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Abstract 25 

Videos captured using Transmission Electron Microscopy (TEM) can encode details regarding 26 

the morphological and temporal evolution of a material by taking snapshots of the microstructure 27 

sequentially. However, manual analysis of such video is tedious, error-prone, unreliable, and 28 

prohibitively time-consuming if one wishes to analyze a significant fraction of frames for even 29 

videos of modest length. In this work, we developed an automated TEM video analysis system 30 

for microstructural features based on the advanced object detection model called YOLO and 31 

tested the system on an in-situ ion irradiation TEM video of dislocation loops formed in a 32 

FeCrAl alloy. The system provides analysis of features observed in TEM including both static 33 

and dynamic properties using the YOLO-based defect detection module coupled to a geometry 34 

analysis module and a dynamic tracking module. Results show that the system can achieve 35 

human comparable performance with an F1 score of 0.89 for fast, consistent, and scalable frame-36 

level defect analysis. This result is obtained on a real but exceptionally clean and stable data set 37 

and more challenging data sets may not achieve this performance. The dynamic tracking also 38 

enabled evaluation of individual defect evolution like per defect growth rate at a fidelity never 39 

before achieved using common human analysis methods. Our work shows that automatically 40 

detecting and tracking interesting microstructures and properties contained in TEM videos is 41 

viable and opens new doors for evaluating materials dynamics.  42 

43 
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 44 

Graphical Abstract – Overview of the developed framework for automated analysis of defects 45 

based on the YOLO deep learning method.   46 
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Introduction 47 

 Transmission Electron Microscope (TEM) has widely been used to characterize a 48 

material or material system since TEM provides resolution limits at or below common 49 

microstructural features of interest. Recently, a surge in the use of in-situ TEM techniques has 50 

occurred, partially due to the advent of digital capture devices. In-situ TEM experiments have a 51 

distinct advantage over ex-situ experiments as they allow researchers to study materials’ intrinsic 52 

properties and responses as external conditions are manipulated such as temperature, pressure, 53 

and type of reaction cells1. In material science, in-situ TEM is frequently used to shed light on 54 

challenging problems like elucidating mechanisms for catalysis, atomic behavior during material 55 

reactions, and nanoscale property changes under loads1,2.  56 

 The value extracted from an in-situ TEM experiment requires careful analysis of the 57 

observed processes. For many of these experiments, this analysis includes dynamically detecting 58 

features present in the microstructure and analyzing the microstructural evolution in each frame 59 

of the experiment, typically captured in a digital video form. For decades, quantification of 60 

defects in in-situ TEM data has been completed by humans, which is tedious, time-intensive, 61 

error-prone, biased, and impractical to scale. For example, a typical manual workflow of 62 

counting defects in TEM images requires an experienced researcher carefully going through 63 

every frame for different types of defects and labeling objects in the images one by one. Such 64 

manual analysis typically takes many minutes per frame (e.g., in this study, we found it takes 65 

about 20 to 60 minutes to process 1 frame, depending on the complexity of the TEM images).  66 

Typical in-situ TEM experiments can generate tens to hundreds of frames of video data per 67 

minute, so a long video can rapidly become impractical to analyze. Moreover, the labeling 68 

quality also depends on the attentiveness of researchers, which may be reduced after spending 69 
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hours on this repetitive work. Furthermore, other factors such as researchers’ proficiency and 70 

personal preference when analyzing TEM images contribute to inaccurate or at least inconsistent 71 

labeling. Human interpretations are often required for analyzing TEM images that the same 72 

researcher may give different labeling results at different times. The above observations imply 73 

that manual counting and analyzing methods are hard to scale and prone to human-based errors. 74 

In the future, the demand for better TEM analysis methods will only grow, as recent advances in 75 

TEM equipment, e.g., high-speed cameras, and fast microprocessors will keep accelerating the 76 

rate of data acquisition3.   77 

Automatic analysis of TEM/STEM data, especially identifying microstructural defects, is 78 

a long-standing pursuit of both the academic community and the industrial sector. To 79 

automatically analyze defects contained in TEM/STEM images, various methods have been 80 

applied, such as matching key-points in different regions of interest4, applying different 81 

thresholding values to segment different defects5,6, representing the texture of various targeted 82 

structures by the bag of visual words (BoW)7 or synthesizing artificial image dataset8, and using 83 

traditional machine learning methods, e.g., k-means clustering, to find defects contained in 84 

TEM/STEM images3. To the best of our knowledge, these methods are only semi-automatic in 85 

that they still require extensive human knowledge and time to apply to a given system, and each 86 

new material system requires a significant new investment to find an effective approach. 87 

Recently, modern deep learning methods have been applied to solve the defect identification 88 

problem in static TEM/STEM image data9–11, suggesting this is a promising approach that could 89 

be reliable and highly flexible across many materials and problems. However, deep learning 90 

approaches have not yet been applied to the problem of automatic detection and analysis of 91 

defects contained in in-situ TEM video. Imaging-related research around TEM/STEM video 92 
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processing is very active, but has focused on other areas, such as structure reconstruction12, 93 

image quality improvement13,14, and video alignment15.  94 

Here, we develop a framework to solve the defect detection and tracking problem 95 

common in many materials based in-situ TEM experiments. The framework is centered on the 96 

deep learning based YOLO model16 which can extract, detect, and identify feature populations 97 

present in a video to show the evolution history of defects in-situ. Deep learning typically uses a 98 

combination of multiple layers of nodes called neural networks to extract the intrinsic structure 99 

of input data to build a mapping between the intrinsic structure and targeted output17. With 100 

advancements in GPU computing powers, accumulation of carefully labeled large scale datasets, 101 

e.g. ImageNet18, and better optimization algorithms like backpropagation,  deep learning-based 102 

models have shown great success in different tasks such as automatic driving, speech synthesis, 103 

and image classifications17, even outperforming humans in many tasks such as the board game 104 

