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Abstract 25 

Electron microscopy is widely used to explore defects in crystal structures, but human 26 

detecting of defects is often time-consuming, error-prone, and unreliable, and is not 27 

scalable to large numbers of images or real-time analysis. In this work, we discuss the 28 

application of machine learning approaches to find the location and geometry of different 29 

defect clusters in irradiated steels. We show that a deep learning based Faster R-CNN 30 

analysis system has a performance comparable to human analysis with relatively small 31 

training data sets. This study proves the promising ability to apply deep learning to assist 32 

the development of automated analysis microscopy data even when multiple features are 33 

present and paves the way for fast, scalable, and reliable analysis systems for massive 34 

amounts of modern electron microscopy data.  35 
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INTRODUCTION 36 

Electron microscopy (EM) is one of the most powerful tools for researchers to 37 

extract and collect micrometer down to angstrom scale structural and morphological 38 

properties of materials, including repeated structural units (e.g., unit cells of crystals) and 39 

defected regions (e.g., grain boundary, impurities, defect clusters). Traditionally, 40 

researchers have to manually label defects and repeatedly measure the relevant properties 41 

to obtain statistically meaningful values, which is time-consuming, error-prone, 42 

inconsistent, and hard to scale1. The issue of scaling has become pressing as increasing 43 

usage and advancement of EM techniques, such as high-speed detector and automated 44 

sample exploration in EM, now generate massive amounts of image data (e.g., up to 45 

thousands of images from a single experiment or condition can be generated in minutes) 46 

which will keep increasing in the near future2. Data on this scale cannot be practically 47 

examined by humans, and automated approaches are therefore now necessary to utilize 48 

the full power of modern EM. Not surprisingly, the EM community has developed many 49 

accurate image data analysis tools that can be effectively deployed to accommodate the 50 

large volume of EM data3,4. However, due to the complexity of images of material 51 

systems, these tools generally still need significant hand-tuning, and in some cases (like 52 

counting defects of irradiated materials), human identification of each defect is still the 53 

norm. 54 
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Well-designed and well-tested automated analysis has proven to be significantly 55 

more efficient, repeatable, and standardized than human analysis for discrete cases2,4,56.  56 

Developing automatic methods for EM image processing has drawn a great deal of 57 

interest in the material science community. Automation efforts typically rely on 58 

traditional computer vision technology, such as variance hybridized mean local 59 

thresholding7, texture representation, and template matching methods like bag of visual 60 

words (BoW)8,9, key-point matching methods10,11, Hessian-based Blob boundary 61 

detection methods12 and sometimes obtain better performance13,14 by utilizing tools from 62 

broader areas, such as incorporating synthetic image dataset15 and using machine learning 63 

methods like support vector machine16 and k-means clustering2. However, these efforts 64 

typically require extensive human tuning and/or are limited to specific tasks.  65 

Recent developments (<10 years) in deep learning methods17,18 have 66 

demonstrated that object detection in images can be automated with minimal 67 

hyperparameters and yield human or even better than human levels of performance. 68 

These frameworks are now being adapted towards finding defects in metals, and 69 

particularly nuclear materials, including the automated detection of dislocation loops, 70 

cavities, precipitates, and line dislocations5,19–21. Generally, there are three different 71 

approaches for applying deep learning frameworks to defect detection in microscopy 72 

images. The first is using the combination of both traditional techniques and deep 73 

learning tools5, for example, Li et al. develops an analysis model that includes a local 74 
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visual content descriptor widely used in computer vision called Local Binary Patterns 75 

(LBP)22 descriptor, feature selecting methods called AdaBoost23, and Convolutional 76 

Neural Network (CNN) module to screen candidate bounding boxes to obtain the best 77 

performance. This approach is more like an intermediate stage of applying deep learning 78 

since it does not follow the complete end-to-end pattern of deep learning practice24 but it 79 

helped show that value of new deep learning methods for this class of problems. The 80 

second approach relies on the encoder-decoder framework to find features25 in EM 81 

images. Examples include using weakly supervised learning methods of encoder-decoder 82 

to study the local atom movements26, U-Net to study nanoparticle segmentations27, and a 83 

modified U-Net framework to segment defects in STEM images of steels19. The encoder-84 

decoder framework can extract the most relevant information in images and use the 85 

extracted inner state to do other tasks, but the performance of encoder-decoder 86 

framework relies on the extracted inner state and good performance requires careful 87 

