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Abstract

Electron microscopy is widely used to explore defects in crystal structures, but human
detecting of defects is often time-consuming, error-prone, and unreliable, and is not
scalable to large numbers of images or real-time analysis. In this work, we discuss the
application of machine learning approaches to find the location and geometry of different
defect clusters in irradiated steels. We show that a deep learning based Faster R-CNN
analysis system has a performance comparable to human analysis with relatively small
training data sets. This study proves the promising ability to apply deep learning to assist
the development of automated analysis microscopy data even when multiple features are
present and paves the way for fast, scalable, and reliable analysis systems for massive

amounts of modern electron microscopy data.
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INTRODUCTION

Electron microscopy (EM) is one of the most powerful tools for researchers to
extract and collect micrometer down to angstrom scale structural and morphological
properties of materials, including repeated structural units (e.g., unit cells of crystals) and
defected regions (e.g., grain boundary, impurities, defect clusters). Traditionally,
researchers have to manually label defects and repeatedly measure the relevant properties
to obtain statistically meaningful values, which is time-consuming, error-prone,
inconsistent, and hard to scale!. The issue of scaling has become pressing as increasing
usage and advancement of EM techniques, such as high-speed detector and automated
sample exploration in EM, now generate massive amounts of image data (e.g., up to
thousands of images from a single experiment or condition can be generated in minutes)
which will keep increasing in the near future?. Data on this scale cannot be practically
examined by humans, and automated approaches are therefore now necessary to utilize
the full power of modern EM. Not surprisingly, the EM community has developed many
accurate image data analysis tools that can be effectively deployed to accommodate the
large volume of EM data®*. However, due to the complexity of images of material
systems, these tools generally still need significant hand-tuning, and in some cases (like
counting defects of irradiated materials), human identification of each defect is still the

norm.
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Well-designed and well-tested automated analysis has proven to be significantly
more efficient, repeatable, and standardized than human analysis for discrete cases®>*.
Developing automatic methods for EM image processing has drawn a great deal of
interest in the material science community. Automation efforts typically rely on
traditional computer vision technology, such as variance hybridized mean local
thresholding’, texture representation, and template matching methods like bag of visual
words (BoW)>??, key-point matching methods!®!'!, Hessian-based Blob boundary
detection methods!? and sometimes obtain better performance!*!* by utilizing tools from
broader areas, such as incorporating synthetic image dataset!> and using machine learning
methods like support vector machine!® and k-means clustering?. However, these efforts
typically require extensive human tuning and/or are limited to specific tasks.

Recent developments (<10 years) in deep learning methods!”-!® have
demonstrated that object detection in images can be automated with minimal
hyperparameters and yield human or even better than human levels of performance.
These frameworks are now being adapted towards finding defects in metals, and
particularly nuclear materials, including the automated detection of dislocation loops,
cavities, precipitates, and line dislocations>!°?!. Generally, there are three different
approaches for applying deep learning frameworks to defect detection in microscopy

images. The first is using the combination of both traditional techniques and deep

learning tools>, for example, Li et al. develops an analysis model that includes a local
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visual content descriptor widely used in computer vision called Local Binary Patterns
(LBP)?? descriptor, feature selecting methods called AdaBoost??, and Convolutional
Neural Network (CNN) module to screen candidate bounding boxes to obtain the best
performance. This approach is more like an intermediate stage of applying deep learning
since it does not follow the complete end-to-end pattern of deep learning practice®* but it
helped show that value of new deep learning methods for this class of problems. The
second approach relies on the encoder-decoder framework to find features®® in EM
images. Examples include using weakly supervised learning methods of encoder-decoder
to study the local atom movements?®, U-Net to study nanoparticle segmentations?’, and a
modified U-Net framework to segment defects in STEM images of steels!®. The encoder-
decoder framework can extract the most relevant information in images and use the
extracted inner state to do other tasks, but the performance of encoder-decoder
framework relies on the extracted inner state and good performance requires careful
training?. The third category of methods are using mature object-detection frameworks,
for example, Chen et al. used Mask R-CNN to study the microstructural segmentation of
aluminum alloy?® and Anderson, et al. used Faster R-CNN to study helium bubbles in
irradiated X-750 alloy?°. Here we explore the first use of similar mature object-detection
deep learning methods as this third category, specifically Faster R-CNN, to obtain

properties of dislocation loops with varying Burgers vector and habit plane in neutron-
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irradiation related iron-chromium-aluminum (FeCrAl) materials, These materials are
important for the development of next generation nuclear reactors?®=3!,