Go19. Deep learning has also been widely used in material science20 and achieves good 105 

performances including predicting properties of materials21,22, identifying material phase 106 

transitions23, and automating the analysis of TEM/STEM data9–11,24–26. Among those 107 

advancements, defects detection or tracking in TEM/STEM data has yielded human-level or 108 

even better than human-level performance, including detection or analysis of dislocation loops, 109 

line dislocations, precipitates, and cavities9–11,24,27–29. Here we focus on applying deep learning 110 

methods and tools for defect detection and tracking in microscopy and we organize the previous 111 

approaches to this problem into three different categories. The first one is combining deep 112 

learning methods, computer vision knowledge, and other than deep neural network types of 113 

machine learning tools together to build the defect analysis system. For example, in Li et al.’s 114 
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work9, computer vision methods like Local Binary Patterns (LBP)30 descriptor were used to 115 

describe local pixel environment, machine learning methods like AdaBoost31 were used to select 116 

the most useful visual features, and shallow Convolutional Neural Networks (CNNs)32 were used 117 

to refine the final output to find the defects. This type of methods requires extensive hand-tuning 118 

and integration of multiple stages which is unlikely to provide a practical general approach 119 

compared to relying on just one deep learning model. The second main type of methods belongs 120 

to the encoder-decoder type of deep learning methods33. For example, Ziatdinov et al. used a 121 

weakly supervised encoder-decoder type neural network system to extract atomic locations and 122 

defect types from atomically resolved scanning transmission electron microscopy images to 123 

interpret complex atomic and defect transformation of silicon dopants in graphene as a function 124 

of time26. One special type of encoder-decoder type of methods called U-Net is also popular and 125 

widely used for analyzing material images like studying segmentation of nanoparticles in bright 126 

field TEM images34 and defects in STEM images of steels11. An encoder-decoder model extracts 127 

the most relevant information and builds a useful inner state, which usually requires careful 128 

training33. The third type of methods relies on using mature object detection methods like Faster 129 

R-CNN35, YOLO16, Mask R-CNN36, and SSD37 etc. For example, Mask R-CNN is used by Chen 130 

et al. to study the microstructure of aluminum alloy38 and Faster R-CNN is utilized by Anderson 131 

et al. to investigate helium bubbles in X-750 alloy under irradiation27. These methods tend to be 132 

quite accurate and fairly easy to train. Given their wide use and appealing properties, in this 133 

study, we use one of the third type of methods (YOLO) to study geometrical and temporal 134 

changes of loop type defects in the videos of In-situ TEM ion irradiations. YOLO is similar to 135 

methods used by others for TEM but unique in its speed to analyze videos in real time. 136 
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One of the most successful applications of deep learning is computer vision, where the 137 

ultimate goal is teaching a computer to do the image-related task(s) like finding which object 138 

contained in an image (object detection) and which pixel belongs to different objects (image 139 

segmentation)39. Since a breakthrough in the ImageNet Large Scale Visual Recognition 140 

Challenge (ILSVRC) was made in 2012, the deep Convolutional Neural Network (CNN) based 141 

approach has demonstrated its success in many image-related tasks39. For the object detection 142 

problem (trying to find the location and category of all the objects contained in an image), which 143 

is also the focus of this project, there are two general categories of methods: two-stage methods 144 

and one-stage methods39. For a two-stage method like Faster R-CNN35, the object detector will 145 

first propose some candidate bounding boxes containing the object location information and then 146 

classify the category of those candidate bounding boxes. One-stage methods like YOLO will 147 

output the object location and category at the same time16. Typically, two-stage methods are 148 

slower but more accurate than one-stage methods. YOLO (which is an acronym for You Only 149 

Look Once), is one of the most widely used one-stage methods and offers speed, accuracy, and 150 

fast engineering application potentials39. The key ideas of YOLO are dividing the whole image 151 

(or video frames) into grids and predicting the location and the category of the potential 152 

bounding boxes with a set of pre-defined anchor boxes in each cell of the grid16. YOLO keeps 153 

improving its design and implementation details over time and during the writing of this draft, 154 

YOLOv440 and YOLOv5 (https://github.com/ultralytics/yolov5) were developed. However, we 155 

will use YOLOv3 as this is still the most widely used and recognized version16,41–43.  156 

In this paper, we focus on the specific task of adapting the deep learning based YOLOv3 157 

model into an automated framework for analyzing in-situ TEM video data. Specifically, we 158 

focus on the problem of detection and analysis of radiation-induced dislocation loops generated 159 
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by an in-situ ion irradiation TEM device, the Intermediate Voltage Electron Microscope (IVEM) 160 

housed at Argonne National Laboratory (ANL). This in-situ ion irradiation TEM device 161 

introduces controlled ion beams into a TEM to achieve a high number of atomic displacements 162 

per atom (dpa) to mimic the irradiation environment a material will experience in nuclear 163 

reactors, satellites, or space stations44. The device enables co-irradiation and observation of 164 

radiation-induced defects using diffraction-based contrast while the material is being irradiated. 165 

