
A Secure and Decentralized Auditing Scheme for
Cloud Ensuring Data Integrity and Fairness in

Auditing

Tariqul Islam1, Kamrul Hasan2, Saheb Singh3, Joon S. Park4,
1,3,4Syracuse University, Syracuse, NY, USA

2 Tennessee State University, Nashville, TN, USA

Email: {mtislam@syr.edu, mhasan1@tnstate.edu, ssingh55@syr.edu, jspark@syr.edu}

Abstract—With the advent of cloud storage services many
users tend to store their data in the cloud to save storage
cost. However, this has lead to many security concerns, and one
of the most important ones is ensuring data integrity. Public
verification schemes are able to employ a third party auditor to
perform data auditing on behalf of the user. But most public
verification schemes are vulnerable to procrastinating auditors
who may not perform auditing on time. These schemes do
not have fair arbitration also, i.e. they lack a way to punish
the malicious Cloud Service Provider (CSP) and compensate
user whose data has been corrupted. On the other hand, CSP
might be storing redundant data that could increase the storage
cost for the CSP and computational cost of data auditing for
the user. In this paper, we propose a Blockchain-based public
auditing and deduplication scheme with a fair arbitration system
against procrastinating auditors. The key idea requires auditors
to record each verification using smart contract and store the
result into a Blockchain as a transaction. Our scheme can detect
and punish the procrastinating auditors and compensate users
in the case of any data loss. Additionally, our scheme can detect
and delete duplicate data that improve storage utilization and
reduce the computational cost of data verification. Experimental
evaluation demonstrates that our scheme is provably secure and
does not incur overhead compared to the existing public auditing
techniques while offering an additional feature of verifying the
auditor’s performance.

Keywords: Convergent Encryption, Confidentiality, Dedu-

plication, Blockchain, Public Data Auditing, Procrastinating

Auditor.

I. INTRODUCTION

In the era of internet, it has become important that we

are able to preserve the data not only for future references

but also for historical records [1]. Due to the fast growing

data capacity of devices, days of data deletion are gone [2].

Nowadays, most companies keep their historic data separate

from their data warehouse. The most common way of storing

data is in the cloud which provides a cheap way to store large

amount of data without worrying about being able to handle

the data storage, and data is easily available anywhere in the

world with only internet connection [3]. But storing data in the

cloud comes with its caveats such as losing control over your

data, data privacy, and data integrity issues. The integrity of

outsourced data is being put at risk in practice. For instance,

CSPs may not feel comfortable to reveal the incidents of data

corruption for maintaining their good reputation, or may delete

a portion of data that is never accessed to reduce the storage

costs. Furthermore, an external adversary may tamper with the

outsourced data for financial or political reasons [4]. One of

the ways we can ensure that our data stored in the cloud is

not corrupted is auditing the CSP periodically.

The simplest way for a user to audit data is by downloading

a random subset of data and comparing it with the metadata of

the original data subset. While this is theoretically possible, it

is not feasible for the user as it is computationally expensive

when data size is huge. An alternate way is to authorize an

auditor to perform auditing on behalf of the user. Auditor

usually has a contractual agreement with the user to audit

the CSP after every pre-defined period of time. Auditor takes

a certain amount of fee for this task and the user does not

need to worry about the integrity of the data. In a public

verification scheme, the auditor is assumed to be honest and

reliable. However, user also needs to be vigilant so that auditor

and CSP do not collude with each other to hide information

about corrupted data blocks [4]. To ensure security in the case

that the auditor is compromised, the user is required to audit

the auditor’s behaviors– after each verification, the auditor is

expected to record the information used to verify the data

integrity, which can enable the user to verify the auditor’s

performance.

Most of the auditing schemes focus on auditing the CSP

without thinking about data size. As data size is growing ex-

ponentially, it is becoming increasingly challenging to remove

redundant data and maximize storage savings. A technique

called Data Deduplication [5] is being adopted by CSPs

to improve storage utilization by storing only one copy of

a file in the system. Using data deduplication user can not

only save on storage cost but it is also convenient for auditor

to audit only the unique data [6]. Existing auditing schemes

also require data validation to be performed periodically so

that any data corruption can be detected as early as possible.