training25. The third category of methods are using mature object-detection frameworks, 88 

for example, Chen et al. used Mask R-CNN to study the microstructural segmentation of 89 

aluminum alloy28 and Anderson, et al. used Faster R-CNN to study helium bubbles in 90 

irradiated X-750 alloy20. Here we explore the first use of similar mature object-detection 91 

deep learning methods as this third category, specifically Faster R-CNN, to obtain 92 

properties of dislocation loops with varying Burgers vector and habit plane in neutron-93 
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irradiation related iron-chromium-aluminum (FeCrAl) materials, These materials are 94 

important for the development of next generation nuclear reactors29–31. 95 

Analyzing the locations and sizes of defects in materials that have undergone 96 

irradiation is a widely used application of electron microscopy. In such studies, the key 97 

properties are the total number and distribution of each type of defect. Typical defects of 98 

interest include grain boundaries, precipitates, dislocation lines, dislocation loops, 99 

stacking fault tetrahedra, cavities (voids, bubbles), and co-called “black-spot” defects, 100 

which are small defect clusters of interstitials and sometimes vacancies1,32. For this study, 101 

we focus on the dislocation loops formed within a ferritic alloy, where the loops exist on 102 

specific habit planes that manifest themselves with different morphologies due to the 103 

projection of a 3D volume imaged using EM33. Typical microstructural images of 104 

irradiated ferritic steels contain four prominent types of defects: (1) open ellipse loops 105 

(single ring edge), (2) open ellipse loops (double ring edges), (3) closed solid elliptical 106 

loops, (4) closed circular solid dots33. Figure 1 shows a sample STEM image containing 107 

all four morphologies of loops obtained from a ferritic alloy irradiated in a materials test 108 

reactor. In this paper, we used a modern deep learning-based object detection model 109 

called Faster Regional CNN (Faster R-CNN)34, a widely used deep learning based object 110 

detection model17. We use the Faster R-CNN to develop an automatic defect detection 111 

system for all four morphologies commonly observed in irradiated steels with a body-112 

centered cubic structure and then additional post-processing to analyze their geometrical 113 
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information (specifically, size and areal density). This paper serves to demonstrate the 114 

power of deep learning-based computer vision models for material image studies and 115 

suggests the possibility that most aspects of defect analysis may soon be practically 116 

automated, and many, if not all, handcrafted feature-based methods may be replaced by 117 

deep learning methods.  118 

 119 

 120 

Figure 1. Selected bright field scanning transmission electron microscopy (STEM) image of an irradiated ferritic alloy 121 

showing four common morphologies of dislocation loops: (1) open ellipse loops (single ring edge), (2) open ellipse 122 

loops (double ring edges), (3) closed elliptical solid loops, (4) closed circular solid dots. Open single edge ellipse loops 123 

(1) are dislocation loops with a Burgers vector of 
𝑎0 2⁄ 〈111〉.  Open double edge ellipse loops (2) and closed elliptical 124 

solid loops (3) are dislocation loops with a Burgers vector of 𝑎0〈100〉. Closed circular solid dots (4) are black dot 125 

defects with a Burgers vector of either 
𝑎0 2⁄ 〈111〉 or 𝑎0〈100〉. Image size: Primary image is 290  290 nm; inset scales 126 

arbitrary. 127 

 128 
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Faster R-CNN is a CNN based end-to-end deep learning object detection model 129 

that outputs both the object position and its class34.  As shown in Figure 2, Faster R-CNN 130 

is a two-stage detector where the region proposal network (RPN) proposes Region of 131 

Interest (ROI), and the following ROI regressor and classifier will fine tune the final 132 

output results including the size and position of the object contained bounding boxes and 133 

the corresponding object label34.  Given an image, the shared convolutional layers will 134 

extract a feature map from the input image by performing a series of convolution and 135 

max pooling operations. Then based on the extracted feature map, the RPN will put a set 136 

of predefined anchor boxes on the feature map and output the probability of whether the 137 

anchor box belongs to an object of interest or plain background. It worth mentioning that 138 

