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A B S T R A C T

Waveforms of propagating flexural waves can reveal plentiful information about local anomalies
caused by damage, and the local anomalies can be used for damage identification. However,
the local anomalies can be masked by the interference of measurement noise and global trends
of the waveforms, and they may be able to indicate only fractions of the size and extent of
the damage. In this paper, an effective noise-robust damage identification method for plate-like
structures is proposed based on the fact that damage can introduce imminent local anomalies
to two-dimensional curvature propagating flexural waves (2D-CPFW). The 2D-CPFW can be
alternated using two-dimensional continuous wavelet transform (2D-CWT) to lower adverse
effects of measurement noise and errors. To suppress global trends and intensify the local
anomalies in the 2D-CPFW, 2D-CWT with a higher-order Laplacian of Gaussian function and
the Teager energy operator are applied. The fundamental mechanism of how 2D-CWT with
different orders of Laplacians of Gaussian function can suppress global trends of 2D-CPFW is
investigated for the first time. It is found that the 𝑟th-order Laplacian of Gaussian function
can well suppress the global trend of a 2D-CPFW within a finite interval if the trend can be
well approximated by a (2𝑟 − 1)th-order bi-variant polynomial. The modal assurance criterion
and a statistical criterion are used to assist the selection of the proper order of Laplacian of
Gaussian function. An accumulative damage index is proposed, and the locations and extent
of the damage can be identified within neighborhoods with high damage index values. If an
intact plate-like structure is geometrically smooth and made of materials that have no mass and
stiffness discontinuities, the proposed method does not require any waveforms of the intact
structure serving as a baseline, and therefore, the method can be considered baseline-free.
Effectiveness and noise-robustness of the proposed method are investigated in two numerical
examples. Two experimental investigations were conducted on two aluminum plates under
different damage scenarios. Both the numerical and experimental examples verify that the
proposed method is effective and noise-robust in identifying the location and extent of the
damage.

1. Introduction

Structures in service for mechanical, aerospace, and civil engineering purposes can suffer from aging and deterioration due to
everlasting environmental effects and operational loads. To avoid catastrophic structural failures, structural health monitoring is
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critical by identifying existing developing deterioration and assessing their conditions [1–3]. Vibration-based damage identification
has been a main research topic of structural dynamics applications in recent decades. Quantitative changes in local stiffness and/or
mass can occur when local damage exists in a structure [4–7]. Hence, vibration characteristics of the structure, such as natural
frequencies, operating deflection shapes, and mode shapes, can be used for damage identification. The natural frequencies-based
methods are generally used for global identification, as they can be estimated with excitation and response points that are away from
the damage [8]. Adams et al. [9] found that a damage state of a structure can be identified as reduction in stiffness, which leads
to changes of its natural frequencies. A damage identification technique based on changes of natural frequencies was investigated
by comparing natural frequencies at pristine and damage states [10]. The mode shapes and operating deflection shapes based
methods are considered local identification, as local anomalies cannot be identified if the locality of the anomalies falls beyond
a measurement grid [8]. Besides, mode shapes and operating deflection shapes-based methods are vulnerable to measurement
noise and only relatively large damage is identifiable by using local anomalies in mode shapes and operating deflection shapes
[11]. The use of curvatures of mode shapes and operating deflection shapes, referred to as curvature mode shapes and curvature
operating deflection shapes, respectively, for damage identification were proposed in Refs. [12] and [13], respectively. It was shown
that curvature mode shapes and curvature operating deflection shapes are more sensitive to small damage than mode shapes and
operating deflection shapes. One the other hand, uses of continuous wavelet transforms (CWTs) were proposed and investigated in
Refs. [14–17] to accurately calculate the curvature mode shapes. The multi-scale property of CWT can reduce adverse effects of
measurement noise and the effects can be further reduced by adjusting the value of its scale parameter. However, global trends in
curvature mode shapes and curvature operating deflection shapes can mask their local anomalies caused by damage and prevent
accurate identification results. To address this problem, Teager energy operator (TEO) has been applied to further intensify local
anomalies for damage identification based on CWT curvature mode shapes [18,19]. TEO can intensify local anomalies and minimize
fluctuation of global trends. Its use was introduced by combining CWT for identification of multiple damage for beams in Ref. [18].
Two-dimensional (2D) TEO was applied to intensify local anomalies of 2D-CWT curvature mode shapes for plates-like structures [19].

As a type of elastic waves propagating in a thin plate/shell structure, Lamb waves were first described and studied by Sir
orace Lamb [20]. Dispersion relations exist in Lamb waves, which can be observed in dispersion curves: velocities of Lamb wave
ropagation, including phase and group velocities, depend on the frequency-thickness product, and the curves are determined by
he mass density and Young’s modulus of the structure. Based on dispersion curves, one finds that at a certain frequency-thickness
roduct, symmetric and antisymmetric Lamb wave modes simultaneously exist. The 𝑛th symmetric and antisymmetric Lamb wave

modes are usually denoted by S𝑛 and A𝑛 modes, respectively. Lamb waves can propagate for long distances in plate/shell structures
so that plentiful information of local anomalies caused by damage-wave interactions can be captured and manifested by appropriate
post-processing. Lamb waves-based methods have been investigated and applied for damage identification in recent decades. The use
of Lamb waves measured by a scanning laser Doppler vibrometers (SLDV) constitutes one type of the Lamb waves-based methods,
which was first introduced in Ref. [21] and maximum amplitudes of Lamb waves were studied for damage identification in Ref. [22].
For further exploitation, root mean square (RMS) values of all waveforms of Lamb waves were used to formulate a damage index in
Ref. [23]. An integral mean value damage index was introduced in Ref. [24] and compared with the damage index based on RMS
values. It was shown that the damage index based on RMS values is more sensitive to the existence of damage and less sensitive
to that of environmental noise. Ruzzene [25] introduced the frequency–wavenumber domain analysis for damage identification by
using waveforms obtained by a SLDV. The analysis is capable of eliminating incident waves and separating wave modes to highlight
the presence of reflected waves associated with damage. Yu et al. [26] introduced a short-space 2D Fourier transform to process
Lamb waves. It yielded a frequency–wavenumber spectra at various spatial locations for damage identification. Recently, damage
identification methods based on curvatures of waveforms of Lamb waves were studies in Refs. [8,27]. A theoretical basis of the
methods is that curvature mode shapes have proved more damage-sensitive than mode shapes and used for damage identification.
Sha et al. [27] introduced a concept of wavefield curvatures by calculating curvatures of waveforms of Lamb waves at selected time
instants, and an energy image was then formed as square sums of the curvatures. Xu et al. [8] presented curvature of waveforms of
propagating flexural waves by using local-regression polynomials to estimate curvature waveforms of a pseudo-pristine structure,
which serve as baseline information for damage identification.

