
QUASICONFORMAL MAPS WITH THIN DILATATIONS

CHRISTOPHER J. BISHOP

Abstract. We give an estimate that quantifies the fact that a normalized quasi-
conformal map whose dilatation is non-zero only on a set of small area approximates
the identity uniformly on the whole plane. The precise statement is motivated by
applications of the author’s quasiconformal folding method for constructing entire
functions; in particular an application to constructing transcendental wandering
domains given by Fagella, Godillon and Jarque [7].

1. Introduction

A quasiconformal mapping F : C → C is a homeomorphism that is absolutely

continuous on almost all horizontal and vertical lines, and whose partial derivatives

satisfy Fz = µFz for some complex valued, measurable function µ with ∥µ∥∞ = k < 1,

called the complex dilatation of f . For the basic properties of quasiconformal maps,

see Ahlfors’ book [1].

If µ = 0 then F is a conformal homeomorphism of C to itself, and hence it is linear.

If the complex dilatation µ is small, then we expect F to be close to linear. There are

at least two reasonable senses in which we can ask µ to be small: that ∥µ∥∞ is small

or that the set {z : µ(z) ̸= 0} is small. In this note we consider the latter possibility.

To be more precise, we say a measurable set E ⊂ C is (ϵ, h)-thin if ϵ > 0 and

area(E ∩D(z, 1)) ≤ ϵh(|z|)

for all z ∈ C, where h : [0,∞) → [0, π] is a bounded, decreasing function, such that∫︂ ∞

0

h(r)rndr < ∞,

for every n > 1. If a > 0, the function h(r) = exp(−ar) satisfies this condition, and

this example suffices for many applications.
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Recall that a quasiconformal map F : C → C is often normalized by post-

composing by a conformal linear map in one of two ways. First, we can assume

F (0) = 0 and F (1) = 1. We call this the 2-point normalization. Second, if the

dilatation of F is supported on a bounded set, then F is conformal in a neighborhood

of ∞ and then we can choose R large and post-compose with a linear conformal map

so that

|F (z)− z| = O(
1

|z|
),

for |z| > R/2. We say that such an F is normalized at ∞. This is also called

the hydrodynamical normalization of F . We will first prove an estimate for the

hydrodynamical normalization and then deduce one for the 2-point normalization.

Theorem 1.1. Suppose F : C → C is K-quasiconformal, and E = {z : µ(z) ̸= 0} is

bounded (so F is conformal near ∞) and F is normalized so

|F (z)− z| ≤ M/|z|,

near ∞. Assume E is (ϵ, h)-thin. Then for all z ∈ C,

|F (z)− z| ≤ ϵβ

|z|+ 1
,

where β > 0 depends only on K and h. In particular, as ϵ → 0, F converges uniformly

to the identity on the whole plane.

From this we will deduce the following version for the 2-point normalization. This

estimate is stated as Theorem 2.5 in [7] by Fagella, Godillon and Jarque, based on

“personal communication” with the author and the main goal of this paper is to

provide a concrete citation for this result.

Corollary 1.2. Suppose f : C → C is K-quasiconformal, f(0) = 0, f(1) = 1, and

E = {z : µ(z) ̸= 0} is (ϵ, h)-thin. Then

(1− Cϵβ)|z − w| − Cϵβ ≤ |f(z)− f(w)| ≤ (1 + Cϵβ)|z − w|+ Cϵβ,(1.1)

where C and β only depend on ∥µ∥∞ and h.

Similar estimates are known, e.g., compare to the well known result of Teichmüller

and Wittich (e.g., Theorem 7.3.1 of [9], [13], [14]) or estimates of Dyn’kin [6]. The

version stated above is intended for specific applications to holomorphic dynamics

involving the author’s quasiconformal folding technique of constructing entire func-

tions, introduced in [3]. Given an infinite tree T in the plane satisfying certain



QUASICONFORMAL MAPS WITH THIN DILATATIONS 3

geometric conditions, this method constructs a quasiregular function g on the whole

plane that is holomorphic outside a (usually small) neighborhood U of the tree. Then

f = g ◦φ−1 is entire where φ is the quasiconformal map whose dilatation is given by

