2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom) | 978-1-6654-8066-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/CSCloud-EdgeCom54986.2022.00022

2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International
Conference on Edge Computing and Scalable Cloud (EdgeCom)

A Secure and Decentralized Auditing Scheme for
Cloud Ensuring Data Integrity and Fairness in
Auditing

Tariqul Islam', Kamrul Hasan?, Saheb Singh3, Joon S. Park?,
1.3.4Syracuse University, Syracuse, NY, USA
2 Tennessee State University, Nashville, TN, USA
Email: {mtislam@syr.edu, mhasanl @mstate.edu, ssingh55@syr.edu, jspark@syr.edu}

Abstract—With the advent of cloud storage services many
users tend to store their data in the cloud to save storage
cost. However, this has lead to many security concerns, and one
of the most important ones is ensuring data integrity. Public
verification schemes are able to employ a third party auditor to
perform data auditing on behalf of the user. But most public
verification schemes are vulnerable to procrastinating auditors
who may not perform auditing on time. These schemes do
not have fair arbitration also, i.e. they lack a way to punish
the malicious Cloud Service Provider (CSP) and compensate
user whose data has been corrupted. On the other hand, CSP
might be storing redundant data that could increase the storage
cost for the CSP and computational cost of data auditing for
the user. In this paper, we propose a Blockchain-based public
auditing and deduplication scheme with a fair arbitration system
against procrastinating auditors. The key idea requires auditors
to record each verification using smart contract and store the
result into a Blockchain as a transaction. Our scheme can detect
and punish the procrastinating auditors and compensate users
in the case of any data loss. Additionally, our scheme can detect
and delete duplicate data that improve storage utilization and
reduce the computational cost of data verification. Experimental
evaluation demonstrates that our scheme is provably secure and
does not incur overhead compared to the existing public auditing
techniques while offering an additional feature of verifying the
auditor’s performance.

Keywords: Convergent Encryption, Confidentiality, Dedu-
plication, Blockchain, Public Data Auditing, Procrastinating

Auditor.

I. INTRODUCTION

In the era of internet, it has become important that we
are able to preserve the data not only for future references
but also for historical records [1]. Due to the fast growing
data capacity of devices, days of data deletion are gone [2].
Nowadays, most companies keep their historic data separate
from their data warehouse. The most common way of storing
data is in the cloud which provides a cheap way to store large
amount of data without worrying about being able to handle
the data storage, and data is easily available anywhere in the
world with only internet connection [3]. But storing data in the
cloud comes with its caveats such as losing control over your
data, data privacy, and data integrity issues. The integrity of
outsourced data is being put at risk in practice. For instance,
CSPs may not feel comfortable to reveal the incidents of data
corruption for maintaining their good reputation, or may delete

a portion of data that is never accessed to reduce the storage
costs. Furthermore, an external adversary may tamper with the
outsourced data for financial or political reasons [4]. One of
the ways we can ensure that our data stored in the cloud is
not corrupted is auditing the CSP periodically.

The simplest way for a user to audit data is by downloading
a random subset of data and comparing it with the metadata of
the original data subset. While this is theoretically possible, it
is not feasible for the user as it is computationally expensive
when data size is huge. An alternate way is to authorize an
auditor to perform auditing on behalf of the user. Auditor
usually has a contractual agreement with the user to audit
the CSP after every pre-defined period of time. Auditor takes
a certain amount of fee for this task and the user does not
need to worry about the integrity of the data. In a public
verification scheme, the auditor is assumed to be honest and
reliable. However, user also needs to be vigilant so that auditor
and CSP do not collude with each other to hide information
about corrupted data blocks [4]. To ensure security in the case
that the auditor is compromised, the user is required to audit
the auditor’s behaviors— after each verification, the auditor is
expected to record the information used to verify the data
integrity, which can enable the user to verify the auditor’s
performance.

