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Abstract—In this paper we develop a systematic approach
to the design of a digital controller for a linear plant. The
digital controller is parametrized by an unknown or design,
real parameter vector k, which may represent for instance,
the coefficients of the digital controller transfer function. The
stabilizing set S in the space of these design parameters is
an important and crucial piece of information which is needed
to initiate the design process, since every design must reside
in this set. In particular multiobjective design is impossible
without determining this set. In general this set is not convex
or even connected, its computation is difficult and few results
are available. In this paper, we use Mikhailov’s criterion and
the Tchebychev representation of a polynomial, evaluated
on the unit circle, to determine an inner approximation Si

of S, which is convex and described by linear inequalities.
Applications of this result to the design of controllers are
presented. In particular we show that a geometric approach
to gain and phase margin based designs are feasible in this
framework. Illustrative examples are presented with a focus
on the practically important case of PI and PID controllers.
The results should have application to many areas of digital
controller design such as hard disk servomechanisms, driverless
cars and robots.

Index Terms—digital control, stabilizing set, Mikhailov’s
criterion

I. INTRODUCTION
Digital control is almost universally employed in all

applications of control and in most implementations. For
example it is common practice to implement the popular
and widely used Proportional-Integral-Derivative (PID)
controller which provides robust asymptotic tracking and
disturbance rejection of step inputs, digitally. These con-
trollers are used in traditional industries such as Motion
Control, Process Control and Aerospace Systems as well as
in Driverless Cars and UAV’s. Recent progress on PID con-
trollers includes computation of the stabilizing set, using
a sweeping parameter, and the determination of subsets
achieving various performance objectives [1], [2]. However
systematic design of digital controllers significantly lags
the corresponding theory for continuous time systems.

In [1], [2] the PID stabilizing set was computed for
both continuous and discrete time systems. Even for these
special cases the computation in the discrete time case is
complicated and the sets are not convex or even connected.
In general the computation of stabilizing sets for arbitrary

digital controllers remains a difficult open problem which
is important for the development of systematic design
methods. Indeed determination of the stabilizing sets or
regions is the basic problem in the parametric theory of
the robust stability and control [4], [5], [6].

In this paper we describe a simple but effective approach
to generating stabilizing sets for an arbitrary fixed order
digital controller. The result is important for executing
methodical multiobjective designs of such controllers. The
approach consists of a systematic use of Mikhailov’s
criterion [3] along with the choice of a set of “frequencies”
and the Tchebychev representation [1] of the system
characteristic polynomial evaluated on the unit circle.

Mikhailov’s criterion which is a statement of the mono-
tonic phase increase of the characteristic polynomial of a
discrete time stable system evaluated on the unit circle,
is used here, in conjunction with a choice of frequency
points, to construct an approximation of the stabilizing
set in controller parameter space. This leads to a set of
linear inequalities in the controller gains. The feasible
solutions of these linear inequalities provide a convex
inner approximation to the complete stabilizing set, which
in general is neither convex nor even connected. By
repeating the algorithm with various sets of frequencies,
new inner approximations are obtained. The union of these
approximations is also a stabilizing set and constitutes in
general a better inner approximation to the stabilizing
set. With a stabilizing set in hand design based on gain
and phase margin, for example, can be carried out using
the loci of constant magnitude and constant phase in the
space of controller parameters..

In the following sections, we describe this algorithm
and its applications to the design of digital controllers
with illustrative examples specialized to the popular PI
and PID controllers (see [7], [8], [9], [10], and references
therein).

II. NOTATION

Consider the unit circle represented by:

z = ejθ, for θ ∈ [0, 2π]. (1)
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If T is the sampling period, we set

θ = ωT, ω =
θ

T
, (2)

so

θ ∈ [0, 2π] ⇔ ω ∈
[
0,

2π

T

]
. (3)

We set

ui := − cos θi (4)

where

ωi =
θi
T
, ωi ∈

[
0,

2π

T

]
(5)

and therefore ui may, with mild abuse of notation, be
called a “frequency.”