µ = gz/gz and is supported in U ; such a φ exists by the measurable Riemann map-

ping theorem. In applications, g is usually constructed to have certain properties and

we want f = g ◦ φ−1 to have the same or similar properties. Thus we usually want

φ to be close to the identity. In many applications of quasiconformal folding, the

neighborhood U can be chosen to be very small, e.g., it often is (ϵ, e−r) thin, which

is why the estimates above are helpful. Quasiconformal folding has been used to

construct various examples in complex analysis and holomorphic dynamics, e.g., [2],

[4], [5], [8], [10], [11], [12], [15]. Often estimating the correction map φ is the hardest

part of applying the folding method, and these papers sometimes use weaker versions

of the estimates given here, or leave some details to the reader. The goal of this note

is to provide a complete proof of the estimates needed in many applications of the

folding theorem. The paper [7] uses Corollary 1.2 as part of a construction of two

entire functions, neither of which has a wandering domain, but whose composition

does have a wandering domain. That paper also provides addition information about

the wandering domains constructed in my paper [3].

I thank Xavier Jarque for helpful comments on a draft of this paper that clarified

the notation and several of the arguments. I also thank the two anonymous referees

for their thoughtful comments and numerous suggestions to improve the paper. One

of the referees suggested the results in this paper might extend to higher dimensions.

This seems reasonable, and the parts of the proof concerning modulus and Lp es-

timates should extend, but it is not obvious (to the author) how to generalize the

arguments using Pompeiu’s formula or properties of holomorphic functions. We leave

this interesting question open for future investigation.

2. Quasiconformal maps and conformal modulus

Here we review a few basic facts about quasiconformal maps and conformal mod-

ulus that we will need. All these results can be found in Ahlfors’ book [1].

Lemma 2.1 (Shapes of quasicircles). For each K ≥ 1 there is a C = C(K) < ∞ so

that the following holds. If F : C → C is K-quasiconformal and γ is a circle centered

at a point w ∈ C, then there is an r > 0 so that F (γ) ⊂ {z : r ≤ |z − F (w)| ≤ Cr}.
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Theorem 2.2 (Bojarski’s theorem). If 1 ≤ K < ∞, there is a p = p(K) > 2 and

A,B < ∞ so that the following holds. If F : C → C is K-quasiconformal, and Q ⊂ C
is a square, then

(
1

area(Q)

∫︂
Q

|Fz|pdxdy)1/p ≤ A(
1

area(Q)

∫︂
Q

|Fz|2dxdy)1/2 ≤ B
diam(F (Q))

diam(Q)

Lemma 2.3 (Pompeiu’s formula). If Ω has a piecewise C1 boundary and F is qua-

siconformal on Ω, then

F (w) =
1

2πi

∫︂
∂Ω

F (z)

z − w
dz − 1

π

∫︂
Ω

Fz

z − w
dxdy.(2.1)

Suppose Ω is a planar domain and suppose Γ is a path family in Ω, i.e., a col-

lection of locally rectifiable curves in Ω. A non-negative Borel function ρ is called

admissible for Γ if
∫︁
γ
ρds ≥ 1 for every curve γ ∈ Γ. The modulus of Γ (also called

conformal modulus) is the infimum of
∫︁
Ω
ρ2dxdy over all admissible ρ for Γ and is

denoted mod(Γ). The reciprocal of the modulus is called the extremal length of Γ.

A quasiconformal map F of Ω with complex dilatation satisfying ∥µ∥∞ = k < 1 has

the property that it can change conformal modulus of a path family in Ω by at most

a factor of K = (k + 1)/(k − 1).