Analyzing the locations and sizes of defects in materials that have undergone
irradiation is a widely used application of electron microscopy. In such studies, the key
properties are the total number and distribution of each type of defect. Typical defects of
interest include grain boundaries, precipitates, dislocation lines, dislocation loops,
stacking fault tetrahedra, cavities (voids, bubbles), and co-called “black-spot” defects,
which are small defect clusters of interstitials and sometimes vacancies'=2. For this study,
we focus on the dislocation loops formed within a ferritic alloy, where the loops exist on
specific habit planes that manifest themselves with different morphologies due to the
projection of a 3D volume imaged using EM33. Typical microstructural images of
irradiated ferritic steels contain four prominent types of defects: (1) open ellipse loops
(single ring edge), (2) open ellipse loops (double ring edges), (3) closed solid elliptical
loops, (4) closed circular solid dots*?. Figure 1 shows a sample STEM image containing
all four morphologies of loops obtained from a ferritic alloy irradiated in a materials test
reactor. In this paper, we used a modern deep learning-based object detection model
called Faster Regional CNN (Faster R-CNN)**, a widely used deep learning based object
detection model'”. We use the Faster R-CNN to develop an automatic defect detection

system for all four morphologies commonly observed in irradiated steels with a body-

centered cubic structure and then additional post-processing to analyze their geometrical
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information (specifically, size and areal density). This paper serves to demonstrate the
power of deep learning-based computer vision models for material image studies and
suggests the possibility that most aspects of defect analysis may soon be practically
automated, and many, if not all, handcrafted feature-based methods may be replaced by

deep learning methods.

Figure 1. Selected bright field scanning transmission electron microscopy (STEM) image of an irradiated ferritic alloy
showing four common morphologies of dislocation loops: (1) open ellipse loops (single ring edge), (2) open ellipse
loops (double ring edges), (3) closed elliptical solid loops, (4) closed circular solid dots. Open single edge ellipse loops
(1) are dislocation loops with a Burgers vector of o / 2{111). Open double edge ellipse loops (2) and closed elliptical
solid loops (3) are dislocation loops with a Burgers vector of a,{100). Closed circular solid dots (4) are black dot
defects with a Burgers vector of either a"/ 2 (111) or ag(100). Image size: Primary image is 290 x 290 nm; inset scales

arbitrary.
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Faster R-CNN is a CNN based end-to-end deep learning object detection model
that outputs both the object position and its class**. As shown in Figure 2, Faster R-CNN
is a two-stage detector where the region proposal network (RPN) proposes Region of
Interest (ROI), and the following ROI regressor and classifier will fine tune the final
output results including the size and position of the object contained bounding boxes and
the corresponding object label**. Given an image, the shared convolutional layers will
extract a feature map from the input image by performing a series of convolution and
max pooling operations. Then based on the extracted feature map, the RPN will put a set
of predefined anchor boxes on the feature map and output the probability of whether the
anchor box belongs to an object of interest or plain background. It worth mentioning that
RPN ignores the specific object class of each bounding box and the following ROI
regressor and classifier are responsible for the specific class and refined location of the
objects. The refining network predicts certain object labels and refines the size and
position of each bounding box based on the feature map generated by the ROI-pooling
layers®. The RPN and ROI components are trained jointly to minimize the loss function
sums from both of them®*. After the Faster R-CNN module A, those images with detected
defects are sent to module B to extract geometric information such as defect diameters, as

shown in Figure 2.
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Figure 2. Schematic flow chart of proposed deep learning based automated detection approach. Input micrograph
images go through the pipeline of Module A—Faster R-CNN Detector, Module B—Image Property Analysis. After
Module A, the loop locations and bounding boxes are identified and then for each identified bounding box, geometry

fitting algorithms are called to determine the defect shape and size in Module B.