In this work, a baseline-free structural damage identification method is proposed for plate-like structures. It identifies location
and extent of damage based on 2D curvature propagating flexural waves (2D-CPFWs), which are analogous to 2D curvature mode
shapes in Ref. [19]. A 2D-CWT of propagating flexural waves (PFWs) with the Laplacian of Gaussian function, namely CWT-PFWs, is
used to alternate 2D-CPFWs for alleviating interference of measurement noise. A two-phase local anomalies intensification method
is proposed: (1) 2D-CWT of 2D-CPFWs with higher-order Laplacian of Gaussian function (CWT-CPFWs) be calculated to suppress the
global trends of 2D-CPFWs and (2) TEO be applied to further suppress the trends and intensify the local anomalies. The mechanism
of the 2D-CWT suppressing the global trends of 2D-CPFWs is investigated and explained, and the modal assurance criterion and
a statistical criterion are used to determine the proper order of Laplacian of Gaussian function in the 2D-CWT. An accumulative
damage index is proposed to obtain a complete identification of the damage based on Teager energy of CWT-CPFWs. A convergence
index is introduced to determine which waveforms are included. Numerical investigations are conducted to study the effectiveness
and noise-robustness of the proposed method for calculating the accumulative damage index. Experimental investigations were also
conducted on damaged aluminum plates to validate the effectiveness of the proposed method.

The rest of the paper is arranged as follows. In Section 2, the proposed damage identification method based on 2D-CPFWs is
presented. In Sections 3 and 4, the numerical and experimental investigations are presented, respectively. Concluding remarks of
2

this work are presented in Section 5.
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2. Methodology

2.1. Formulation of 2D-CPFWs for plate-like structures

According to typical phase velocity dispersion curves of a plate-like structure, at an adequately low frequency-thickness product,
nly S0 and A0 modes exist in its Lamb waves [28]. Further, it has been shown that cross-section flexural deformations of A0
amb wave modes are similar to those of PFWs [28] and the A0 Lamb wave modes are dominant over the S0 Lamb wave modes
t adequately low frequency-thickness products [21,29]. Hence Lamb waves at adequately low frequency-thickness products can
e well approximated by PFWs. A PFW of a plate-like structure can be considered as a three-dimensional spatial–temporal signal,
s it consists of 2D waveforms at different time instants denoted by 𝑡. A waveform of the PFW at 𝑡, denoted by 𝑊𝑡 (𝑥, 𝑦), can be
onsidered as an instantaneous deformation with 𝑥 and 𝑦 being the spatial coordinates of a point on the structure. The 2D-CPFW
efers to mean curvature of 𝑊𝑡 and it can be expressed by [30]

𝜅𝑡 = 𝜅𝑥,𝑡 + 𝜅𝑦,𝑡 = 𝛥𝑊𝑡 (𝑥, 𝑦) (1)

here
⎧

⎪

⎨

⎪

⎩

𝜅𝑥,𝑡 =
𝜕2𝑊𝑡(𝑥,𝑦)

𝜕𝑥2

𝜅𝑦,𝑡 =
𝜕2𝑊𝑡(𝑥,𝑦)

𝜕𝑦2

(2)

denote curvature PFWs along 𝑥- and 𝑦-axes, respectively, and 𝛥 is the Laplace operator. The instantaneous bending moments of the
structure at a spatial point along 𝑥- and 𝑦-axes, denoted by 𝑀𝑥,𝑡 and 𝑀𝑦,𝑡, respectively, can be calculated by

𝑀𝑥,𝑡 (𝑥, 𝑦) = −𝐷 (𝑥, 𝑦)
(

𝜅𝑥,𝑡 + 𝜈𝜅𝑦,𝑡
)

(3)

and

𝑀𝑦,𝑡 (𝑥, 𝑦) = −𝐷 (𝑥, 𝑦)
(

𝜅𝑦,𝑡 + 𝜈𝜅𝑥,𝑡
)

(4)

respectively, where

𝐷 (𝑥, 𝑦) = 𝐸ℎ3

12
(

1 − 𝜈2
) (5)

is the flexural rigidity of the structure at (𝑥, 𝑦), in which 𝐸 and 𝜈 denote the Young’s modulus and Poisson’s ratio, respectively, and
ℎ denotes the thickness of the structure. Summing up Eqs. (3) and (4) yields

𝑀𝑥,𝑡 (𝑥, 𝑦) +𝑀𝑦,𝑡 (𝑥, 𝑦) = −𝐷 (𝑥, 𝑦) (1 + 𝜈)
(

𝜅𝑥,𝑡 + 𝜅𝑦,𝑡
)

(6)

Rearranging Eq. (6) and applying Eq. (1) yield

𝜅𝑡 = −
𝑀𝑥,𝑡 (𝑥, 𝑦) +𝑀𝑦,𝑡 (𝑥, 𝑦)

𝐷 (𝑥, 𝑦) (1 + 𝜈)
(7)

When small-size damage occurs to the structure, the value of 𝐷 will change within the neighborhood of the damage, and more
importantly, local anomalies occur to 𝜅𝑡 and 2D-CPFW as well. The local anomalies in the 2D-CPFW can be used to reveal the
existence of the damage.

A 2D-CPFW can be obtained using the second-order central finite difference scheme [30]. However, the scheme may drastically
amplify adverse effects of measurement noise and errors in PFW [19]. It is proposed that 2D-CWT of PFWs with the Laplacian of
Gaussian function (CWT-PFWs) be calculated as an alternative of 2D-CPFWs [19]. Gaussian function can be expressed by

𝑔 (𝑥, 𝑦) = 1
√

𝜋
e−

(

𝑥2+𝑦2
)

(8)

and a translatable and scalable family of Gaussian functions can be expressed by

𝑔𝑢,𝑣,𝑠 (𝑥, 𝑦) =
1
𝑠
𝑔
(𝑥 − 𝑢

𝑠
,
𝑦 − 𝑣
𝑠

)

(9)

where 𝑠 is the scale parameter, and 𝑢 and 𝑣 are translation parameters along 𝑥- and 𝑦-axes, respectively. The alternative of 2D-CPFW,
eferred to as CWT-PFW, can be expressed by [31]

𝑊𝑡 (𝑢, 𝑣, 𝑠) = ∫

∞

−∞ ∫

∞

−∞
𝑊𝑡 (𝑥, 𝑦)𝛥𝑔𝑢,𝑣,𝑠 (𝑥, 𝑦)d𝑥d𝑦 =

(

𝛥𝑔̃𝑠 ⊗𝑊𝑡
)

(𝑢, 𝑣) (10)

here

𝛥𝑔̃𝑠 (𝑥, 𝑦) = 𝑠2
(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)

𝑔̃𝑠 (𝑥, 𝑦) =
1
𝑠
𝛥𝑔

(−𝑥
𝑠
,
−𝑦
𝑠

)

(11)

and ⊗ denotes convolution. More details of the 2D-CWT can be found in Appendix. Based on the differentiation property of
convolution [32], one has

𝑊 𝑢, 𝑣, 𝑠 =
(

𝛥𝑔̃ ⊗𝑊
)

𝑢, 𝑣 =
(

𝑠2𝑔̃ ⊗ 𝛥𝑊
)

𝑢, 𝑣 = 𝛥
(

𝑠2𝑔̃ ⊗ 𝑊
)

𝑢, 𝑣 (12)
3

𝑡 ( ) 𝑠 𝑡 ( ) 𝑠 𝑡 ( ) 𝑠 𝑡 ( )
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It is indicated by Eq. (12) that the calculation of CWT-PFW is equivalent to application of 𝛥 to 𝑠2𝑔̃𝑠⊗𝑊𝑡. The term 𝑠2𝑔̃𝑠⊗𝑊𝑡 indicates
hat the adverse effects of the measurement noise and errors in 𝑊𝑡 can be alleviated by the convolution of 𝑠2𝑔̃𝑠 with 𝑔̃𝑠 that acts
s a low-pass filter. The application of 𝛥 to the 𝑠2𝑔̃𝑠 ⊗ 𝑊𝑡 for CWT-PFW will not suffer from the amplified adverse effects of the
easurement noise and errors, compared with those from a finite difference scheme for 2D-CPFW.