Any delay in detecting corrupt data might lead to a huge

financial loss for the user. However, an irresponsible auditor

may procrastinate on the scheduled verification due to network

failures, system errors, or request from the CSP. We call

this auditor a Procrastinating Auditor, it deviates from

the main objective of the public verification schemes, i.e.,

detecting data corruption as soon as possible [1]. It might

74

2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International
Conference on Edge Computing and Scalable Cloud (EdgeCom)

978-1-6654-8066-6/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCloud-EdgeCom54986.2022.00022

20
22

 IE
E

E
 9

th
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
yb

er
 S

ec
ur

ity
 a

nd
 C

lo
ud

 C
om

pu
tin

g
(C

SC
lo

ud
)/

20
22

 IE
E

E
 8

th
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
dg

e
C

om
pu

tin
g

an
d

Sc
al

ab
le

 C
lo

ud
 (E

dg
eC

om
) |

 9
78

-1
-6

65
4-

80
66

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

E
E

 |
D

O
I:

 1
0.

11
09

/C
SC

lo
ud

-E
dg

eC
om

54
98

6.
20

22
.0

00
22

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

be too late to recover the data loss or damage if the auditor

procrastinates on the verification. In fact, the procrastinating

auditor cannot be detected in most of the current public

verification schemes, even though malicious auditors can be

detected [7]. Most of the existing public auditing schemes

do not have fair arbitration system– in the case of data

corruption, the user has to bear the financial loss. Therefore, it

is essential to have a system that can not only punish malicious

CSPs but also compensate user for the data loss. Moreover,

existing public auditing schemes are either focused on the

problem of procrastinating auditor or on the deduplication.

Very few Blockchain-based auditing schemes exist that looked

at fair arbitration for the user. And those who looked at fair

arbitration are unable to punish the auditor for procrastination

or colluding with the CSP for corrupting data.

Objectives. The purpose of our work is to propose a public

auditing scheme that, i) resists malicious and procrastinating

auditors, ii) provides users a fair arbitration system in case data

integrity is lost, iii) guarantees secure access control through

a robust key management technique, and iv) achieves storage

efficiency by employing deduplication.

Contributions. Following are the main contributions of our

work:

• We propose a cloud based public auditing scheme that

blends public auditing with a fair arbitration system to

achieve data integrity and fairness in auditing.

• Our scheme uses a Blockchain-based solution to protect

users from the procrastinating auditor and guarantees that

the auditor would not be able to collude with the CSP.

• The use of HCE2 (Hash–and–Convergent Encryption-2)

algorithm ensures secure and efficient access control to

cloud storage system and also makes our scheme resilient

to several well known attacks.

• The use of smart contract (which are immutable after

being deployed) in our scheme ensures that CSP is unable

to collude with the auditor to hinder fair arbitration to the

user.

• Our scheme supports deduplication which not only saves

storage cost but also reduces the cost of auditing for

the user. We use Ramp Secret Sharing scheme for key

management, which requires less computational cost for

sharing and recovering the secret key.

The rest of the paper is organized as follows: In Section II,

we review some preliminaries and cryptographic primitives. In

Section III, we describe our system model and the proposed

scheme. In Section IV, we present implementation and evalu-

ation of our scheme. We present some related work in Section

V. Finally, we conclude the paper in Section VI.

II. PRELIMINARY APPROACHES AND RELATED

ALGORITHMS

In this section, we provide formal definitions of the cryp-

tographic primitives that form the foundation for our storage

scheme. We also present the algorithms and protocols that we

use in our proposed scheme.

Fair Arbitration. CSP receives storage fees for storing user

data in the cloud, whereas auditor receives auditing fees for

auditing the CSP. If CSP is not able to store data correctly

which leads to corruption of stored data, user solely has to

bear the loss incurred from this corruption. However, ideally,

in case of data corruption, CSP should pay a certain amount

to user as a compensation for mishandling the data. In a fair

arbitration system, CSP bears some responsibilities for the loss

incurred due to the corruption of the data file [8]. In this

work, we integrate a fair arbitration system with our public

auditing scheme using the concept of smart contract [4]. Since

smart contracts are immutable, we are able to perform data

verification in the smart contract and user pays the CSP for

storage if auditing is successful. Similarly, CSP pays the user

certain amount as compensation when user data get corrupted.

This not only helps the user monetarily but also provides an

extra motivation to the CSP to maintain data correctly.