  166 

Material and methods 167 

The in-situ ion irradiation TEM video-based data used within this study has been 168 

previously studied and analyzed using the common typical human analysis method44. Extensive 169 

details on experimental design, human analysis, and resulting materials effects have been 170 

previously published44. Here, we only present the most pertinent details for context. We selected 171 

one of the four model samples (Fe-18Cr-3Al) from the previous study for the current study, but 172 

the YOLO-based methods can be easily generalized to other samples or different material 173 

systems. The Fe-18Cr-3Al in-situ ion irradiation TEM video-based dataset was generated by 174 

performing in-situ irradiation using the IVEM-Tandem Facility at ANL with a pre-thinned TEM 175 

specimen titled to the g=011 strong two-beam conditions with a frame rate of 15 frames per 176 

second using a Gatan 622 video camera. The irradiation was performed using 1 MeV Kr++ ions 177 

up to 2.5 dpa at a constant temperature of 320°C and a dose rate of 8.3x10-4 dpa/s. Note, dpa is a 178 

measure of the damage or energy imparted into the system and it is known that ion bombardment 179 

at the dpa ranges observed generate embrittling defects in Fe-based alloys45,46. Under these 180 

radiation conditions, it was expected that two dislocation loop types would form, one with a 181 

Burgers vector of a/2〈111〉  and the other with a〈100〉 44. Under the strong bright-field two-beam 182 
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condition used where g=011 and the deviation parameter, sg, close to zero, only a fraction of 183 

a/2〈111〉 and a〈100〉 loops are visible in TEM. To enable direct comparison to the previous 184 

human-based analysis where multiple g-vectors were used for detection and analysis47,48, we 185 

applied a fractional visibility constant 7/4 to make YOLO detection results comparable with 186 

published results using other g conditions44. Defect size was estimated by assuming the defects 187 

are elliptical and the defect size is the length of major axes of the ellipse. The video image size is 188 

1344 pixel x 962 pixel with 2.6884 pixel/nm conversion factor which gives the physical size as 189 

500.0 nm x 357.8 nm. The video consisted of 1175 frames which were linearly related to dpa and 190 

time through Equation 1 which means each frame corresponds to 1.75 seconds. 191 

𝑇𝑖𝑚𝑒 (𝑠) =  
𝑑𝑝𝑎

8 ×  10−4

𝑑𝑝𝑎 = 0.8534 +
[(𝐹𝑟𝑎𝑚𝑒 𝑁𝑢𝑚𝑏𝑒𝑟) × 1.6466]

1175
= 0.8534 + (𝐹𝑟𝑎𝑚𝑒 𝑁𝑢𝑚𝑏𝑒𝑟) × 0.00140

 192 

Equation 1 193 

The video data was acquired via frame-by-frame image registration to eliminate sample 194 

drift and relevant camera movement. Since there is no landmark frame or feature that can be 195 

used to align the video across the whole irradiation dose range, the video was divided into 196 

smaller batches for primary image registration, and the final sets from the previous batch were 197 

used to carry over the alignment15,49. The alignment was done by frame registration based on the 198 

selected landmark frame with a template matching and slice alignment plugin50. The 199 

dissemination of data and codes for this paper is described in the Data and Code Dissemination 200 

section. 201 

 We opted not to use any previous data labeling and decided to label the data ourselves for 202 

this project to establish the ground truth data. This choice was because we did not have the exact 203 

pixel positions of each defect in the previous study by Haley, et al44. We followed the labeling 204 
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process that has been used in other studies9. The ground truth data was labeled by two trained 205 

researchers and they checked each other’s labeling and explanations for 3 frames before labeling 206 

the real data via an open-source software called ImageJ51. Their labeling will be treated as 207 

ground truth in this study.  208 

 The YOLOv3 model was adopted from an open GitHub repository 209 

(https://github.com/qqwweee/keras-yolo3). To train the model, we first converted the pretrained 210 

darknet53 weight via COCO dataset into Keras format and then modified the final class number 211 

to our defect number, which was one class in our case since we treated all a/2〈111〉 and a〈100〉 212 

loops as the same type of defect. This single class approach was necessary as Burgers vector 213 

determination is not possible using only the g=011 condition in the video. We then applied the 214 

transfer learning technique to fine-tune the model by freezing the first 245 layers of YOLOv3 215 

and training the last 7 layers52. The in-situ ion irradiation TEM video data in this study was 216 

composed of 1176 frames and 21 frames were selected and labeled.  The sampling was done at 217 

random except an effort was made to assure that the sampled frames were approximately 218 

uniformly distributed throughout the full set. Among the sampled 21 frames, 15 frames were 219 

used for training (trained on 12 frames and validated on 3 frames) and 6 frames were used for 220 

testing, where these 6 frames were not seen by the YOLO model during training. The model was 221 

trained on GeForce GTX 1080 for 18300 epoch and the learning rate of Adam optimizer was 222 

switched between 10-4 and 10-5 with batch size equal to 4 and Non-Max Suppression (NMS) IoU 223 

equals 0.45 to find the optimal weights. Real-time data augmentation operations, e.g., left-right 224 

flip, changing hue, saturation, lightness, were applied for the training dataset to enrich the dataset 225 

and enhance the performance of the CNN for variations in defect contrast, size, and morphology 226 
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in the video data set. Real-time augmentation works by augmenting at each training epoch, 227 

generating new augmented images in each epoch. 228 

 229 

 Results and Discussion 230 

We first tested the performance of the trained YOLO model qualitatively by comparing 231 

the detection result of testing frames to that of the ground truth labeling visually, as shown in 232 