RPN ignores the specific object class of each bounding box and the following ROI 139 

regressor and classifier are responsible for the specific class and refined location of the 140 

objects. The refining network predicts certain object labels and refines the size and 141 

position of each bounding box based on the feature map generated by the ROI-pooling 142 

layers35. The RPN and ROI components are trained jointly to minimize the loss function 143 

sums from both of them34. After the Faster R-CNN module A, those images with detected 144 

defects are sent to module B to extract geometric information such as defect diameters, as 145 

shown in Figure 2. 146 

 147 
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might indicate a major issue but made no attempt to quantify agreement. This assessment 162 

tests all aspects of the model as it compares to the ground truth human results, which 163 

include the bounding box predictions (the defect detection part of Module A in Figure 2), 164 

the defect type identifications (the categorization part of Module A in Figure 2), and the 165 

geometric shape determination (Module B in Figure 2). The second assessment approach 166 

was a quantitative assessment of the ability to identify a defect, regardless of defect types. 167 

This assessment tested the defect detection part of Module A (see Figure 2). This 168 

assessment was a binary categorization problem and success was quantified with 169 

precision, recall, and F1 score. The third assessment was a quantitative assessment of the 170 

ability to identify a defect type once a defect had been correctly identified and tested the 171 

categorization part of Module A (see Figure 2).  This assessment was a three-category 172 

categorization problem and was quantified using the confusion matrix with precision, 173 

recall and F1 calculated for each class. Finally, the fourth assessment was a quantitative 174 

assessment of the ability to quantify the geometric properties of defects. This assessment 175 

tested the geometric analysis of Module B (see Figure 2) and compared machine and 176 

human predictions of average and standard deviations in size and areal density for each 177 

defect type. We discuss each of the four assessments below and label them assessment 1-178 

4 for clarity. In all cases the comparisons are made on the test data set described in 179 

Methods section. 180 
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Assessment 1. After feeding the images into the Faster R-CNN detectors, the 181 

resulting detections were plotted on the original images. As shown in Figure 3, the red 182 

circles represent the dislocation loops with a Burgers vector of 𝑎0 2⁄ 〈111〉 (Type 1 in 183 

Figure 1), while the yellow and blue circles represent 𝑎0〈100〉 direction loops (Type 2 184 

and 3 in Figure 1) and “black dot” defects (Type 4 in Figure 1) respectively. The data 185 

from both human-labeled and machine detected results are plotted in the same manner. 186 

More comparisons can be found in Supplement Information Section 1. To a human 187 

observer the machine results show strong correlation of bounding box location, defect 188 

type identification, and defect shape with the ground truth human labeling which 189 

indicates the effectiveness of the proposed automatic defect detection system.   190 

Assessment 2. The performance of the detection part of Module A (see Figure 2) 191 

of the trained model was evaluated in terms of precision, recall, and F1 score by 192 

comparing the detected result with the human labeled result of the 12-image testing set, 193 

as shown in Figure 4. The precision describes the percentage of all machine predicted 194 

bounding boxes that are judged to have correct positions, and the recall value describes 195 

the percentage of all human labeled defects that are identified as in a bounding box by the 196 

machine algorithm. F1 is the harmonic mean of the precision and recall which can be 197 

used to assess the overall performance of the defect location task35. The IoU (Intersection 198 

over Union) method was used to determine if a given defect was identified by a bounding 199 

box and is described within the provided Methods section. The cutoff IoU, which must be 200 
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exceeded to consider the bounding box to have identified the defect, is a hyperparameter 201 

that can be fine-tuned based on the purpose of the object detection task35. Figure 4 202 

showed a drop in performance as the cutoff IoU increased. This trend agreed with 203 

expectations as the higher cutoff IoU meant it was harder for the predicted bounding box 204 

to be judged successful. However, setting the cutoff IoU to an extremely small threshold 205 

could lead to the problem that the predicted bounding boxes are associated with defects 206 

for which only a small part of the defect is actually in the bounding box, which will likely 207 

cause problems in the defect identification (Module B) of our model. As a compromise, 208 

for all the further assessments in this paper, we used cutoff IoU = 0.4 to determine when 209 

the machine predictions were considered to match a given defect.  This choice kept 210 

nearly optimal performance of the detector (based on Figure 4) and an adequately 211 

demanding standard for predictions. 212 

 213 
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 214 

Figure 3.Selected data images to show the detector performance and the fitted ellipse of our automatic 215 

analysis system. These three test images are selected from the test dataset of 12 images (see Methods).  The “Ground 216 

Truth (GT)” shows the bounding box and ellipse human labeling (colored by defect type), the “Prediction (Pred) Box” 217 



 15 

shows the predicted bounding boxes (colored by defect type), and the “Prediction (Pred) Ellipse” shows the resulting 218 

fits to the specific defect geometry (colored by defect type as described in the text).  219 

