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Abstract—Success of machine learning algorithms hinges on
access to labeled dataset. Obtaining a labeled dataset is an
expensive, challenging and time-consuming process, leading to
the development of transfer learning (TL) methodology. TL
incorporates gained knowledge from a previously trained source
model into specific yet similar task models with limited data do-
main coverage. In this paper, we propose an automated targeted
transfer learning (ATTL) method to resolve the transferability
between source and target with minimal data requirements.
The ATTL method decides how much target data is essential
for model training, along with selected source data, to obtain
the skateholder’s specified performance metrics. The ATTL
framework optimizes the system to select minimal target data
based on two approaches: combinatorial coverage and adaptive
selection methodology, along with specific source data for fine-
tuning given a pre-trained source model. We evaluated the ATTL
method on the Kaggle’s ’planes in satellite imagery’ dataset
and the results identified that acquiring a small number of
intentionally well-chosen samples from the target environment
can achieve model performance of 97% in comparison to the
baseline transfer learning accuracy of 92%.

Index Terms—Transfer learning, Deep neural networks, Au-
tomated source selection, Fine-tuning, Combinatorial coverage.

I. INTRODUCTION

Machine learning (ML) systems have the ability to automat-
ically gain knowledge and to improve from experience without
being explicitly programmed. ML systems have impacted
numerous fields such as computer vision, speech recognition,
intrusion detection, text classification, distributed networks,
sensor networks, semantic analysis and natural language pro-
cessing [1], [2]. However, the effectiveness of ML systems
depends on availability of large-scale, high-quality, well an-
notated and categorized data (e.g., in medical imaging field)
which can be challenging and limits the applicability of deep
convolutional neural networks (CNNs) to tasks with limited
resources [3], [4].

Transfer learning solves these challenges by transferring
knowledge from a related source task into a target task while
compensating for the lack of sufficient task specific data [5].
Unlike traditional ML learning where model training is iso-
lated and occurs purely based on a specific task, TL capitalizes
on previously learned knowledge (in form of weights and
features) by exploring its relatedness and gains additional
insights into the target [6]. It has also been classified in terms
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of source and target structure and behavior, where structure
concerns the sample spaces of the domain and task and
behavior represents their probability distributions [7]. TL has
been implemented using deep learning methodologies such as
CNN, which has layered architecture to learn features (e.g.,
lines, shapes, corners) by applying features derived from the
pre-trained source model [8]. It readily generates domain-
invariant features for knowledge transfer between domains.
Currently, very little fundamental research is being done to
select a source for a given target despite the increasing avail-
ability of pre-trained networks. A deep learning framework
has been proposed that will automatically perform transfer
learning by emulating source network based on an estimate
of dataset classification difficulty [9]. In another article, the
author investigated a system to automatically rank source
CNN models accordingly for a target task [10]. Fine-tuning
is another popular way of utilizing knowledge in a pre-
trained network for a new domain, but selecting fine-tuned
layers automatically from a pre-trained network is a difficult
task. Recently, some adaptive fine-tuning methodology such
as SpotTune [11], Flex-tuning [12], AdaFilter [13] has been
proposed where a lightweight policy network automatically
finds the optimal fine-tuning decision for the target input. TL
is also used to detect unknown cyber-attacks. In the article
[14], the author proposed a transfer-learning based approach
named HeTL that can automatically find the relation between
the new attack and known attack in the cyber domain.
However, for meeting desired performance metrics, there
is a need to further enhance the TL process with the ability
to automatically determine additional target data needed from
training and by fine tuning of the source model. In this paper,
we propose ATTL approach based on combinatorial coverage
and adaptive selection method, followed by fine tuning phase
to address the above challenge of identifying the optimal
set of features needed for transferability between source and
target. The combinatorial coverage approach helps identify the
unique features of target data not present in the source via
the ¢-way value combination set differences between source
and target metadata. The key idea behind the adaptation of
combinatorial coverage to transfer learning is that metadata
associated with the source and target domains is useful for
systematically identifying the training domain of the model
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(source data) and the intended application domain (target data).
Taking the set difference combinatorial coverage illuminates
the differences between these domains. Adaptive selection
framework is based on procuring low-level features from a
deep model to measure of similarity between source and target
based on distance metrics. We leverage pre-trained source
CNN model’s weighted layers to extract both source and task
low-level features, compare their distributions to obtain the
nearest neighbors for each target image, and re-train the model
on selected source and target images. Low-level features are
selected as they are general, encode very rich information
which can completely reconstruct the original image and can
outperform that using high-level semantic information as in