Figure 1. In general, the automated machine learning program labeled results agreed with the 233 

ground-truth labeling by humans, except for certain ambiguous grey spots and when there 234 

existed several touching adjacent loops. A zoomed-in comparison between the ground truth 235 

labeling and YOLO predictions is shown in Figure 2. The model was also run on the whole in-236 

situ ion irradiation TEM video. In general, the YOLO model successfully detected nearly all the 237 

dislocation loops. The original TEM video and YOLO prediction overlaid are provided as 238 

described in the Data and Code Dissemination section. 239 

 240 
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 241 

Figure 1. Selected images from the test dataset for various damage doses (e.g. time scale). Subfigure (a), (b), 242 

and (c) are the ground truth labeling developed by two researchers, while subfigure (d), (e), and (f) are 243 

labeled by the automated machine learning program. Here, (a) and (d) are for frame number 120, (b) and (e) 244 

are for frame number 472, and (c) and (d) are for frame number 824. 1 frame increment equates to about 245 

0.00140 dpa, see Equation 1. F1 score compares the machine detection results with human labeling of each 246 

column separately.   247 

 248 
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 249 

Figure 2. The visualized comparison of the human labeling results (blue boxes) to the YOLO detector results 250 

(yellow boxes) for frame number 824.  251 

 252 

The initial qualitative comparison was encouraging so additional quantitative analysis 253 

was conducted. The statistics of the model performance were examined based on the metrics of 254 

precision and recall and their harmonic mean which is also called the F1 score. The precision, 255 

recall, and F1 score were generated using the six test images that were never used in the training 256 

process. The test was iterated with different cut-off Intersection-over-Union (cut-off IoU) values 257 

as shown in Figure 3. Here and elsewhere in the paper the IoU refers to the ratio of the area of 258 

overlap (intersection) to the combined areas (union) of predicted and ground truth bounding 259 

boxes. The cut-off IoU refers to the threshold above which a predicted bounding box is 260 

considered as a candidate match for a ground truth bounding box. Predicted bounding box 261 

matches are assigned by building a matrix of all IoU values between all predicted and ground 262 
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truth bounding boxes and making assignments between predicted and ground truth defects using 263 

the highest IoU in the whole matrix. When an assignment is made all the matrix entries 264 

associated with those predicted and ground truth bounding boxes are removed from the matrix 265 

and the process is repeated. This approach provides a unique assignment and effectively assigns 266 

the highest overlapping predictions to the appropriate ground truth boxes. In general, a lower cut-267 

off IoU means higher tolerance on the discrepancy between the machine labeled region and the 268 

human-labeled region, which agrees with the trend shown in Figure 3, indicating that the 269 

performance of the trained model increased as the cut-off IoU decreased.  270 

We selected a cut-off IoU = 0.15 to assess the performance of our model. This value is 271 

lower than usually used in machine learning classification problems, but we believe is reasonable 272 

for the following reasons. Many defects are small so a shift of just a few pixels in the size and/or 273 

center of the ellipse can lead to significantly reduced overlap in bounding boxes. Such shifts are 274 

likely within the realm of the uncertainty of human labelers, and of course, the YOLO algorithm 275 

makes some location errors, so relatively small cut-off IoU can occur even when two bounding 276 

boxes are clearly finding the same defect ellipse. Furthermore, from the density calculation 277 

showed below, defects are typically much farther away than their size, with a typical distance at 278 

the 2.5 dpa (where defect density is 3x1016 cm-3) of about 1

√3 × 1016cm−3 
3 = 32 nm. This 279 

separation length scale makes it unlikely that boxes of sizes ~ 6-10 nm (the median defect size) 280 

on a side will be assigned to the wrong defect just due to allowing a modest overlap.   281 

The F1 score obtained for the cut-off IoU = 0.15 is very encouraging as scores in the 282 

range of 0.85 to 0.95 are typically considered very good for object detection results43,53. 283 

Furthermore, at this cut-off IoU, our 6 testing images are all reasonably accurately modeled, with 284 

F1 scores ranging from 0.83 to 0.93.   285 
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 286 

 287 

Figure 3.The performance of the YOLO detector with different cut-off IoU thresholds. 288 

 289 

The developed YOLO model was run on each frame of the in-situ TEM video to extract 290 

geometry information of each visible defect for the duration of the experiment. After obtaining 291 

the geometry and position of each defect per frame, we used this information to extract defect 292 

properties, such as median size and number density. Such properties of materials are widely used 293 

in the nuclear materials field from which the dataset originated and provide insights into the 294 

interplay between the imparted damage and the change in microstructure. We picked four typical 295 

frames and compared the machine learning prediction results with ground-truth labeling. Those 4 296 

frames were not used in training and testing the machine learning model. We first compared 297 

defect density. Defect density is important for many materials properties and for nuclear 298 

materials as it is strongly correlated to mechanical properties, e.g., through the dispersed barrier 299 
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model46,54. Loop density comparisons between machine learning results and our labeling results 300 

are summarized in Figure 4. The densities of defects per frame were determined via machine 301 

learning (ML) method and manual labeling for ground truth by dividing the total number of the 302 

loops by the volume of the sample for each frame. The sample was treated as a rectangle bulk 303 

with dimensions of 416.6 x 264 x 75 nm3 and both results were corrected based on the loop 304 

invisibility for the given imaging condition. 305 

 306 

 307 

Figure 4. Loop number density from the whole TEM video. The plot compares the loop number density 308 

obtained from the ground truth labeling done by experts in this study and the result obtained from the 309 

machine learning detector. All the data shown on the plot uses the corrected proposed density, which is 7/4 of 310 