 220 

 221 

Figure 4. Summary of defect location recognition performance of all types of defects evaluated using precision and 222 

recall metrics, regardless of defect types. The test set contained 12 images, and, for all IoU (Intersection over Union) 223 

values and we used a threshold confidence score 0.25 for Faster R-CNN output. (see Method Section). 224 

 225 

Assessment 3.  Table 1 shows the confusion matrix of the predictions made by 226 

Faster R-CNN detector evaluating its capability to correctly categorize defects. Each row 227 

in the confusion matrix represents a class that is predicted by the detector, and each 228 

column represents a class labeled by human researchers. The diagonal elements of the 229 

table represent the correct classification made by the detector and off diagonal elements 230 
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represent errors of different types.  We also show the percentage accuracy of each type of 231 

defect in parentheses. The 76%, 87%, and 94% accuracy indicates that once the Faster R-232 

CNN model locates the defect, it can classify the type of defect based on their 233 

morphology within the image with good accuracy, although some improvement of the 234 

76% value is likely possible for the 𝑎0〈100〉 loops. We also report the classification 235 

performance using precision, recall and F1 score in Table 2. Given inherent errors of 236 

human performance we take scores for precision, recall and F1 of 0.78 as approximately 237 

the upper limit that can be obtained with the present labeling. Table 2 shows F1 from 238 

about 0.65 to 0.78, which demonstrates significant capabilities but is likely less than can 239 

be achieved, suggesting opportunities for further improvements. 240 

 241 

Table 1. Summary of the classification performance for each type of defects at cutoff IoU 0.4. Values in parenthesis 242 

give the % each number represents of the total number of defects in that class as determined by the human labeling. 243 

 a0/2〈𝟏𝟏𝟏〉 Loop Black Dot a0〈𝟏𝟎𝟎〉 Loop 

a/2〈𝟏𝟏𝟏〉 Loop 239 (87.2%) 21 14 

Black Dot 17 416 (94.3%) 8 

a〈𝟏𝟎𝟎〉 Loop 33 13 166 (78.3%) 

 244 

Table 2. The performance report for each class. 245 

 a0/2〈𝟏𝟏𝟏〉 Loop Black Dot a0〈𝟏𝟎𝟎〉 Loop 

Precision 0.73 0.65 0.62 

Recall 0.83 0.71 0.72 

F1 0.78 0.68 0.67 
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 246 

  Assessment 4. The second Module provides geometric in formation for each 247 

defect through fitting ellipses. While the fits can provide a range of detailed information, 248 

we are particularly interested in the arithmetic mean and the associated standard deviation 249 

of the defect diameter as well as the areal density in an image for each type of defect. 250 

These values are commonly quoted values in literature within irradiated materials studies. 251 

Table 3 compares the human labeled arithmetic mean diameters and areal densities to the 252 

ones predicted by the automatic analysis system. The discrepancy of arithmetic mean 253 

diameter between the human labeled ground truth and predictions is within 10% in all 254 

cases, which is considerably less than might be expected for variation among different 255 

humans2 and we consider a strong success. Furthermore, the errors in arithmetic mean 256 

diameters are in the range 0.7-1.1 nm, which corresponds to a range of two to nine pixels 257 

(based on the range 0.14nm/pixel to 0.87nm/pixel for our test data, see SI Section 1). The 258 

errors of about 1 nm correspond to about 5-10% for our data which is somewhat larger 259 

than might be expected from direct labeling errors on 10-15nm. Thus, it is unlikely that 260 

any human labeling is meaningfully accurate to much below this level. However, the 261 

human and machine learning black dot radii do not fall within a 95% confidence interval, 262 

suggesting that the algorithm does not yield exactly the same means as the human ground 263 

truth. Some errors will come from the machine detection (failures in precision and recall, 264 

see Figure 4) and defect type assignment (see Table 1). Additional errors are associated 265 
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with intrinsic errors in the machine and human ellipse labeling, where both have some 266 

uncertainty due to ambiguity or variances in the morphology of defects in images. In 267 

particular, some defects are not well fit by an ellipse (e.g. some have a more rectangular 268 

shape, as can be seen in Figure 3), making this form of labeling difficult for both human 269 

and machine.  Another error to consider is that as the number of pixels per feature goes 270 

down, the intrinsic error due to the resolution (pixel/nm) will artificially go up. For 271 