Most of the auditing schemes focus on auditing the CSP
without thinking about data size. As data size is growing ex-
ponentially, it is becoming increasingly challenging to remove
redundant data and maximize storage savings. A technique
called Data Deduplication [5] is being adopted by CSPs
to improve storage utilization by storing only one copy of
a file in the system. Using data deduplication user can not
only save on storage cost but it is also convenient for auditor
to audit only the unique data [6]. Existing auditing schemes
also require data validation to be performed periodically so
that any data corruption can be detected as early as possible.
Any delay in detecting corrupt data might lead to a huge
financial loss for the user. However, an irresponsible auditor
may procrastinate on the scheduled verification due to network
failures, system errors, or request from the CSP. We call
this auditor a Procrastinating Auditor, it deviates from
the main objective of the public verification schemes, i.e.,
detecting data corruption as soon as possible [1]. It might

978-1-6654-8066-6/22/$31.00 ©2022 IEEE 74
DOI 10.1109/CSCloud-EdgeCom54986.2022.00022

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

be too late to recover the data loss or damage if the auditor
procrastinates on the verification. In fact, the procrastinating
auditor cannot be detected in most of the current public
verification schemes, even though malicious auditors can be
detected [7]. Most of the existing public auditing schemes
do not have fair arbitration system— in the case of data
corruption, the user has to bear the financial loss. Therefore, it
is essential to have a system that can not only punish malicious
CSPs but also compensate user for the data loss. Moreover,
existing public auditing schemes are either focused on the
problem of procrastinating auditor or on the deduplication.
Very few Blockchain-based auditing schemes exist that looked
at fair arbitration for the user. And those who looked at fair
arbitration are unable to punish the auditor for procrastination
or colluding with the CSP for corrupting data.

Objectives. The purpose of our work is to propose a public
auditing scheme that, i) resists malicious and procrastinating
auditors, ii) provides users a fair arbitration system in case data
integrity is lost, iii) guarantees secure access control through
a robust key management technique, and iv) achieves storage
efficiency by employing deduplication.

Contributions. Following are the main contributions of our
work:

o We propose a cloud based public auditing scheme that
blends public auditing with a fair arbitration system to
achieve data integrity and fairness in auditing.

o Our scheme uses a Blockchain-based solution to protect
users from the procrastinating auditor and guarantees that
the auditor would not be able to collude with the CSP.

e The use of HCE2 (Hash—and—Convergent Encryption-2)
algorithm ensures secure and efficient access control to
cloud storage system and also makes our scheme resilient
to several well known attacks.

e The use of smart contract (which are immutable after
being deployed) in our scheme ensures that CSP is unable
to collude with the auditor to hinder fair arbitration to the
user.

o Our scheme supports deduplication which not only saves
storage cost but also reduces the cost of auditing for
the user. We use Ramp Secret Sharing scheme for key
management, which requires less computational cost for
sharing and recovering the secret key.

The rest of the paper is organized as follows: In Section II,
we review some preliminaries and cryptographic primitives. In
Section III, we describe our system model and the proposed
scheme. In Section IV, we present implementation and evalu-
ation of our scheme. We present some related work in Section
V. Finally, we conclude the paper in Section VL

II. PRELIMINARY APPROACHES AND RELATED
ALGORITHMS

In this section, we provide formal definitions of the cryp-
tographic primitives that form the foundation for our storage
scheme. We also present the algorithms and protocols that we
use in our proposed scheme.

75

Fair Arbitration. CSP receives storage fees for storing user
data in the cloud, whereas auditor receives auditing fees for
auditing the CSP. If CSP is not able to store data correctly
which leads to corruption of stored data, user solely has to
bear the loss incurred from this corruption. However, ideally,
in case of data corruption, CSP should pay a certain amount
to user as a compensation for mishandling the data. In a fair
arbitration system, CSP bears some responsibilities for the loss
incurred due to the corruption of the data file [8]. In this
work, we integrate a fair arbitration system with our public
auditing scheme using the concept of smart contract [4]. Since
smart contracts are immutable, we are able to perform data
verification in the smart contract and user pays the CSP for
storage if auditing is successful. Similarly, CSP pays the user
certain amount as compensation when user data get corrupted.
This not only helps the user monetarily but also provides an
extra motivation to the CSP to maintain data correctly.

