of alcohols 17a and 17b (75mg, 0.36 mmol). After 24 h the solution was concentrated and purified to afford after purification by flash chromatography (4 g silica cartridge, hexanes: (ethyl acetate: CH₂Cl₂, 95:5 to 50:50, 10 min) 84 mg (65 %) of 17a' and 28 mg (22%) of 17b' as white crystalline solids. For 17a': recrystallization by evaporation from a CH₂Cl₂-hexanes solution afforded crystalline 17a' whose structure was determined by crystallographic analysis (CDC# 2104382): mp 185.0-187.0 °C; IR (ATR) cm⁻¹ 2239, 1777; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.36 - 8.25 \text{ (m, 2H)}, 8.25 - 8.10 \text{ (m, 2H)}, 5.57 \text{ (dd, } J = 11.9, 4.4 \text{ Hz, 1H)}, 3.10 -$ 2.99 (m, 1H), 2.72 - 2.58 (m, 1H), 2.30 - 2.19 (m, 1H), 2.05 (m, 2H), 1.97 - 1.38 (m, 9H), 1.28 - 1.13(m, 1H); (101 MHz, CDCl₃) δ 202.5, 162.9, 150.7, 134.8, 130.8, 123.6, 117.2, 74.1, 61.0, 43.8, 42.0, 35.3, 30.1, 27.3, 25.6, 22.6, 22.0; HRMS (+APCI) m/z [M + H+] calcd for $C_{19}H_{21}N_2O_5$ 357.1445; found 357.1450. For 17b': recrystallization by evaporation from a CH₂Cl₂-hexanes solution afforded crystalline 17b' whose structure was determined by crystallographic analysis (CDC# 2104381): mp 142.0-145.0 °C; IR (ATR) cm⁻¹ 2237, 1732; 1 H NMR (400 MHz, CDCl₃) δ 8.35 – 8.28 (m, 2H), 8.17 – 8.10 (m, 2H), 5.70 (t, J = 2.9 Hz, 1H), 2.70 - 2.55 (m, 2H), 2.53 - 2.42 (m, 1H), 2.21 - 2.10 (m, 1H), 2.10 - 1.94 (m, 3H),1.93 - 1.51 (m, 8H); ${}^{13}C\{{}^{1}H\}$ (101 MHz, CDCl₃) δ 205.3, 162.4, 150.8, 134.6, 130.5, 123.9, 116.8, 75.7, 59.1, 43.4, 37.0, 34.9, 30.9, 29.1, 26.8, 25.2, 19.8; HRMS (+APCI) m/z [M + H+] calcd for $C_{19}H_{21}N_2O_5$ 357.1445; found 357.1447.

(4R*, 4aS*, 9aS*)-4-hydroxy-1-methylene-5-oxodecahydro-4aH-benzo[7]annulene-4a-carbonitrile (18a) and (4S*, 4aS*, 9aS*)-4-hydroxy-1-methylene-5-oxodecahydro-4aH-benzo[7]annulene-4a-carbonitrile (18b). Following the general DMSO cyclization with iodide 10d (65 mg, 0.15 mmol), i-Pr₂NEt (0.1 mL, 0.57 mmol) and microwave heating for 1.5 h at 100 °C afforded a 2.0:1.0 ratio (determined by ¹H NMR analysis of the crude reaction mixture) of a mixture of alcohols 18a and 18b that were purified by MPLC (4 g silica cartridge, hexanes: ethyl acetate, 95:5 to 5:95) to afford 24 mg (76%) of 18a and 18b as an inseparable mixture of colorless oils: IR (ATR) cm⁻¹ 3445, 2244, 1713; HRMS (+APCI) m/z [M + H+] calcd for C₁₃H₁₈NO₂ 220.1332, found 220.1332. For (18a): ¹H NMR (400 MHz, CDCl₃) δ 5.06 (s, 1H), 4.96 (s, 1H), 4.42 (ddd, J = 12.2, 6.0, 4.1 Hz, 1H), 3.20 – 3.09 (m, 1H), 2.66 (dt, J = 13.7, 8.9 Hz, 1H), 2.49 – 2.39 (m, 1H), 2.17 – 1.90 (m, 8H), 1.89 – 1.65 (m, 2H), 1.30 – 1.11 (m, 1H); ¹³C{¹H} (101 MHz, CDCl₃) δ 204.4, 144.0, 117.3, 112.1, 71.6, 64.8, 45.8, 41.5, 33.5, 32.0, 30.6, 25.1, 21.9. For 18b: ¹H NMR (400 MHz, CDCl₃) δ 5.05 (s, 1H), 4.88 (s, 1H), 4.43 – 4.34 (m, 1H), 3.04 – 2.94 (m, 1H), 2.31 – 2.14 (m, 2H), 2.17 – 1.89 (m, 11H); ¹³C{¹H} (101 MHz, CDCl₃) δ 208.5, 146.3, 117.6, 110.5, 72.3, 62.4, 42.8, 40.6, 32.6, 30.1, 29.2, 28.0, 24.7.