.2. Local anomalies intensification

Though local anomalies caused by damage in PFWs can be identified in CWT-PFWs, they can be masked by global trends of
WT-PFWs, similar to those in curvature mode shapes [18,33], where TEO was applied to suppress the global trends and intensify
amage-caused local anomalies [18,34]. However, it is observed in this work that the direct application of TEO to CWT-PFWs cannot
ell suppress its global trends and the resulting Teager energy cannot be used for damage identification. To address this problem, a

wo-phase local anomalies intensification method is proposed: CWT-CPFWs be calculated to suppress the global trends of 2D-CPFW
nd then TEO be applied to further suppress the trends and intensify the local anomalies.

.2.1. Local anomalies intensification using CWT-CPFWs
Local anomalies intensified using CWT have been used in vibration shapes, including mode shapes [35], operational deflection

hape [36] and curvature mode shapes [37]. The choice of a wavelet function in the CWT should be based on the characteristic
f the vibration shapes to be analyzed and the effects of damage on the shapes [35]. Hence, there does not exist a universally
ppropriate wavelet function for all different vibration shapes and damage scenarios [38].

In this work, 2D-CWT with the 𝑟th-order Laplacian of Gaussian function is used to suppress the global trends of 2D-CPFW and
ntensify the local anomalies, which can be expressed by [31]

𝜅𝑡 (𝑢, 𝑣, 𝑠) = ∫ ∞
−∞ ∫ ∞

−∞ 𝛥𝑊𝑡 (𝑥, 𝑦)𝛥𝑟𝑔𝑢,𝑣,𝑠 (𝑥, 𝑦)d𝑥d𝑦 =
(

𝛥𝑟𝑔̃𝑠 ⊗ 𝛥𝑊𝑡
)

(𝑢, 𝑣) (13)

here 𝑟 is a non-negative integer and 2𝑟 is defined as the number of vanishing moments of 𝛥𝑟𝑔̃𝑠. When 𝑟 = 0, 𝜅𝑡 (𝑢, 𝑣, 𝑠) is proportional
o 𝑊𝑡 (𝑢, 𝑣, 𝑠) in Eq. (12), i.e.,

𝜅𝑡 (𝑢, 𝑣, 𝑠) =
(

𝑔̃𝑠 ⊗ 𝛥𝑊𝑡
)

(𝑢, 𝑣) = 1
𝑠2
𝑊𝑡 (𝑢, 𝑣, 𝑠) (14)

When 𝑟 ⩾ 1, based on Eq. (A.5), one has
(

𝛥𝑟𝑔̃𝑠 ⊗ 𝑥𝛽𝑦𝛼−𝛽
)

(𝑢, 𝑣) = 0 (15)

where 𝛼 and 𝛽 are both non-negative integers with

0 ⩽ 𝛽 ⩽ 𝛼 < 2𝑟 (16)

Further, it can be seen that 𝛥𝑟𝑔̃𝑠 is orthogonal to any (2𝑟 − 1)th-order bi-variate polynomial, which can be expressed by

𝑃 (𝑥, 𝑦) =
2𝑟−1
∑

𝛼=0

𝛼
∑

𝛽=0
𝑎𝛽,𝛼−𝛽𝑥

𝛽𝑦𝛼−𝛽 (17)

where 𝑎𝛽,𝛼−𝛽 denotes the coefficient of the term 𝑥𝛽𝑦𝛼−𝛽 in the polynomial, and the orthogonality can be expressed by
(

𝛥𝑟𝑔̃𝑠 ⊗ 𝑃
)

(𝑢, 𝑣) = 0 (18)

Since 𝛥𝑟𝑔̃𝑠 has a finite non-zero interval, the interval of integration of the double integration in the convolution in Eq. (13)
can be replaced by the non-zero interval of 𝛥𝑟𝑔̃𝑠. The mechanism of suppressing global trends of 2D-CPFW with proper choices
of 𝑠 and 𝑟 in Eq. (13) can be explained based on Eq. (18). When 𝑠 in 𝛥𝑟𝑔̃𝑠 is a fixed value, the non-zero interval of 𝛥𝑟𝑔̃𝑠 can be
determined. When the center of 𝛥𝑟𝑔̃𝑠 is translated to the position (𝑢, 𝑣), one can well fit the global trend of 2D-CPFW within the
non-zero interval using a (2𝑟 − 1)th-order bi-variate polynomial in Eq. (17). Since the order of the polynomial is smaller than 2𝑟,
the fitted global trend of 2D-CPFW within the interval can be well suppressed by convolution with 𝛥𝑟𝑔̃𝑠 due to the orthogonality in
Eq. (18). More importantly, as the global trends are suppressed, the local anomalies are retained and manifested. When PFW results
from an excitation with finite frequency components, the maximum wavelength of PFW is constant and there exist a maximum
order with which bi-variate polynomials can well fit its global trends in any finite intervals. Therefore, there exist a minimum value
of 𝑟 for 𝛥𝑟𝑔̃𝑠 with which the global trends of 2D-CPFWs can be well suppressed and the local anomalies in 2D-CPFWs can be well
manifested. Further, based on the differentiation property of convolution, one has

𝜅𝑡 (𝑢, 𝑣, 𝑠) =
(

𝛥𝑟𝑔̃𝑠 ⊗ 𝛥𝑊𝑡
)

(𝑢, 𝑣) =
(

1
𝑠2
𝛥𝑟+1𝑔̃𝑠 ⊗𝑊𝑡

)

(𝑢, 𝑣) (19)

The determination of the proper value of 𝑟 in Eq. (13) can be achieved by determining the minimum value of 2𝑟 + 1, with which
(2𝑟 + 1)th-order bi-variant polynomials that can well fit the global trends of PFW within a non-zero interval of 𝛥𝑟+1𝑔̃𝑠. It is worth
noting that 𝑔̃𝑠 and its derivatives have the same non-zero interval.

In practice, damage identification is performed with discrete PFW and 𝑔̃𝑠 is generated on a discrete grid. The non-zero interval
can be defined as a square grid with a side length of ⌈4𝑠 + 3⌉, where ⌈⋅⌉ denotes rounding a number up to the nearest integer,

2 ̃
4

discrete points so that the number of points in such a non-zero interval is ⌈4𝑠 + 3⌉ . For one bi-variant polynomial fitting 𝑊𝑡 that is
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extracted from PFW within a finite interval centered at (𝑢, 𝑣) of the size same as that of the non-zero interval of 𝑔̃𝑠, the polynomial
can be expressed by [34]

𝑊̃ 𝑝
𝑡 (𝑥, 𝑦) =

𝑑(𝑢,𝑣)
∑

𝛼=0

𝛼
∑

𝛽=0
𝑐𝛽,𝛼−𝛽 (𝑢, 𝑣) 𝑥𝛽𝑦𝛼−𝛽 (20)

where 𝑑 (𝑢, 𝑣) and 𝑐𝛽,𝛼−𝛽 (𝑢, 𝑣) denote the order and coefficients of the polynomial, respectively. To determine a proper value of
𝑑 (𝑢, 𝑣), the modal assurance criterion between 𝑊̃𝑡 and 𝑊̃ 𝑝

𝑡 is used, which can be calculated by [39]

MAC (𝜑,𝜑𝑝) =

(

(𝜑𝑝)T 𝜑
)2

(

(𝜑𝑝)T 𝜑𝑝
) (

(𝜑)T 𝜑
)
× 100% (21)

where 𝜑 and 𝜑𝑝 denote the column-vectorization of 𝑊̃𝑡 and 𝑊̃ 𝑝
𝑡 , respectively, and the superscript T denotes matrix transpose. The

proper value of 𝑑 is equal to the minimum order of the polynomial with which MAC is greater than 90%. After exhaustively roving
the extraction of 𝑊̃𝑡 over the PFW, the proper orders of all the bi-variant polynomials associated with PFW at all measurement
points are obtained. While the PFW corresponds to multiple instants are usually available, a three-dimensional spatial–temporal
matrix 𝐝 containing 𝑑 associated with a number of instants can be obtained. In this paper, the number of instants is same as that
used to calculate a damage index based on CWT-PFW, which is discussed in Section 2.3.