Deduplication. Deduplication is a technique being adopted
by many CSPs to improve storage utilization by storing only
a single copy of a file or file block in a system [6]. Research
[9] has shown that data deduplications can save up to nearly
75% in business applications storage and bandwidth costs
[4]. Deduplication is achieved by using convergent encryption,
which produces identical ciphertexts from the same plaintext,
regardless of the users and the number of times it is encrypted.
In convergent encryption, a user derives a convergent key by
computing the hash of the file content and then encrypts the
file with this key.

Hash-and-Convergent Encryption-2 (HCE2). Hash-and-
CE2 (HCE2) is one of the message locked encryption tech-
niques [10]. Using HCE2, a user generates convergent key
by hashing the plaintext [4]. And then using this convergent
key the data is encrypted. Thus, users with the same data
will generate the same convergent key and using this key on
the same plain-text, users will always get the same cipher-
text. Therefore, CSP can realize data deduplication on the
cipher-text. In our scheme, we use HCE2. The use of Hash-
and-CE2 (HCE2) instead of Hash-and-CE (HCE) has some
advantages. HCE2 uses guarded decryption which enables it to
achieve “Tag Consistency” security. And, unlike HCE, HCE2
is resilient to erasure attacks.

Ramp Secret Sharing Technique. Secret sharing enables a
group of n shareholders to share a secret between them so that
any k participants can construct the secret, and (k - 1) or fewer
participants cannot generate the secret [6], [11]. We utilize
ramp secret sharing in our scheme to share the convergent
encryption key between users having the same data. We use
ramp secret sharing instead of Shamir Secret Sharing [12] as
Shamir’s has two limitations: i) a heavy computational cost
is involved to create shares and recover the secret, and ii) a
large storage capacity is needed to reconstruct all the shares
[3]. Shamir secret sharing has a constraint of one share per
shareholder, which makes computational cost really high in
case of large number of shares for each shareholder. Contrarily,
ramp secret sharing removes this constraint and reduces the
load on individual stakeholder.

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

Homomorphic Linear Authenticator. Homomorphic Lin-
ear Authenticator (HLA) is a signature scheme widely used
in cloud computing and storage server systems, which allows
client who stored data in an untrusted server to verify that the
server possesses the original data without retrieving it [13].
HLA allows CSPs to respond with an aggregated authenticator
to the Auditor’s challenge, hence reducing the communication
complexity [14].

III. PROPOSED SCHEME

We consider a practical scenario where an organization uses
a cloud storage service that facilitates staff members in the
same department or group to read, write and share files. Our
proposed scheme consists of the following four entities and
the workflow is divided into seven main tasks as illustrated
in Fig 1. At first, user prepares data to be outsourced to
the CSP (task-1). Then, user delegates the auditing task to
the auditor (task-2). Auditor generates challenge messages by
utilizing the blockhashes of the Ethereum Blockchain (task-
3) and sends those to the CSP (task-4). CSP then computes
the corresponding proof messages and responds to the auditor
(task-5). Auditor checks the validity of the proof messages to
verify data integrity and records the audit log in the Blockchain
(task-6). Finally, through task-7, user can audit the quality
of the auditor by investigating the audit logs stored in the
Blockchain.

A. Essential Components of Our Proposed Scheme

User. User (i.e., data owner) is the owner of data and
outsources data to the CSP. User is responsible for auditing
the auditor using Blockchain log. User is also the owner of the
smart contract and therefore is the only one who can delete
smart contract. User deposits an initial amount to the smart
contract which could be used later on to penalize the CSP if
any corrupted data is found within a given time frame.