(6].
II. METHODOLOGY

1) Satellite Images Dataset: To establish the transfer learn-
ing problem, we consider a situation where we train a model
on the source satellite images and transfer it to the target
satellite images with the task of determining whether a plane
exists in the image or not. We use the “Planes in Satellite
Imagery” dataset from Kaggle [15]. The images are separated
by location (Northern California and Southern California).
From these two sets of images, we identify the Southern
California images (21,151) as the source dataset and Northern
California images (10,849) as the target dataset due to the drop
in performance in zero-shot transfer learning. The satellite
imagery dataset has 32,000 colored images of size 20 by 20
pixels, out of which 8,000 images are “class=1" indicating
that a plane occurs in the image, and the remaining 24,000
are “class=0" indicating no-plane occurs in the images. The
combinatorial coverage approach is applicable to both data and
metadata. Metadata is often cataloged during data collection.
For images such as these, this may include categories like
time of day, viewing angle, or geography. Due to the sparse
metadata affiliated with this dataset — solely the general
location of the images — twelve additional metadata are derived
from the images to test the combinatorial coverage approach.
Although the images are closely related, the combinatorial
coverage over the derived metadata is different for the two
locations and is discussed in § III. Fig. 1 illustrates the TL
and fine tuning process on the satellite image dataset.
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Fig. 1. Transfer learning and fine-tuning methodology.

2) Set Difference Combinatorial Coverage Method: Com-
binatorial coverage is a metric [16] for conventional software
and hardware testing to describe the proportion of component
combinations covered by a given test set. It is first adapted for
use in testing ML systems in [17]. The authors also develop
a related metric, set difference combinatorial coverage, and
discuss applicability of these metrics to transfer learning.
We provide a brief overview of the pertinent terms and set
differencing metric in the context of describing the input space
of metadata features. Let S and 7 be datasets with k& metadata
columns each. When the dataset includes labeled images,
labels can be considered a special metadata column. A t-way
combination is a selection of ¢ of the metadata columns while
a t-way value combination is an assignment of values to those
t columns with strength ¢. To apply combinatorial coverage,
continuous values must be discretized via a binning scheme
applied to both sets. Let 7; and S; be the set of t-way value
combinations in 7 and S, respectively. The set difference
T: \ S is the set of t-way value combinations appearing in
T that do not appear in S. With |7;| denoting set cardinality,
the set difference combinatorial coverage of 7 \ S is the
proportion of ¢-way value combinations unique to 7, written
SDCC{(T\S) = % When labels are available, label
centrism is a special way of counting combinations requiring
that every ¢t-way combination include the label column and
t — 1 other metadata columns; non-label centrism is when all
(It“) combinations of columns are considered. Label exclusion
excludes the label column entirely and considers the other
(+~1) combinations.

When metadata is collected alongside images, value com-
binations of metadata describe contexts of strength ¢ in which
images are collected. Some metadata features act as a surrogate
for features in the images themselves; for example, “time of
day” is a surrogate for lighting effects such as brightness
or shadowing in outdoor images. Combinations of metadata
describe contexts in which images are taken; for example,
“location=Australia,” “time of day=midnight,” and ‘“month
of year=July” results in dramatically different images than
“location=Greenland,” “time of day=midnight,” and “month of
year=July” due to the combination of climate, hemisphere, and
latitude differences. Label centrism, then, describes contexts
in which a labeled object is seen by the algorithm. Higher
strength contexts are more specific.