Since high values of 𝑑 caused by measurement noise can exist in certain (𝑢, 𝑣) and 𝑡, a statistical criterion is applied to assist
determination of the proper value of 𝑟 based on all entries of 𝐝. The upper bound of two standard deviations of the mean for 𝐝 is
calculated as

𝜏 = 𝜇 + 2𝜎 (22)

where 𝜇 and 𝜎 denote the mean and standard deviation of all the entries of 𝐝, respectively. In the criterion, 2𝑟 + 1 should not be
smaller than 𝜏 so that the proper value of 𝑟 for 𝛥𝑟𝑔̃𝑠 to suppress the global trends of 2D-CPFW is expressed by

𝑟 =
⌈ 𝜏 − 1

2

⌉

(23)

Note that values of the 97.7% entries of 𝐝 are not greater than 𝜏 [40], assuming that values the entries well spread in a normal
istribution, and the criterion can effectively rule out the outliers in 𝐝 when determining the proper value of 𝑟.

2.2.2. Local anomalies intensification using TEO
TEO was first proposed to estimate the point-wise energy of a one-dimensional oscillating discrete signal 𝑝. It is a nonlinear

operator and can be expressed by [41]

𝛹 (𝑝 [𝑛]) = 𝑝2 [𝑛] − 𝑝 [𝑛 − 1] 𝑝 [𝑛 + 1] (24)

where 𝑝 [𝑛] denotes the value of 𝑝 at point 𝑛. TEO was later extended to handle a 2D discrete signal 𝑞 [42], and the 2D TEO can be
expressed by

𝛹 2D (𝑞 [𝑛, 𝑚]) = 𝑞2 [𝑛, 𝑚] − 𝑞 [𝑛 − 1, 𝑚] 𝑞 [𝑛 + 1, 𝑚] + 𝑞2 [𝑛, 𝑚] − 𝑞 [𝑛, 𝑚 − 1] 𝑞 [𝑛, 𝑚 + 1]
= 2𝑞2 [𝑛, 𝑚] − 𝑞 [𝑛 − 1, 𝑚] 𝑞 [𝑛 + 1, 𝑚] − 𝑞 [𝑛, 𝑚 − 1] 𝑞 [𝑛, 𝑚 + 1]

(25)

where 𝑞 [𝑛, 𝑚] denotes the value of 𝑞 at points [𝑛, 𝑚]. It has been shown that 𝛹 and 𝛹 2D can intensify weak local anomalies of curvature
mode shapes [19,37]. It is proposed that the 𝛹 2D be applied to CWT-PFW and CWT-CPFW for intensifying local anomalies caused
by damage and identifying its location: Teager energy of CWT-PFW and that of CWT-CPFW can be expressed by

𝛹 2D
(

𝑊𝑡 [𝑛, 𝑚]
)

= 2
(

𝑊𝑡 [𝑛, 𝑚]
)2

−𝑊𝑡 [𝑛 − 1, 𝑚]𝑊𝑡 [𝑛 + 1, 𝑚] −𝑊𝑡 [𝑛, 𝑚 − 1]𝑊𝑡 [𝑛, 𝑚 + 1] (26)

and

𝛹 2D (

𝜅𝑡 [𝑛, 𝑚]
)

= 2
(

𝜅𝑡 [𝑛, 𝑚]
)2 − 𝜅𝑡 [𝑛 − 1, 𝑚] 𝜅𝑡 [𝑛 + 1, 𝑚] − 𝜅𝑡 [𝑛, 𝑚 − 1] 𝜅𝑡 [𝑛, 𝑚 + 1] (27)

respectively, where 𝑊𝑡 [𝑛, 𝑚] and 𝜅𝑡 [𝑛, 𝑚] denote the discrete values of CWT-PFW and CWT-CPFW at [𝑛, 𝑚], respectively.

2.3. Damage identification based on intensified anomalies

When one mode shape is used for damage identification, it can be insensitive to certain damage or it cannot fully indicate the
extent of the damage. In this case, uses of other mode shapes are necessary as the more mode shapes are used, the more likely the
location and extent of the damage are identified. Similarly, not all Teager energy of CWT-CPFWs with different instants described
in Section 2.2 can fully indicate the location and extent of damage, and each of them may be able to indicate a fraction of the
extent of the damage. While it is advantageous that a relatively large number of waveforms are usually measured, an accumulative
damage index based on Teager energy of CWT-CPFW is proposed and expressed by

𝛿
(

𝛹 2D (

𝜅𝑡 [𝑛, 𝑚]
))

=
𝑡=𝑡2
∑

|

|

|

𝛹 2D (

𝜅𝑡 [𝑛, 𝑚]
)

|

|

|

(28)
5

𝑡=𝑡1
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Fig. 1. (a) Dimensions of specimen #1 with damage in the form of two thickness reduction areas (unit: mm), (b) phase velocity dispersion curves of specimen
#1, and (c) dimensions of specimen #2 with damage in the form of six thickness reduction areas (unit: mm). Locations and extent of square and circular damage
areas are depicted by solid black areas in (a) and (c). The dotted line in (b) corresponds to the value of frequency-thickness product with 𝑓𝑐 = 50 kHz.

where 𝑡1 and 𝑡2 are the starting and ending instants of waveforms to be included in 𝛿, and |⋅| denotes an absolute value. The
effectiveness of 𝛿 for identifying the location and extent of damage depends on values of 𝑡1 and 𝑡2, which determine waveforms to
be included. Since the use of waveforms near an excitation point can lead to misdiagnosis as local anomalies [23], 𝑡1 should be
elected as an instant after the excitation ends. In this work, it is proposed that the proper value of 𝑡1 be

𝑡1 = 𝑡𝑒 + 𝑡𝑝 (29)

here 𝑡𝑒 and 𝑡𝑝 denote the ending instant and duration of the excitation, respectively. The inclusion of 𝑡𝑝 in Eq. (29) can diminish
isdiagnosis due to the large-magnitude waveforms generated during the occurrence of the excitation. Regarding the proper value

f 𝑡2, it is proposed that the value be determined based on a convergence index denoted by conv, and its value at the 𝑖th iteration
s expressed by

conv (𝑖) =
‖

‖

𝛿𝑖‖‖2
‖

‖

𝛿𝑖‖‖2 + ‖

‖

𝛿𝑖 − 𝛿𝑖+1‖‖2
(30)

where ‖⋅‖2 denotes the 2-norm of a vector, 𝛿𝑖 and 𝛿𝑖+1 are calculated using 𝛿 in Eq. (28) with the same value of 𝑡1 in Eq. (29) but
different values of 𝑡2 for 𝛿𝑖 and 𝛿𝑖+1 in Eq. (30), which are calculated by