Cloud Service
Provider

5 5 5

Blockchain and
Smart Contract

5. Response

&
f 7. Audit the Auditor

Users
{data owners)

4. Challenge

el #A§ 6. Record Audit Log

Auditor
Fig. 1. Blockchain-based Cloud Auditing Model

Auditor. Auditor is responsible for auditing the CSP by
sending the challenge blocks to the CSP using Blockchain
hashes in regular intervals. Once auditor gets the response
from the CSP, it forwards the challenge blocks from the CSP
to the smart contract for auditing.

76

Cloud Storage Provider (CSP). CSP stores user data and
responds to the challenge sent by the auditor. CSP also stores
a deposit to the smart contract for facilitating fair arbitration
to the user in case data get corrupted.

Smart Contract. Smart Contract is responsible for auditing
the CSP using the challenge blocks it received from the auditor
and the response provided by the CSP. If no data corruption
is found, smart contract creates an empty transaction and
records the auditing log. If data corruption is discovered, smart
contract creates a transaction— sends an amount to the user as
a compensation and records the log of this transaction for
auditing purposes.

B. Hash-and-Convergent Encryption-2 Operations (HCE2)

Our scheme uses HCE2 encryption which is a type of
convergent encryption. We define HCE2 with the following
four fundamental operations:

1) KeyGenHCE2(P;, F;) — K;: This HCE2 key genera-
tion algorithm takes a file block F;; and public parameter
P; as its input and outputs a convergent key K.
EncryptHCE2(K;, F;) — Clipher;: This encryption
algorithm takes as input a file block F;, the convergent
key K, and produces a ciphertext C'ipher;, such that
only users having K; will be able to decrypt F;.
Decrypt HCE2(Cipher;, K;) — F;: This decryption
algorithm takes the ciphertext and the convergent key as
its inputs. It produces the original file block F;.
TagGenHCE2(Cipher;) — Tag;: This tag generation
algorithm takes as input a ciphertext Cipher; and out-
puts a tag T'ag;.

2)

3)

4)

C. Bilinear Groups

Let Gy, G,, and Gr are three different multiplicative cyclic
groups of the order p. We use g; and go to denote the
generators of G; and G;,. Following are the properties it holds.

1) Computational: There exists an efficient computational
algorithm which is capable of computing map e.
Bilinearity: For all a € Gy, b € Gy, x and y in Zj,

e(a®, bY) is equal to e(a, b)™Y.

2)

3) Non — degeneracy: e(g;, g») is not equal to 1.
TABLE I
NOTATIONS.
Notation Description
U; Cloud User 1
F Plain text file of the User
F; Blocks of plain text files of the User
K; Convergent key for block Fj
Tag; Authentication tag of block F}
Clipher; Encrypted Ciphertext of block F;
Sig(.) Signature generating algorithm
H(.) Secure hash function
h(.) Secure hash function
G1 Multiplicative cyclic group
Go Multiplicative cyclic group
Gr Multiplicative cyclic group
f Pseudorandom function: {0, 1} — n

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

D. Our Implementation

In this section, we describe the overall structure and the
algorithms implemented in our scheme. We use the notations
shown in TABLE I to present our system.

Algorithm 1 Data Encryption
Input: Files F
Output: (Key;, Cipher;, Tag;)
Initialization : Public Parameter P