For details on the data sets, training approaches, and methods of defect
identification and analysis, please see Methods section. Please see Data section for

summary of all data made available.

RESULTS
To assess the machine predictions, four types of approaches were taken. The first
approach was a qualitative comparison of machine to human labeled images, where we

looked for large fractions of errors, e.g., more than 40%, and for trends in errors that
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might indicate a major issue but made no attempt to quantify agreement. This assessment
tests all aspects of the model as it compares to the ground truth human results, which
include the bounding box predictions (the defect detection part of Module A in Figure 2),
the defect type identifications (the categorization part of Module A in Figure 2), and the
geometric shape determination (Module B in Figure 2). The second assessment approach
was a quantitative assessment of the ability to identify a defect, regardless of defect types.
This assessment tested the defect detection part of Module A (see Figure 2). This
assessment was a binary categorization problem and success was quantified with
precision, recall, and F1 score. The third assessment was a quantitative assessment of the
ability to identify a defect type once a defect had been correctly identified and tested the
categorization part of Module A (see Figure 2). This assessment was a three-category
categorization problem and was quantified using the confusion matrix with precision,
recall and F1 calculated for each class. Finally, the fourth assessment was a quantitative
assessment of the ability to quantify the geometric properties of defects. This assessment
tested the geometric analysis of Module B (see Figure 2) and compared machine and
human predictions of average and standard deviations in size and areal density for each
defect type. We discuss each of the four assessments below and label them assessment 1-
4 for clarity. In all cases the comparisons are made on the test data set described in

Methods section.
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Assessment 1. After feeding the images into the Faster R-CNN detectors, the
resulting detections were plotted on the original images. As shown in Figure 3, the red
circles represent the dislocation loops with a Burgers vector of a0/2 (111) (Type 1 in
Figure 1), while the yellow and blue circles represent ay(100) direction loops (Type 2
and 3 in Figure 1) and “black dot” defects (Type 4 in Figure 1) respectively. The data
from both human-labeled and machine detected results are plotted in the same manner.
More comparisons can be found in Supplement Information Section 1. To a human
observer the machine results show strong correlation of bounding box location, defect
type identification, and defect shape with the ground truth human labeling which
indicates the effectiveness of the proposed automatic defect detection system.

Assessment 2. The performance of the detection part of Module A (see Figure 2)
of the trained model was evaluated in terms of precision, recall, and F1 score by
comparing the detected result with the human labeled result of the 12-image testing set,
as shown in Figure 4. The precision describes the percentage of all machine predicted
bounding boxes that are judged to have correct positions, and the recall value describes
the percentage of all human labeled defects that are identified as in a bounding box by the
machine algorithm. F1 is the harmonic mean of the precision and recall which can be
used to assess the overall performance of the defect location task®>. The IoU (Intersection
over Union) method was used to determine if a given defect was identified by a bounding

box and is described within the provided Methods section. The cutoff IoU, which must be
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exceeded to consider the bounding box to have identified the defect, is a hyperparameter
that can be fine-tuned based on the purpose of the object detection task?>. Figure 4
showed a drop in performance as the cutoff IoU increased. This trend agreed with
expectations as the higher cutoff loU meant it was harder for the predicted bounding box
to be judged successful. However, setting the cutoff IoU to an extremely small threshold
could lead to the problem that the predicted bounding boxes are associated with defects
for which only a small part of the defect is actually in the bounding box, which will likely
cause problems in the defect identification (Module B) of our model. As a compromise,
for all the further assessments in this paper, we used cutoff [oU = 0.4 to determine when
the machine predictions were considered to match a given defect. This choice kept
nearly optimal performance of the detector (based on Figure 4) and an adequately

demanding standard for predictions.
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Figure 3.Selected data images to show the detector performance and the fitted ellipse of our automatic

analysis system. These three test images are selected from the test dataset of 12 images (see Methods). The “Ground