In addition to providing a quantitative measurement of how
well the source set S covers the target set 7 in the input
space of the metadata, the set difference provides an image
selection method for targeted retraining. The set difference
T\ S is computed to identify the value combinations of a
given strength ¢ appearing in the target but not the source.
These are pertinent as it represent contexts where the model
may exhibit poor performance in transfer learning due to lack
of training. The set of images from the target containing any
value combinations in the set difference are identified.

3) Adaptive Selection Methodology: In this section, we dis-
cuss how to identify subset of images from source data whose
low-level characteristics are similar to those of the target task.
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Only these selected subset of source and target images will be
made accessible for retraining the target specific CNN model.
The rational for selecting low-level features is its ability to
encode rich and varied information that can reconstruct the
original image with the added benefit of preventing overfitting
inherent in the fine tuning process [6]. The source domain
Dy = (23,93 )]3 1 constitutes of 21,151 images (as explained
above) taken in Southern California, where z- is set of images
with labels y-. The target domain D; = (x},y; )}, encompass
10,849 images from Northern California leading to a different
data distribution transfer learning problem. A CNN model is
trained on the source dataset to form the pre-trained CNN
model. Using this pre-trained CNN module, we extract the
histogram of features obtained from the CNN low-level layers
for each source and target image and evaluate their similarity
measure. Let qﬁg’s,#’t represent the histogram of the features
extracted from the i;, convolutional layer for source image
x; and target image x} respectively. The distance between the
histograms of the kernel response between a source and target
image is calculated by eq. (1).

=2 wilk(

where w; = 1/N;, N; is the number of convolutional kernels
in the corresponding layer i and K is the KL divergence
between distribution ¢?** and d)é’t(eq. (2)).

J,s
K660 = 3 67(a >log‘Z ((T)) @

For a source image, if the “calculated KL distance H meets
the specified threshold, it is selected as one of the neighbors for
the target image. Depending on the threshold, a target image
can have none, one or more nearest neighbors. The target
images, which have no match in the source domain, are called
the no-matched or hard samples and are augmented to the
training set. The selected source images and the hard samples
form the new training set for the CNN model. The maximum
selected source images for a target image are capped to prevent
system bias. Efforts are made to incorporate the least target
images as possible, with or without labels. In the case where
target labels are incorporated in source selection process, its
called supervised selection process and where labels are not
used, unsupervised selection.

4) Automated Targeted Transfer Learning: We propose an
automated targeted transfer learning process to quantify the
performance of the model in a given environment. Fig. 2
shows the flowchart of this process. Here, in each case, the
ATTL process checked whether the model met the desired
metric requirement or not? If the result is yes, the process
stops and the operator obtains the desired results; otherwise it
will continue.

Let us consider that the stakeholder’s/ operator’s desired
performance metrics in the target environment are precision,
recall, f1-score and accuracy. In case one, a model is trained
on the source set and tested on the target set, which is

H(z" 27*) = (¢7°,6") + K (67", 00%)] (1)
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Fig. 2. Automated targeted transfer learning flowchart.

the conventional transfer learning method where the trained
model never interacts with the target set. In this paper, the
source and target datasets are derived from the same “satellite
plane images” but located at two different locations. If the
operator does not get the required metrics from case one,
case two (targeted transfer learning) will be applied. In this
case, we first select the subset of the images that have value
combinations in the set difference and create new train and
test sets. Here, we use the combinatorial coverage method
to create the new sets. Another method of selecting images
based on similarity measure (KL metrics) is also incorporated
in the paper. After selection, the selected images will be
added to the source set for training and use the remaining
target set as a test set. Details of this case is described in the
result and discussion section. If the previous two cases do not
meet the desired operator metrics (transfer learning, targeted
transfer learning), the last case — fine-tuning process — is
initiated. After this process, the stakeholder will obtain the best
accuracy in any given environment. Here, emphasis is placed
to achieve the desired performance metrics with the minimal
amount of target training images. During the system execution,
the operator will deduce the minimal number of images that
should be transferred from target to source domain to achieve
the optimum level. Through our ATTL process, we are able to
answer three key questions: Can a pre-trained model, trained
on the source domain, provide desired metrics when applied on
the target domain (case 1 — transfer learning)? If not, can the
same model be trained on source and selected target images to
meet the desired metrics (case 2 — targeted transfer learning)?
If these two processes cannot provide the desired accuracy, can
fine-tuning the pre-trained model on the minimal target images
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give the desired accuracy (case 3 — fine-tuning)?