1: {F;} + Split (F,n) {split file F' into n blocks}

2: for each F; € F do

3 Key; < KeyGenHCE2 (F;, F;)
4: Clipher; < EncryptHCE2 (Key;, F;)
5
6

Tag; <+ TagGenHCE2 (Cipher;)
: end for

Data Encryption. This algorithm (Algorithm 1) consists
of the following steps. The user delegates the auditing to
the third party auditor. The user and the auditor comes to
an agreement about the frequency of the verification to be
performed by the auditor. The third party auditor is considered
to be honest but curious. Using encryption algorithm (Algo-
rithm 1), user encrypts the data and sends (Key;, Cipher;,
Tag,;) for each file block to the CSP. Due to the intrinsic
property of convergent encryption, the users with the same data
always generate the same encryption key and thus facilitates
deduplication operation. The user first randomly chooses a key
pair (Public K, Private K) as the public key (pg)
and private key (sy) for signing. In line 1 of Algorithm 1, user
splits the file F into a set of chunks ({F1}, {Fa},{Fn}).
The user takes each file block and generates keys using the
KeyGenHCE2 method (lines 2-3). Once key is generated user
encrypts the data using the Encrypt HCE2 method (line 4).
Finally, the user generates the tag of the encrypted data using
TagGenHCE2 method (line 5) and stores the tag for future
verification. The user then computes o < (H(W;).u®)* and
t < name || Sigsk(name) and sends the ciphtertext and o
to the CSP. Once the data has been uploaded, CSP makes a
comparison between the newly uploaded data and stored data.
If the same data is already stored, CSP no longer stores the
new data.

Algorithm 2 Auditor Challenges the CSP
Input: Blockhashes for ¢ blocks at time ¢ in {By, Bi—1,...,
Btfc}
Output: Chal « {(ac, nac), {Bt, Bi—1,..., Bi—c}}
1. fori< Oto N — 1do

22 fory<«0Otoc— 1do

3 a; < £ (Bi—y||/1) {£f is a pseudorandom function}
4: Nai < H(Bi_y||ay) {H is a hash function}
5: end for

6: end for

Auditor Challenge Algorithm. The auditor is required to
audit the CSP after a pre-defined time interval. This algorithm
(Algorithm 2) consists of the following steps. Using the

77

current blockhash in the Blockchain, auditor generates a;,
a c-element random subset (lines 1-3), which represents
the different files selected at random to be audited. In line
4, auditor generates a random number n,; using current
blockhash in the Blockchain which represents the blocks in
the files selected to be audited. The auditor finally generates
the challenge and sends it to the CSP.

Algorithm 3 CSP’s Response to Challenge
Input: Chal < {(ac, Nac)s {Bts Bi—1,---, Bi—c}}
Output: {u, o, R}

Initialization: Cyclic Group G1, G2, G

Gy < Gi1x Go {Bilinear Mapping}
u <+ Gy {Random element}
x < Gy {Random element}
v g¥ {g is the generator of bilinear mapping}

R+ e(u,v) € Gy

W Zai naicai

s+ h(R)w {h is a secure hash function}
0« [l,,cionr {Generating aggregated authenticator}

NN RN

CSP’s Response to Challenge Algorithm. After receiving
the challenge from the auditor, CSP computes the response
for the different blocks in different files by generating a
linear combination of sampled blocks (lines 1-5 of Algorithm
3). In lines 6-7, CSP generates an aggregated authenticator.
CSP then sends the aggregated authenticator along with the
linear combination of the blocks to the smart contract for
verification.

Smart Contract Algorithm. Smart contract receives the
challenge-response (of the CSP) from the auditor and tag t
from the user; where, ¢ is the tag of the file generated by
the user before sending data to the CSP. Smart contract first
verifies the signature (line 2 of Algorithm 4) of the files sent
by the CSP by comparing it with the user file tag using py.
If the verification fails, smart contract sets Y = 0 (line 3),
verifies that the auditing has failed as CSP has not sent the
correct data required for auditing and stops the auditing. If
verification is passed, smart contract then computes a and b
(lines 6-8). In line 9, it checks if both a and b are similar to
each other. If a and b are not similar then it executes lines
10-12, sets Y = 0 (line 10), and stops the auditing. If both a
and b are equal to each other, then it executes lines 14-16 and
sets Y = 1 (line 14). After the auditing is done, if Y is set as
0, it means that auditing has failed and data has been found
corrupted. In this case, CSP’s deposit is sent to the user as
compensation for the data loss. If Y = 1, it means that the
auditing has passed successfully. In this case, user’s deposit
is sent to the CSP for maintaining data integrity. The smart
contract sets the current blockhash used for auditing and the
proof of verification as a log entry, stores the entry to the log
file, and creates a transaction that transfers 0 deposit from its
account to the user’s account. This transaction can be used
by the user to check for procrastinating auditor by matching
the blockhash of the Blockchain at the time of the auditing