instance, a 100 nm loop where the resolution is 1 pixel/nm where the labeling is off by 1 272 

pixel will yield a 1% error. If the labeling is off by 1 pixel for a 5 nm loop, the error will 273 

be 20% even though the per pixel error is the same. Seeing as the black dots are all of 274 

small arithmetic mean diameter (<10 nm), they will intrinsically have a higher error 275 

compared to the other classes where the diameters are 2-3 times larger. 276 

 277 

Table 3. Comparison of arithmetic mean defect diameter and standard deviation of mean loop diameter between ground 278 

truth labeling and our automatic analysis model prediction with an IoU of 0.4. The values in parenthesis are the relative 279 

percentage error between ground truth human labelling results and the automatic analysis results. 280 

Defect 
Type 

Ground Truth  Automatic Analysis Model 
Arithmetic 

Mean 
diameter 

(nm) 

Standard 
Deviation of 

Mean 
Diameter 

(nm) 

Areal 
density 

(m-2) 

Arithmetic 
Mean 

diameter 

(nm) 

Standard 
Deviation of 

Mean 
Diameter 

(nm) 

Areal 
Density 

(m-2) 

a0/2〈𝟏𝟏𝟏〉 
Loop 

22.4 0.7 1.771014 
23.1 

(3.1%) 0.8 
2.211014 

(24.9%) 

Black Dot 8.2 0.1 3.411014 
9.1 

(10.9%) 0.2 
4.981014 
(46.0%) 
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a0〈𝟏𝟎𝟎〉 
Loop 

20.3 0.8 1.321014 
22.4 

(10.3%) 0.9 
1.791014 
(35.6%) 

  281 

DISCUSSION 282 

 The above results demonstrate that that the trained model potentially performs 283 

well enough to replace human in a workflow on similar types of data. The precision and 284 

recall values for assessing detection in the range 62-83% which are comparable or less 285 

than human variation2 from previous assessments. The machine defect type 286 

misidentifications are at the level of 10-25% (see Table 1), and a significant fraction of 287 

this variation may also be due to ground truth ambiguities or errors. The final machine 288 

predicted diamaters are within a nanometer, approximately 2 pixels in images, which is a 289 

level of error that is considered negligible in terms of impact on material properties. To 290 

further clarify that the error is negligible for our defect population we have done a 291 

sensitivity analysis based on previous studies of hardening from loops. As discussed in 292 

Field et al. 31 simple dispersed barrier hardening models suggest that the hardening under 293 

irradiation from loops is of the form ∆𝜎𝑦 = 𝐴 √𝑑 where A is a constant and d is the 294 

diameter of the defect. Now consider an error in diameter d defined as . The fractional 295 

error in ∆𝜎𝑦 due to the error   is (∆𝜎𝑦(𝑑 + 𝜀) − ∆𝜎𝑦(𝑑)) ∆𝜎𝑦(𝑑) ≈ 𝜀 (2𝑑)⁄⁄ , where the 296 

approximate equality holds for 𝜖 ≪  𝑑. For  = 1.7 nm (which is 2 pixels for our largest 297 

pixel sizes, see below) and d = 21.4 nm (our average sizes of a/2<111> and a<100> 298 

defects), we get the fractional error in ∆𝜎𝑦 as 1.7 nm / (2 * 21.4 nm) ≈ 0.04, which is well 299 
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within the uncertainty of such microstructure-based analysis. However, for smaller 300 

defects this percentage error could clearly become larger. The errors of diameter between 301 

ML results and human results appear to be approximately symmetrically distributed in 302 

positive and negative directions and independent of defect density, as shown in detail in 303 

SI section 4 and 5. Furthermore, previous studies indicate that the differences of 304 

arithmetic mean diameter between different human labelers can be comparable or larger 305 

than values found here between the ML and human results5. The discrepancy in areal 306 

densities is somewhat larger than might be intuitively expected just from the percentage 307 

error in the arithmetic mean diameters. However, additional errors are introduced by the 308 

exact definition of areal density (see Methods section) and the additional errors 309 

introduced by the imperfect precision and recall.  310 

While the exact performance of the present automated approach compared to 311 

different human researchers is difficult to determine rigorously there is no doubt that the 312 

present approach is much more consistent. Previous studies have shown that different 313 

labelers tend to label defects in different ways and even the same person may label the 314 

same defects differently even after a short break2,5. Such issues can make any given data 315 

analysis somewhat unreliable and make it difficult to integrate results across different 316 

teams and or time periods in larger analysis efforts. However, once a machine learning 317 

model is properly trained, it will yield a unique and reproducible labeling for every 318 

image. If the community could converge on a single or small number of models this 319 
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could greatly increase the reproducibility in labeling of STEM experiments. That said, 320 

models trained on different data and/or different human labeling could give different 321 

predictions, so establishing community accepted models is an important part of using 322 

these approaches to obtain more consistent results. 323 

The approach applied here is readily scalable to very large data sets. Analyzing a 324 

single image with our model on a reasonable state of the art GPU (NVIDIA's GeForce 325 