III. EXPERIMENTAL RESULTS

Only original metadata (i.e. geo location data) is used to
partition the Planesnet [15] dataset into source and target
sets. The derived metadata for the combinatorial coverage
experiments are the mean and variance each for the red, green,
blue, hue, saturation, and luminance values for an image.
The metadata values are discretized by forming three bins
encompassing equal-sized ranges. An example of a two-way
label centric combination is the class and red mean. A two-way
non-label centric combination could be one metadata and the
class but could also include two metadata, such as red mean
and saturation variance. An example of a two-way label centric
value combination is “class=0" and “red mean=0" for an image
with no plane and the mean red value for the image falling
in the first bin. The Northern California dataset has higher
label-centric combinatorial coverage than the Southern dataset
as CCy(Northern) = 81 = 0.93 while CCy(Southern) =
% = 0.83; of the 72 valid value combinations of metadata,
the Northern dataset contains 67 while the Southern contains
60. So despite the Southern dataset having roughly double
the number of images (21,151 versus 10,849), the Northern
dataset has more complete coverage of the metadata input
space and is considered as the target domain. When the
Southern set is treated as the source and the Northern set
as the target, a drop in performance is noted for zero-shot
transfer. For this direction, the label centric set difference
combinatorial coverage is SDCCq(Northern\ Southern) =
% = 0.12. That is, of the 67 two-way label centric value
combinations of metadata present in the Northern dataset,
eight of them do not appear in the Southern dataset. The
drop in performance does not occur when trained on the
Northern set and transferred to the Southern set and, notably,
SDCCs(Southern\ Northern) = g5 = 0.02. That is, of the
60 two-way label centric combinations present in the Southern
dataset, only one does not appear in the Northern dataset.
In summary, of the Southern contexts in which a plane or
no-plane is seen by the algorithm, most are covered by the
Northern set, but many Northern contexts are not covered
by the Southern set. For this dataset, SDCC, is correlated
with a drop in performance in zero-shot transfer learning.
We can calculate these set differences at higher values of ¢
to define differences between the sets at higher strengths of
combinations of the metadata factors.

However, as mentioned earlier in the methodology section,
our proposed automated targeted transfer learning (ATTL)
process is divided into three cases and all cases are described
briefly below. We present the result of each case individually
with minimal data requirements to achieve the desired perfor-
mance. In targeted transfer learning case, both combinatorial
coverage and adaptive selection methods are used to identify
the set difference images. To validate the performance, targeted
transfer leaning case is repeated for random dataset from
target. Lastly, a fine-tuning is applied on the remaining dataset.

A. Result analysis

1) Transfer learning process - Case 1: The described CNN
model is trained on source (Southern California) set and
tested on the target (Northern California) set, which is the
conventional/baseline transfer learning process. The model has
been trained only on the source dataset with 90% training and
10% validation images. All pre-trained model parameters are
kept frozen while predicting the target label.
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Fig. 3. Drop in performance (Transfer Learning).

The CNN model gave an accuracy of 98% when source
data was used for both training and validation. However the
accuracy significantly drops to 92.19% when the model is
tested on target data under zero-shot transfer scenario as
illustrated in 3. The zero-shot accuracy forms the baseline
accuracy in this study. The obvious question arises: how can
we improve the performance if we are limited in our ability
to collect a large amount of data in target domain? Below
are automated attempts to resolve this problem of a drop in
metrics through targeted transfer learning training.