III. PRELIMINARIES
Consider a discrete-time system with monic character-

istic polynomial δ(z) of degree n. The system is asymp-
totically stable if all roots of δ(z) = 0 lie strictly within
the unit circle or equivalently δ(z) is Schur stable.

Theorem 1 (Mikhailov Criterion):
1. δ(z) a polynomial of degree n with real coefficients,

is Schur stable if and only if δ(ejθ) turns strictly
counterclockwise and runs through 4n quadrants as
θ ranges increasingly over [0, 2π].

2. If the coefficients of δ(z) are real, then Schur stability
is equivalent to the condition that δ(ejθ) turns strictly
counterclockwise and runs through 2n quadrants as
θ runs over [0, π].
Proof: The proof is a statement of the fact that the

argument (angle) of δ(ejθ) increases monotonically and
runs through 2πn radians as θ runs from 0 to 2π. When
the polynomial δ(z) has real coefficients the result follows
from the symmetry of the plot of δ(ejθ) about the real
axis.

Tchebychev Representation
Let

δ(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 (6)

denote a polynomial with real coefficients ai for i ∈ n.
Then

δ(ejθ) =

R(θ)︷ ︸︸ ︷
(an cos(nθ) + · · ·+ a1 cos θ + a0)

+ j

I(θ)︷ ︸︸ ︷
(an sin(nθ) + · · ·+ a1 sin θ)

= R(θ) + jI(θ)

(7)

Letting

u := − cos θ, (8)

it is possible to show (see [11], p.71) that cos(kθ) and
sin(kθ)
sin θ are polynomial functions of u, denoted ck(u), sk(u):

cos(kθ) = ck(u) and sin(kθ)

sin θ
= sk(u). (9)

Therefore,

R(θ) =
n∑

k=0

akck(u) =: R̄(u) (10a)

I(θ) =
√

1− u2

n∑
k=1

aksk(u) =: Ī(u). (10b)

As θ runs [0, π], u runs on the real axis from [−1,+1],
and

δ(ejθ)|u=− cos θ = R̄(u) + jĪ(u) =: δ̄(u). (11)

The Mikhailov criterion can now be restated as:
Lemma 1: δ(z) a real polynomial is Schur stable if

and only if δ̄(u) turns strictly counterclockwise and goes
through 2n quadrants as u runs increasingly over [−1,+1].

IV. MAIN RESULTS
Consider a parameter dependent characteristic polyno-

mial δ(z, k) where the coefficients are real and depend
affinely on k. For example, in the control system Fig. 1,
the characteristic polynomial is

δ(z, k) =
(
z2 +K1z +K0

)
D(z) + (K2z +K3)N(z)

(12)
and

k = [K0,K1,K2,K3] . (13)

N(z)

D(z)

K2z +K3

z2 +K1z +K0+

−

Fig. 1. A unity feedback system

Let S denote the set of k vectors for which the closed-
loop system is stable:

S = {k : δ(z, k) is Schur} . (14)

In general, S is not convex or even connected and this
poses significant challenges to the design of fixed order
controllers in both continuous and discrete time systems.

In the following, we describe an approach to determining
convex inner approximations Si of S by exploiting the
result stated in Lemma 1 above.

Let

U = {u1, u2, · · · , u2n} (15)

be called an admissible sequence of real numbers if it
satisfies

−1 < u1 < u2 < · · · < u2n−1 < u2n < +1. (16)
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Then clearly the condition in Lemma 1 for Schur stability
holds for δ(z) if and only if there exists an admissible
sequence U satisfying:

δ̄(ui) ∈ Quadrant i, for i ∈ 2n. (17)

Applying the above reasoning to the parametrized
polynomial δ(z, k), we see that (17) becomes

R̄(ui, k) + jĪ(ui, k) = δ̄(ui, k) ∈ Quadrant i, (18)

for i ∈ 2n. The condition in (18) stated in terms of the
real and imaginary parts:(

R̄(ui, k), Ī(ui, k)
)
∈ Quadrant i, for i ∈ 2n (19)

represents a set of 4n linear inequalities L(k) (two for
each i). The solution set of L(k) is a convex polygon and
constitutes an inner approximation of S. This idea is used
to determine stabilizing sets in the examples that follow.