If Ω is a topological annulus in the plane with boundary components γ1, γ2 that

are closed Jordan curves, then mod(Ω) refers to the modulus of the path family in

Ω that separates the boundary components. This is the same as the extremal length

of the path family that connects the boundary components (also called the extremal

distance between the boundary components). If A(a, b) ≡ {z : a < |z| < b} then it is

standard fact that mod(A) = 2π/ log b
a
. Let

KF =
|Fz|+ |Fz|
|Fz| − |Fz|

,

JF = |Fz|2 − |Fz|2 = (|Fz| − |Fz|)(|Fz|+ |Fz|),

denote the distortion and Jacobian functions of F respectively. Note that KF ≥ 1

and F is conformal if and only if KF ≡ 1. If KF ≤ K, then F can distort the modulus

of an annulus by a factor of most K, and hence for a map between round annuli, the

ratio of radii changes by a most a power K. In the rest of this section we show that

better estimates are possible of KF ≤ K everywhere, but KF ≈ 1 “most places”. In

what follows z = x+ iy = reiθ and area measure is denoted by dxdy or rdrdθ.
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Lemma 2.4. Suppose F is a K-quasiconformal map from Am = A(1, em) onto AM =

A(1, eM). Then

M ≥ m− 1

2π

∫︂
A(1,em)

(KF (z)− 1)
dxdy

r2
.

Proof. Let ΓM be the path family connecting the boundary components of AM . If ρ

is admissible for Am, then ˜︁ρ(F (z)) = ρ(z)/(|Fz| − |Fz|) is admissible for AM , hence

it is one of the metrics in the infimum defining mod(ΓM). Therefore

mod(F (Γm)) ≤
∫︂
Am

ρ(z)2
1

(|Fz| − |Fz|)2
JFdxdy

=

∫︂
Am

ρ(z)2
1

(|Fz| − |Fz|)2
(|Fz|2 − |Fz|2)dxdy

=

∫︂
Am

ρ(z)2
|Fz|+ |Fz|
|Fz| − |Fz|

dxdy

=

∫︂
Am

ρ(z)2KF (z)dxdy.

Applying this with the admissible metric ρ(z) = 1
m|z| , we get

2π

M
= mod(F (Γm)) ≤ 1

m2

∫︂
Am

KF (z)

|z|2
dxdy

=
1

m2

[︃∫︂
Am

KF (z)− 1

|z|2
dxdy +

∫︂
Am

1

|z|2
dxdy

]︃
=

1

m2

∫︂
Am

KF (z)− 1

|z|2
dxdy +

2π

m
.

Rearranging gives

m−M ≤ M

2πm

∫︂
Am

KF (z)− 1

|z|2
dxdy,

or

M ≥ m− M

2πm

∫︂
Am

KF (z)− 1

|z|2
dxdy.

Since KF ≥ 1, the integral is non-negative. So if M > m, the lemma is trivially true.

If M ≤ m, the inequality above becomes

M ≥ m− 1

2π

∫︂
Am

KF (z)− 1

|z|2
dxdy.

Thus in either case the lemma holds. □
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Lemma 2.5. Suppose F is a K-quasiconformal map from Am = A(1, em) to AM =

A(1, eM). Then

M ≤ m+
1

2π

∫︂
Am

(KF − 1)
dxdy

r2
.

Proof. If we cut Am with a radial slit and let G = log(F ), then G maps Am to a

generalized quadrilateral with two vertical sides on V0 = {x = 0} and VM = {x =

M}. This quadrilateral has area 2πM . Each radial segment in Am maps to a curve

connecting V0 and Vm, so the image has length that least M . So if we integrate over

the radial segments in Am, we get

M ≤
∫︂ em

1

(|Gz|+ |Gz|)dr

so integrating over all angles and using rdrdθ = dxdy gives

2πM ≤
∫︂ 2π

0

∫︂ exp(m)

1

(|Gz|+ |Gz|)drdθ ≤
∫︂
Am

(|Gz|+ |Gz|)
dxdy

r
.

Thus by Cauchy-Schwarz,

(2πM)2 ≤
(︃∫︂

Am

(|Gz|+ |Gz|)(|Gz| − |Gz|)dxdy
)︃(︃∫︂

Am

|Gz|+ |Gz|
|Gz| − |Gz|

dxdy

r2

)︃
≤

(︃∫︂
Am

JGdxdy

)︃(︃∫︂
Am

KG
dxdy

r2

)︃
≤ 2πM

(︃∫︂
Am

KF
dxdy

r2

)︃
,

where in the last line we have used the facts that G(Am) has area 2πM and KG = KF

(since log z is conformal on the slit annulus). Thus

M ≤ 1

2π

∫︂
Am

1 + (KF (z)− 1)
dxdy

r2

= m+
1

2π

∫︂
Am

(KF (z)− 1)
dxdy

r2
.

