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Abstract:

Deep learning-based object detection models have recently found widespread use in materials
science, with rapid progress made in just the past two years. Scanning and tunneling electron
microscopy methods are among the most important and widely used characterization techniques
for understanding fundamental materials structure-property-performance linkages from the
micron to atomic scale. Dramatic increases in dataset size and complexity from modern electron
microscopy instruments have necessitated the development and use of automated methods of
extracting pertinent features of images. Here, the use of object detection in materials science,
with a focus on the analysis of features in electron microscopy images, is reviewed. Key findings
and limitations of recent seminal studies using object detection to characterize and quantify
defects in irradiated metal alloys, segment and analyze micro and nanoparticles, find individual
atoms at the nanoscale, and detect and track objects from in situ video are reviewed.
Opportunities and challenges presently facing the materials community are highlighted, where
discussion of best practices for model assessment and applicability are presented, along with the
potential of improved model training with synthetic data. This review concludes with offering
more speculative, forward-looking thoughts on the potential of the broader materials community

to construct a living ecosystem integrating community-consensus curated data and validated
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models as tools to best inform application of object detection and segmentation models to

specific materials domains.

Graphical Abstract:
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Deep Learning Object Detection and Segmentation

1 Introduction

Materials characterization using electron microscopy (EM) methods such as scanning
electron microscopy (SEM), transmission electron microscopy (TEM), scanning TEM (STEM) and
high-resolution TEM (HRTEM) are some of the most widely used and important characterization
techniques in all of materials science. EM methods are routinely used to analyze the structure of
materials at lengths scales ranging from millimeters using SEM to the atomic scale, such as single
atom imaging in aberration corrected STEM, where the resolution and field-of-view depend on
the technique used, the conditions of the electron beam such as the probe size, and the desired
feature of interest size. Recent advances in imaging and analytical detectors continues to push
towards improved resolutions while maintaining or even increasing the field-of-view in EM based
experiments. The continued growth of techniques, probe-forming technologies, and detector

capabilities has led to EM methods being an essential method for developing understanding of



material structure-property-performance linkages, therefore informing rational materials design
and engineering strategies for a breadth of modern technologies for the past several decades.
Typically, analysis of EM images is performed manually by researchers, using image
analysis programs such as Imagel[1] and cisTEM.[2] The use of such image analysis programs
enables a researcher to manually annotate and quantify objects in images, such as the size and
shape of nanoparticles or dislocation loops. However, the use of such manual methods is error
prone (humans make mistakes), inconsistent (different people, even domain experts in the same
field, will interpret results differently), time consuming (humans are slow compared to
computers at certain tasks), and not scalable to large dataset sizes. In the long term the most
problematic of these four issues of manual image analysis is probably that of scalability to large
dataset sizes. The importance of scaling emerges from the fact that modern EM instruments have
witnessed an exponential increase in data acquisition rates with the development of new
detector technologies, resulting in not only higher resolution images and larger overall data sizes,
but also more physically complex image data. Modern instruments are capable of acquiring
multiple terabytes of data in a single session, in the form of real-time video and both spatially-
and momenta-resolved (4D) data (see Figure 1).[3-6] Therefore, there is a need for automated
analysis tools to efficiently analyze this ever-increasing amount of data, and a detailed analysis

and understanding of the performance capabilities and applicability of such methods.
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Figure 1. Growth of EM data acquisition over time, driven mainly by advancements in detector
technology and further enabled by advancements in modern computing and data storage.
Modern EM instruments are capable of cataloguing tens to hundreds of terabytes of data in a
single session, motivating the need for automatic image analysis methods. Figure adapted with
permission from Ref [3].

In the past ten years, the maturation of deep learning[7—9] methods has led to a series of
stunning advances across a number of scientific and medical fields, ranging from the
development of real-time language translation, autonomous vehicles,[10] superhuman facial
recognition,[11] and mastery of games such as Go, Poker and Chess.[12] Deep learning methods
are typically defined as neural networks with two or more hidden layers, resulting in at least four
total layers including input and output layers. Deep neural networks may consist of fully
connected dense layers, called multilayer perceptrons, but for deep learning tasks of image
classification and object detection, convolutional neural network (CNN) models are typically
used. As a basic description, provided a series of labeled examples, such as images that contain
pictures of cats, CNN models perform a series of what are called convolution and pooling
operations (to be described below, one operation is one layer in the network) which enable the