Truth (GT)” shows the bounding box and ellipse human labeling (colored by defect type), the “Prediction (Pred) Box”
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218 shows the predicted bounding boxes (colored by defect type), and the “Prediction (Pred) Ellipse” shows the resulting

219 fits to the specific defect geometry (colored by defect type as described in the text).
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221
222 Figure 4. Summary of defect location recognition performance of all types of defects evaluated using precision and
223 recall metrics, regardless of defect types. The test set contained 12 images, and, for all IoU (Intersection over Union)
224 values and we used a threshold confidence score 0.25 for Faster R-CNN output. (see Method Section).
225
226 Assessment 3. Table 1 shows the confusion matrix of the predictions made by

227  Faster R-CNN detector evaluating its capability to correctly categorize defects. Each row
228  in the confusion matrix represents a class that is predicted by the detector, and each
229  column represents a class labeled by human researchers. The diagonal elements of the

230  table represent the correct classification made by the detector and off diagonal elements
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represent errors of different types. We also show the percentage accuracy of each type of
defect in parentheses. The 76%, 87%, and 94% accuracy indicates that once the Faster R-
CNN model locates the defect, it can classify the type of defect based on their
morphology within the image with good accuracy, although some improvement of the
76% value is likely possible for the a;(100) loops. We also report the classification
performance using precision, recall and F1 score in Table 2. Given inherent errors of
human performance we take scores for precision, recall and F1 of 0.78 as approximately
the upper limit that can be obtained with the present labeling. Table 2 shows F1 from
about 0.65 to 0.78, which demonstrates significant capabilities but is likely less than can

be achieved, suggesting opportunities for further improvements.

Table 1. Summary of the classification performance for each type of defects at cutoff IoU 0.4. Values in parenthesis

give the % each number represents of the total number of defects in that class as determined by the human labeling.

a0/2(111) Loop Black Dot a0(100) Loop

a/2(111) Loop 239 (87.2%) 21 14
Black Dot 17 416 (94.3%) 8
a(100) Loop 33 13 166 (78.3%)

Table 2. The performance report for each class.

a0/2(111) Loop Black Dot a0(100) Loop
Precision 0.73 0.65 0.62
Recall 0.83 0.71 0.72
F1 0.78 0.68 0.67

16
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Assessment 4. The second Module provides geometric in formation for each
defect through fitting ellipses. While the fits can provide a range of detailed information,
we are particularly interested in the arithmetic mean and the associated standard deviation
of the defect diameter as well as the areal density in an image for each type of defect.
These values are commonly quoted values in literature within irradiated materials studies.
Table 3 compares the human labeled arithmetic mean diameters and areal densities to the
ones predicted by the automatic analysis system. The discrepancy of arithmetic mean
diameter between the human labeled ground truth and predictions is within 10% in all
cases, which is considerably less than might be expected for variation among different
humans? and we consider a strong success. Furthermore, the errors in arithmetic mean
diameters are in the range 0.7-1.1 nm, which corresponds to a range of two to nine pixels
(based on the range 0.14nm/pixel to 0.87nm/pixel for our test data, see SI Section 1). The
errors of about 1 nm correspond to about 5-10% for our data which is somewhat larger
than might be expected from direct labeling errors on 10-15nm. Thus, it is unlikely that
any human labeling is meaningfully accurate to much below this level. However, the
human and machine learning black dot radii do not fall within a 95% confidence interval,
suggesting that the algorithm does not yield exactly the same means as the human ground
truth. Some errors will come from the machine detection (failures in precision and recall,