GTX 1080 GPU) takes about 0.1s, so analyzing all the images in a typical experiment can 326 

be done easily in minutes, even less if multiple GPUs are used and as GPU and related 327 

processors (e.g., TPU) continue to get faster.  As large scale distributed cloud service 328 

provider like Google, Amazon and Microsoft are  providing cloud service for deep 329 

learning applications with GPU machines36, it would be easy to scale to process even 330 

larger amount of data. Furthermore, significant speedup can likely be obtained if desired. 331 

We developed the system with the Python code language and the ChainerCV deep 332 

learning framework, both of which were chosen for ease of development not for the high-333 

performance in deployment. Replacing Python with C/C++ or using high-performance 334 

deep learning frameworks, e.g. Caffe37, could potentially accelerate the prediction speed 335 

of the current model. In particular, the deep learning community is actively designing 336 

new methods to accelerate the running speed of model e.g. model compression, weight 337 

sharing, or parameter pruning38 which could also boost the speed of ours. As an example 338 

of how fast deep learning AI algorithms can be, researchers from Google have recently 339 
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applied deep learning models for cancer diagnosis on data during the actual process of 340 

conducting an optical microscopy experiment39.  341 

The approach applied here is also readily adapted to new defect types and 342 

systems. The present model was trained with only a relatively small amount of training 343 

data due to the use of transfer learning40. With only modest additional data sets (e.g., on 344 

the scale of thousands of defects or possibly fewer) and a few rounds of further training 345 

as described in Section II of SI,  researchers could likely extend the present model to 346 

more defects (e.g. separating the two orientations of 111 loops or adding voids, 347 

preexisting dislocations, etc.), different imaging conditions (e.g., changes in microscopes, 348 

imaging modes, orientation, focus, etc.), and different materials (e.g. other metal alloys). 349 

There are several areas where significant improvements may be obtainable. The 350 

first is that the use of real-world data in the study has led to significant time spent 351 

labeling and introducing unavoidable human biases and errors into the deep learning 352 

model and its assessment. However, it is possible that simulated images could be both 353 

more accurately labeled and generated in large volume, potentially allowing much more 354 

accurate models to be trained.  355 

The second area where significant improvement is likely is that deep learning 356 

methods for object detection continue to evolve rapidly. In particular, deep learning 357 

segmentation models17, which learn a label for every pixel, could be equally or more 358 

accurate and remove the step of fitting contours in a bounding box to get geometric 359 
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information. Such an approach was applied recently to automatically detect information 360 

about dislocation lines, precipitates and voids in STEM images19. 361 

  362 

Conclusion 363 

This study demonstrated a practical deep learning based automatic STEM image 364 

defect detection system implemented by incorporating Faster R-CNN for detection and 365 

watershed flood algorithm for geometry fitting. Compared with other models proposed 366 

before, our model reduced the training effort by utilizing only one module for detection 367 

and expanded capability to simultaneously recognize multiple classes of defects. The 368 

approach developed here achieved reasonably reliable performance, with an F1 score of 369 

0.78, and predicted sizes and areal densities within the uncertainty of results from human 370 

researchers. The automated analysis on NVIDIA's GeForce GTX 1080 GPU processor is 371 

about 0.1 s/image, hundreds of times faster than human analysis (≥1 minute/image), and 372 

trivially parallelizable and scalable on more processors. The model can also be readily 373 

extended to new defects, systems, and conditions with modest training requirements. 374 

Thus, our approach provides an accurate, efficient, reproducible, scalable, and extensible 375 

method which could replace or greatly enhance human analysis in future studies related 376 

to STEM images.  377 
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We believe that this framework can be used on many defect and other STEM 378 

features simultaneously, eventually providing a general tool for automated analysis 379 

across many STEM applications.  380 

 381 

METHODS 382 

Data Set Collection 383 

Data set collection was completed as part of a large-scale effort to characterize 384 

iron-chromium-aluminum (FeCrAl) materials neutron-irradiated within the High Flux 385 