2) Targeted Transfer Learning - Case 2: Targeted transfer
learning will automatically be applied when the operator
does not get the required metrics from the basic zero-shot
transfer learning implementation. In this case, set difference
combinatorial coverage is used to identify images for inclusion
in the augmented training set. For the adaptive selection case,
only selected source images along with selected target images
will form the training set while in combinatorial coverage
all source data is used. The model’s accuracy will then be
investigated on the newly formed dataset by basic transfer
learning process.

Combinatorial Coverage: As described in § II-2, we com-
pute the set difference Northern \ Southern for strength ¢.
Every image in the Northern set containing a value combi-
nation from the set difference in its metadata is selected for
inclusion in the targeted images and added to the augmented
training set; call this targeted selection. A model is trained
using the augmented set of images. The selected images are
removed from the target set and the remaining images in
the target set forms the test set. Our experiments vary two
parameters: the strength 3 < ¢ < 5 and the counting method
as LC (label centric) or NLC (non-label centric). We also
consider the possibility that any improvement is simply due
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TABLE I
TARGETED SELECTION VS. RANDOM SELECTION
Value # Targeted Random
t Count Comb. Images AC IF AC IF
3 LC 1188 150 9422 0.014 9412 0.013
3 NLC 7128 240 95.14 0.012 94.41 0.009
4 LC 11880 395 96.47 0.011 9490 0.007
4 NLC 51975 758 96.49  0.006 9536 0.004
5 LC 80190 879 97.08 0.006 96.15 0.005

to a larger training set and not due to the targeted selection
of images via combinatorial coverage. For each setting of
strength and counting method, we perform random sampling
to select the same number of images and train a model on
the augmented set. Again, the selected images are removed
from the target set and the test set forms the remainder. Due
to randomness in training a model that can result in variation
in outcomes, we replicate the above process three times; for
every set of images added to the augmented training set, we
train three models and evaluate each on the test set. The
appendix includes all metrics for each of the three runs for
targeted selection (Table IV) and random selection (Table V).
As precision, recall, and Fl-score trend with accuracy, we
focus our analysis on accuracy.

For t=2, the number of targeted images identified is less
than 100 which is a negligible number of images to transfer.
Therefore, we trained models for 3 < ¢t < 5. Table I gives
the results of targeted transfer learning in terms of number
of targeted images identified for each setting of strength
and counting method, as well as the number of valid value
combinations under consideration. It also gives the mean
accuracy (AC) of the three models for each set of targeted
images and randomly selected images (of the same size), as
well as a measure of the improvement in accuracy, i.e. a ratio
of number of images provided, or information factor per image
(IF) computed by

IF accuracy — baseline accuracy

number of images

We use the accuracy (92.19%) from zero-shot transfer as the
baseline accuracy. Accuracy and IF are plotted in Fig. 4 and
Fig. 5, respectively. Several general trends are observed:

1) as t increases, so does the number of value combinations
and the number of images targeted,

2) as the number of images to include in training increases,
so too does accuracy,

3) as the number of images increases, the IF decreases, and

4) targeted selection results in higher accuracy and higher
IF for the same number of randomly selected images.

The trends are not surprising. As value combinations in-
crease in strength, they become more specific and more
numerous, thus it becomes less likely that an image will
contain a given value combination. For set differencing, as
the strength increases, the set difference tends to increase; it
becomes less likely that the two sets will contain exactly the
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Fig. 5. IF by image set size (error bars are min, max)

same value combinations. The increased set difference size
allows us to find more images containing value combinations
in the set difference.