Deduplication. Deduplication is a technique being adopted

by many CSPs to improve storage utilization by storing only

a single copy of a file or file block in a system [6]. Research

[9] has shown that data deduplications can save up to nearly

75% in business applications storage and bandwidth costs

[4]. Deduplication is achieved by using convergent encryption,

which produces identical ciphertexts from the same plaintext,

regardless of the users and the number of times it is encrypted.

In convergent encryption, a user derives a convergent key by

computing the hash of the file content and then encrypts the

file with this key.

Hash–and–Convergent Encryption-2 (HCE2). Hash-and-

CE2 (HCE2) is one of the message locked encryption tech-

niques [10]. Using HCE2, a user generates convergent key

by hashing the plaintext [4]. And then using this convergent

key the data is encrypted. Thus, users with the same data

will generate the same convergent key and using this key on

the same plain-text, users will always get the same cipher-

text. Therefore, CSP can realize data deduplication on the

cipher-text. In our scheme, we use HCE2. The use of Hash-

and-CE2 (HCE2) instead of Hash-and-CE (HCE) has some

advantages. HCE2 uses guarded decryption which enables it to

achieve “Tag Consistency” security. And, unlike HCE, HCE2

is resilient to erasure attacks.

Ramp Secret Sharing Technique. Secret sharing enables a

group of n shareholders to share a secret between them so that

any k participants can construct the secret, and (k - 1) or fewer

participants cannot generate the secret [6], [11]. We utilize

ramp secret sharing in our scheme to share the convergent

encryption key between users having the same data. We use

ramp secret sharing instead of Shamir Secret Sharing [12] as

Shamir’s has two limitations: i) a heavy computational cost

is involved to create shares and recover the secret, and ii) a

large storage capacity is needed to reconstruct all the shares

[3]. Shamir secret sharing has a constraint of one share per

shareholder, which makes computational cost really high in

case of large number of shares for each shareholder. Contrarily,

ramp secret sharing removes this constraint and reduces the

load on individual stakeholder.

75

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

Homomorphic Linear Authenticator. Homomorphic Lin-

ear Authenticator (HLA) is a signature scheme widely used

in cloud computing and storage server systems, which allows

client who stored data in an untrusted server to verify that the

server possesses the original data without retrieving it [13].

HLA allows CSPs to respond with an aggregated authenticator

to the Auditor’s challenge, hence reducing the communication

complexity [14].

III. PROPOSED SCHEME

We consider a practical scenario where an organization uses

a cloud storage service that facilitates staff members in the

same department or group to read, write and share files. Our

proposed scheme consists of the following four entities and

the workflow is divided into seven main tasks as illustrated

in Fig 1. At first, user prepares data to be outsourced to

the CSP (task-1). Then, user delegates the auditing task to

the auditor (task-2). Auditor generates challenge messages by

utilizing the blockhashes of the Ethereum Blockchain (task-

3) and sends those to the CSP (task-4). CSP then computes

the corresponding proof messages and responds to the auditor

(task-5). Auditor checks the validity of the proof messages to

verify data integrity and records the audit log in the Blockchain

(task-6). Finally, through task-7, user can audit the quality

of the auditor by investigating the audit logs stored in the

Blockchain.

A. Essential Components of Our Proposed Scheme
User. User (i.e., data owner) is the owner of data and

outsources data to the CSP. User is responsible for auditing

the auditor using Blockchain log. User is also the owner of the

smart contract and therefore is the only one who can delete

smart contract. User deposits an initial amount to the smart

contract which could be used later on to penalize the CSP if

any corrupted data is found within a given time frame.

Fig. 1. Blockchain-based Cloud Auditing Model

Auditor. Auditor is responsible for auditing the CSP by

sending the challenge blocks to the CSP using Blockchain

hashes in regular intervals. Once auditor gets the response

from the CSP, it forwards the challenge blocks from the CSP

to the smart contract for auditing.

Cloud Storage Provider (CSP). CSP stores user data and

responds to the challenge sent by the auditor. CSP also stores

a deposit to the smart contract for facilitating fair arbitration

to the user in case data get corrupted.

Smart Contract. Smart Contract is responsible for auditing

the CSP using the challenge blocks it received from the auditor

and the response provided by the CSP. If no data corruption

is found, smart contract creates an empty transaction and

records the auditing log. If data corruption is discovered, smart

contract creates a transaction– sends an amount to the user as

a compensation and records the log of this transaction for

auditing purposes.