 18 

the raw density (see Sec. Material and methods). The sudden drops in the late stage are an artifact arising 311 

from camera motion. 312 

 313 

Both techniques for analyzing the in-situ videos showed a general trend of increasing 314 

loop density with irradiation dose (time) which was expected based on general radiation effect 315 

theory and previous analysis of the experiment55. Overall, machine learning results were close to 316 

the ground truth labeling results throughout all frames, varying at most 12% compared with 317 

ground truth labeling at the four measured points data in Figure 4. We believe that the observed 318 

discrepancy between machine learning and ground truth data in Figure 4 is likely comparable to 319 

different researchers’ preferences in labeling ambiguous loops and perhaps cannot be 320 

significantly improved without more consistent labeling. It is noteworthy that the sudden drops 321 

observed in the late stages arise from abrupt stage movements that rapidly alter the field-of-view 322 

and momentarily artificially reduce the effective number of loops observed. This effect is similar 323 

to camera movements in the traditional sense.  324 

After obtaining the density of defects from the machine learning detector, we then used a 325 

watershed fitting method to determine the morphology statistics of defects. Since all images were 326 

recorded with metadata to allow for pixel to physical distance conversions, we could predict the 327 

geometric information of each detected defect based on the pixels involved in the defect. We 328 

used the watershed algorithm provided within OpenCV56 to determine the defect pixels and their 329 

boundary. Watershed is a commonly used image segmentation method, which divides different 330 

objects with watershed lines and then, based on the contour found, extracts precise information 331 

about the defects' position, size, and orientations57. We used OpenCV’s marker-based watershed 332 

algorithm. This method requires users to initially label pixels according to their belonging to one 333 

of two categories, referred to as the “sure object” and “sure background”. The sure objects and 334 
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background were found by applying a thresholding method, specifically Otsu's binarization and 335 

Distance Transformations. To remove noise, we use a morphological opening operation with a 336 

3x3 kernel. We followed the official tutorial from OpenCV, and more details can be found 337 

there58. Watershed found boundaries of defects and backgrounds, but the boundaries were not 338 

very smooth. OpenCV’s fitEllipse() function was called to fit the needed defects and the 339 

major axis length of the fitted ellipse was defined as the defect size. Detailed fitting results with a 340 

cropped region of interests are provided in the Data and Code Dissemination section. The 341 

machine learning results of the defect size distributions were compared to ground truth labeling 342 

in Figure 5. Although differences were observed in defect median size of each frame in Figure 5, 343 

investigation indicated that these differences did not exceed 13.0% difference in median size, 344 

and the average difference is only 5.5% and the standard deviation of difference is 5.3% across 345 

all doses investigated. The exact formula used to calculate these statistics is given in the 346 

Supplemental Information (SI) Section 1. These results indicated that a well-trained machine 347 

learning based model could be used for loop detection and analysis and achieve human-like 348 

performance comparable or better than the large differences that can be expected by manual 349 

labelling9. The boxplot comparison provided in Figure 5 showed the viability of the machine 350 

learning results. At the same time, it needs to be emphasized again that the true strength of such a 351 

technique lies in its ability to detect defect information for every frame quickly and accurately 352 

instead of just focusing on a small subset of frames. 353 

 354 
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 355 

Figure 5. Box plot comparing the distribution of median size for two methods the ground truth labeling done 356 

by experts in this study, and the result from machine learning detector. All distributions are separately 357 

analyzed and compared by their irradiation condition, which is 1.0, 1.5, 2.0, and 2.5 dpa. 358 

 359 

Figure 6 shows the size distribution for the entire duration of the in-situ ion irradiation 360 

TEM experiment where, for each frame, the blue line represents the median of loop size, the top 361 

of the gray boundary indicates the third quartile of loop size distribution and the bottom of the 362 

gray boundary indicates the first quartile of loop size distribution. With the YOLO-based 363 

machine learning detector, we could extract data generated in every frame and investigate the 364 

material properties with hundreds of times more data than previously collected by hand for this 365 

data set (the data collected by hand are the red points shown for four different typical dpa values 366 

where these four points are not seen in training data, with red lines connecting them as a guide to 367 

the eye). The large amount of analyzed data makes subtle trends easy to identify. For example, 368 

although there are some noises, a clear trend can be seen in Figure 6 that the median size, Q1, 369 
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and Q3 increased as the dose value increased from 0.83 to 2.3 dpa and remained stable from 2.3 370 

to 2.5 dpa. Such a result agreed with the relationship found in Haley et al.44.  371 

 372 

 373 

Figure 6. Change in size distribution as a function of irradiation dose based on machine learning detection. It 374 

can be found that the median size (Blue line), first quartile Q1 (Upper gray boundary), and third quartile Q3 375 

(Lower gray boundary) increase as the dose increases when the dose is from 0.83 to 2.3 dpa. Median size, Q1, 376 

and Q3 stabilize above ~2.3 dpa. Red lines connect the red points that represent the ground truth labeling of 377 

median size (circle), first quartile Q1 (triangle), and third quartile Q3(diamond) of 4 typical frames to 378 

provide a guide to the eye.  379 

 380 

One of the most exciting applications enabled by automated data analysis of in-situ TEM 381 

data is the ability to track all defects as a function of time (i.e., frame). With this application in 382 

mind, we developed a tracking module based on YOLO output to track defect motion in the data. 383 

