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Abstract—In this paper we derive some new and useful
conditions on the open loop transfer function, necessary for
closed loop stability. The derivation is based on imposing the sign-
invariance of the closed loop characteristic polynomial evaluated
on the real axis. Although this is a simple necessary condition for
closed loop stability, it leads to fairly stringent requirements on
the open loop transfer function. Also, the results can be stated
only in terms of the numbers of real poles and zeros of the open
loop system even though the system may have complex poles
and zeros. Using the same approach new necessary conditions
for stabilizability by P, PI and PID controllers as well as by
arbitrary controllers are also presented.

Index Terms—stability, instability, Nyquist plot

I. INTRODUCTION

The stability of a feedback system is usually verified using

the Nyquist plot of the open loop system or its transfer function

(see [1], [2], [3], [4], [5], and references therein). This is an

evaluation of the transfer function on the imaginary axis and

provides a complete answer to the question of closed loop

stability of a given feedback system based on the frequency

response of the open loop system.

In many situations, it may be useful to know simple

conditions on the open loop system that guarantees closed

loop stability or instability. This may aid in the design of low

order controllers of prescribed structure such as lag or lead

first order controllers, Proportional Integral (PI) controllers or

Proportional Integral Derivative (PID) controllers (see [6],[7],

[8], [9] [10], [11], [12], and references therein).

In this paper, we are able to obtain some useful and fairly

detailed structural conditions, required to be satisfied by the

open loop transfer function to guarantee stability or instability

of the closed loop system. Remarkably, these are obtained

fairly simply by systematically imposing the requirement of

sign-invariance of the characteristic polynomial evaluated on

the real axis, a necessary condition for closed loop stability.

Also the conditions obtained are only in terms of the numbers

of real axis poles and zeros of the plant, even though the plant

may have complex poles and zeros. Finally the conditions

are simple to check and insightful as they involve only the

numbers of real axis poles and zeros to the right of each real

right half plane pole or zero of the open loop plant. Several

illustrative examples are included.

II. MAIN RESULTS

Consider the system in Fig. 1

G(s) =
KN(s)

D(s)+

−

Fig. 1. Scalar feedback system

The characteristic polynomial of the feedback system is

δ(s) = D(s) +KN(s). (1)

The feedback system is stable if and only if all roots of δ(s)
lie in C

−, the open left-half plane, or δ(s) is Hurwitz.

To proceed, we assume without loss of generality that

D(s) and N(s) are monic polynomials, that is, have leading

coefficient equals +1. Let z+i , i ∈ q := [1, 2, · · · , q] and p+j
j ∈ p := [1, 2, · · · , p] denote the finite, positive real, distinct,

zeros and poles, respectively, of G(s).

Lemma 1:

(a) If K > 0, a necessary condition for closed-loop stability

is:

D(z+i ), N(p+j ), for i ∈ q, j ∈ p (2)

are all nonzero and have the same sign (positive or

negative).

(b) If K < 0, necessary conditions for closed-loop stability

are:

(i) D(z+i ) for i ∈ q are nonzero and have the same

sign.

(ii) N(p+j ) for j ∈ p are nonzero and have the same

sign.

(iii) D(z+i ), i ∈ q and N(p+j ), j ∈ p have opposite signs.

Proof: If δ(s) is Hurwitz, then

δ(σ) 6= 0 for all σ ≥ 0 (3)

and

D(σ) +KN(σ) 6= 0, for all σ ≥ 0. (4)
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Therefore,

D(σ) +KN(σ) > 0 for all σ ≥ 0 (5)

or

D(σ) +KN(σ) < 0 for all σ ≥ 0. (6)

The conclusions in (a) and (b) now follow by successively

setting σ = z+i for i ∈ q and σ = p+j for j ∈ p in (5) and

(6).

The above condition can be interpreted in terms of the real

poles and zeros of the system as shown below.

Lemma 2:

(a) D(z+i ), N(p+j ) for i ∈ q, j ∈ p are nonzero and have the

same sign if and only if the numbers of real axis poles

counting multiplicities to the right of every zero z+i , and

the numbers of real axis zeros counting multiplicities, to

the right of every pole p+j , are all even or all odd.

(b) D(z+i ), N(p+j ) for i ∈ q, j ∈ p are nonzero and have

opposite signs if and only if the numbers of real axis

poles counting multiplicities, to the right of every zero

z+i are all even (odd) and the numbers of real axis zeros

counting multiplicities, to the right of every pole p+j are

all odd (even).

Proof: First, observe that N(s), D(s) admit the monic

factorizations,

N(s) = Nc(s)N
−

r (s)N+
r (s) (7a)

D(s) = Dc(s)D
−

r (s)D
+
r (s) (7b)

where the zeros of Nc(s)(Dc(s)) are complex, the zeros

of N−

r (s)(D−

r (s)) are real and negative, and the zeros of

N+
r (s)(D+

r (s)) are real and nonnegative. Then the sign of

N(σ)(D(σ)) is identical to the sign of N+
r (σ)(D+

r (σ)) for

all σ ≥ 0, since

Nc(σ)N
−

r (σ) >0 (8a)

Dc(σ)D
−

r (σ) >0. (8b)

Hence,

sign
[

N(p+j )
]

= sign
[

N+
r (p+j )

]

(9a)

sign
[

D(z+i )
]

= sign
[

D+
r (z

+
i )

]

. (9b)

The proof is completed by observing that

(i) N+
r (p+j ) > 0 if and only if the number of real zeros to

the right of p+j is even.