(18a') and (1S*, 4aR*, 9aR*)-9a-cyano-4-methylene-9-oxodecahydro-1H-benzo[7]annulen-1-yl 4-nitrobenzoate (18a') and (1S*, 4aR*, 9aR*)-9a-cyano-4-methylene-9-oxodecahydro-1H-benzo[7]annulen-1-yl 4-nitrobenzoate (18b'). Dimethylaminopyridine (27 mg, 0.22 mmol), p-nitrobenzoyl chloride (47 mg, 0.25 mmol), and i-Pr₂NEt (0.25 mL, 1.43 mmol) were added to a CH₂Cl₂ solution (5 mL) of a 2:1 mixture of alcohols 18a and 18b (31mg, 0.14 mmol). After 24 h the solution was concentrated and purified to afford after purification by flash chromatography (4 g silica cartridge, hexanes: (ethyl acetate: CH₂Cl₂), linear gradient 95:5 to 50:50, 10 min) 27 mg (51 %,) of 18a' and 13 mg (26%) of 18b' as white, crystalline solids. For 18a': recrystallization by evaporation from a CH₂Cl₂-hexanes solution afforded crystalline 18a' whose structure was determined by crystallographic analysis whose structure was determined by crystallographic analysis (CDC# 2104377): mp 186.0-187.7 °C; IR (ATR) cm⁻¹ 2239, 1721; ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.27 (m, 2H), 8.19 – 8.15 (m, 2H), 5.75 (dd, J = 11.9, 4.5 Hz, 1H), 5.14 (br.

s, 1H), 5.02 (br. s, 1H), 3.11 – 3.00 (m, 1H), 2.77 – 2.64 (m, 1H), 2.61 – 2.50 (m, 1H), 2.41 – 2.14 (m, 4H), 2.11 – 1.81 (m, 5H), 1.29 – 1.22 (m, 1H); 13 C (1 H) (101 MHz, CDCl₃) δ 201.9, 163.0, 150.8, 143.1, 134.6, 130.9, 123.6, 116.7, 112.8, 73.9, 62.4, 46.3, 41.0, 33.0, 30.4, 29.0, 25.3, 22.3; HRMS (+APCI) m/z [M + H+] calcd for $C_{20}H_{21}N_{2}O_{5}$, 369.1445; found 369.1451. **For 18b'**: recrystallization by evaporation from a CH₂Cl₂-hexanes solution afforded crystalline **18b'** whose structure was determined by crystallographic analysis whose structure was determined by crystallographic analysis (CDC# 2125103) mp 142.0-144.5 $^{\circ}$ C: IR (ATR) cm⁻¹ 1737, 1520; 1 H NMR (400 MHz, CDCl₃) δ 8.38 – 8.32 (m, 2H), 8.20 – 8.16 (m, 2H), 5.71 (t, J = 2.8 Hz, 1H), 5.19 (s, 1H), 5.05 (s, 1H), 3.15 (d, J = 10.6 Hz, 1H), 2.74 – 2.57 (m, 2H), 2.45 – 1.98 (m, 7H), 1.83 – 1.55 (m, 3H); 13 C (1 H) (101 MHz, CDCl₃) δ 204.6, 162.4, 150.9, 144.5, 134.4, 130.6, 123.9, 116.1, 112.0, 75.8, 61.7, 43.3, 42.0, 30.8, 29.6, 29.4, 29.0, 25.6; HRMS (+APCI) m/z [M + H+] calcd for $C_{20}H_{21}N_{2}O_{5}$, 369.1445; found 369.1447.