B. Hash-and-Convergent Encryption-2 Operations (HCE2)

Our scheme uses HCE2 encryption which is a type of

convergent encryption. We define HCE2 with the following

four fundamental operations:

1) KeyGenHCE2(Pi, Fi) → Ki: This HCE2 key genera-

tion algorithm takes a file block Fi and public parameter

Pi as its input and outputs a convergent key Ki.

2) EncryptHCE2(Ki, Fi) → Cipheri: This encryption

algorithm takes as input a file block Fi, the convergent

key Ki, and produces a ciphertext Cipheri, such that

only users having Ki will be able to decrypt Fi.

3) DecryptHCE2(Cipheri,Ki) → Fi: This decryption

algorithm takes the ciphertext and the convergent key as

its inputs. It produces the original file block Fi.

4) TagGenHCE2(Cipheri) → Tagi: This tag generation

algorithm takes as input a ciphertext Cipheri and out-

puts a tag Tagi.

C. Bilinear Groups

Let G1, G2, and GT are three different multiplicative cyclic

groups of the order p. We use g1 and g2 to denote the

generators of G1 and G2. Following are the properties it holds.

1) Computational: There exists an efficient computational

algorithm which is capable of computing map e.

2) Bilinearity: For all a ∈ G1, b ∈ G2, x and y in Zp,

e(ax, by) is equal to e(a, b)xy.
3) Non− degeneracy: e(g1, g2) is not equal to 1.

TABLE I
NOTATIONS.

Notation Description
Ui Cloud User i

F Plain text file of the User

Fi Blocks of plain text files of the User

Ki Convergent key for block Fi

Tagi Authentication tag of block Fi

Cipheri Encrypted Ciphertext of block Fi

Sig(.) Signature generating algorithm

H(.) Secure hash function

h(.) Secure hash function

G1 Multiplicative cyclic group

G2 Multiplicative cyclic group

GT Multiplicative cyclic group

f Pseudorandom function: {0, 1}*→ n

76

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

D. Our Implementation

In this section, we describe the overall structure and the

algorithms implemented in our scheme. We use the notations

shown in TABLE I to present our system.

Algorithm 1 Data Encryption

Input: Files F
Output: (Keyi, Cipheri, Tagi)

Initialization : Public Parameter P
1: {Fi} ← Split(F,n) {split file F into n blocks}
2: for each Fi ∈ F do
3: Keyi ← KeyGenHCE2(Pi,Fi)
4: Cipheri ← EncryptHCE2(Keyi,Fi)
5: Tagi ← TagGenHCE2(Cipheri)
6: end for

Data Encryption. This algorithm (Algorithm 1) consists

of the following steps. The user delegates the auditing to

the third party auditor. The user and the auditor comes to

an agreement about the frequency of the verification to be

performed by the auditor. The third party auditor is considered

to be honest but curious. Using encryption algorithm (Algo-

rithm 1), user encrypts the data and sends (Keyi, Cipheri,
Tagi) for each file block to the CSP. Due to the intrinsic

property of convergent encryption, the users with the same data

always generate the same encryption key and thus facilitates

deduplication operation. The user first randomly chooses a key

pair (Public K, Private K) as the public key (pk)
and private key (sk) for signing. In line 1 of Algorithm 1, user

splits the file F into a set of chunks ({F1}, {F2}, ... ,{Fn}).

The user takes each file block and generates keys using the

KeyGenHCE2 method (lines 2-3). Once key is generated user

encrypts the data using the EncryptHCE2 method (line 4).

Finally, the user generates the tag of the encrypted data using

TagGenHCE2 method (line 5) and stores the tag for future

verification. The user then computes σ ← (H(Wi).u
Ci)x and

t ← name || Sigsk(name) and sends the ciphtertext and σ
to the CSP. Once the data has been uploaded, CSP makes a

comparison between the newly uploaded data and stored data.

If the same data is already stored, CSP no longer stores the

new data.