see Figure 4) and defect type assignment (see Table 1). Additional errors are associated
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with intrinsic errors in the machine and human ellipse labeling, where both have some
uncertainty due to ambiguity or variances in the morphology of defects in images. In
particular, some defects are not well fit by an ellipse (e.g. some have a more rectangular
shape, as can be seen in Figure 3), making this form of labeling difficult for both human
and machine. Another error to consider is that as the number of pixels per feature goes
down, the intrinsic error due to the resolution (pixel/nm) will artificially go up. For
instance, a 100 nm loop where the resolution is 1 pixel/nm where the labeling is off by 1
pixel will yield a 1% error. If the labeling is off by 1 pixel for a 5 nm loop, the error will
be 20% even though the per pixel error is the same. Seeing as the black dots are all of
small arithmetic mean diameter (<10 nm), they will intrinsically have a higher error

compared to the other classes where the diameters are 2-3 times larger.

Table 3. Comparison of arithmetic mean defect diameter and standard deviation of mean loop diameter between ground
truth labeling and our automatic analysis model prediction with an IoU of 0.4. The values in parenthesis are the relative

percentage error between ground truth human labelling results and the automatic analysis results.

Ground Truth Automatic Analysis Model
. . Standard . . Standard
Defect Ar;[lg:lftlc Deviation of Areal Ar;[l::snc Deviation of Areal
Type diameter M can dengty diameter Mean Den_szl ty
(nm) Dl?::;:)ter (m™) (nm) Dl?;rrlrf)ter (m™)
ao/2
23.1 2.21x10M
14
(Eololp) 22.4 0.7 1.77x10 (3.1%) 0.8 (24.9%)
9.1 4.98x10'
Black Dot 14
ack Do 8.2 0.1 3.41x10 (10.9%) 0.2 (46.0%)
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a0(100) w224 1.79x10'4
Loop 20.3 0.8 132x10% ) 0.9 (35.6%)

DISCUSSION

The above results demonstrate that that the trained model potentially performs
well enough to replace human in a workflow on similar types of data. The precision and
recall values for assessing detection in the range 62-83% which are comparable or less
than human variation? from previous assessments. The machine defect type
misidentifications are at the level of 10-25% (see Table 1), and a significant fraction of
this variation may also be due to ground truth ambiguities or errors. The final machine
predicted diamaters are within a nanometer, approximately 2 pixels in images, which is a
level of error that is considered negligible in terms of impact on material properties. To
further clarify that the error is negligible for our defect population we have done a
sensitivity analysis based on previous studies of hardening from loops. As discussed in
Field et al. 3! simple dispersed barrier hardening models suggest that the hardening under
irradiation from loops is of the form Ag,, = A vd where A is a constant and d is the
diameter of the defect. Now consider an error in diameter d defined as &. The fractional
error in Ag,, due to the error & is (Aay (d+¢) —Ag, (d))/Aay (d) = €/(2d), where the
approximate equality holds for € <« d. For £= 1.7 nm (which is 2 pixels for our largest
pixel sizes, see below) and d =21.4 nm (our average sizes of a/2<111> and a<100>

defects), we get the fractional error in Ag,, as 1.7 nm /(2 * 21.4 nm) = 0.04, which is well
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within the uncertainty of such microstructure-based analysis. However, for smaller
defects this percentage error could clearly become larger. The errors of diameter between
ML results and human results appear to be approximately symmetrically distributed in
positive and negative directions and independent of defect density, as shown in detail in
SI section 4 and 5. Furthermore, previous studies indicate that the differences of
arithmetic mean diameter between different human labelers can be comparable or larger
than values found here between the ML and human results®. The discrepancy in areal
densities is somewhat larger than might be intuitively expected just from the percentage
error in the arithmetic mean diameters. However, additional errors are introduced by the
exact definition of areal density (see Methods section) and the additional errors
introduced by the imperfect precision and recall.