Isotope Reactor at Oak Ridge National Laboratory. The dataset comprises a series of 386 

published29,31,41 and unpublished data. The data collection was completed over 3 years 387 

and spaned a range of different FeCrAl alloys, including model, commercial, and 388 

engineering-grade alloys irradiated to light water reactor–relevant conditions (e.g., <15 389 

displacements per atom and temperatures of nominally 285–320°C).  Images generation 390 

are described in more details in Li et al5. 391 

 392 

Data Set Preparation  393 

We used ImageJ42,43, an open-source software for analysis of scientific images, to 394 

manually label all the training and testing data set. And since STEM images are gray 395 

scale and ChainerCV44 expects input images with RGB channels, some modifications are 396 

necessary. We use the direct STEM image gray scale for the R channel. Then we use 397 
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modifications of the original image gray scale for the G and B channels. Specifically, 398 

following Li et al.5, for G we use a local contrast enhancement of the original gray scale 399 

channel saturated to maximum/minimum and for B we use a Gaussian bluer filter of the 400 

original gray scale STEM images. For the local contrast enhancement in channel G, we 401 

use the Contrast Limited Adaptive Histogram Equalization (CLAHE), a common 402 

algorithm used for local contrast enhancement that makes local detail of STEM image 403 

enhanced even in regions that are darker or lighter than most of the image. The Gaussian 404 

filter used in channel B represents cases where there might be noises or blurring in the 405 

STEM images. The parameters used for CLAHE45 and Gaussian blur46 are all from the 406 

default parameter setting of scikit-images and details can be found in the references given 407 

here for these methods. The purpose of adding two more channels in this way is to 408 

improve the model performance and make the model more robust by providing more 409 

information about various contrast levels or blurring. 410 

For the training and testing on the Faster R-CNN model, a total of 165 STEM 411 

images of irradiated ferritic alloys were collected and labeled. The images were taken at 412 

different experimental conditions of temperature and irradiation damage level so that the 413 

data includes varying defect sizes, shapes, and areal density. We constructed the ground 414 

truth labeling by giving each image in the dataset to at least two groups of at least two 415 

researchers per group who together labeled each image in that dataset. In some cases, no 416 

absolute consensus could be reached on whether a feature was a defect and/or what type 417 



 26 

it had, in which case a best effort was made based on group discussion. Details of the 418 

protocol are in the SI. 419 

The test dataset was randomly selected from the complete image dataset, so that 420 

the training and test were split by approximately 10:1 ratio. The training dataset was then 421 

augmented to 918 images in total, which could provide more training instances without 422 

spending more manpower on labeling. The data is augmented by rotating and/or flipping 423 

each image in the training set, a standard method previously well established to improved 424 

results in some cases47.  425 

 426 

Model Training 427 

The Faster R-CNN model used VGG-16 as its backbone architecture and we 428 

adopted the module provided by ChainerCV44 as the Module  A in Figure 2 and using 429 

watershed function provided by OpenCV48 as the second module. The initial weights of 430 

Faster R-CNN was loaded from the pre-trained weights from ImageNet which is a 431 

common practice in the deep learning training strategy40 called transfer learning. 432 

Although ImageNet is trained for image classification, not object detection, there are 433 

enough similarities in key features to support effective transfer learning of weights. 434 

Transfer learning can reduce the amount of data and training time required for good 435 

performance40. The Faster R-CNN module was optimized with Stochastic Gradient 436 

Descent (SGD) on a single Nvidia GeForce GTX 1080 GPU. The best hyper parameter 437 



 27 

set was found by performing hyperparameter search of learning rate from 10-3 to 10-6 and 438 

we adjust the needed iteration numbers correspondingly. The best choice of hyper 439 

parameter is a decayed learning rate starting from 10-4 and each 20000 iterations the 440 

learning rate will decay to one tenth of the previous one. In total 90000 iterations were 441 

performed, and a learning loss curve is shown in Figure 5. The geometry extraction 442 

module needed no training. 443 

 444 

 445 

Figure 5. A typical loss curve for Faster R-CNN training. 446 

 447 

Model Testing 448 

After the Faster R-CNN module was trained, there were still two important 449 

hyperparameter associated with accuracy analysis: the threshold IoU value and the 450 