CNN to learn which features of the image make it recognizable to the model as a cat. These



features may be aspects of the image like brightness, contrast, or patterns of edges. As shown in
Figure 2A, each convolution operation consists of a sliding window (e.g., a 5x5 pixel box) which
rasters over the image, convolving nearby pixels together to effectively create a lower
dimensional embedding of the original image. The pooling operation down-samples the feature
maps produced from convolution by typically taking the average pixel intensity value (average
pooling) or maximum pixel intensity (max pooling) of the convolved window. Repeated
sequences of convolution and pooling enable the CNN to learn abstract features of the image
which become encoded as tunable weights for each convolution and pooling operation. The
resulting lower dimensional embedding of the original image is finally flattened to a one-
dimensional numerical vector, which is subsequently fed into a fully connected network to
produce a final classification label or regression value (see Figure 2A).[13] Modern CNN models
may contain dozens or even more than one hundred layers and millions of adjustable
parameters. The power of deep learning lies in the ability of CNN-based models to learn abstract
features of objects of interest in an image which may be broadly applicable to a more general
problem via transfer learning. As an example, a CNN model used to classify different images of
common objects such as cats, people, and stop signs can be transferred and fine-tuned to also
detect dislocation loops, nanoparticles, or individual atoms in EM images.
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Figure 2. (A) Example CNN model consisting of three convolution layers, two pooling layers, and
a flattening operation for feeding into a final three-layer fully connected network. The original
input image of 64x64 pixels and three channels is transformed into 16x16 lower dimensional
embeddings with five channels. (B) Architecture overview of the Mask R-CNN model. Figures
adapted with permission from Ref [13] and Ref [14].

Deep learning has enabled revolutionary changes to the field of computer vision.
Traditional computer vision image analysis steps such as blurring, masking, thresholding, etc. for
classifying and detecting objects of interest are rapidly being supplanted by deep learning-based
models. Deep CNNs such as ResNet50, ResNet101[15] and VGG16[16] are typically used to
extract detailed underlying feature sets from tens of thousands of images in canonical databases
such as ImageNet[17] and Common Objects in Context (CoCo).[18] As shown in Figure 2B, these
networks are then employed as “backbones” in more complex object detection frameworks, such
as the regional convolutional neural network (R-CNN) models like Faster R-CNN[19] and Mask R-
CNN,[20] which use the deep CNN backbones mentioned above, combined with additional neural
networks used to suggest regions of interest in the image and classify and segment individual
objects within each region of interest. Additional information on the development and technical
details for a complete list of network types used for object detection can be found in excellent
recent reviews such as Ref [21] and Ref [14].

Figure 3 presents an overview of different object detection tasks. Figure 3A is an example
of an image classification task, where the contents of the image are classified (here, as material
powder particles), though no analysis of the exact location or other characteristics of the objects
is performed. Image classification may be performed using a deep CNN architecture such as
ResNet50 or VGG16. Figure 3B performs semantic segmentation of the image contents with pixel
masking, where the background is shown as black, and the powder particles shown as yellow.
One of the most popular models to perform semantic segmentation is U-Net.[22] While the use
of U-Net can classify and segment objects at the pixel-level, the use of a single mask for an entire
image makes per-object analysis (e.g., quantifying size and shape of each particle) challenging.
Figure 3C shows an example of object detection, where a bounding box is drawn around each
detected instance of a particle, but without pixel-level information. This type of object detection

is obtainable with, for example, the Faster R-CNN model. Finally, Figure 3D is a demonstration of



instance segmentation, which provides a marriage of the pixel-level segmentation and object
detection, providing pixel-level masks for each detected particle. This level of object detection is
obtained by employing models such as Mask R-CNN, Cascade R-CNN, and more recently
developed models such as vision transformers (ViT).[23] It is worth noting there are tradeoffs
one must consider when choosing the model and type of object detection task to pursue, where
the preferred method will generally depend on the application at hand. For example, while the
instance segmentation approach shown in Figure 3D provides more information in the form of
detailed pixel-level and per-object detection information compared to image classification in
Figure 3A, the models needed to perform instance segmentation (e.g., Mask R-CNN) take much
longer to train than those for image classification (e.g. ResNet50), and the preparation of the
training dataset for instance segmentation is much more time consuming, where every object of

interest must be annotated at the pixel level, as opposed to supplying a single class label for each
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Figure 3. Overview of different types of object detection tasks. (A) EM image of nanoparticles in
a powder, with classification of “powder”. (B) Pixel-level segmentation of the image from (A)



showing semantic segmentation of background (black) vs. particle (yellow), obtained from, for
example, a U-Net model. (C) Object detection of individual particles in the powder, where each
identified particle is encapsulated with a bounding box obtained from, for example, a Faster R-
CNN model. (D) Instance segmentation combining object detection with pixel-level detail to
obtain bounding boxes and segmentation masks for each particle, obtained using, for example,
a Mask R-CNN model. Figure adapted with permission from Ref [24].