While the exact performance of the present automated approach compared to
different human researchers is difficult to determine rigorously there is no doubt that the
present approach is much more consistent. Previous studies have shown that different
labelers tend to label defects in different ways and even the same person may label the
same defects differently even after a short break®>. Such issues can make any given data
analysis somewhat unreliable and make it difficult to integrate results across different
teams and or time periods in larger analysis efforts. However, once a machine learning
model is properly trained, it will yield a unique and reproducible labeling for every

image. If the community could converge on a single or small number of models this
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could greatly increase the reproducibility in labeling of STEM experiments. That said,
models trained on different data and/or different human labeling could give different
predictions, so establishing community accepted models is an important part of using
these approaches to obtain more consistent results.

The approach applied here is readily scalable to very large data sets. Analyzing a
single image with our model on a reasonable state of the art GPU (NVIDIA's GeForce
GTX 1080 GPU) takes about 0.1s, so analyzing all the images in a typical experiment can
be done easily in minutes, even less if multiple GPUs are used and as GPU and related
processors (e.g., TPU) continue to get faster. As large scale distributed cloud service
provider like Google, Amazon and Microsoft are providing cloud service for deep
learning applications with GPU machines®, it would be easy to scale to process even
larger amount of data. Furthermore, significant speedup can likely be obtained if desired.
We developed the system with the Python code language and the ChainerCV deep
learning framework, both of which were chosen for ease of development not for the high-
performance in deployment. Replacing Python with C/C++ or using high-performance
deep learning frameworks, e.g. Caffe’’, could potentially accelerate the prediction speed
of the current model. In particular, the deep learning community is actively designing
new methods to accelerate the running speed of model e.g. model compression, weight
sharing, or parameter pruning® which could also boost the speed of ours. As an example

of how fast deep learning Al algorithms can be, researchers from Google have recently
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340  applied deep learning models for cancer diagnosis on data during the actual process of
341  conducting an optical microscopy experiment?”.

342 The approach applied here is also readily adapted to new defect types and

343  systems. The present model was trained with only a relatively small amount of training
344  data due to the use of transfer learning*®. With only modest additional data sets (e.g., on
345  the scale of thousands of defects or possibly fewer) and a few rounds of further training
346  as described in Section II of SI, researchers could likely extend the present model to
347  more defects (e.g. separating the two orientations of 111 loops or adding voids,

348  preexisting dislocations, etc.), different imaging conditions (e.g., changes in microscopes,
349  imaging modes, orientation, focus, etc.), and different materials (e.g. other metal alloys).
350 There are several areas where significant improvements may be obtainable. The
351  first is that the use of real-world data in the study has led to significant time spent

352  labeling and introducing unavoidable human biases and errors into the deep learning
353  model and its assessment. However, it is possible that simulated images could be both
354  more accurately labeled and generated in large volume, potentially allowing much more
355  accurate models to be trained.

356 The second area where significant improvement is likely is that deep learning
357  methods for object detection continue to evolve rapidly. In particular, deep learning

358  segmentation models'’, which learn a label for every pixel, could be equally or more

359  accurate and remove the step of fitting contours in a bounding box to get geometric
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information. Such an approach was applied recently to automatically detect information

about dislocation lines, precipitates and voids in STEM images'®.

Conclusion

This study demonstrated a practical deep learning based automatic STEM image
defect detection system implemented by incorporating Faster R-CNN for detection and
watershed flood algorithm for geometry fitting. Compared with other models proposed
before, our model reduced the training effort by utilizing only one module for detection
and expanded capability to simultaneously recognize multiple classes of defects. The
approach developed here achieved reasonably reliable performance, with an F1 score of
0.78, and predicted sizes and areal densities within the uncertainty of results from human
researchers. The automated analysis on NVIDIA's GeForce GTX 1080 GPU processor is
about 0.1 s/image, hundreds of times faster than human analysis (=1 minute/image), and
trivially parallelizable and scalable on more processors. The model can also be readily
extended to new defects, systems, and conditions with modest training requirements.
Thus, our approach provides an accurate, efficient, reproducible, scalable, and extensible
method which could replace or greatly enhance human analysis in future studies related

to STEM images.
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We believe that this framework can be used on many defect and other STEM
features simultaneously, eventually providing a general tool for automated analysis

across many STEM applications.