□

The following simply combines the last two results.

Corollary 2.6. Suppose F is a K-quasiconformal map from Am = A(1, em) to AM =

A(1, eM). Then

M = m+O

(︃
1

2π

∫︂
Am

KF (z)− 1

r2
dxdy.

)︃
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A special case of this is:

Corollary 2.7. Suppose F is a K-quasiconformal map from Am = A(1, em) to AM =

A(1, eM). Suppose µ is the dilatation of F , that E = {z : µ(z) ̸= 0} and that

Ek = E ∩ {ek−1 < |z| < ek}. If we choose an integer n so that m ≤ 2n, then

M = m+O

(︄
(K − 1)

n∑︂
k=1

e−2karea(Ek)

)︄
.

3. Dilatations with thin support

Next we apply these estimates to quasiconformal maps with dilatations that have

small support in a precise sense.

Lemma 3.1. Suppose F is a K-quasiconformal map with dilatation µ, that µ has

bounded support, and that F has the hydrodynamical normalization at ∞. Let E =

{z : µ(z) ̸= 0} and suppose for some t > 0, E satisfies∫︂
E\D(w,t)

dxdy

|z − w|2
≤ a,

for every w ∈ C. Then there is a C = C(K, a) = O(eO(Ka)) < ∞, depending only on

K and a, so that for every w ∈ C and r ≥ t,

1

C
≤ diam(F (D(w, r))

r
≤ C.(3.1)

Proof. We need only prove this for r = t since for r > t, we can simply apply the

lemma after setting t = r (the integral just gets smaller). Moreover, the mapping

G(z) = F (tx)/t, satisfies the same estimates as F , but with t replaced by 1. If we

prove the lemma for G, then it follows for F , so it suffices to assume t = 1.

By the normalization assumption we can choose R > 100 so large that |F (z)−z| ≤
1/2, for |z| > R/8. Thus if |w| > R/4, the circle of radius 1 around w is mapped to

a set of diameter at least 1 and at most 3. Therefore we may assume |w| ≤ R/4. Fix

such a w. Then the circle of radius R around w lies in {|z| > R/2}, where we know

F (z) is close to z.

Let m = logR, so R = em, and consider the annulus A = {z : 1 < |z − w| < em}.
F (A) is a topological annulus and can be conformally mapped to AM = {1 < |z| <
eM} for some M > 1. By Corollary 2.6,

M = m+O

(︃
1

2π

∫︂
Am

Kf − 1

|z − w|2
dxdy

)︃
.
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By our assumptions, this becomes

M = m+O

(︃
K − 1

2π

∫︂
Am

1E(z)
dxdy

|z − w|2

)︃
= m+O(Ka),

where 1E denotes the indicator function of E (the function that is one on E and zero

off E) and we have used the fact that E has finite planar area and |z − w|−1 ≤ 1 on

Am (recall w is the center of the annulus and the inner radius is at least 1.).

By Lemma 2.1, the boundary components of F (Am) are closed curves that are

each contained in annuli of bounded modulus, depending only on K. Each annulus

has boundary components are two concentric circles. Thus F (Am) is contained in

a topological annulus A′ with circular boundaries γ1, γ2 (not necessarily concentric)

whose diameters are comparable to the diameters of the boundary components of

F (Am). By monotonicity of modulus, the modulus of the annulus A′ (denotedM ′/2π)

is larger than the modulus M/2π of F (A), hence M ′ ≥ M . Moreover, we claim

M ′ ≤ log
diam(γ2)

diam(γ1)
.

This is well known to hold with equality if the circles γ1, γ2 are concentric. If they

are not, then we can apply a Möbius transformation that maps the outer circle, γ2,

to itself and moves the inner circle, γ1 to circle concentric with γ2. This makes the

Euclidean diameter of γ1 larger and preserves the modulus between the circles, and

this proves the claimed inequality. Thus

M ≤ M ′ ≤ log
diam(γ2)

diam(γ1)
,

or

diam(γ1) ≤ diam(γ2) · e−M = diam(γ2) · e−m+O(KA).