For the examples that follow, let P (z) and C(z) denote
the plant and controller transfer functions written as ratios
of real polynomials:

P (z) =
N(z)

D(z)
, C(z) =

Nc(z)

Dc(z)
(20)

Then we write the Tchebychev representation of each of
these polynomials

D(z)|z=−u+j
√
1−u2 = RD(u) + j

√
1− u2TD(u) (21a)

N(z)|z=−u+j
√
1−u2 = RN (u) + j

√
1− u2TN (u) (21b)

and

Dc(z)|z=−u+j
√
1−u2 = RDc(u) + j

√
1− u2TDc(u) (22a)

Nc(z)|z=−u+j
√
1−u2 = RNc(u) + j

√
1− u2TNc(u) (22b)

Example 1 (Stabilizing sets Si):
In this example, we determine a stabilizing set Si corre-
sponding to the choice of a specific admissible vector Ui.
Let the plant and the fist order controller be

P (z) =
N(z)

D(z)
=

z + 0.5

z3 − 0.2z2 − 0.7z − 0.6

C(z) =
Nc(z)

Dc(z)
=

K1

z +K0
.

(23)

Then

RD(u) = −4u3 − 0.4u2 + 3.7u− 0.4,

RN (u) = −u+ 0.5,

RDc
(u) = −u+K0, RNc

(u) = K1,

TD(u) = 4u2 + 0.4u− 1.7, TN (u) = 1,

TDc
(u) = 1, TNc

(u) = 0

(24)

and

R̄(u) = RD(u)RDc
(u) +RN (u)RNc

(u)

− (1− u2) [TD(u)TDc
(u) + TN (u)TNc

(u)]

=
(
−4u3 − 0.4u2 + 3.7u− 0.4

)
K0

+ (−u+ 0.5)K1

+
(
8u4 + 0.8u3 − 9.4u2 + 1.7

)
(25a)

Ī(u) =
√
1− u2 [TD(u)RDc(u) + TN (u)RNc(u)

+RD(u)TDc(u) +RN (u)TNc(u)]

=
√
1− u2

[(
4u2 + 0.4u− 1.7

)
K0 +K1

+
(
−8u3 − 0.8u2 + 5.4u− 0.4

)]
.

(25b)

We selected 4 sets of Ui = [u1, u2, · · · , u8] as follows:

Ui = [−0.99,−0.85,−0.8,−0.6, 0.1, 0.55, 0.65, 0.99]

+ ∆i[ 0, 0, 1, 1, 1, 1, 1, 0 ]
(26)

where

[∆1,∆2,∆3,∆4] = [0.15 0.17 0.2 0.25]. (27)

A stabilizing set Si corresponding to each Ui is shown in
Fig. 2. Clearly the union of these sets are also contained
in the actual stabilizing set:

S := ∪4
i=1Si ⊂ S. (28)

Fig. 2. Stabilizing Set S in K0 −K1 space

Example 2 (2nd Order Controller Example):
Consider the plant and a 2nd order controller with 3 design
parameters:

P (z) =
N(z)

D(z)
=

1

z2 − 0.25

C(z) =
Nc(z)

Dc(z)
=

b0
z2 + a1z + a0

.

(29)
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Then
RD(u) = 2u2 − 1.25, RN (u) = 1,

RDc
(u) = 2u2 − a1u+ a0 − 1,

RNc
(u) = b0,

TD(u) = −2u, TN (u) = 0,

TDc
(u) = −2u+ a1, TNc

(u) = 0

(30)

and

R̄(u) = RD(u)RDc
(u) +RN (u)RNc

(u)

− (1− u2) [TD(u)TDc
(u) + TN (u)TNc

(u)]

=
(
2u2 − 1.25

)
a0 +

(
−4u3 + 3.25u

)
a1

+ b0 + 8u4 − 8.5u2 + 1.25

(31a)

Ī(u) =
√
1− u2 [TD(u)RDc

(u) + TN (u)RNc
(u)

+RD(u)TDc
(u) +RN (u)TNc

(u)]

=
√
1− u2

(
−2ua0 +

(
4u2 − 1.25

)
a1

−8u3 + 4.5u
)
.