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

and checking the transaction records in the Blockchain.

Algorithm 4 Smart Contract
Input: tag t, {u, o, R} of all challenged files.
QOutput: Result of Integrity Y

1: for each F; € F do

2: if (Verification (t) !=1t) then

3 Y=0

4 break

5: end if

6: 2z < h(R) {h(.) is a hash function}
7 a<$e(c?, qg)

8 b e ((Haiei H(WGC)ZC)Z7V)

9: if (a! = b) then

10: Y=0

11: Send deposit to User as Compensation

12: end if

13: if (a == b) then

14: Y=1

15: Send deposit to Cloud Service Provider as fee
16: end if

17: end for

IV. IMPLEMENTATION AND EVALUATION

In this section, we provide experimental evaluation of our
scheme. We implemented our scheme in Python programming
language by using Crypto library [15] and Solidity v0.5.13
[16]. The test environment is Intel Core i9 (2.30 GHz and
32GB RAM) and Macintosh Big Sur v11.2.1. We test our
program in the Remix-IDE [17].

m Lietal. [18] m Yuanetal.[4] m OurScheme
70
60

50

4
: WW
; mi]ﬁ]ﬂ
1 2 3 4 5 6 7 8 9 10

Data Size (MB)
Fig. 2. Key Generation Time

N
© © o

Key Generation Time (ms)

[
o

A. Key Generation Time

To verify the performance of key generation, we compared
our scheme with Yuan et al.’s [4] and Li et al.’s scheme [18].
We considered file size ranging from 1MB to 10MB in this
case. We observed almost identical performances (IMB to
6MB files) for all three schemes. Fig. 2 shows that for files
larger than 6MB, our scheme performed a little better.

B. Encryption vs Decryption Time

Our scheme uses homomorphic linear authentication of the
outsourced data on the cipher text which is different to that
used in existing data auditing schemes [13], [18]. To test
encryption and decryption time, we use AES-256 algorithm,

78

where the user data size varies from 1IMB to 8MB. The
encryption and decryption time are plotted in Fig. 3 and Fig. 4
respectively. Our scheme performed better in both categories.

m Yuanetal.[4] Our Scheme

50
£ 40
g
£ 30
=
2 20
=
=
N N |
&

o

1 2 3 a 5 6 7 8
Data Size (MB)
Fig. 3. Encryption Time
= Yuan et al. [4] Our Scheme

50
E a0
H
£ 30
S
= 20
&
s
i g [l ﬂ l]

o

1 2 3 4 5 6 7 8

Data Size (MB)
Fig. 4. Decryption Time

C. Total Upload Time

We have taken the combination of key generation, data
encryption, tag generation, and data upload time as the “Total
Upload Time”. Comparing our scheme with the Yuan et al.’s
[4] and Wang et al’s scheme [13], we achieved slightly
improved performance. Comparison is shown in Fig. 5.

m Wangetal.[13] = Yuanetal.[4] = OurScheme

160
140

120
100

80

60

20 i L

20 -

p
1 2 3 4 5 6 7 8

Data Size (MB)
Fig. 5. Total Upload Time

Upload Time (s)