Since video is sequential images in time, we can track defects by counting and measuring their 384 

sizes across frames to discover their evolution in morphology and mobility under irradiation. 385 
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This process is usually called object tracking in computer vision studies and is important for 386 

applications such as surveillance and security systems, traffic monitoring, human-computer 387 

interaction, etc59. One of the most widely used methods for object tracking is tracking-by-388 

detection, also called tracking-by-repeated-recognition59,60. In this method, tracking is achieved 389 

by detecting targets in consecutive image frames with trained object detectors and linking 390 

detected objects across frames to generate the tracking results, e.g., trajectory or motion data60.  391 

We used Trackpy, a Python package for particle tracking, to link the detected objects generated 392 

by the machine learning detector. Trackpy implemented the algorithms first developed for 393 

colloidal particles by John C. Crocker and David G. Grier61 in Interactive Data Language (IDL) 394 

and the algorithm worked well for both non-interacting and interacting systems62. Trackpy is 395 

widely used in the soft matter community for tracking the movement of particle-like objects e.g., 396 

colloidal particles or cells in microscopy videos or images. A typical workflow of Trackpy can 397 

be split into three steps: (1) Locating Particles, (2) Refining Location Estimates, and (3) Linking 398 

Locations into Trajectories61. In the first step general features of particles like diameter, 399 

maximum size, and separations are used to locate all peaks of brightness in the image which 400 

includes the initial object coordinates. Subsequently, more pixel-level information is used to 401 

distinguish real particles from spurious ones. Finally, the locations of particles in each image are 402 

matched with corresponding locations in later images to yield the whole trajectories. The 403 

tracking module is a powerful tool to obtain several important statistics relating to the motion 404 

and evolution of defects. When combined with automatic labeling, it provides a new way to 405 

study defect dynamics under irradiation at a fidelity not possible using previous methods. We 406 

demonstrated this advantage by two case-studies using the tracking algorithms: (i) studying 407 
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defect evolution and trajectory of interesting defects and (ii) extracting statistics of individual 408 

defect mobility e.g., diffusion coefficients.  409 

 To study defect evolution and trajectory of interesting defects, we first showed the size 410 

change of an individual defect, then compared the trajectories of the slowest moving defect and 411 

the fastest moving defects, and finally, showed the landscape of defect moving trajectories. In 412 

Figure 7, a defect was shown to undergo significant size change as the dose increased. With the 413 

help of the tracking module based on the YOLO and Trackpy package, a full history description 414 

of a defect’s size change was recorded to illustrate the evolution of the defect. The defect size 415 

change is shown in Figure 8 which clearly indicated that defect size increased as radiation dose 416 

(dpa) increased.   417 

Figure 7 and Figure 8 show the ability to extract a single defect growth evolution as part 418 

of this in-situ TEM experiment. It is interesting to note that the shape/trend of the growth rate for 419 

individual defects varied, with some showing unconstrained linear growth and others showing 420 

asymptotic growth, and even some showing growth followed by shrinkage. Although not the 421 

focus of this study, we believe the different growth curves for individual defects could be 422 

attributed to local variation in the direct vicinity of the defect, and these variations could promote 423 

or retard growth under irradiation. Significantly more analysis of the data would be required to 424 

evaluate the postulated mechanism. But even at the level of the analysis presented here, the 425 

power of such individual defect tracking is obvious. 426 

 427 
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 428 

Figure 7. Reduced field-of-view bright-field TEM images of a single dislocation loop growing under 429 

increasing irradiation dose of 1.28 displacements per atom (dpa), 1.72 dpa, 1.95 dpa, and 2.35 dpa for a)-d) 430 

respectively. The highlighted loop shows the dynamic change in contrast necessary for the tracking model to 431 

detect and quantify. The defect id (51) was assigned by Trackpy.  432 

 433 

 434 

Figure 8. The size change of a single typical defect, which is the same defect shown in Figure 7. 435 

 436 

Since the individual history of every defect was obtained, it was straightforward to 437 

examine defects with interesting behaviors. For example, as shown in Figure 9, our tracking 438 
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module could determine the motion of very slow-moving (Figure 9(a)) and fast-moving (Figure 439 

9(b)) defects. 440 

 441 

 442 

Figure 9. Trajectories of two typical defects throughout their lifespan. (a) represents a typical defect that has 443 

close to minimum diffusion coefficient value. Figure (b) represents the defect that has a nearly maximum 444 

diffusion coefficient.  Each yellow circle center represents a specific location of the defect in certain frames, 445 

and the set of locations are plotted on a single image to show the relative movement.  The defect id is assigned 446 

by Trackpy. 447 

 448 

The spatial distribution of defect trajectories was also an interesting property that was 449 

determined and is shown in Figure 10. It is noteworthy that in the original video source, due to 450 

thermal expansion of material and TEM user operations under irradiation, the viewable area 451 

adjusted somewhat over time. This movement is an artifact of the in-situ experiment but the 452 

Trackpy package corrected for these artificial movements enabling us to target only the real 453 

movement of each defect. 454 

  455 
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 456 
Figure 10. The trajectory of typical defects detected in TEM video. The movement of this type of defect is 457 

roughly cyclic, so the trajectory is not a single line but rather a small group of points. Results were generated 458 

by Trackpy. Subfigure (b) is a zoomed-in result of the red rectangle in subfigure (a). 459 