METHODS
Data Set Collection

Data set collection was completed as part of a large-scale effort to characterize
iron-chromium-aluminum (FeCrAl) materials neutron-irradiated within the High Flux
Isotope Reactor at Oak Ridge National Laboratory. The dataset comprises a series of
published?*-*!#! and unpublished data. The data collection was completed over 3 years
and spaned a range of different FeCrAl alloys, including model, commercial, and
engineering-grade alloys irradiated to light water reactor-relevant conditions (e.g., <15
displacements per atom and temperatures of nominally 285-320°C). Images generation

are described in more details in Li et al’.

Data Set Preparation

We used ImageJ*>*3, an open-source software for analysis of scientific images, to
manually label all the training and testing data set. And since STEM images are gray
scale and ChainerCV# expects input images with RGB channels, some modifications are

necessary. We use the direct STEM image gray scale for the R channel. Then we use
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modifications of the original image gray scale for the G and B channels. Specifically,
following Li et al.’, for G we use a local contrast enhancement of the original gray scale
channel saturated to maximum/minimum and for B we use a Gaussian bluer filter of the
original gray scale STEM images. For the local contrast enhancement in channel G, we
use the Contrast Limited Adaptive Histogram Equalization (CLAHE), a common
algorithm used for local contrast enhancement that makes local detail of STEM image
enhanced even in regions that are darker or lighter than most of the image. The Gaussian
filter used in channel B represents cases where there might be noises or blurring in the
STEM images. The parameters used for CLAHE*® and Gaussian blur*® are all from the
default parameter setting of scikit-images and details can be found in the references given
here for these methods. The purpose of adding two more channels in this way is to
improve the model performance and make the model more robust by providing more
information about various contrast levels or blurring.

For the training and testing on the Faster R-CNN model, a total of 165 STEM
images of irradiated ferritic alloys were collected and labeled. The images were taken at
different experimental conditions of temperature and irradiation damage level so that the
data includes varying defect sizes, shapes, and areal density. We constructed the ground
truth labeling by giving each image in the dataset to at least two groups of at least two
researchers per group who together labeled each image in that dataset. In some cases, no

absolute consensus could be reached on whether a feature was a defect and/or what type
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it had, in which case a best effort was made based on group discussion. Details of the
protocol are in the SI.

The test dataset was randomly selected from the complete image dataset, so that
the training and test were split by approximately 10:1 ratio. The training dataset was then
augmented to 918 images in total, which could provide more training instances without
spending more manpower on labeling. The data is augmented by rotating and/or flipping
each image in the training set, a standard method previously well established to improved

results in some cases®’.

Model Training

The Faster R-CNN model used VGG-16 as its backbone architecture and we
adopted the module provided by ChainerCV# as the Module A in Figure 2 and using
watershed function provided by OpenCV*® as the second module. The initial weights of
Faster R-CNN was loaded from the pre-trained weights from ImageNet which is a
common practice in the deep learning training strategy*’ called transfer learning.
Although ImageNet is trained for image classification, not object detection, there are
enough similarities in key features to support effective transfer learning of weights.
Transfer learning can reduce the amount of data and training time required for good
performance*’. The Faster R-CNN module was optimized with Stochastic Gradient

Descent (SGD) on a single Nvidia GeForce GTX 1080 GPU. The best hyper parameter
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set was found by performing hyperparameter search of learning rate from 10-3 to 10 and

we adjust the needed iteration numbers correspondingly. The best choice of hyper

parameter is a decayed learning rate starting from 10~ and each 20000 iterations the

learning rate will decay to one tenth of the previous one. In total 90000 iterations were

performed, and a learning loss curve is shown in Figure 5. The geometry extraction

module needed no training.
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257
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iteration

Figure 5. A typical loss curve for Faster R-CNN training.