D. Overall Gas Cost for Integrity Verification and Checking
Fairness in Auditing

To achieve fair arbitration, we wrote a smart contract using
Solidity to verify the audit logs of our data with the CSP.
Since our scheme also has the additional benefit of auditing
the auditor (for procrastinating) along with data integrity
verification, we needed a little more gas as compared to Yuan
et al’s [4] and Wang et al’s [13] scheme. For the smart contract,
we have modified Yuan et al’s scheme [4] to add the feature of
“auditing the procrastinating auditor” along with data integrity
verification. The term Gas here refers to the cost of compiling
the smart contract and performing a transaction. Gas prices are
denoted in Gwei where each Gwesi is equal to 0.000000001
ETH (10~° ETH). ETH is the native cryptocurrency of the

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

Etherium platform. Our scheme uses 2 x 10° more Gwei as
compared to Wang et al’s [13] and Yuan el al’s [4] scheme
for 400 file blocks. This is only an increase of 1% in Gas
cost and is needed for storing the balance of the deposit and
performing transactions which the user will use later on to
verify if the auditor is procrastinating or not. For a total of
400 blocks with different data sizes, we observed the gas cost
in Gwei to be 1.8 x 107 (0.018 Ether) approximately. With
the increase in file size, this is expected to be increased as
larger file will require more computational Gas to compute
the smart contract. We compared the Gas cost in Fig. 6.

m Wangetal.[13]

(AVIRETRIE

Data Size (MB)
Fig. 6. Overall Gas Cost

m Yuanetal.[4] m OurScheme

1.85E+07
1.80E+07
1.75E+07
1.70E+07
1.65E+07
1.60E+07
1.55E+07
1.50E+07

Gas Cost (Gwei)

V. COMPARISON WITH RELATED WORK

Most of the existing public auditing schemes [1], [4], [13],
[19] are focused on helping either the third party auditor or the
CSP. Wang et al. [13] presented a scheme for auditing the CSP.
Their scheme is efficient in detecting corrupted data; however,
it is vulnerable to procrastinating auditor, and does not provide
user with any fair compensation. It does not give any financial
incentive to the CSP for maintaining data integrity also. Yuan
et al. [4] and Jin et al. [19] proposed auditing schemes that
provide user compensation if data integrity is not maintained
by the CSP. While these schemes focus on maintaining data
integrity, they are vulnerable to procrastinating auditor. If
auditing is not performed regularly, by the time data corruption
is detected by the auditor, user might have suffered more loss
than she would be compensated. Unlike their schemes, our
scheme simultaneously achieves data integrity and fairness in
auditing.

Zhang et al. [1] proposed a public auditing scheme for
protecting users against procrastinating auditor. If the auditor
is procrastinating and some data blocks are found to be
corrupted, only the user has to bear the cost of data loss.
Contrarily, our scheme takes care of the user if the data is
corrupted by the CSP, by making CSP liable to compensate
for the data loss. This not only helps the User but also provides
an extra financial incentive to the CSP for maintaining data
integrity.

VI. CONCLUSION

In this paper, we proposed a secure and efficient public
auditing scheme that employs a fair arbitration system to
tackle the problems caused by the procrastinating auditor.
Our scheme uses HCE2 algorithm that enables deduplica-
tion, and thus saves extra cost of storing redundant data
and performing auditing. Moreover, the use of ramp secret

79

sharing ensures secure authentication and access control of
outsourced data. Experimental results show that our scheme
performs well in terms major cryptographic operations. Our
prototype implementation of fair arbitration with protection
against procrastinating auditor demonstrates that it incurs only
1% overhead in terms of Gas cost compared to the existing
techniques while providing an additional important feature of
auditing the auditor.

REFERENCES

Y. Zhang, C. Xu, X. Lin, and X. Shen, “Blockchain-Based Public In-
tegrity Verification for Cloud Storage against Procrastinating Auditors,”
IEEE Transactions on Cloud Computing, March 2019.