𝑡2 = 𝑡1 +
𝑖𝑘
𝑓𝑠

(31)

and

𝑡2 = 𝑡1 +
(𝑖 + 1) 𝑘
𝑓𝑠

(32)

respectively, in which 𝑘 denotes the incremental number of waveforms for one iteration and 𝑓𝑠 denotes the sampling frequency of
the waveforms. On one hand, 𝛿 with a larger value of 𝑡 may lead to a more complete identification of the extent of the damage,
6
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Fig. 2. Waveforms of the PFWs at (a) 50 μs, (b) 80 μs, (c) 120 μs, and (d) 275 μs. Locations and extent of the square and circular damage areas are depicted
by solid red lines.

since 𝛿 cumulatively collects anomalies caused by the damage. Further, when 𝑡2 is increased to a certain value, 𝛿 will converge and
o will its associated damage identification result. On the other hand, since a high sampling frequency is usually used to measure
aveforms in practice, changes of 𝛿 between two consecutive sampling instants can be so small that a false convergence can be
chieved. As a result, it leads to a trivial conv and inaccurate damage identification results. Hence, 𝑘 is introduced to 𝑡2 in Eqs. (31)
nd (32) in order to include multiple waveforms to better quantify the convergence of 𝛿. In this work, the value of 𝑘 is chosen as
and 30 in the numerical and experimental investigations, respectively, and the proper value of 𝑡2 is chosen as its minimum value,

with which conv ⩾ 0.99.
To quantitatively evaluate identification results from the proposed method, a percentage energy ratio is formulated as

𝜒 =

∑
damage area(s)

𝛿2∑
whole area

𝛿2
× 100% (33)

where
∑

damage area(s)
𝛿 and

∑
whole structure

𝛿 calculate summations of 𝛿2 over damage and whole inspected areas, respectively. It is worth

noting that 𝜒 ∈ [0, 100%] and a higher 𝜒 value indicates a better damage identification result with a lower disturbance from
measurement noise/errors beyond the damage area(s). In addition, 𝛿

(
𝑊𝑡

)
and 𝛿

(
𝛹 2D

(
𝑊𝑡

))
are obtained by replacing 𝛹 2D (𝜅𝑡)

n Eq. (28) with 𝑊𝑡 and 𝛹
2D

(
𝑊𝑡

)
for comparison purposes, respectively, and RMS values based 𝑊𝑡 [𝑛, 𝑚] can also be used for

omparison purposes and considered another type of damage index. It can be expressed by [23]

RMS
(
𝑊𝑡 [𝑛, 𝑚]

)
=

√√√√√∑𝑡=𝑡2
𝑡=𝑡1

(
𝑊𝑡 [𝑛, 𝑚]

)2(
𝑡2 − 𝑡1

)
𝑓𝑠

(34)

here the value of 𝑡1 can be obtained from Eq. (29) and that of 𝑡2 can be estimated Eq. (30) by replacing 𝛿 with RMS, and damage
dentification results based on RMS can also be evaluated using 𝜒 in (33) by replacing 𝛿 with RMS. So far, four different damage
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Fig. 3. Damage identification results for the specimen #1 based on (a) RMS
(
𝑊𝑡

)
, (b) 𝛿

(
𝑊𝑡

)
, (c) 𝛿

(
𝛹 2D

(
𝑊𝑡

))
, (d) 𝛿

(
𝛹 2D (𝜅𝑡)), (e) a zoomed-in view of the

square damage area in (d), and (f) a zoomed-in view of the circular damage area in (d). Locations and extent of square and circular damage areas are depicted
by solid red lines. For better comparison, the damage index values shown in each figure are normalized so that their maximum value is equal to one.

indexes 𝛿
(
𝛹 2D (𝜅𝑡)), 𝛿 (𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and RMS

(
𝑊𝑡

)
are defined. Their effectiveness and robustness for damage identification

ill be numerically and experimental investigated and compared in Sections 3 and 4.
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Fig. 4. Damage identification results of the specimen #2 based on (a) RMS
(
𝑊𝑡

)
, (b) 𝛿

(
𝑊𝑡

)
, (c) 𝛿

(
𝛹 2D

(
𝑊𝑡

))
, and (d) 𝛿

(
𝛹 2D (𝜅𝑡)). Locations and extent of

quare and circular damage areas are depicted by solid red lines. For better comparison, the damage values shown in each figure are normalized so that their
aximum value is equal to one.

3. Numerical investigations

In this section, the effectiveness and noise-robustness of the proposed method are investigated using numerical simulations of
two aluminum plates, specimen #1 and #2, with damage. The specimen #1 has damage in the form of two thickness reduction
areas and the specimen #2 has damage in the form of six thickness reduction areas.

3.1. Numerical simulation of specimen #1

The specimen #1, a free-free-free-free aluminum plate of a thickness 10 mm is simulated with dimensions shown in Fig. 1(a).
Its mass density is 2700 kg/m3, Young’s modulus is 69 GPa, and Poisson’s ratio is 0.33. A finite element model of the specimen #1
s constructed using ABAQUS with linear eight-node brick (C3D8R) elements. Two one-sided thickness reduction areas, including a
quare one and a circular one, with a depth of 1 mm are introduced to the plate. The square damage and circular damage areas are
entered at (137.5, 137.5) mm and (375, 375) mm, respectively; the square damage area has a side length of 25 mm and the circular
amage area has a radius of 15

√
2 mm. The specimen #1 is under zero initial conditions and subject to an excitation force applied

o its central location, i.e., (250, 250) mm. The force is an 𝑁𝑐 -count wave packet that can be analytically expressed by [8]

𝑓 (𝑡) = 𝐴

(
𝐻 (𝑡) −𝐻

(
𝑡 −

𝑁𝑐

𝑓𝑐

))(
1 − cos

(
2𝜋𝑓𝑐𝑡
𝑁𝑐

))
sin

(
2𝜋𝑓𝑐𝑡

)
(35)

where 𝐴 denotes the magnitude of 𝑓 , 𝐻 is Heaviside function, which is expressed by

𝐻 (𝑡) =

{
1, 𝑡 ⩾ 0

(36)

0, 𝑡 < 0
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Fig. 5. (a) Dimensions of the specimen #3 with damage in the form of a square 10% thickness reduction area, and an assigned scan region for SLDV measurements
(unit: mm), (b) phase velocity dispersion curves of the specimen #3, and (c) dimensions of the specimen #4 with damage in the form of three circular 50%
thickness reduction areas (unit: mm). Locations and extent of damage areas are depicted by solid black areas in (a) and (c). The dotted line in (b) corresponds
to the largest frequency-thickness product associated with all 𝑓𝑐 and thickness of the two specimens in the experimental investigations.

and 𝑓𝑐 is the central frequency of the force. In this numerical example, the applied excitation force is a five-count wave packet with
𝐴 = 0.5 N, 𝑁𝑐 = 5 and 𝑓𝑐 = 50 kHz. Phase velocity dispersion curves of the specimen #1 are shown in Fig. 1(b). It can be seen that
only S0 and A0 Lamb wave modes exist at the frequency-thickness product 500 kHz ⋅mm associated with 𝑓𝑐 = 50 kHz.