Since |F (z) − z| ≤ 1/2 on {|z| = R} we know diam(γ2) ≃ R = em. Using this and

the fact that M = m+O(Ka) gives

diam(F ({|z − w| = 1})) ≃ diam(γ1) = O(eKa).

This is the right-hand side of (3.1).

To the other side of (3.1), we choose γ1, γ2 to be circles that bound an annulus

inside F (Am), again with diameters comparable to the diameters of the corresponding

components of ∂F (Am). We then use monotonicity again, and argue as before, but

now we note that since F is close to the identity for |z| > R/2, the curve γ1 is not too

close to γ2, i.e., the distance between them is comparable to R. Thus in the argument
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above, where we moved γ1 be be concentric with γ2, its Euclidean diameter was only

changed by a bounded factor. Thus

diam(γ1) ≳ diam(γ2) · e−M = diam(γ2) · e−m−O(Ka) ≳ e−O(Ka).

This proves the lemma. □

If F is as above, then Theorem 2.2 says there is a p = p(K) > 2 so that ∥Fz∥p is

uniformly bounded on every unit radius disk. Thus if a region Y can be covered by

n such disks, then

∥FzχY ∥p = O(n1/p)(3.2)

with a uniform constant. If Y is a disk of radius r ≥ 1, it can be covered by O(r2)

unit disks, so we get the following.

Corollary 3.2. If F satisfies the conditions of Lemma 3.1, r ≥ 1, and p = p(K) > 2

is as above, then ∥Fz · 1D(z,r)∥p = O(r2/p) uniformly for all z ∈ C.

Proof of Theorem 1.1. Suppose the support of µ is contained in D(0, R). The main

idea is to use the Pompeiu formula

F (w) =
1

2πi

∫︂
|z|=r

F (z)

z − w
dz − 1

π

∫︂
|z|<r

Fz

z − w
dxdy.(3.3)

Because of our assumptions on F , the first integral is

1

2πi

∫︂
|z|=r

z +O(1/|z|)
z − w

dz = w +O(1/r).

Since the left-hand side of (3.3) and the second integral are both constant for r > R,

we see that the first integral must equal w for all r > R. Thus

F (w) = w − 1

π

∫︂
|z|<r

Fz

z − w
dxdy = w − 1

π

∫︂
|z|<r

µFz

z − w
dxdy.

Since |Fz| = |µFz| ≤ k|Fz|, we get

|F (w)− w| ≤ k

π

∫︂
E

| Fz

z − w
|dxdy.

where k = ∥µ∥∞.

We have assumed that Fz is supported onD(0, R). Hence (F (w)−w)/w is bounded

and holomorphic on {|w| > R}, so by the maximum principle it attains its maximum

on {|w| = R}. Therefore it suffices to prove the desired bound on {|w| ≤ R}.
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So assume |w| ≤ R. Let r = max(1, |w|/2). We will estimate the integral∫︂
E

| Fz

z − w
|dxdy,

by cutting D(0, R) into three pieces:

D1 = {z : |z − w| ≤ 1}

Ar = {z : 1 ≤ |z − w| ≤ r}

X = D(0, R) \ (D1 ∪ Ar) = D(0, R) \D(w, r),

and show integral over each piece is O(ϵβ/|w|), where β = β(K) > 0.

First consider D1. With p as in Corollary 2.2, the Lp norm of Fz over D1 is

uniformly bounded, so using Hölder’s inequality with the conjugate exponents p, q

satisfying 1
p
+ 1

q
= 1, we get∫︂

D1

| Fz

z − w
|dxdy = O

(︃
∥
1E∩D(w,1)

|z − w|
∥q
)︃
.(3.4)

In general, if we fix the area of a set Y , the integral
∫︁
Y
dxdy/|z| is maximized when

Y is a disk around the origin. Thus the integral above is bounded by the integral

we obtain by replacing E by a disk of the same area around w. Since E ∩ D(w, 1)

has area at most h(|w|) ≤ h(r), we can take a disk of radius s ≃
√︁

h(r). Hence the

Lq norm on the right side of (3.4) is bounded above by (using polar coordinates and

recalling 1 < q < 2)

O

(︄[︃∫︂ s

0

r−qrdr

]︃1/q)︄
= O

(︁
s(2−q)/q

)︁
= O

(︂
(ϵh(r))

1
q
− 1

2

)︂
.