Deep learning has witnessed increased adoption in materials science in the past five
years,[13,25-30] and the use of deep learning-based object detection in materials science began
in earnest in 2018 and has advanced rapidly in just the past two years.[24,31-33] Currently, there
is significant simultaneous progress in the computer science field of developing new object
detection algorithms,[21,23,34,35] and the subsequent application and assessment of object
detection models in materials science.[31,36—40] The purpose of this review is to provide a brief
summary of the present state-of-the-art use of object detection and quantification in materials
science, with a particular emphasis on studies conducted in the past two years using object
detection models to analyze EM images. The methods and key findings of a set of pioneering
studies employing object detection to EM images are discussed (Section 2), including applications
of quantifying defects in images of irradiated metal alloys (Section 2.1), characterizing micro and
nanoparticles (Section 2.2), finding individual atoms in STEM images (Section 2.3), and tracking
detected objects from in situ EM video (Section 2.4). Following this, in Section 3 some
opportunities and challenges presently facing the materials community are highlighted, with
discussion of some suggested best practices for evaluating the performance of object detection
models (Section 3.1), the use of synthetic data generation to improve model training (Section
3.2), the possible influence of subjectivity in ground truth labels and the prospect of achieving
community consensus of data labeling (Section 3.3), and prospects for community-based model

development and deployment (Section 3.4).

2 Applications of Object Detection in Materials Science

2.1 Quantifying Defects in Electron Microscopy Images of Irradiated Metal Alloys



One key application area of automatically detecting and analyzing defects in EM images
is that of metal alloys which have undergone some form of irradiation. Metal alloys used in
nuclear reactor components undergo irradiation, and the type, shape, size and number
distribution of defects formed result in hardening, embrittlement and swelling of the
material.[41] Such changes in the mechanical properties of the alloys directly impact its
performance in the reactor, and understanding such property changes is critically important for
the safe and reliable operation of reactor facilities.[42] Up until recently, radiation-induced
defects in metal alloy EM images were manually quantified by domain-expert researchers.[43—
45] Since 2018, with the pioneering work of Li et al.,[31] a number of informative studies have
successfully characterized and analyzed multiple radiation-induced defect types in EM images of
metal alloys used in nuclear applications. In this section, the key methods used, main results and
some limitations of each of these studies are summarized.

Beginning in 2018, the work of Li et al. sought to quantify defects in irradiated ferritic FeCrAl
alloys.[31] While the detection of both (111)- and (100)-type dislocation loops, along with
interstitial cluster (so-called “black dot”) defects were of interest for detection, Li et al. focused
on detecting only the (111)-type dislocation loops as a proof of concept, with the hypothesis that
if the model can correctly perform detection of the (111) loops, extension of the method to
detect other defect types would be straightforward. A series of methods were used to detect
loops in this work. First, proposed bounding boxes were obtained by training a non-deep learning
based cascade object detector (using an AdaBoost model) to locate probable regions of an image
containing a defect. Next, a 15-layer CNN classifier was used to refine the bounding box
predictions by classifying whether proposed bounding boxes likely contained a defect or not.
Finally, the watershed flood algorithm (a traditional computer vision method) was used to
segment the exact defect locations and morphologies. Figure 4A provides an example EM image
of the defect loops and the model predictions from this study. Generally, this work showed that
automated defect detection methods hold promise for comparable performance to human
researchers, with orders of magnitude faster inference. Two key limitations to the work from Li
et al. were the ability to only identify a single type of defect, and the lack of pixel-level

segmentation information from the deep learning model. Only predicting a single defect type



limits the information the model can provide for subsequent materials property modeling of
radiation-induced hardening, which would benefit from detailed size and number distributions
of all defect types. Second, the use of traditional computer vision methods (e.g., watershed flood
algorithm) required extensive manual tuning to obtain the desired performance, thus limiting the
domain of applicability, where subtle differences in image conditions, defect geometry, and
material type may result in significant deterioration in model performance.[40]