 460 

Since we knew each defect’s position and time stamp, an effective two-dimensional 461 

diffusion coefficient (Deff) can be determined. Diffusion of defects is an important property of 462 

defect behavior in nuclear materials63. We calculated this effective diffusion coefficient using the 463 

following relationship: 464 

𝐷𝑒𝑓𝑓 =
|𝑟(𝑡 + 𝜏) − 𝑟(𝑡)|2

4 ∗ 𝜏
 465 

Note that Deff is not a true diffusion coefficient as we make no effort to correct for the 466 

two-dimensional projection of the three-dimensional defect motion, which can be complicated by 467 

the exact angle of the sample and the detailed motion of the defect. Our goal for this work is 468 

merely to demonstrate the ability to track trajectories through the combination of YOLO and 469 

tracking tools, not to perform detailed analysis to extract physically meaningful diffusion 470 

coefficients. To perform the analysis, we choose 345 consecutive frames (from 1176 total) over 471 

which the camera appears to be very steady. These frames are from frame numbers 461 to 805, 472 

corresponding to dpa values from 1.50 to 1.98. Only the regions away from the edges of the 473 
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figure are used to avoid defects appearing and disappearing due to small changes in the image 474 

region. Specifically, we consider only the region with Y position from 200 to 1450 pixels and X 475 

position from 250 to 2150 pixels where the original size of the image is 1728 pixels in the Y-axis 476 

and 2412 pixels in the X-axis. We find a total of 741 defects in Trackpy, which is significantly 477 

larger than the number of defects in a given frame. This larger value is due to the fact that defects 478 

have a finite lifetime due to their appearing over time and, in some cases, disappearing, which 479 

leads to more tracked defects than actual defects in the analysis. Our average lifetime is 54 480 

frames. While some of the defects may actually appear and disappear, many of these events are 481 

clearly artifacts due to Trackpy inadvertently assigning multiple global IDs to the same defect, 482 

which effectively causes one defect to disappear and another to appear even when it has not 483 

actually done so. Such errors make our defect counts inaccurate from TrackPy but do not lead to 484 

incorrect estimates of the defect’s Deff. To illustrate the values of the diffusion coefficients, in 485 

Figure 11 we show the distribution of Deff as a function of binned defect median sizes. We used 486 

“median defect size” as a defect would have different sizes in each frame where it is identified, 487 

either due to small changes in size estimates from the numerical analysis or due to the defect 488 

growing during the irradiation. We then calculated the average Deff of defects that fall into the 489 

same bin, where we have 50 bins from 2 nm to 18 nm.  While this figure illustrates the type of 490 

correlation one can explore with the automated data analysis, in this case we find no statistically 491 

meaningful trend with defect size.  492 
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 493 

Figure 11. The distributions of the effective diffusion coefficient Deff calculated by Trackpy as a function of 494 

the defect median defect size. The data is presented as a histogram with each bin of width 0.32 nm, giving 50 495 

bins from 2 nm to 18 nm. The height for each bin is the mean Deff of all defects in that bin. Error bars are the 496 

standard deviation of the mean. We use “median defect size” as a defect will have different sizes in each 497 

frame where it is identified, either due to small changes in size estimates from the numerical analysis or due 498 

to the defect growing during the irradiation. No error bars are given for bins with just one defect as the 499 

errors cannot be readily estimated. 500 

 501 

Discussion and Conclusion 502 

To further validate the detection results generated and analyzed by ML methods we 503 

developed in this study, we compared our results with those previously completed by Haley et. 504 

al. who investigated the same TEM video with conventional manual analysis method44. Based on 505 

the comparisons, we concluded that the results generated by our ML method are close to those 506 

determined by human experts. For example, the discrepancy between the ML generated loop 507 
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density differs from the results in Haley et al. by at most 38%. And the difference can be largely 508 

attributed to the researchers’ preferences, as different experts may have different labeling 509 

preferences for ambiguous objects. Likewise, the difference between statistics of median size 510 

distribution from ML and Haley et al. did not exceed 32% difference in the mean size, 24% 511 

difference in median size, and 30% in the standard deviation across all doses investigated. 512 

Equations for determining these statistics are given in the SI Section 2.  513 

It is important to be sure that the model is robust to at least some reasonable levels of 514 

noise. To test the sensitivity of the model we used scikit-image (https://scikit-515 

image.org/docs/dev/api/skimage.util.html#skimage.util.random_noise) to add Poisson, Salt and 516 

Pepper, and Gaussian additive noises to the test images. We calculated the precision, recall, and 517 

F1 scores from the model for a range up to quite significant added noises and the impact on the 518 

performance is less than 20% in the F1 score for all cases. This impact is relatively minor and 519 

suggests our model is quite insensitive to noise. Detailed information is provided in SI Section 3. 520 

Since the YOLO object detection model performance is lower for very small objects64, 521 

there exists a threshold of defect size below which our model cannot detect a defect. Similarly, 522 

there is a defect size below which human labelers do not label a feature as a defect. It is 523 

important that the human lower limit is larger than the YOLO lower limit or otherwise we will 524 

systematically fail to identify very small defects. The human labeling threshold value was 525 

estimated as 7.24 pixels (2.69 nm) based on the lower limit in our labeled data. The YOLO 526 

object detection algorithm finds defects as small as 1.86 nm, so YOLO is able to find defects as 527 

small as any human chooses to label. 528 

Although the performance of the detector we used was quite accurate for defect 529 

recognition in TEM video, improvements to the model are needed. Errors likely could be 530 

https://scikit-image.org/docs/dev/api/skimage.util.html#skimage.util.random_noise
https://scikit-image.org/docs/dev/api/skimage.util.html#skimage.util.random_noise
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reduced by more extensive optimization. For example, in the training, we only used default 531 

anchor box settings and K-means clustering of bounding box sizes in training data could be a 532 

better way to find the best set of anchor boxes. Also, more data augmentation operations could 533 

be applied e.g, rotation, adding noises, and cropping or affine transformation to achieve better 534 

performance. Errors could also be reduced by removing biases and ambiguities in the labeling. 535 