Since h tends to zero faster than any polynomial |z|−d, we get h(r)
1
q
− 1

2 = o(r−d( 1
q
− 1

2 ))

for any d, and we can choose d so that h(r) = O(1/r). Since r was chosen so r ≳ |w|,
this also gives h(r)

1
q
− 1

2 = O(1/|w|). Thus∫︂
D1

| Fz

z − w
|dxdy = O

(︄
ϵ
1
q
− 1

2

|w|

)︄
.

This is the desired estimate with β = 1
q
− 1

2
= (2− q)/2q > 0.
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Next consider the integral over Ar:∫︂
Ar

| Fz

z − w
|dxdy =

∫︂
Ar

1E(z)|Fz|dxdy

=

(︃∫︂
Ar

1E(z)
qdxdy

)︃1/q (︃∫︂
Ar

|Fz|pdxdy
)︃1/p

= O (area(E ∩ Ar))
1/q · ∥Fz1Ar∥p

= O
(︁
(ϵr2h(r))1/q

)︁
· r2/p

= O

(︃
ϵ1/q

|w|

)︃
,

again since h decays faster than any power.

Finally, write X = ∪R
k=1Xk where Xk = X ∩{z : k−1 ≤ |z| < k}. Then since each

Xk can be covered by O(k) unit disks, (3.2) and 1
q
+ 1

p
= 1 imply∫︂

Xk

1E(z)|Fz|dxdy =

(︃∫︂
Ak

1E(z)
qdxdy

)︃1/q (︃∫︂
Ak

|Fz|pdxdy
)︃1/p

= (area(E ∩ Ak))
1/q

(︃∫︂
Ak

|Fz|pdxdy
)︃1/p

= (ϵkh(k))1/q ·O
(︁
k1/p

)︁
= O

(︁
ϵ1/qh(k))1/qk1/q+1/p

)︁
= O

(︁
ϵ1/qh(k)1/qk

)︁
= O

(︁
ϵ1/qk−2

)︁
,

again since h decays faster than any power. Summing over k gives the desired esti-

mate. This proves the theorem with β = (2− q)/2q > 0. □

The proof given above shows that the conclusion of Theorem 1.1 still holds if∫︁∞
0

h(r)rndr < ∞ for some (large) finite n that depends on K (in particular, it

depends on the value p > 2 so that Fz ∈ Lp in Bojarski’s theorem). Similarly, we

can assume less if we simply want a uniform bound on |F (w) − w|, rather than the

O(1/|z|) estimate above. We leave these generalizations to the reader.

Proof of Corollary 1.2. First we note that it suffices to prove this with the addi-

tional assumption that µ has bounded support, for a general quasiconformal f is the

pointwise limit of such maps (truncate µf , apply the measurable Riemann mapping

theorem and show the truncated maps converge uniformly on compact subsets to f).

So assume µ = µf has bounded support, say inside the disk D(0, R). Then f

is conformal outside D(0, R), so we can post-compose by a conformal linear map L
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to get a quasiconformal map so that |F (z) − z| ≤ C/|z|, outside D(0, 2R) with a

constant that does not depend on F (this follows from the distortion theorem for

conformal maps). We apply Theorem 1.1 to get |F (z) − z| ≤ Cϵβ, for all z with

constants C, β that depend only on k. Note that

f(z) =
F (z)− F (0)

F (1)− F (0)
,

and that |F (1)− F (0)− 1| ≤ Cϵβ, so we get

|f(z)− f(w)| = |F (z)− F (w)

F (1)− F (0)
| = |z − w|+O(ϵβ)

1 +O(ϵβ)
,

and this implies (1.1). □
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