The study of Shen et al. extended the work of Li et al. by using the Faster R-CNN object
detection model on the same FeCrAl alloy data from Li et al., advancing the state of the art by
characterizing multiple defect types with a fully deep learning approach (see Figure 4B). This
work used model evaluation statistics such as the defect find F1 score and defect identification
F1 score to quantify model performance. In general, the F1 score is the harmonic mean of the
precision and recall. Here, the defect find F1 score considers whether the model found a defect
at the correct location in an image, regardless if the defect type is correct. The defect
identification F1 score is a more demanding test, as it considers whether the model found a
defect at the correct location and classified the defect type correctly. The work of Shen et al.
showed a defect find F1 score and a defect identification F1 score of about 0.8 and 0.7,
respectively, with defect size errors of about 10% and defect areal density errors in the 25-50%
range. This work demonstrated the power of leveraging modern object detection algorithms and
showcased very good overall predictive ability on par with domain-expert human labelers.
However, a shortcoming with the use of Faster R-CNN is the lack of pixel-level information, so
traditional computer vision methods were again used to obtain the pixel-level segmentation
information to extract details of predicted defect sizes.[37] Furthermore, only a single set of
training and test image data was used in the analysis of model performance, raising questions
regarding the variation in model performance with factors such as dataset size, image type (e.g.
imaging condition, amount of irradiation), image quality and train vs. test image set.

Defect detection of dislocation loops and black dots in FeCrAl alloys was further refined
with the recent work of Jacobs et al.,[40] who employed refined and expanded versions of the
dataset from Shen et al. and used a Mask R-CNN model to realize a fully end-to-end deep learning

approach to quantify the size and shape distributions and densities of these defects (see Figure
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4C). Jacobs et al. found generally comparable performance to Shen et al. on defect find and
identification tasks with F1 scores of about 0.8. Up until this work, only the quality of the
detections were quantified, e.g., through precision, recall and F1 scores. As a key result from this
work, the instance segmentation capabilities of Mask R-CNN were used to form detailed per-
defect size and shape distributions and density calculations, which, when combined with a
simplified dispersion hardening model, resulted in hardening predictions with errors of about 10-
20 MPa, which is about 10% of total material hardening and within the margin of error of
experiments. This result is a concrete example of automated object detection in EM images
directly being used to inform materials property predictions. Assessing the final quantification of
detected objects is a unique aspect of using deep learning approaches in materials science
compared to the field of computer science, which is generally more concerned with assessing
detection quality. This work also provided a number of detailed tests to aid in informing the
expected performance and possible limitations of this and similar models, which will be discussed
in more detail in Section 3.1. While this work helped codify useful tests and expected
performance of automated defect detection models, limitations remain, such as analysis to
interpret and understand decisions made by the Mask R-CNN model through, for example,
feature and activation maps. In addition, given the rapid advancement of object detection
algorithms, more state-of-the-art methods than Mask R-CNN, such as vision transformers
(ViTs),[23,35] may offer improved performance, offering a potential means toward identifying
small features in TEM images (e.g., those that are less than 10 pixels in size), which are presently
difficult to detect reliably using R-CNN models.

There are additional seminal studies employing object detection models for characterizing
defects in irradiated alloys. The work of Anderson et al. used the Faster R-CNN model to detect
microstructural voids (also sometimes referred to as cavities) formed by helium bubbles in
irradiated X-750 Ni-based superalloys, as shown in Figure 4D. Similar to the detection of
dislocation loops discussed above, the defect find F1 score for void detection is about 0.8, and
the defect size distributions are well-reproduced by the model. In addition, like the works of Li et
al. and Shen et al., this study also used additional post-processing methods separate from the

deep learning model to extract the void size information using the predicted bounding boxes.[38]
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This study was the first of its kind to apply automated object detection techniques to predict void
formation, but additional work should be done to assess model applicability to a more varied
dataset, and explore segmentation methods to achieve a fully deep-learning based approach.
Further, analysis of material swelling, the key material property to track during void formation,
was not performed in this work. Swelling is a function of both void size and number distributions,
and being able to quickly and reliably predict the swelling is key to informing service and
deployment of these materials in nuclear applications.