Algorithm 2 Auditor Challenges the CSP

Input: Blockhashes for c blocks at time t in {Bt, Bt−1,. . . ,

Bt−c}
Output: Chal ← {(ac, nac), {Bt, Bt−1,. . . , Bt−c}}

1: for i ← 0 to N − 1 do
2: for y ← 0 to c − 1 do
3: ai ← f(Bt−y||i) {f is a pseudorandom function}
4: nai ← H(Bt−y||ay) {H is a hash function}
5: end for
6: end for

Auditor Challenge Algorithm. The auditor is required to

audit the CSP after a pre-defined time interval. This algorithm

(Algorithm 2) consists of the following steps. Using the

current blockhash in the Blockchain, auditor generates ai,
a c-element random subset (lines 1-3), which represents

the different files selected at random to be audited. In line

4, auditor generates a random number nai using current

blockhash in the Blockchain which represents the blocks in

the files selected to be audited. The auditor finally generates

the challenge and sends it to the CSP.

Algorithm 3 CSP’s Response to Challenge

Input: Chal ← {(ac, nac), {Bt, Bt−1,. . . , Bt−c}}
Output: {μ, σ, R}

Initialization: Cyclic Group G1, G2, Gt

Gt ← G1x G2 {Bilinear Mapping}
1: u ← G1 {Random element}
2: x ← Gt {Random element}
3: v ← gx {g is the generator of bilinear mapping}
4: R ← e(u,v) ∈ Gt

5: ω ← ∑
ai
naiCai

6: μ ← h(R)ω {h is a secure hash function}
7: σ ← ∏

ai∈i σ
nai
ai

{Generating aggregated authenticator}

CSP’s Response to Challenge Algorithm. After receiving

the challenge from the auditor, CSP computes the response

for the different blocks in different files by generating a

linear combination of sampled blocks (lines 1-5 of Algorithm

3). In lines 6-7, CSP generates an aggregated authenticator.

CSP then sends the aggregated authenticator along with the

linear combination of the blocks to the smart contract for

verification.

Smart Contract Algorithm. Smart contract receives the

challenge-response (of the CSP) from the auditor and tag t
from the user; where, t is the tag of the file generated by

the user before sending data to the CSP. Smart contract first

verifies the signature (line 2 of Algorithm 4) of the files sent

by the CSP by comparing it with the user file tag using pk.

If the verification fails, smart contract sets Y = 0 (line 3),

verifies that the auditing has failed as CSP has not sent the

correct data required for auditing and stops the auditing. If

verification is passed, smart contract then computes a and b
(lines 6-8). In line 9, it checks if both a and b are similar to

each other. If a and b are not similar then it executes lines

10-12, sets Y = 0 (line 10), and stops the auditing. If both a
and b are equal to each other, then it executes lines 14-16 and

sets Y = 1 (line 14). After the auditing is done, if Y is set as

0, it means that auditing has failed and data has been found

corrupted. In this case, CSP’s deposit is sent to the user as

compensation for the data loss. If Y = 1, it means that the

auditing has passed successfully. In this case, user’s deposit

is sent to the CSP for maintaining data integrity. The smart

contract sets the current blockhash used for auditing and the

proof of verification as a log entry, stores the entry to the log

file, and creates a transaction that transfers 0 deposit from its

account to the user’s account. This transaction can be used

by the user to check for procrastinating auditor by matching

the blockhash of the Blockchain at the time of the auditing

77

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

and checking the transaction records in the Blockchain.

Algorithm 4 Smart Contract

Input: tag t, {μ, σ, R} of all challenged files.

Output: Result of Integrity Y

1: for each Fi ∈ F do
2: if (Verification(t) != t) then
3: Y = 0
4: break

5: end if
6: z ← h(R) {h(.) is a hash function}
7: a ← e(σz, g)
8: b ← e((

∏
ai∈i H(Wac)

n
ac)

z,v)
9: if (a! = b) then

10: Y = 0
11: Send deposit to User as Compensation

12: end if
13: if (a == b) then
14: Y = 1
15: Send deposit to Cloud Service Provider as fee

16: end if
17: end for

IV. IMPLEMENTATION AND EVALUATION

In this section, we provide experimental evaluation of our

scheme. We implemented our scheme in Python programming

language by using Crypto library [15] and Solidity v0.5.13

[16]. The test environment is Intel Core i9 (2.30 GHz and

32GB RAM) and Macintosh Big Sur v11.2.1. We test our

program in the Remix-IDE [17].