(31b)

By selecting

U = [−0.99,−0.8,−0.5,−0.25,−0.03, 0.15, 0.7, 0.99] (32)

we have the stabilizing set contained in S shown in Fig.
3.

Fig. 3. Stabilizing Set in a0 − a1 − b0 space

V. DESIGN WITH GAIN AND PHASE MARGIN
REQUIREMENTS

In this section, we introduce a technique to select a set of
controller parameters that ensure the closed-loop system
satisfying the given gain and phase margin requirements.
For simplicity, we discuss here the case of digital PI
controller with a phase margin requirement. The problem
with the gain margin requirement can be solved similarly.

Let T be the sampling period. For PI controllers, we
have

C(z) = KP +KIT

(
z

z − 1

)
=

(KP +KIT ) z −KP

z − 1
=

K1z +K0

z − 1

(33)

where [
K1

K0

]
=

[
1 T

−1 0

] [
KP

KI

]
. (34)

Suppose that the desired phase margin is ϕ∗ and let the
corresponding gain crossover “frequency” be ug. Let

|C̄(u)| := |C(z)|2
z=−u+j

√
1−u2 (35a)

|P̄ (u)| := |P (z)|2
z=−u+j

√
1−u2 (35b)

This consideration leads

|C̄(u)|2u=ug
=

(K0 −K1ug)
2
+
(
1− u2

g

)
K2

1

(1 + ug)
2
+
(
1− u2

g

)
=

1

|P̄ (ug)|2
=: M2

(36)

and

∠C̄(ug) = π + ϕ∗ − ∠P̄ (ug) =: Φg. (37)

After some manipulation of (36), we have

|C̄(ug)|2 =
(K1 +K0)

2
(1− u) + (K1 −K0)

2
(1 + u)

4(1 + u)

=
(K1 +K0)

2
(1− u)

4(1 + u)
+

(K1 −K0)
2

4

=
1

|P̄ (ug)|2
= M2 (38)

By letting

L0 := K1 +K0, L1 = K1 −K0, (39)

we have
L2
0(1− u)

4(1 + u)
+

L2
1

4
=

1

|P̄ (ug)|2
. (40)

Note that
1 + u

1− u
= tan2

(
θ

2

)
. (41)

Thus, we have the following conditions:
L2
0

4 tan2
(
θ
2

) + L2
1

4
=

1

|P̄ (ug)|2
(42)

π + ϕ∗ − ∠P̄ (ug) =: Φg

= tan−1

(
−L0

L1 tan
(
θ
2

)) . (43)

(43) can be written as a function representing a line:

L1 =

(
− 1

tanΦg tan
(
θ
2

))L0. (44)
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Clearly, the intersection points of the ellipsoid represented
by (42) and the straight represented by (44) give the
values of K0 and K1 such that the closed-loop system
gives the specified phase margin. The design parameter
set is obtained by finding the points satisfying the two
conditions in (42) and (44) that reside inside the stability
region S.

VI. GAIN-PHASE MARGIN BASED DESIGN
Consider a digital PI or PID controller with transfer

functions, respectively,

C1(z) =
K0 +K1z

z − 1
and C2(z) =

K0 +K1z +K2z
2

z(z − 1)
.

(45)
In each case, let

k = (K0,K1) or k = (K0,K1,K2) (46)

denote the design parameter vector. If a gain α is inserted
into the loop at the input of the controller C1(z) or C2(z),
the effect is to replace the vector k by αk. If Si is an inner
approximation to the stabilizing set, described by linear
inequalities and k0 a nominal controller have the following
geometry shown in Fig. 4. Clearly, the ray L = αk0 enters

K0

K1

ray L

αl

αu

α = 1

k0

Si

Fig. 4. Ray αk0 penetrating the stabilizing set.