Waveforms of PFWs of the specimen #1 are obtained on a grid of 101 × 101 measurement points with a sampling frequency of 2
MHz for the first 5 ms after the excitation is applied; a total of 10001 waveforms are obtained. To investigate effects of measurement
noise on damage identification results, white Gaussian noise is added to the PFWs of the specimen #1 such that a signal-to-noise
ratio (SNR) of 30 dB is achieved. Figs. 2(a) through (d) show four noise-contaminated waveforms at 50 μs, 80 μs, 120 μs and 275 μs,
respectively. In Fig. 2(a), a PFW is generated and spreads out from the excitation point, and its wavefront can be observed. In
Fig. 2(b), the wavefront of the PFW is traveling through the two damage areas but wave reflections cannot be detected. In Fig. 2(c),
the wavefront is beyond the two damage areas and the PFW is reflected from the two damage areas, but the reflections are not
imminent. Subsequently, as shown in Fig. 2(d), distinct wave propagation features related to the damage are not noticeable, as they
are masked by those related to reflections of the waves at the boundaries.
10
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Fig. 6. Schematic of the experimental setup.

Fig. 7. Waveforms of the PFWs in the specimen #3 associated with 𝑓𝑐 = 30 kHz at (a) 280 μs, (b) 360 μs, (c) 480 μs, and (d) 1200 μs. The location and extent
of the damage are depicted by solid lines.
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Fig. 8. Damage identification results of the specimen #3 with 𝑓𝑐 = 30 kHz based on (a) RMS
(
𝑊𝑡

)
, (b) 𝛿

(
𝑊𝑡

)
, (c) 𝛿

(
𝛹 2D

(
𝑊𝑡

))
, and (d) 𝛿

(
𝛹 2D (𝜅𝑡)). The

location and extent of the damage area are depicted by solid red lines. For better comparison, the damage values shown in each figure are normalized so that
their maximum value is equal to one.

3.2. Damage identification results and discussion for specimen #1

The proposed damage identification method is applied to identify the damage on the specimen #1. The value of 𝑠 for 𝛿
(
𝑊𝑡

)
,(

𝛹 2D
(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) is selected to be 2 and the proper value of 𝑟 for 𝛿 (𝛹 2D (𝜅𝑡)) is determined to be 3 based on Eq. (23).

amage indexes RMS
(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) are calculated and shown in Figs. 3(a) through (d), respectively.

n Fig. 3(a), large index values are observed within and beyond the two damage areas, and those in the latter lead to false positive
dentification of the locations and extent of the damage. A similar observation can be made for 𝛿

(
𝑊𝑡

)
in Fig. 3(b). It is difficult to

dentify the damage locations and extent based on RMS
(
𝑊𝑡

)
and 𝛿

(
𝑊𝑡

)
. In Fig. 3(c), large index values can be observed within

he neighborhoods of the two damage areas, but relatively large index values can also be observed beyond the damage areas. It is
ecause TEO can only partially suppress global trends of 𝑊𝑡. In Fig. 3(d), 𝛿

(
𝛹 2D (𝜅𝑡)) has the best identification result: large index

values can only be observed within the neighborhoods of the two damage areas. Specifically, as shown in Figs. 3(e) and (f), large
index values only exist within the damage areas. Therefore, 2D-CWT with the third-order Laplacian of Gaussian function can well
suppress global trends of 𝑊𝑡. Energy ratios 𝜒 associated with RMS

(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) are 2.0%, 2.3%,

.9% and 51.2%, respectively, and damage identification results obtained from 𝛿
(
𝛹 2D (𝜅𝑡)) are better than those from RMS

(
𝑊𝑡

)
,

𝛿
(
𝑊𝑡

)
and 𝛿

(
𝛹 2D

(
𝑊𝑡

))
.

3.3. Numerical simulation and damage identification for specimen #2

The specimen #2 is studied to validate the effectiveness of the proposed damage identification method for damage areas with
relatively small sizes than those in the specimen #1. The specimen #2 is made of the materials same as those of the specimen #1,
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Fig. 9. Damage identification results of the specimen #3 with 𝑓𝑐 = 50 kHz based on (a) RMS
(
𝑊𝑡

)
, (b) 𝛿

(
𝑊𝑡

)
, (c) 𝛿

(
𝛹 2D

(
𝑊𝑡

))
, and (d) 𝛿

(
𝛹 2D (𝜅𝑡)). The

location and extent of the damage area are depicted by solid red lines. For better comparison, the damage values shown in each figure are normalized so that
their maximum value is equal to one.

its dimensions and boundary conditions are the same as those of the specimen #1. The specimen has damage in the form of six
thickness reduction areas: three square damage areas centered at (125, 125) mm, (250, 125) mm and (375, 125) mm with side lengths
of 20 mm, 25 mm and 30 mm, respectively and three circular ones centered at (125, 375) mm, (250, 375) mm and (375, 375) mm
with radii of 10 mm, 15 mm and 20 mm, respectively. Each damage area has a 1-mm one-sided thickness reduction. Dimensions
and locations of the damage areas can be found in Fig. 1(c). The excitation force is the same as that used for the specimen #1 and
applied to the center of the specimen #2. Waveforms of PFWs of the specimen #2 are obtained on a grid of 101 × 101 measurement
points with a sampling frequency of 2 MHz for the first 1.5 ms after the excitation is applied; a total of 3001 waveforms are obtained.
White Gaussian noise is added to the PFWs of the specimen #2 such that a SNR of 30 dB is achieved. Besides, the phase velocity
dispersion curves of the specimen #2 are same to those in the specimen #1, as they are made of the same materials and their
undamaged portions have the same thickness. Hence only S0 and A0 Lamb wave modes exist at the frequency-thickness product
same as that for the specimen #1.

The proposed damage identification method is applied to identify the damage on the specimen #2. The value of 𝑠 for 𝛿
(
𝑊𝑡

)
,(

𝛹 2D
(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) is selected to be 2 and the proper value of 𝑟 for 𝛿 (𝛹 2D (𝜅𝑡)) is determined to be 3 based on Eq. (23).

amage indexes RMS
(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) are calculated and shown in Figs. 4(a) through (d), respectively.

n Fig. 4(a), large index values are observed within and beyond the six damage areas, and those in the latter lead to false positive
dentification results of the locations and extent of the damage. Large index values cannot be observed within the neighborhoods
f the damage in 𝛿

(
𝑊𝑡

)
and 𝛿

(
𝛹 2D

(
𝑊𝑡

))
in Figs. 4(b) and (c). Hence it is difficult to identify the damage locations and extent

based on RMS
(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
and 𝛿

(
𝛹 2D

(
𝑊𝑡

))
. In Fig. 4(d), 𝛿

(
𝛹 2D (𝜅𝑡)) has the best identification result similar to that of the

pecimen #1. Energy ratios 𝜒 associated with RMS
(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) are 3.8%, 2.7%, 2.2% and 73.8%,( 2D ( ))
respectively and the damage identification results obtained from 𝛿 𝛹 𝜅𝑡 are the best.
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Fig. 10. Damage identification results of the specimen #3 with 𝑓𝑐 = 70 kHz based on (a) RMS
(
𝑊𝑡

)
, (b) 𝛿

(
𝑊𝑡

)
, (c) 𝛿

(
𝛹 2D

(
𝑊𝑡

))
, and (d) 𝛿

(
𝛹 2D (𝜅𝑡)). The

ocation and extent of the damage area are depicted by solid red lines. For better comparison, the damage values shown in each figure are normalized so that
heir maximum value is equal to one.