After the Faster R-CNN module was trained, there were still two important

hyperparameter associated with accuracy analysis: the threshold IoU value and the

confidence score. IoU stands for Intersection over Union and is an evaluation metric
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used to measure the performance of object detection models'”. IToU is calculated from the
ratio of overlap area of a ground truth bounding box and a predicted bounding box to the
area of union of two bounding boxes. The range of [oU is from 0 to 1 where 0 means no
overlap found between two bounding boxes and 1 means the two bounding boxes are
perfectly overlapping. The threshold IoU is the value used to judge the prediction quality
of the overlapping of ground truth bounding boxes and prediction bounding boxes. A
higher threshold IoU requires more accurate location prediction of the bounding box
detector, which will generally reduce performance, but lower the threshold IoU could
lead a predicted bounding box to being assigned to no defect or the wrong defect. And
another important hyperparameter is the threshold confidence score, a value from 0.0 to
1.0 used by Faster R-CNN internally to discard low confidence proposals in the RPN, and
it can change the total number of outputs of Faster R-CNN. We used grid search of the
threshold IoU and confidence score to search the best choice of these two values based on
maximizing the F1 scores, with confidence score from the list [0.001, 0.005, 0.01, 0.05,
0.1,0.15,0.2,0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6] and the threshold IoU from the list
[0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. We selected 0.25 as the confidence score for

Faster R-CNN and showed the performance changes with 0.4 threshold IoU in Figure 4.

Geometry Fitting of Analysis Module
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After the Faster R-CNN module was performed on specific image, the analysis
module was called to obtain shape and size of the defect contained in bounding box. As
shown in the third column in Figure 3, the approach fits the defect with elliptical contours
to estimate their actual shapes and diameters. The approach uses the watershed algorithm
to identify the pixels that make up the defect contour and then fit those to an ellipse. The
watershed algorithm is a widely used technique for image segmentation purposes that
views any gray scale image as a topographic surface where the high (e.g. white) pixel
values represents peaks while the low (e.g. black) pixel values denotes valleys. The
algorithm tries to grow the region areas by flooding the valleys and where different
regions meet with each other are the watershed lines needed for image segmentation®.
Watershed methods were applied to find the boundary between defect pixels and
background pixels. We followed the official tutorial from OpenCV for performing the
watershed and details of the approach can be found there>®. We then fit the boundaries
found from the Watershed algorithm to an ellipse. This fitting was done to match the
approach used by the radiation defect analysis community, obtain a well-defined shape
with simple geometric descriptors, and smooth out the otherwise rather rough boundaries
found by the Watershed algorithm. The fitting was done with OpenCV’s
fitEllipse () function’!. All codes were based with OpenCV*® and by applying the
second module we could get precise information about the defects' position, size, and

orientations. The diameters and areas of defects are defined as follows, where a and b are
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half the lengths of major and minor axes of the ellipse. The diameter of the a/2<111> and
a<100> defects are defined as 2a. The diameter of the black dot is defined as twice the
square root of (ab). The area of all defects is defined as mab. The areal density is the sum

of defect areas in a set of images divided by the total area of the set of images.

Data Availability
We used a subset of published STEM images of the irradiated FeCrAl alloy

system? (https://publish.globus.org/jspui/handle/ITEM/997) which were labeled and used

in this study. The data are available at Figshare
(https://doi.org/10.6084/m9.figshare.8266484) and the source code for the model is

available on Github ( https://github.com/uw-cmg/multitype-defect-detection ). The

dataset includes both the images and bounding boxes we used for this project. Data on

Figshare also includes a CSV file with all data used in plots in this paper.

Supporting Information

We showed the fitting results of all 12 testing images in section 1 of SI. In Section
2 of SI, we presented the labeling process that has been used in a previous study® and
prepared a detailed instruction document to record our labeling process, which can be

easily used for other defect images. In section 3 of SI, detailed statistics distribution of
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the human labelling and machine predicting results of diameters and areal density were

showed.
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