Si at α = αl, the lower gain margin, and exits Si at αu, the
upper gain margin. αl and αu are easily determined as the
smallest and largest values violating the linear inequalities
defining Si. The segment of L inside Si represents in α ∈
[αl, αu].

Each controller on this segment corresponding to a fixed
phase margin. Thus, one may determine the variation of
phase margin with gain margin along this segment of the
ray, as illustrated in Fig. 5.

αl αu

Φu

Φl

Gain Margin

Phase
Margin

Fig. 5. Gain-phase margin

The above procedure may be repeated with various rays
as illustrated in Fig. 6.

K0

K1

Si Ln

L1

L2

Lk

Fig. 6. Family of rays

Therefore, each ray corresponding to a gain-phase mar-
gin curve as shown in Fig. 7.

Gain Margin

Phase
Margin

L1

L2

Ln

Fig. 7. Gain vs phase margins

This approach to gain-phase margin design avoids the
frequency sweeping approach proposed in [2].

Example 3 (Design with Phase Margin Requirement):
In this example, we select a set of controller parameters
inside the stabilizing set that satisfies the given phase
margin requirement. Let the plant and the controller with
design parameters be

P (z) =
z − 0.1

z3 + 0.1z − 0.25
, C(z) =

K1z +K0

z − 1
. (47)

Then, using the previous notation:
RD(u) = −4u3 + 2.9u− 0.25,

RN (u) = −u− 0.1,

RDc(u) = −u− 1, RNc(u) = −K1u+K0,

TD(u) = 4u2 − 0.9, TN (u) = 1,

TDc(u) = 1, TNc(u) = K1

(48)

and
R̄(u) = RD(u)RDc(u) +RN (u)RNc(u)

− (1− u2) [TD(u)TDc
(u) + TN (u)TNc

(u)]

= K0(−u− 0.1) +K1

(
2u2 + 0.1u− 1

)
+ 8u4 + 4u3 − 7.8u2 − 2.65u+ 1.15

(49a)

Ī(u) =
√
1− u2 [TD(u)RDc

(u) + TN (u)RNc
(u)

+RD(u)TDc
(u) +RN (u)TNc

(u)]

=
√
1− u2

(
K0 +K1(−2u− 0.1)− 8u3

−4u2 + 3.8u+ 0.65
) (49b)
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We now let ug = −0.97 and the desired phase margin be
ϕ∗ ≈ 60o from the Bode plots of P (u). Fig. 8 shows that
the design parameter set satisfying the two conditions in
(42) and (44) is found inside the stability region S.

Fig. 8. Selecting PI gains satisfying phase margin requirement

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
u

-10

0

10

20

M
ag

ni
tu

de
(d

B)

|P(u)|
|C(u)P(u)|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
u

-360

-270

-180

-90

0

Ph
as

e(
de

g)

 P(u)
 C(u)P(u)

PM=680

u=-0.97

Fig. 9. Bode plots verifying the satisfaction of the phase margin
requirement

The Bode plots in Fig. 9 verifies that the resulting
closed-loop system satisfies the desired phase margin. Fig.
10 shows the step response of the closed-loop system. This
“confirms” the rule of thumb that good phase margin
corresponds to small overshoot.

VII. CONCLUDING REMARKS
In this paper, we described an approach to generating

inner approximations of the stabilizing set for a digital
control system. The approach uses the Mikhailov criterion
and results in linear inequalities in the controller gains.
The inner approximation thus obtained is therefore a con-
vex set. For continuous-time systems, a similar idea was
used in [12]. However, the issue of the performance was not
addressed. Moreover, the Tchebychev representation used
here may also be used to [12] to make the search interval

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2
Step Response

Time (seconds)

Am
pl

itu
de

Fig. 10. Step response of the closed-loop system

to be finite. The method is applicable to arbitrary fixed
order controllers. In contrast to this, the signature method
developed in [1], [2] applies only to PID controllers. We
applied this method to generate examples of stabilizing
sets for digital PID controllers and to design for prescribed
gain crossover frequency and phase margin. We expect
this approach will be useful in other fixed order digital
controller design problems.
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