4. Experimental investigations

The effectiveness of the proposed damage identification method was experimentally investigated on two aluminum plates,
specimen #3 and #4. The two specimen had different dimensions, damage number, locations and extent.

4.1. Experimental test and waveform measurement for specimen #3

The specimen #3 had a length of 609 mm, a width of 481 mm, and a thickness of 4 mm. A square damage in the form of 10%
hickness reduction with a side length of 40 mm was introduced to a side of the specimen #3; the damage was centered at (345, 163)
m on the specimen. Dimensions of the specimen #3 and damage area are depicted in Fig. 5(a). A schematic of the experimental
etup is shown in Fig. 6. A circular lead–zirconate–titanate (PZT) actuator with a diameter of 10 mm was placed on the damaged
ide of the specimen #3 at 𝑥 = 240 mm and 𝑦 = 263 mm to generate excitation forces. The excitation forces were generated by a
ektronix AFG3022C function generator in the form of a five-count wave packet with four 𝑓𝑐 , including 30 kHz, 50 kHz, 70 kHz and
90 kHz; the peak-to-peak amplitude of the excitation forces were amplified to 150 V for 𝑓𝑐 = 30 kHz, 50 kHz and 90 kHz, and 50 V
or 𝑓𝑐 = 70 kHz by a Krohn-Hite 7500 amplifier, and they were fed to the PZT actuator; and a Tektronix TBS2104 oscilloscope was
sed to monitor the amplified excitation forces. A Polytec PSV-500-HV SLDV was employed to measure waveforms on a scan region
ith a length of 235 mm and a width of 255 mm assigned to the bottom right corner of the intact surface of the specimen #3 with a
learance of 5 mm from the sides of the specimen #3. A grid of 101 × 111 measurement points was defined within the scan region.
sampling frequency of 1.25 MHz was used to measure the response of each measurement point for 10 ms. For each measured
esponse, 30 averages were carried out to minimize adverse effects of measurement errors. The averaged measured responses of
ll measurement points were reconstructed as 2D waveforms at each measurement instant. It was taken about two hours to finish
he whole measurement process in each case of excitation force. Phase velocity dispersion curves of the specimen #3 are shown in
ig. 5(b). It can be seen that only S0 and A0 Lamb wave modes exist at all 𝑓 .
𝑐
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Fig. 11. Damage identification results of the specimen #3 with 𝑓𝑐 = 90 kHz based on (a) RMS
(
𝑊𝑡

)
, (b) 𝛿

(
𝑊𝑡

)
, (c) 𝛿

(
𝛹 2D

(
𝑊𝑡

))
, and (d) 𝛿

(
𝛹 2D (𝜅𝑡)). The

ocation and extent of the damage area are depicted by solid red lines. For better comparison, the damage values shown in each figure are normalized so that
heir maximum value is equal to one.

Four waveforms of the PFWs at 280 μs, 360 μs, 480 μs and 1200 μs associated with 𝑓𝑐 = 30 kHz are shown in Figs. 7(a) through
(d), respectively. In Fig. 7(a), the PFW was generated and spread out in the form of concentric sectors. In Fig. 7(b), the wavefront
of the PFW arrived near the boundaries of the specimen #3. In Fig. 7(c), the PFW reflected from the boundaries and propagated in
various directions. Subsequently, the PFW was scattered as shown in Fig. 7(d). It can be observed that the PFWs were not noticeably
affected by the existence of the damage.

4.2. Damage identification results and discussion for specimen #3

To validate the effectiveness of the proposed damage identification method, the waveforms of PFWs of specimen #3 associated
with the four 𝑓𝑐 were investigated. The value of 𝑠 for 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) was selected to be 3 and the proper

value of 𝑟 for 𝛿
(
𝛹 2D (𝜅𝑡)) was determined to be 2, 3, 3 and 4 for 𝑓𝑐 = 30 kHz, 50 kHz, 70 kHz and 90 kHz, respectively, based

on Eq. (23). Damage index RMS
(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) of waveforms associated with 𝑓𝑐 = 30 kHz were

calculated and shown in Figs. 8 (a) through (d), respectively. In Fig. 8(a), large index values are observed within and beyond the
damage area, and those in the latter lead to false positive identification results of the location and extent of the damage. A similar
observation can be made to 𝛿

(
𝑊𝑡

)
in Fig. 8(b). Hence it was hard to identify the damage location and extent based on RMS

(
𝑊𝑡

)
and 𝛿

(
𝑊𝑡

)
. In Fig. 8(c), large index values can be observed within the neighborhood of the damage area, while relatively large

ndex values can still be observed beyond the damage area. These observations are similar to those in the specimen #1. In Fig. 8(d),(
𝛹 2D (𝜅𝑡)) had the best identification result: large index values can only be observed within the neighborhoods of the damage
rea. Therefore, 2D-CWT with the second-order Laplacian of Gaussian function can well suppress global trends of 𝑊𝑡. Energy ratios

associated with RMS
(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) are listed in Table 1. It can be seen that damage identification

results obtained from 𝛿
(
𝛹 2D (𝜅 ))

were better than those from RMS
(
𝑊

)
, 𝛿

(
𝑊

)
and 𝛿

(
𝛹 2D

(
𝑊

))
. Damage identification results
𝑡 𝑡 𝑡 𝑡
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Fig. 12. Damage identification for the specimen #4 excited by the excitation with 𝑓𝑐 = 50 kHz based on (a) RMS
(
𝑊𝑡

)
, (b) 𝛿

(
𝑊𝑡

)
, (c) 𝛿

(
𝛹 2D

(
𝑊𝑡

))
, and (d)

𝛿
(
𝛹 2D (𝜅𝑡)). Locations and extent of circular damage areas are depicted by solid red lines. For better comparison, the damage values shown in each figure are
ormalized so that their maximum value is equal to one.

Table 1

Energy ratios 𝜒 associated with RMS
(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡))

in the specimen #3 at different values of 𝑓𝑐 (unit: %).

𝑓𝑐 RMS
(
𝑊𝑡

)
𝛿
(
𝑊𝑡

)
𝛿
(
𝛹 2D

(
𝑊𝑡

))
𝛿
(
𝛹 2D (𝜅𝑡))

30 kHz 5.3 6.5 10.0 16.2
50 kHz 5.3 5.4 6.9 12.1
70 kHz 5.0 5.3 6.3 14.6
90 kHz 5.3 5.0 5.7 14.5

using the waveforms associated with the 𝑓𝑐 = 50 kHz, 70 kHz and 90 kHz are shown in Figs. 9 through 11, respectively, and
corresponding 𝜒 are listed in Table 1. It can be seen that the damage location and extent cannot be identified based on RMS

(
𝑊𝑡

)
,(

𝑊𝑡

)
and 𝛿

(
𝛹 2D

(
𝑊𝑡

))
, while 𝛿

(
𝛹 2D (𝜅𝑡)) can consistently identify the location and extent of the damage accurately.