(3aR*, 4R*, 7aR*)-4-Hydroxy-3-oxooctahydro-3aH-indene-3a-carbonitrile (19) Following the general DMSO cyclization with iodide 10e (52 mg, 0.13 mmol), *i*-Pr₂NEt (0.10 mL, 0.57 mmol) and microwave heating for 1.5 h at 100 °C afforded after purification by flash chromatography (4 g silica cartridge, hexanes: ethyl acetate, 95:5 to 5:95) 13 mg (57 %,) of 19 as an off-white solid (mp 153.5 to 156.2 °C): IR (ATR) cm⁻¹ 3480, 2241, 1745; ¹H NMR (400 MHz, CDCl₃) δ 3.75 (dd, J = 10.2, 3.8 Hz, 1H), 2.88 – 2.77 (m, 1H), 2.70 – 2.45 (m, 2H), 2.41 (br. s, 1H), 2.10 – 1.74 (m, 5H), 1.70 – 1.60 (m, 3H); δ 13 C (1 H) (101 MHz, CDCl₃) δ 208.5, 116.9, 66.5, 55.9, 42.0, 36.4, 30.2, 24.1, 23.4, 19.2; HRMS (+APCI) m/z [M + H+] calcd for C₁₀H₁₄O₂N 180.1019, found 180.1021.

(3aS*, 4R*, 7aS*)-3a-Cyano-3-oxooctahydro-1H-inden-4-yl 4-nitrobenzoate (19') Dimethylaminopyridine (18 mg, 0.15 mmol), p-nitrobenzoyl chloride (33 mg, 0.18 mmol), and i-Pr₂NEt (0.10 mL, 0.57 mmol) were added to a rt, CH₂Cl₂ solution (2 mL) of 19 (14 mg, 0.08 mmol). After 24 h the solution was concentrated and purified by flash chromatography (4 g silica cartridge, hexanes: ethyl acetate, linear gradient 95:5 to 50:50, 10 min) to afford 20 mg (77 %,) of 19' that was recrystallized from EtOAc/hexanes by evaporation to afford crystalline 19' whose structure was determined by

crystallographic analysis (CDC# 2125104): as a white crystalline solid, 117-120 °C: IR (ATR) cm⁻¹ 2243, 1745; ¹H NMR (400 MHz, CDCl₃) δ 8.35 – 8.21 (m, 4H), 5.31 (dd, J = 10.3, 4.0 Hz, 1H), 2.94 – 2.82 (m, 1H), 2.72 (ddd, J = 20.1, 8.7, 3.6 Hz, 1H), 2.52 (dt, J = 20.1, 9.4 Hz, 1H), 2.18 – 1.66 (m, 8H). ¹³C{¹H} (101 MHz, CDCl₃) δ 205.3, 163.7, 150.9, 134.4, 131.1, 123.7, 116.5, 68.4, 54.2, 42.4, 35.4, 28.1, 23.8, 23.0, 19.1. (+APCI) m/z [M + H+] calcd for C₁₇H₁₇O₅N₂ 329.1132, found 329.1135.