Fig. 2. Key Generation Time

A. Key Generation Time

To verify the performance of key generation, we compared

our scheme with Yuan et al.’s [4] and Li et al.’s scheme [18].

We considered file size ranging from 1MB to 10MB in this

case. We observed almost identical performances (1MB to

6MB files) for all three schemes. Fig. 2 shows that for files

larger than 6MB, our scheme performed a little better.

B. Encryption vs Decryption Time

Our scheme uses homomorphic linear authentication of the

outsourced data on the cipher text which is different to that

used in existing data auditing schemes [13], [18]. To test

encryption and decryption time, we use AES-256 algorithm,

where the user data size varies from 1MB to 8MB. The

encryption and decryption time are plotted in Fig. 3 and Fig. 4

respectively. Our scheme performed better in both categories.

Fig. 3. Encryption Time

Fig. 4. Decryption Time

C. Total Upload Time

We have taken the combination of key generation, data

encryption, tag generation, and data upload time as the “Total

Upload Time”. Comparing our scheme with the Yuan et al.’s

[4] and Wang et al.’s scheme [13], we achieved slightly

improved performance. Comparison is shown in Fig. 5.

Fig. 5. Total Upload Time

D. Overall Gas Cost for Integrity Verification and Checking
Fairness in Auditing

To achieve fair arbitration, we wrote a smart contract using

Solidity to verify the audit logs of our data with the CSP.

Since our scheme also has the additional benefit of auditing

the auditor (for procrastinating) along with data integrity

verification, we needed a little more gas as compared to Yuan

et al’s [4] and Wang et al’s [13] scheme. For the smart contract,

we have modified Yuan et al’s scheme [4] to add the feature of

“auditing the procrastinating auditor” along with data integrity

verification. The term Gas here refers to the cost of compiling

the smart contract and performing a transaction. Gas prices are

denoted in Gwei where each Gwei is equal to 0.000000001

ETH (10−9 ETH). ETH is the native cryptocurrency of the

78

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

Etherium platform. Our scheme uses 2 x 105 more Gwei as

compared to Wang et al’s [13] and Yuan el al’s [4] scheme

for 400 file blocks. This is only an increase of 1% in Gas
cost and is needed for storing the balance of the deposit and

performing transactions which the user will use later on to

verify if the auditor is procrastinating or not. For a total of

400 blocks with different data sizes, we observed the gas cost

in Gwei to be 1.8 x 107 (0.018 Ether) approximately. With

the increase in file size, this is expected to be increased as

larger file will require more computational Gas to compute

the smart contract. We compared the Gas cost in Fig. 6.

Fig. 6. Overall Gas Cost

V. COMPARISON WITH RELATED WORK

Most of the existing public auditing schemes [1], [4], [13],

[19] are focused on helping either the third party auditor or the

CSP. Wang et al. [13] presented a scheme for auditing the CSP.

Their scheme is efficient in detecting corrupted data; however,

it is vulnerable to procrastinating auditor, and does not provide

user with any fair compensation. It does not give any financial

incentive to the CSP for maintaining data integrity also. Yuan

et al. [4] and Jin et al. [19] proposed auditing schemes that

provide user compensation if data integrity is not maintained

by the CSP. While these schemes focus on maintaining data

integrity, they are vulnerable to procrastinating auditor. If

auditing is not performed regularly, by the time data corruption

is detected by the auditor, user might have suffered more loss

than she would be compensated. Unlike their schemes, our

scheme simultaneously achieves data integrity and fairness in

auditing.

Zhang et al. [1] proposed a public auditing scheme for

protecting users against procrastinating auditor. If the auditor

is procrastinating and some data blocks are found to be

corrupted, only the user has to bear the cost of data loss.

Contrarily, our scheme takes care of the user if the data is

corrupted by the CSP, by making CSP liable to compensate

for the data loss. This not only helps the User but also provides

an extra financial incentive to the CSP for maintaining data

integrity.

VI. CONCLUSION

In this paper, we proposed a secure and efficient public

auditing scheme that employs a fair arbitration system to

tackle the problems caused by the procrastinating auditor.

Our scheme uses HCE2 algorithm that enables deduplica-

tion, and thus saves extra cost of storing redundant data

and performing auditing. Moreover, the use of ramp secret

sharing ensures secure authentication and access control of

outsourced data. Experimental results show that our scheme

performs well in terms major cryptographic operations. Our

prototype implementation of fair arbitration with protection

against procrastinating auditor demonstrates that it incurs only

1% overhead in terms of Gas cost compared to the existing

techniques while providing an additional important feature of

auditing the auditor.