In our experiments, when ¢ = 4, LC produces nearly the
same mean accuracy as NLC despite identifying approxi-
mately half as many images for inclusion in training. In fact,
LC produces higher minimum and maximum accuracy scores
than NLC. The difference in IF between LC and NLC fort = 4
(A = 0.00146) is also much smaller than that for random
selection for the same number of images (A = 0.00240).
From a combinatorial perspective, for the same strength, LC
considers fewer combinations of metadata columns and fewer
value combinations than NLC which supports why it identifies
fewer images. For example, in this dataset with 12 metadata
columns each with three binned values and one label column
with two binned values, k¥ = 13. For ¢ = 4, the number of
combinations is (¥~]) = 220 for LC and (¥) = 715 for NLC,
while the number of value combinations is (¥~})(2)(3¢~V) =
11,880 for LC and (¥~1)(2)3¢~ ) + (*;1)(3") = 51,975
for NLC. As LC for ¢ is the same as considering every ¢ — 1
label exclusive combination along with the label column, it
resides between NLC strengths. From an ML perspective, we
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hypothesize that LC provides better targeted transfer learning
by focusing on contexts surrounding labels which is central
for classification.

The IF decreasing trend suggests diminishing returns with
additional images. This may be due to achieving sufficient
coverage over the input space. Additionally, the IF for LC
at t is closer to that of ¢ — 1 NLC than ¢, again suggesting
that LC may be a useful counting method for targeted image
selection. The decreasing IF rate may provide feedback in the
automated process to guide whether to continue with targeted
transfer learning or switch to fine-tuning.

Last, the improvement in accuracy does not seem to be
attributable to increased training set size alone. Targeted
image selection using ¢ = 4 and LC produces higher mean
accuracy with 395 images than randomly selecting 879 images.
The targeted selection achieves 96.47% mean accuracy while
random selection achieves only 96.15% with over twice as
many images. This suggests that targeted selection using set
difference combinatorial coverage over the input space is a
useful mechanism for producing sets for minimal retraining.

In the automated process, suppose the desired operator
metric is 96% accuracy. From our results, ¢ = 4 LC evaluation
provides the desired accuracy with the fewest number of
targeted images. As we get the desired performance metrics
from the targeted transfer learning by coverage theory, our
automated process will stop; otherwise it will continue to the
fine-tuning process.

3) Targeted Fine Tuning - Case 3 : The automated system
will check if the desired performance is met or not met. In case
its not, it will proceed with the fine-tuning process. During
fine-tuning, we keep the first two convolutional layers of our
CNN model frozen and fine-tune the last few layers with the
lowest labeled target images. For fair comparison, efforts are
made to keep the selected target images fixed (total of targeted
and fine tuning images) by varying the number of training
and validation images in the model. In this paper, we fixed
the number of total selected targeted images to be nearly 20%
of the complete target dataset, consists of 10,849 images. For
example, if the selected images for targeted case is 158 then
the training images for fine-tuning portion would be 1,937, to
make the total 2,095 target images be around 20% of the target
set. We examine the results for adaptive selection framework
process.

TABLE II
SUPERVISED FINE-TUNING RESULTS.

Dist.  Unmatch Img.  Fine-Tune Img.  Total Img.  Accuracy
3 460 1632 2092 96.156
4 243 1853 2096 95.968
5 158 1937 2095 95.988
6 112 1983 2095 95.819
7 82 2008 2090 95.445

Table II illustrates the results for the adaptive selection
process for the supervised scenario. Distance column indicates
the defined distance H calculated by eq. (1). Unmatched

images are the target images that did not have any match or
similar source images. These images are added to the targeted
training set in case 2. The training images used for fine-tuning
the model are given in column 3 while the total target images
are in column 4 of the table.

TABLE III
UNSUPERVISED FINE-TUNING RESULTS.

Dist.  Unmatch Img.  Fine-Tune Img.  Total Img.  Accuracy
3 334 1755 2089 95.287
4 158 1937 2095 95.214
5 90 2006 2096 95.247
6 59 2035 2094 95.157
7 36 2055 2090 94.851

The unsupervised results where labels are not used in the
source selection process are given in Table III. Results indicate
that as the distance hyper-parameter is decreased, more and
more target images are used but the overall performance
matrix also increases. Further, there is a slight drop (less
than 1%) in accuracy for the supervised vs. the unsupervised
scenario. As the percentage of the training images increases,
the performance of the system increases.