(4R*, 4aS*, 8aS*)-4-Hydroxy-1,1-dimethyl-5-oxo-octahydro-naphthalene-4a-carbonitrile (2 θ). A DMSO solution (1 mL) of 10f (24 mg, 0.054 mmol) and neat i-Pr₂NEt (0.05 mL, 0.27 mmol) was added to a DMSO solution (5 mL) heated to 100 °C in a microwave. After 2 h the temperature was increased to 150 °C for 30 min and then the flask was immediately cooled in an ice-water bath. Water was added, the mixture was extracted with EtOAc, and then the organic extracts were washed with brine, dried (Na₂SO₄) and concentrated to give a yellow oil. Radial chromatography (2:3 EtOAc/hexanes) yielded 9.5 mg (85 %) of the *trans*-decalin 2 θ as a colorless oil: IR (film) 3524, 2233, 1724 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.93 (br t, J = 8 Hz, 1H), 3.10 (s, 1H), 2.97 (td, J= 13.8, 6.9 Hz, 2H), 2.45-2.51 (m, 1H), 2.18-2.25 (m, 1H), 1.23-2.01 (m, 7H), 1.18 (s, 3H), 0.95 (s, 3H); ¹³C { ¹H } (75 MHz, CDCl₃) δ 205.3, 117.8, 70.4, 59.1, 53.6, 38.8, 34.4, 31.5, 26.3, 23.2, 20.4; HRMS (ESI) calcd for (M+Na) C₁₃H₁₉NO₂ 244.1308, found 244.1300.

(4R*, 4aS*, 8aS*)-Butyl-dimethyl-silanyloxy)-1,1-dimethyl-5-oxo-octahydro-naphthalene-4a-carbonitrile (21). Neat pyridine (2.2 μL, 0.028 mmol) and TBS-triflate (3.8 μL, 0.017 mmol) were added sequentially to a rt, CH₂Cl₂ solution (1 mL) of **20** (2.5 mg, 0.011 mmol). After 12 h the reaction was poured into a saturated, aqueous, solution of sodium bicarbonate, the aqueous phase was extracted with CH₂Cl₂ and then the combined extracts were washed with brine and dried (Na₂SO₄). Concentration of the organic extract followed by radial chromatography (19:1 EtOAc / hexanes) gave 3.1 mg (90 %) of **21** as a white crystalline solid that was recrystallized from EtOAc/hexanes by evaporation to afford crystalline **21** (mp. 273-275 °C) whose structure was

determined by crystallographic analysis (CDC# 2032226): IR (film) 2232, 1737 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.00 (dd, J = 11, 5 Hz, 1H), 3.07 (ddd, J = 19, 13, 7 Hz, 1H), 2.36-2.39 (m, 1H), 2.17-2.24 (m, 1H), 1.18-2.05 (m, 8H), 1.15 (s, 3H), 0.91 (s, 3H), 0.85 (s, 9H), 0.11 (s, 3H), 0.09 (s, 3H); ¹³C{¹H} (75 MHz, CDCl₃) δ 202.5, 118.8, 69.1, 60.3, 55.1, 39.0, 38.6, 34.0, 31.4, 28.7, 27.4, 25.7, 23.7, 20.2, 17.93, -4.22, -4.94; HRMS (ESI) calcd for M+Na C₁₉H₃₃NO₂SiNa 358.2173 found 358.2155.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/

¹H and ¹³C spectra and CIF files for **14b**, **14c**, **15**, **16a**, **16b**, **16c**, **17a'**, **17b'**, **18a'**, **19'** and **21** (PDF).

FAIR data, including the primary NMR FID files, for compounds 8a-8e, 10a-10e, 13a, 14a-14c, 15, 16a-16c, 17a, 17b, 17a', 17b', 18a, 18a', 18b, 18b', 19, 19' (ZIP)

Notes

The authors declare no competing financial interest.

Acknowledgements

Financial support for this research from the National Science Foundation (1953128) is gratefully acknowledged. The HRMS analysis conducted by Timothy P. Wade, Andrew Greene, and Hannah Palmer is gratefully acknowledged.