For example, it was often unclear how to establish the ground truth labeling of closely distributed 536 

objects with no significant white space between two centers.  537 

It should also be noted that the images used in this study are of very high quality, with 538 

limited noise and few confounding contributions (e.g., surface oxide), and undergo fairly modest 539 

changes during the irradiation (e.g., few defects move significant distances). The high-quality 540 

and modest changes of the images almost certainly help the model performance and subsequent 541 

defect tracking. Furthermore, we focus our model on only one type of defect, a single category of 542 

dislocation loop, to reduce the burden of labeling and focus on the most prevalent defects in the 543 

images. Many samples will have other types of defects (and some are even present in our images, 544 

e.g., dislocation lines), and tracking these is an important area for future study. While there is 545 

nothing intrinsically limiting YOLO to just one defect type (YOLO could be extended to 9000 546 

classes of objects65), what we studied in this paper is a very simple case. To fully assess the 547 

general effectiveness of our approach and develop a broadly applicable tool, the model needs to 548 

be demonstrated on many more data sets with multiple defect types, varying image and sample 549 

quality, and more complex defect evolution during irradiation. However, the present deep 550 

learning model is a powerful proof of principle and suggests that a broader program may be 551 

successful and have a major impact on the defect detection community. 552 
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For future study directions, we think two major directions are worthy of investment. One 553 

is creating high labeling quality data sets. For example, in this study, we combine a/2〈111〉 and 554 

a〈100〉 loops together to alleviate the labeling burden, but it will be more informative if we can 555 

differentiate these two types. Such high-quality labeled data does not necessarily have to come 556 

from experiments and synthetic data can have many advantages. For example, image simulation, 557 

such as the multi-slice method, can generate high-quality images filled with known types of 558 

defects66. This method can help avoid the tedious, error-prone labeling process. Synthetic images 559 

might also be generated with deep learning methods such as Generative Adversarial Networks 560 

(GANs)67,68, which are powerful tools for generating images similar to an existing set. GAN 561 

generation might be done in such a way that labeling is automatic, creating an almost unlimited 562 

supply of high-quality labeled synthetic images or converting images collected from different 563 

conditions to the condition for which our model is trained, allowing the community to better 564 

utilize limited labeled data69,70. The second direction worth exploring is to apply the analysis 565 

system developed in this paper to TEM devices to provide real-time statistics and even direct 566 

labeling of defects (e.g., with a fitted ellipse) in images to guide users during experiments. This 567 

approach is similar to the real-time Augmented Reality (AR) methods that have proven to be 568 

useful in biological microscopy studies71. This combination will provide a straightforward, real-569 

time output of deep learning analyzed results for TEM studies and the material community.  570 

In summary, the present work shows that if the accuracy obtained here can be extended to 571 

more general and complex data, these deep learning tools are a potentially transformative 572 

methodology for the TEM community. The YOLO based system developed in this study 573 

provides an automatic, fast, and reliable quantitative analysis of both position and morphological 574 

evolution of defects in frame level. Furthermore, the YOLO based system can help researchers 575 
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track the motion of defects, which will allow new levels of dynamical analysis. Furthermore, the 576 

approach is easy to use and adapt to other sets of experiments. The speed of YOLO means that it 577 

can be used in real time to adjust experimental conditions (e.g., dpa, temperature) or imaged 578 

regions (e.g., near grains boundaries vs. inside grains), providing a critical tool to support real-579 

time TEM video analysis for material property exploration. We anticipate this YOLO based 580 

analyzing system will significantly enhance the capabilities of in-situ TEM/STEM image 581 

analysis. 582 

 583 

Data and Code Dissemination 584 

All data and code files are stored in the Materials Data Facility72,73 at DOI: 10.18126/n9dj-5mk0. 585 

They are described in detail below.  586 

 587 

1. Raw Data: In the folder Raw_Data, we provide the original TIFF format video and the 588 

converted 1176 JPG images of each frame and the cropped center region of interest 1176 589 

JPG images. 590 

2. Labeled Data: In the folder Training_and_Testing_Dataset, we provide the labeled data and 591 

the data is already put into the TRAIN folder and TEST folder. One needs to put the full path 592 

to these directories in the YOLO labeling file (called “train.txt” in our codes).  593 

3. Code: In the code folder we provide the codes. Specifically, we provide all the codes we used 594 

in organized into Test, Train, and Trackpy subfolders of the Code folder, based on their 595 

respective applications. 596 

4. Fitted Defects Contour Results: We provided the fitted defects of original size videos and 597 

cropped region of interest as MP4 videos in the FittedDefects_video folder. 598 
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5. Plotting Figures and Data: In the folder YOLO_Figures, we provided all the scripts and data 599 

we used to plot figures shown in this paper, and subfolders are named by the index of figures.  600 

 601 

We also provide all codes in user-friendly IPython notebooks through GitHub at 602 

https://github.com/uw-cmg/DefectSTEMVideoAnalysis. 603 
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