S. Keelveedhi, M. Bellare, and T. Ristenpart, “Secure Deduplication with
Efficient and Reliable Convergent Key Management,” IEEE Transactions
on Parallel and Distributed Systems, vol. w5, no. 6, pp. 1615-1625,
2014.

] T. Islam, H. Mistareehi, and D. Manivannan, “SecReS: A Secure and
Reliable Storage Scheme for Cloud with Client-Side Data Deduplication
)7 in Proc. of the 2019 IEEE Global Communications Conference
(GLOBECOM), Dec. 2019, pp. 1-6.

H. Yuan, X. Chen, J. Wang, J. Yuan, H. Yan, and W. Susilo, “Blockchain-
based public auditing and secure deduplication with fair arbitration,”
Information Sciences, vol. 541, no. 4, pp. 409-424, Dec. 2020.

J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer, “Re-
claiming Space from Duplicate Files in a Serverless Distributed File
System,” in Proc. of the 22™¢ International Conference on Distributed
Computing Systems, July 2002, pp. 617-624.

T. Islam, K. Lim, and D. Manivannan, “Blending Convergent Encryption
and Access Control Scheme for Achieving A Secure and Storage
Efficient Cloud ,” in Proc. of the 2020 IEEE 17t" Annual Consumer
Communications Networking Conference (CCNC), Jan. 2020, pp. 1-6.
J.Li, Y. Li, X. Chen, P. Lee, and W. Lou, “A Hybrid Cloud Approach for
Secure Authorized Deduplication,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 5, pp. 12061216, May 2015.

Y. Zhang, C. Xu, N. Cheng, H. Li, H. Yang, and X. Shen, “Chronost +:
An Accurate Blockchain-Based Time-Stamping Scheme for Cloud Stor-
age,” IEEE Transactions on Services Computing, vol. 13, no. 2, pp.
216-229, Oct. 2020.

M. Dutch, “Understanding data deduplication ratios,” SNIA Data Man-
agement, no. 2, 2008.

M. Bellare and S. Keelveedhi, “Interactive Message-Locked Encryption
and Secure Deduplication,” in Proc. of the 18t" JACR International
Conference on Practice and Theory in Public-Key Cryptography, Mar.
2015, pp. 516-538.

L. Bai, “A Strong Ramp Secret Sharing Scheme Using Matrix Projection
) in Proc. of the International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM’06), 2006, pp. 5-6.

A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 1, pp. 612-613, Jan. 1979.

C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Public Auditing for Secure Cloud Storage,” IEEE Transac-
tions on Computers, vol. 62, no. 2, pp. 362-375, 2013.

S. Liu and K. Chen, “Homomorphic Linear Authentication Schemes
for Proofs of Retrievability ,” in Proc. of the 2011 3"% International
Conference on Intelligent Networking and Collaborative Systems, 2011,
pp. 258-262.

“Crypto library for Python,” https://pythonhosted.org/pycrypto/Crypto-
module.html, Tech. Rep.

“Solidity,” https://docs.soliditylang.org/en/v0.8.4/, Tech. Rep.
“Ethereum, browser-only ethereum ide and runtime environment,”
https://remix.ethereum.org, Tech. Rep., 2021.

J. Li, J. Li, D. Xie, and Z. Cai, “Secure Auditing and Deduplicating
Data in Cloud,” IEEE Transactions on Computers, vol. 65, no. 8, pp.
2386-2396, 2016.

H. Jin, H. Jiang, and K. Zhou, “Dynamic and Public Auditing with Fair
Arbitration for Cloud Data,” IEEE Transactions on Cloud Computing,
vol. 6, no. 3, pp. 680-693, July-Sept 2018.

[1]

[2]

2

[

[4]

[5]

[6]

[71

[8]

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]
[17]

(18]

(19]

Authorized licensed use limited to: Tennessee State University. Downloaded on September 01,2022 at 16:43:34 UTC from IEEE Xplore. Restrictions apply.