References

- (a) Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014 *J. Nat. Prod.* 2016, 79, 629-661. b) Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era *Nat. Rev. Drug Discov.* 2015, 14, 111-129.
- (2) Li, G.; Kusari, S.; Spiteller, M. Natural products containing 'decalin' motif in microorganisms *Nat. Prod. Rep.* 2014, *31*, 1175–1201.
- (3) Urabe, D.; Asaba, T.; Inoue, M. Convergent Strategies in Total Syntheses of Complex Terpenoids *Chem. Rev.* **2015**, *115*, 9207–9231.
- (4) Ma, J.-H.; Zhao, F.; Wang, Y.; Liu, Y.; Gao, S.-Y.; Ding, L.-Q.; Chen, L.-X.; Qiu, F. Natural nitric oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis *Org. Biomol. Chem.* **2015**, *13*, 8349–8358.
- (5) Komala, I.; Ito, T.; Nagashima, F.; Yagi, Y.; Asakawa, Y. Cytotoxic Bibenzyls, and Germacrane- and Pinguisane-type Sesquiterpenoids from Indonesian, Tahitian and Japanese Liverworts *Nat. Prod. Commun.* **2011**, *6*, 303-309.
 - (6) Jauch, J. A Short Total Synthesis of Kuehneromycin A Angew. Chem. Int. Ed. 2000, 39, 2764-2765.
- (7) Herz, W.; Kumar, N.; Blount, J. F. Antileukemic C-15-Functionalized Ambrosanolides from Rudbeckia mollis *J. Org. Chem.* **1981**, *46*, 1356-1361.
- (8) Huang, J.-H.; Lv, J.-M.; Wang, Q.-Z.; Zou, J.; Lu, Y.-J.; Wang, Q.-L.; Chen, D.-N.; Yao, X.-S.; Gao, H.; Hu, D. Biosynthesis of an anti-tuberculosis sesterterpenoid asperterpenoid A *Org. Biomol. Chem.* **2019**, *17*, 248–251.
- (9) Renard, P.-Y.; Lallemand, J.-Y. A construction of polyoxygenated *cis* and *trans* decalin systems by an intramolecular aldol reaction *Synlett* **1993**, 163-164.
- (10) Fleming, F. F.; Iyer, P. S. Cyclic Oxonitriles: Synergistic Juxtaposition of Ketone and Nitrile Functionalities *Synthesis* **2006**, 893-913.
- (11) Fleming, F. F.; Shook, B. C.; Jiang, T.; Steward, O. W. b-Siloxy unsaturated nitriles: stereodivergent cyclizations to *cis* and *trans*-decalins *Tetrahedron* **2003**, *59*, 737-745.
- (12) (a) Ertl, P.; Altmann, E.; McKenna, J. M. The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time *J. Med. Chem.* **2020**, *63*, 8408-8418. b) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore *J. Med. Chem.* **2010**, *53*, 7902-7917.

- (13) Scharnagel, D.; Goller, J.; Deibl, N.; Milius, W.; Breuning, M. The Enantioselective Total Synthesis of Bisquinolizidine Alkaloids: A Modular "Inside-Out" Approach *Angew. Chem., Int. Ed.* **2018**, *57*, 2432-2435.
 - (14) "1-Oxo-2-cyclohexenyl-2-carbonitrile" Fleming, F. F.; Shook, B. C. Org. Syn. 2001, 77, 254-260.
- (15) Scrupulously dry acetone was required to avoid premature TBS cleavage followed by non-oxygenative cyclization to the corresponding decalone 12 (cf. Scheme 3).
- (16) (a) Khumraksa, B.; Phakhodee, W.; Pattarawarapan, M. Rapid oxidation of organic halides with N-methylmorpholine N-oxide in an ionic liquid under microwave irradiation *Tetrahedron Lett.* **2013**, *54*, 1983–1986. (b) Ganem, B.; Godfrey, A. Rapid oxidation of halides to aldehydes using trimethylamine N-oxide in dimethylsulfoxide *Tetrahedron Lett.* **1990**, 31, 4825-4826.
- (17) Dave, P.; Byun, H. S.; Engel, R. An improved direct oxidation of alkyl halides to aldehydes *Synth. Comm.* **1986**, *16*, 1343-1346.
- (18) Kornblum, N.; Jones, W.; Anderson, G. A new and selective method of oxidation. The conversion of alkyl halides and alkyl tosylates to aldehydes *J. Am. Chem. Soc.* **1959**, *41*, 4113-4114.
- (19) (a) Itoh, A.; Miura, T.; Tada, N. Oxidation of carbon-halogen bonds in Comprehensive Organic Synthesis (2nd Edition) Knochel, P.; Molander, G. A., Eds. 2014, 7, 744-769. (b) Epstein, W. W.; Sweat, F. W. Dimethyl sulfoxide Oxidations Chem. Rev. 1967, 67, 247-260.
 - (20) *i*-Pr₂NEt proved to be the optimal base among several that were evaluated.
- (21) Thermal or microwave heating were equally efficacious, though microwave heating was preferred because of better temperature control.
- (22) Performing the reaction on a 1 mmol scale afforded 73% of **14a** and 12% of **14b**; see the supporting information for details.
- (23) (a) Wang, S.; Fu, Z.; Jiang, Y.; Liang, Y.; Cai, H. Facile synthesis of methylthiomethyl esters through Pummerer-type rearrangement of carboxylic acids and DMSO under metal-free conditions *Synth. Commun.* **2019**, *49*, 950-958. (b) Yu, S.; Nam, K. C.; Lee, S. Synthesis of Methylthiomethyl Esters by the Reaction of Carboxylic Acid with Dimethylsulfoxide *Bull. Korean Chem. Soc.* **2018**, *39*, 906–908.