(ii) N+
r (p+j ) < 0 if and only if the number of real zeros to

the right of p+j is odd,

and similarly

(iii) D+
r (z

+
i ) > 0 if and only if the number of poles to the

right of z+i is even.

(iv) D+
r (z

+
i ) < 0 if and only if the number of zeros to the

right of z+i is odd.

Example 1: In the following examples, we denote poles by

”X” and zeros by ”#”. In each example, we list the numbers of

real RHP zeros (poles) to the right of each real RHP pole (zero)

and state the conclusion obtained from the above Lemmas.

Note that violation of the necessary conditions for stability

are sufficient conditions for instability.

2 2 0 0

K > 0 necessary for stability

K < 0 unstable

2 1 01

Unstable for any K

2 1 1 0

Unstable for K > 0

2

Unstable for K < 0

2 2 0 0

2 2 1 1 0

Stability requires K < 0

unstable for K > 0

Fig. 2. Pole-zero patterns (Example 1)

Remark 2.1: The conditions given in Lemma 1 are necessary

for stability, but are not sufficient. As an example, consider the

pole-zero pattern shown in Fig. 3.

The closed loop is not stable if z1 > 6
5 for any K, even

though condition (a) of Lemma 1 is satisfied. On the other

hand, the pattern is sufficient to predict instability for K < 0.
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Fig. 3. Pole-zero pattern (Remark 2.1)

III. STABILIZABILITY BY 3-TERM CONTROLLERS

In this section, we first develop some new necessary condi-

tions for a plant to be stabilizable by integral (I), proportional-

integral (PI) or proportional ntegral derivative (PID) con-

trollers.

Consider the plant, augmented by an integrator

G(s)

s
=

N(s)

sD(s)
=: Ḡ(s) (10)

and let Si denote the open intervals between successive real

axis distinct RHP poles, called pole segments, and let Qj

denote the open intervals between successive real axis distinct

RHP zeros called zero segments of the augmented plant in (10).

A segment Si(Qj) is said to be of odd order (even order) if

the number of zeros (poles) lying on it, counting multiplicities

is odd (even).

Theorem 1: A necessary condition for stabilizability,

(a) by an integral controller, is the absence of odd order pole

segments, and odd order zero segments;

(b) by a PI controller, is the absence of any odd order zero

segments and the presence of no more than one odd order

pole segment;

(c) by a PID controller, is the absence of any odd order zero

segments, and the presence of no more than two odd order

pole segments.

The proof depends on the following lemmas.

Lemma 3: Suppose Si(Qj) is an odd order pole (zero)

segment. Then
{

−
1

Ḡ(σ)
: σ ∈ Si

}

= R (the real axis) (11)

and
{

−
1

Ḡ(σ)
: σ ∈ Qj

}

= R (the real axis). (12)

Proof: The graph of − 1
Ḡ(σ)

transitions from +∞ (−∞)

or −∞ (+∞) over an odd order pole or zero segment.

This leads to the following conclusion.

Lemma 4: The equation

1 +KḠ(σ) = 0 (13)

has at least one real root σi in each odd order pole and in

each odd order zero segment for each real K.

Proof: Follows from Lemma 1 and the fact that (13) can

be written as

K = −
1

Ḡ(σ)
. (14)

Proof: (Theorem 1)

(i) Stabilization of the plant by an integral controller is

equivalent to stabilization of the augmented plant Ḡ(s)
by a gain. Therefore, the result follows from Lemma 2.

(ii) A PI controller adds at most one RHP real zero to Ḡ(s)
and therefore can convert at most one odd order pole

segment to an even order one.

(iii) A PID controller adds at most two RHP real zeros to

Ḡ(s) and therefore can convert at most two odd order

pole segments to even order ones.

Example 2: We display some pole-zero patterns of Ḡ(s) (see

Fig. 4) and apply the theorem to them to derive conclusions

about I,PI or PID stabilizability.

Not I,PI or PID stabilizable

Not I, PI or PID stabilizable

Fig. 4. Not I,PI or PID stabilizable (Example 2)

Example 3: In this example, we display a pole-zero pattern

of Ḡ(s) (see Fig. 5) and apply the theorem to them to derive

conclusions about P or PI stabilizability.

Not P or PI stabilizable

Fig. 5. Not P or PI stabilizable (Example 3)

By applying Lemma 1 to a plant under PID control, we

obtain some new linear programming conditions to be satisfied

by the controller parameters, as shown below.
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Under PID control, the augmented plant to be considered

is:

K(s)N(s)

sD(s)
= G(s) (15)

where

K(s) = Ki + sKp + s2Kd. (16)

Let z+i (p
+
j ) denote the real axis RHP zeros (poles) of

N(s)
sD(s) .