confidence score.  IoU stands for Intersection over Union and is an evaluation metric 451 
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used to measure the performance of object detection models17.  IoU is calculated from the 452 

ratio of overlap area of a ground truth bounding box and a predicted bounding box to the 453 

area of union of two bounding boxes. The range of IoU is from 0 to 1 where 0 means no 454 

overlap found between two bounding boxes and 1 means the two bounding boxes are 455 

perfectly overlapping. The threshold IoU is the value used to judge the prediction quality 456 

of the overlapping of ground truth bounding boxes and prediction bounding boxes. A 457 

higher threshold IoU requires more accurate location prediction of the bounding box 458 

detector, which will generally reduce performance, but lower the threshold IoU could 459 

lead a predicted bounding box to being assigned to no defect or the wrong defect. And 460 

another important hyperparameter is the threshold confidence score, a value from 0.0 to 461 

1.0 used by Faster R-CNN internally to discard low confidence proposals in the RPN, and 462 

it can change the total number of outputs of Faster R-CNN. We used grid search of the 463 

threshold IoU and confidence score to search the best choice of these two values based on 464 

maximizing the F1 scores, with confidence score from the list [0.001, 0.005, 0.01, 0.05, 465 

0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6] and the threshold IoU from the list 466 

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. We selected 0.25 as the confidence score for 467 

Faster R-CNN and showed the performance changes with 0.4 threshold IoU in Figure 4. 468 

 469 

Geometry Fitting of Analysis Module 470 
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After the Faster R-CNN module was performed on specific image, the analysis 471 

module was called to obtain shape and size of the defect contained in bounding box. As 472 

shown in the third column in Figure 3, the approach fits the defect with elliptical contours 473 

to estimate their actual shapes and diameters.  The approach uses the watershed algorithm 474 

to identify the pixels that make up the defect contour and then fit those to an ellipse. The 475 

watershed algorithm is a widely used technique for image segmentation purposes that 476 

views any gray scale image as a topographic surface where the high (e.g. white) pixel 477 

values represents peaks while the low (e.g. black) pixel values denotes valleys. The 478 

algorithm tries to grow the region areas by flooding the valleys and where different 479 

regions meet with each other are the watershed lines needed for image segmentation49. 480 

Watershed methods were applied to find the boundary between defect pixels and 481 

background pixels. We followed the official tutorial from OpenCV for performing the 482 

watershed and details of the approach can be found there50. We then fit the boundaries 483 

found from the Watershed algorithm to an ellipse. This fitting was done to match the 484 

approach used by the radiation defect analysis community, obtain a well-defined shape 485 

with simple geometric descriptors, and smooth out the otherwise rather rough boundaries 486 

found by the Watershed algorithm. The fitting was done with OpenCV’s 487 

fitEllipse()function51. All codes were based with OpenCV48 and by applying the 488 

second module we could get precise information about the defects' position, size, and 489 

orientations. The diameters and areas of defects are defined as follows, where a and b are 490 
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half the lengths of major and minor axes of the ellipse. The diameter of the a/2<111> and 491 

a<100> defects are defined as 2a. The diameter of the black dot is defined as twice the 492 

square root of (ab). The area of all defects is defined as ab.  The areal density is the sum 493 

of defect areas in a set of images divided by the total area of the set of images. 494 

 495 

Data Availability 496 

We used a subset of published STEM images of the irradiated FeCrAl alloy 497 

system5 (https://publish.globus.org/jspui/handle/ITEM/997) which were labeled and used 498 

in this study. The data are available at Figshare 499 

(https://doi.org/10.6084/m9.figshare.8266484) and the source code for the model is 500 

available on Github ( https://github.com/uw-cmg/multitype-defect-detection ). The 501 

dataset includes both the images and bounding boxes we used for this project. Data on 502 

Figshare also includes a CSV file with all data used in plots in this paper. 503 

 504 

Supporting Information 505 

We showed the fitting results of all 12 testing images in section 1 of SI. In Section 506 

2 of SI, we presented the labeling process that has been used in a previous study5 and 507 

prepared a detailed instruction document to record our labeling process, which can be 508 

easily used for other defect images. In section 3 of SI, detailed statistics distribution of 509 

https://publish.globus.org/jspui/handle/ITEM/997
https://github.com/uw-cmg/multitype-defect-detection
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the human labelling and machine predicting results of diameters and areal density were 510 

showed.  511 
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