REFERENCES

[1] Y. Zhang, C. Xu, X. Lin, and X. Shen, “Blockchain-Based Public In-
tegrity Verification for Cloud Storage against Procrastinating Auditors,”
IEEE Transactions on Cloud Computing, March 2019.

[2] S. Keelveedhi, M. Bellare, and T. Ristenpart, “Secure Deduplication with
Efficient and Reliable Convergent Key Management,” IEEE Transactions
on Parallel and Distributed Systems, vol. w5, no. 6, pp. 1615–1625,
2014.

[3] T. Islam, H. Mistareehi, and D. Manivannan, “SecReS: A Secure and
Reliable Storage Scheme for Cloud with Client-Side Data Deduplication
,” in Proc. of the 2019 IEEE Global Communications Conference
(GLOBECOM), Dec. 2019, pp. 1–6.

[4] H. Yuan, X. Chen, J. Wang, J. Yuan, H. Yan, and W. Susilo, “Blockchain-
based public auditing and secure deduplication with fair arbitration,”
Information Sciences, vol. 541, no. 4, pp. 409–424, Dec. 2020.

[5] J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer, “Re-
claiming Space from Duplicate Files in a Serverless Distributed File
System,” in Proc. of the 22nd International Conference on Distributed
Computing Systems, July 2002, pp. 617–624.

[6] T. Islam, K. Lim, and D. Manivannan, “Blending Convergent Encryption
and Access Control Scheme for Achieving A Secure and Storage
Efficient Cloud ,” in Proc. of the 2020 IEEE 17th Annual Consumer
Communications Networking Conference (CCNC), Jan. 2020, pp. 1–6.

[7] J. Li, Y. Li, X. Chen, P. Lee, and W. Lou, “A Hybrid Cloud Approach for
Secure Authorized Deduplication,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 5, pp. 1206–1216, May 2015.

[8] Y. Zhang, C. Xu, N. Cheng, H. Li, H. Yang, and X. Shen, “Chronos++:
An Accurate Blockchain-Based Time-Stamping Scheme for Cloud Stor-
age,” IEEE Transactions on Services Computing, vol. 13, no. 2, pp.
216–229, Oct. 2020.

[9] M. Dutch, “Understanding data deduplication ratios,” SNIA Data Man-
agement, no. 2, 2008.

[10] M. Bellare and S. Keelveedhi, “Interactive Message-Locked Encryption
and Secure Deduplication,” in Proc. of the 18th IACR International
Conference on Practice and Theory in Public-Key Cryptography, Mar.
2015, pp. 516–538.

[11] L. Bai, “A Strong Ramp Secret Sharing Scheme Using Matrix Projection
,” in Proc. of the International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM’06), 2006, pp. 5–6.

[12] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 1, pp. 612–613, Jan. 1979.

[13] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Public Auditing for Secure Cloud Storage,” IEEE Transac-
tions on Computers, vol. 62, no. 2, pp. 362–375, 2013.

[14] S. Liu and K. Chen, “Homomorphic Linear Authentication Schemes
for Proofs of Retrievability ,” in Proc. of the 2011 3rd International
Conference on Intelligent Networking and Collaborative Systems, 2011,
pp. 258–262.

[15] “Crypto library for Python,” https://pythonhosted.org/pycrypto/Crypto-
module.html, Tech. Rep.

[16] “Solidity,” https://docs.soliditylang.org/en/v0.8.4/, Tech. Rep.
[17] “Ethereum, browser-only ethereum ide and runtime environment,”

https://remix.ethereum.org, Tech. Rep., 2021.
[18] J. Li, J. Li, D. Xie, and Z. Cai, “Secure Auditing and Deduplicating

Data in Cloud,” IEEE Transactions on Computers, vol. 65, no. 8, pp.
2386–2396, 2016.

[19] H. Jin, H. Jiang, and K. Zhou, “Dynamic and Public Auditing with Fair
Arbitration for Cloud Data,” IEEE Transactions on Cloud Computing,
vol. 6, no. 3, pp. 680–693, July-Sept 2018.

79

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