Lemma 5:

(a) If D(z+i ) are positive, a necessary condition for PID

stabilization is

K(p+j )N(p+j ) > 0, for j ∈ p (17)

or

sign
[

K(p+j )
]

= sign
[

N(p+j )
]

, for j ∈ p. (18)

(b) If D(z+i ) are negative, a necessary condition for PID

stabilizability is

K(p+j )N(p+j ) < 0, for j ∈ p (19)

or

sign
[

K(p+j )
]

= −sign
[

N(p+j )
]

, for j ∈ p. (20)

Proof: The proof follows immediately on applying

Lemma 1 to the G(s) in (15).

Example 4: Consider the plant

s− 3

s− 2
with z+1 = 3, p+1 = 2 (21)

and the augmented plant

G(s) =
K(s)(s− 3)

s(s− 2)

=

(

Ki + sKp + s2Kd

)

(s− 3)

s(s− 2)
.

(22)

Since

sD(s)|s=z
+

1

= 3(1) = 3 > 0, (23)

we have the necessary conditions

K(s)N(s)|s=0 = −3Ki > 0

K(s)N(s)|s=2 = −(Ki + 2Kp + 4Kd) > 0
(24)

For the case of lead-lag controllers, similar results can be

easily stated. The proof is similar to the case of PID controllers

and omitted here.

Theorem 2: A necessary condition for stabilizability with

lead-lag controllers of the form

C(s) =
K (s− z0)

(s− p0)
(25)

is presence of no more than one odd order pole segment and

no more than one odd order zero segment.

IV. STABILIZABILITY BY ARBITRARY CONTROLLERS

We now consider the controller

C(s) =
K1(s)

K2(s)
(26)

applied to the plant

P (s) =
N(s)

D(s)
. (27)

The characteristic polynomial of the closed-loop system is

δ(s) = K2(s)D(s) +K1(s)N(s). (28)

Assume that D(s) and N(s) are monic with real axis RHP

roots p+j for j ∈ p and z+i for i ∈ q, respectively.

Lemma 6: A necessary condition for C(s) in (26) to

stabilize P (s) in (27) is that it satisfy:

sign
[

K2(z
+
i )D(z+i )

]

= sign
[

K1(p
+
j )N(p+j )

]

,

for i ∈ q, j ∈ p
(29)

or equivalently, either

sign
[

K2(z
+
i )

]

= sign
[

D(z+i )
]

, for i ∈ q (30a)

sign
[

K1(p
+
j )

]

= sign
[

N(p+i )
]

, for j ∈ p (30b)

or

sign
[

K2(z
+
i )

]

= −sign
[

D(z+i )
]

, for i ∈ q (31a)

sign
[

K1(p
+
j )

]

= −sign
[

N(p+i )
]

, for j ∈ p (31b)

Proof: Condition (29) follows immediately from Lemma

1. That (29) is equivalent to (30) or (31) is straightforward.

Example 5: Consider the plant

P (s) =
(s+ 1)2(s− 1)(s− 3)

s(s2 + 2s+ 3)(s− 2)
(32)

with the controller

C(s) =
α1s+ α0

s+ β0
. (33)

Then

z+i = 1, 3, p+j = 0, 2 (34)

and

D(1) < 0 (sign[D(1)] = −1)

D(3) > 0 (sign[D(3)] = +1)

N(0) > 0 (sign[N(0)] = +1)

N(2) < 0 (sign[N(2)] = −1).

(35)

Therefore, we have the necessary conditions:














1 + β0 < 0
3 + β0 > 0

α0 > 0
2α1 + α0 < 0

(36)
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or














1 + β0 > 0
3 + β0 < 0

α0 < 0
2α1 + α0 > 0

(37)

to be satisfied by the controller parameters.

Consider now a plant with n1 odd order pole segments and

n2 odd order zero segments.

Lemma 7: A necessary condition for C(s) in (26) to

stabilize P (s) in (27) is that it has at least n1 zeros, with

at least one each located in the odd order RHP pole segments

and n2 poles, with at least one each located in the odd order

RHP zero segments.

Proof: The controller must necessarily convert each odd

order zero or pole segment to an even order one.

V. CONCLUDING REMARKS

Some simple necessary conditions for stability of a feedback

system are derived in terms of the real RHP poles and zeros

of the open-loop system. The violation of these conditions are

then sufficient conditions for instability. Using these, we also

derive some necessary conditions for stabilizability of an LTI

plant by PID controllers.

The results given here are applicable to stable and

minimum-phase controllers since the addition of real LHP and

complex poles and zeros by the controller to G(s) does not

affect the signs of D(z+i ) and N(p+j ).
The necessary conditions given in this paper may have

an interpretation in terms of the Nyquist Criterion and the

Hermite-Bieler Theorem of Robust Control (see [16], [17],

and references therein). They also may have connections to

the strong stabilizability condition given in [13], [14]. Some

of the ideas of the proof used here are similar to that in [15]
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