- (24) The equilibrium appears to be solvent dependent as treatment of **14b** with K₂CO₃ in methanol at 25 °C generated **14a**. See the SI for details.
- (25) Heating chloride 8a in DMSO did not cleave the enol silyl ether indicating that cleavage of the silyl enol ether from i-Pr₂NEt.HI is more likely.
- (26) Kan, S. B. J.; Ng, K. K.-H.; Paterson, I. The Impact of the Mukaiyama Aldol Reaction in Total Synthesis *Angew. Chem. Int. Ed.* **2013**, *52*, 9097 9108.
- (27) Ross, A., Smith, P. A. S.; Dreiding, A. S. The relative stabilities of *cis-trans* isomers of bicyclic ring systems with angular methyl groups. II *J. Org. Chem.* **1955**, *20*, 7, 905–908.
 - (28) Hanson, J. R. Diterpenoids of terrestrial origin Nat. Prod. Rep. 2013, 30, 1346-1356.
- (29) Piers, E.; Yeung, B. W. A.; Fleming, F. F. Bifunctional conjunctive reagents: 5-chloro-2-lithio-1-pentene and related substances. A methylenecyclohexane annulation method *Can. J. Chem.* **1993**, *71*, 280-286.
- (30) The cyclization stereoselectivity of **10b**, as observed for **10a**, was concentration dependent: performing the cyclization of **10b** at 0.2 mM afforded **16a** (24%), **16b** (7%), and **16c** (25%).
- (31) Gordon, H. L.; Freeman, S.; Hudlicky, T. Stability Relationships in Bicyclic Ketones *Synlett* **2005**, *19*, 2911-2914.
 - (32) Hanson, J. R. Diterpenoids of terrestrial origin Nat. Prod. Rep. 2015, 32, 76-87.
- (33) The configuration was secured by conversion to the corresponding TBS ether **21** followed by crystallographic analysis.
- (34) Yeh, M. C. P.; Chen, H. G.; Knochel, P. 1,2-addition of a functionalized zinc-copper organometallic [RCu(CN)ZnI] to an α,β-unsaturated aldehyde: (E)-2-(4-hydroxy-6-phenyl-5-hexenyl)-1H-isoindole-1,3(2H)-dione *Org. Synth.* **1992**, *70*, 195-203.
- (35) Dieter, R. K.; Chen, N. Y.; Watson, R. T. Copper mediated scalemic organolithium reagents in alkaloid syntheses *Tetrahedron* **2005**, *61*, 3221-3230.
- (36) Fleming, F. F.; Huang, A. Sharief, V.; Pu, Y. Unsaturated Nitriles: Precursors for a Domino Ozonolysis-Aldol Synthesis of Oxonitriles *J. Org. Chem.* **1999**, *64*, 2830-2834.
- (37) Fleming, F. F.; Vu, V. A.; Shook, B. C.; Raman, M.; Steward, O. W. Metalated Nitriles: Chelation-Controlled Cyclizations to *cis* and *trans* Hydrindanes and Decalins *J. Org. Chem.* **2007**, *72*, 1431-1436.