4.3. Experimental test and damage identification for specimen #4

The specimen #4 was studied to validate the effectiveness of the proposed damage identification method for multiple damage
areas with relatively small sizes than that in the specimen #3. The specimen #4 had a length of 150 mm, a width of 150 mm, and
a thickness of 3 mm. Three circular damage in the form of 50% thickness reduction with a diameter of 10 mm were introduced to
the specimen; they were centered at (30, 30) mm, (75, 75) mm and (120, 120) mm. Dimensions and locations of the damage areas
can be found in Fig. 5(c). A PZT actuator with a diameter of 7 mm was attached to the upper left corner of the specimen #4 to
generate five-count wave packets with two 𝑓𝑐 , including 50 kHz and 75 kHz, for generating excitation forces. The same instruments

s those for the specimen #3 were used. The peak-to-peak amplitude of the excitation forces were amplified to 150 V. A grid of
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Fig. 13. Damage identification for the specimen #4 excited by the excitation with 𝑓𝑐 = 75 kHz based on (a) RMS
(
𝑊𝑡

)
, (b) 𝛿

(
𝑊𝑡

)
, (c) 𝛿

(
𝛹 2D

(
𝑊𝑡

))
, and (d)

𝛿
(
𝛹 2D (𝜅𝑡)). Locations and extent of circular damage areas are depicted by solid red lines. For better comparison, the damage values shown in each figure are
ormalized so that their maximum value is equal to one.

103 × 103 measurement points was assigned to the whole intact side of the specimen #4. A sampling frequency of 1.25 MHz was

used to measure the response of each measurement point for 10 ms. For each measured response, 50 averages were carried out to
minimize adverse effects of measurement errors. The averaged measured responses of all measurement points were reconstructed as

2D waveforms at each measurement instant. It was taken about three hours to finish the whole measurement process in each case

of excitation force. Phase velocity dispersion curves for the specimen #4 are same to those of the specimen #3 as they were made

of the same material. Based on the phase velocity dispersion curves, only the S0 and A0 Lamb wave modes existed for all 𝑓𝑐 .

The value of 𝑠 for 𝛿
(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) was selected to be 3 and the proper value of 𝑟 for 𝛿

(
𝛹 2D (𝜅𝑡)) was

etermined to be 2 for the two excitation cases based on Eq. (23). Damage indexes RMS
(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡))

ssociated with the excitation with 𝑓𝑐 = 50 kHz are shown in Fig. 12. In Fig. 12(a), large index values are observed within and
eyond the three damage areas. A similar observation can be made to 𝛿

(
𝑊𝑡

)
in Fig. 12(b). Hence it was hard to identify the damage

locations and extent based on RMS
(
𝑊𝑡

)
and 𝛿

(
𝑊𝑡

)
. In Fig. 12(c), large index values can be observed within the neighborhoods

of the three damage areas, while relatively large index values can still be observed beyond these damage areas. It is because

TEO can only partially suppress global trends of 𝑊𝑡. In Fig. 12(d), 𝛿
(
𝛹 2D (𝜅𝑡)) had the best identification result. In addition, 2D-

CWT with the second-order Laplacian of Gaussian function can well suppress global trends of 𝑊𝑡. Energy ratios 𝜒 associated with

RMS
(
𝑊𝑡

)
, 𝛿

(
𝑊𝑡

)
, 𝛿

(
𝛹 2D

(
𝑊𝑡

))
and 𝛿

(
𝛹 2D (𝜅𝑡)) are listed in Table 2. It can be seen that damage identification results obtained

rom 𝛿
(
𝛹 2D (𝜅𝑡)) were the best. Damage indexes and 𝜒 associated with the excitation with 𝑓𝑐 = 75 kHz are shown in Fig. 13 and
isted in Table 2, respectively to further verify the effectiveness of the proposed damage identification method.
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Table 2
Energy ratios 𝜒 associated with RMS

(

𝑊𝑡
)

, 𝛿
(

𝑊𝑡

)

, 𝛿
(

𝛹 2D
(

𝑊𝑡

))

and 𝛿
(

𝛹 2D (

𝜅𝑡
))

in the specimen #4 at different values of 𝑓𝑐 (unit: %).

𝑓𝑐 RMS
(

𝑊𝑡
)

𝛿
(

𝑊𝑡

)

𝛿
(

𝛹 2D
(

𝑊𝑡

))

𝛿
(

𝛹 2D (

𝜅𝑡
))

50 kHz 4.2 4.2 12.7 88.5
75 kHz 4.7 4.8 13.8 93.5

5. Concluding remarks

In this paper, a baseline-free damage identification method is proposed for plate-like structures by extracting damage-induced
ocal anomalies in 2D-CPFWs. The fundamental mechanism of suppressing the global trends of 2D-CPFW by 2D-CWT is investigated.
t is found that the 𝑟th-order Laplacian of Gaussian function can well suppress the global trend of a 2D-CPFW within a finite interval
f the trend can be well approximated by a (2𝑟 − 1)th-order bi-variant polynomial. The effectiveness of the proposed method is
umerically and experimentally investigated with different numbers, extent and locations of damage areas and central frequencies
f excitation forces. It was found that (1) the proper order of the Laplacian of Gaussian function can be determined based on the
odal assurance criterion and statistical criterion, (2) the proposed method is robust against measurement noise and effective for
ifferent damage scenarios and central frequencies of excitation forces, and (3) the proposed method can accurately identify the
ocation and extent of damage when local anomalies cause are not noticeably in PFWs. The total duration of a measurement process
ncreases with the density of measurement points, the number of averages and the duration of each average for a measurement
oint. One future investigation can focus on the effects of decreases of the density of measurement points, the number and duration
f averages on damage identification results by the proposed method. Another two future investigations can focus on determining
he proper value of the scale parameter in the CWT for the proposed method and its applications to complex engineering structures,
uch as composite plates.
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Appendix. 2D-CWT

A mother wavelet function 𝜓 (𝑥, 𝑦) has a zero mean [31]:

∫

∞

−∞ ∫

∞

−∞
𝜓 (𝑥, 𝑦)d𝑥d𝑦 = 0 (A.1)

Further, if 𝜓 (𝑥, 𝑦) is rotation-invariant, there are a family of associated mother wavelet functions, which can be expressed by

𝜓𝑢,𝑣,𝑠 (𝑥, 𝑦) =
1
𝑠
𝜓
(𝑥 − 𝑢

𝑠
,
𝑦 − 𝑣
𝑠

)

(A.2)

where 𝑠 is the scale parameter, and 𝑢 and 𝑣 are translation parameters along 𝑥- and 𝑦-axes, respectively. Let 𝑓 (𝑥, 𝑦) ∈ 𝐿2 (R2),
2D-CWT of 𝑓 (𝑥, 𝑦) with 𝜓 (𝑥, 𝑦) is defined as

𝑓 (𝑢, 𝑣, 𝑠) = 1
𝑠 ∫

∞

−∞ ∫

∞

−∞
𝑓 (𝑥, 𝑦)𝜓

(𝑥 − 𝑢
𝑠

,
𝑦 − 𝑣
𝑠

)

d𝑥d𝑦 =
(

𝜓̃𝑠 � 𝑓
)

(𝑢, 𝑣) (A.3)

where

𝜓̃𝑠 (𝑥, 𝑦) =
1
𝑠
𝜓
(−𝑥
𝑠
,
−𝑦
𝑠

)

(A.4)

and (⋅) is the complex conjugate of a function. The mother wavelet 𝜓 (𝑥, 𝑦) has 𝑁 vanishing moments if

∫

∞

−∞ ∫

∞

−∞
𝑥𝛽𝑦𝛼−𝛽𝜓 (𝑥, 𝑦)d𝑥d𝑦 = 0, 0 ⩽ 𝛼 < 𝑁 (A.5)
18

where 𝛼 and 𝛽 are both non-negative integers with 𝛽 ⩽ 𝛼.
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