IV. DISCUSSION AND CONCLUSION

We have proposed an Automated Targeted Transfer Learn-
ing method for efficiently and automatically identifying sam-
ples to achieve desired results in a given environment. This
paper provides the technical foundations for the targeted
transfer learning process that provides the decision-makers
assurance of obtaining the desired outcomes by utilizing
minimal retraining and target data collection. In the future,
we would like to leverage the proposed ATTL process into
other machine learning platforms like cyber domain (malware
dataset) and conduct a case study on how efficient the method
is for minimal retraining.

The method of selecting targeted images for retraining may
be further refined. For this preliminary work, all images with a
value combination in the set difference were selected. The tar-
geted images improved accuracy better than the same number
of randomly selected images suggesting that covering the input
space is useful for knowledge gained by the model. However,
the targeted image set may include the same value combi-
nations many times and thus include redundant coverage. In
software testing where faults are deterministic, coverage of a
value combination in at least one test is sufficient to detect
the fault. Statistical learning rarely has the property that one
observation is sufficient. It seems likely that as image set sizes
increased, each additional coverage of a value combination
yields diminishing returns. If this is true, a smaller subset of
the target images that covers the set difference up to some
threshold may increase performance equivalently with fewer
images.

Lastly, in our experiments, we do not compare the models
against the same test set. Instead, we model the scenario where
transfer learning is conducted with retraining on a small sam-
ple of the target environment. We test on the entire remaining
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target minus the training augmentation to simulate deployment
across all contexts in the target. If our hypothesis is correct and
the set difference combinatorial coverage provides a method
to identify contexts in the target not learned from the source
dataset, these images that contain those contexts are where
we expect performance to drop. By moving them from the
target to the augmented training set and not allowing them
in the test set, we are not able to measure performance on
these contexts for the targeted selection, but we may test
on them for the random selection. The drop in performance
between targeted and random selection supports our hypothesis
that these value combinations represent challenging, unlearned
contexts. To test this hypothesis, we suggest that performance
of the pretrained model should be measured on subsets of the
target set partitioned by combinatorial coverage to determine if
there is a drop in performance in subsets that contain contexts
in the set difference versus those that do not. Further, a targeted
set should be constructed that covers the set difference to a
threshold A without including all images in the set difference.
The remaining images in the set difference should be left in
the target set for inclusion in a test set.
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APPENDIX

TABLE IV
METRICS EACH TRAINING RUN — TARGETED SELECTION

# Images  Precision  Recall Fl-score  Accuracy
150 94.37 94.13 93.96 94.13
150 94.57 94.45 94.32 94.45
150 94.16 91.07 93.94 94.07
240 95.10 95.05 94.97 95.05
240 95.29 95.29 95.23 95.29
240 95.16 95.08 94.99 95.08
395 96.38 96.39 96.37 96.39
395 96.36 96.34 96.94 96.34
395 96.67 96.68 96.67 96.68
758 96.24 96.25 96.23 96.25
758 96.65 96.60 96.62 96.60
758 96.64 96.63 96.63 96.63
879 97.09 97.10 97.09 97.10
879 97.12 97.13 97.13 97.13
879 96.99 97.00 97.00 97.00

TABLE V

METRICS EACH TRAINING RUN — RANDOM SELECTION

# Images  Precision  Recall Fl-score  Accuracy
150 94.27 94.26 94.27 94.26
150 94.08 94.05 94.00 94.06
150 94.12 94.05 93.93 94.05
240 94.52 94.46 94.37 94.46
240 94.45 94.23 94.03 94.23
240 94.55 94.55 94.46 94.55
395 94.93 94.45 94.91 94.95
395 94.80 94.78 94.71 94.78
395 95.00 94.97 94.89 94.97
758 95.38 95.32 95.25 95.32
758 95.19 95.14 95.07 95.14
758 95.65 95.62 65.56 95.62
879 96.12 96.14 96.12 96.14
879 96.08 96.07 96.03 96.07
879 96.22 96.23 96.20 96.23
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