As a final example, the work of Roberts et al. employed a model called DefectSegNet, a
custom U-Net model architecture, and was the first study to demonstrate pixel-level
segmentation of multiple defect types in EM images, as shown in Figure 4E. In this work, the
custom U-Net model was trained to detect line dislocations, precipitate particles, and voids in
HT-9 martensitic steels. The model produced extremely high pixel classification accuracies of
>90%, with pixel accuracy approaching 99% for void identification, with performance rivaling or
exceeding human domain experts. However, as discussed in Section 1, U-Net based methods,
while providing pixel-level information, have the drawback of not providing individual object
detection, making subsequent analysis of object properties like size and shape difficult. In
addition, given the single-mask classification nature of U-Net models, a separate model must be
trained for each defect type (dislocation line, void, precipitate), in contrast to Faster and Mask R-
CNN, which can classify multiple object types within a single trained model. The nature of U-Net
produces the limitation that classifying multiple defect types in an image, for example, a mixture
of dislocation lines and precipitates, would likely require the application of two separate models
and some form of post-processing for dealing with pixels that are classified as more than one

object type.
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Image or Model
Ground Truth Predictions

Lo L

(A)

Figure 4. Survey of object detection studies for EM images in materials science. The left column
of images denotes original micrographs or micrographs with ground truth labels. The right
column denotes corresponding model predictions. (A) Dislocation loops in FeCrAl alloy from Li et
al. using a non-deep learning based cascade object detector and classifier CNN.[31] (B) (111),
(100) and black dot defects in FeCrAl alloy from Shen et al. using Faster R-CNN.[37] (C) (111),
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(100) and black dot defects in FeCrAl alloy from Jacobs et al. using Mask R-CNN.[40] (D) Voids in
X-750 Ni superalloy from Anderson et al. using Faster R-CNN.[38] (E) Line dislocations in HT-9
martensitic steel from Roberts et al. using a custom U-Net model.[39] In panels (B) and (C), the
red, yellow and blue annotations denote (111), (100) and black dot defects, respectively. All
images were adapted from their corresponding references with permission.

2.2 Characterizing Particles in Electron Microscopy Images

Characterizing the sizes and shapes of microparticles and nanoparticles is important for
applications ranging from designing feedstocks for additive manufacturing to understanding
rates of catalytic reactions and electronic properties of quantum dots.[32,46] Object detection
models are well-suited for performing instance segmentation of particles in EM images. A
particularly noteworthy study from Cohn et al. used the Mask R-CNN model to perform instance
segmentation on SEM images of gas-atomized nickel superalloy powders.[46] They calculated
both the precision and recall for pixel segmentation accuracy and detection of particles, and
found by 5-fold random cross validation average F1 scores of 0.976 and 0.862 for pixel
segmentation and particle detection, respectively. This finding not only demonstrates the robust
particle detection capabilities of the Mask R-CNN model as shown in Figure 5A, but also highlights
the potential differences between examining what constitutes well-performing model accuracies
at the pixel vs. object level. Cohn et al. also performed a series of more demanding tests on their
particle detection model. The first test involved the detection of particle satellites, which are
smaller particles agglomerated to the surface of large particles (see Figure 5A). Here, they found
a cross validation satellite detection F1 score that was 0.610, notably lower than the 0.862 value
for finding full particles. This lower value is expected given the higher difficulty of detecting the
much smaller satellite particles, where the lower F1 score was attributed mainly to the highly
subjective nature of what features constitute a satellite. A second test was performed on test
images of powder samples of different materials than those used in the training set, such as Ti-
and Al-Si-Mg-based powders, which not only differ in composition (thus altering their contrast in
EM images), but also have different size and shape distributions than the Ni-based powders in
the training data. Generally, the Mask R-CNN trained only on the Ni-based powders performed

gualitatively very well on the out-of-domain test images by showing reasonable segmentation
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masks on most particles. As expected, from a visual standpoint more errors are made on these
out-of-domain images, particularly for powders with high concentrations of satellites. Overall,
this work provides an important demonstration not only of the utility of Mask R-CNN for particle
detection in EM images but also provides insight regarding the expected performance on test
data outside of the initial training domain, i.e., that the model was able to reliably predict
different particle shapes and simulated particles not present in the training data.

Regarding the detection of nanoparticles in TEM images, Oktay and Gurses used a mixture
of deep learning and traditional computer vision methods to detect and segment individual Fe304
and SiO,-coated Fe304 nanoparticles, as shown in Figure 5B.[47] They used a multiple output CNN
(MO-CNN) model to detect the location of individual particles and segment the particle
boundaries. The segmentation output was then fed into a Hough transform to calculate the sizes
of each particle. In general, the combination of MO-CNN and Hough transform yielded high pixel-
level accuracies, and a comparison test to segmentation performance from a U-Net model
showed the MO-CNN plus Hough transform outperformed U-Net from the standpoint of
accurately predicting the segmented nanoparticle sizes. A second example from Groschner et al.
segmented the boundaries of Au and CdSe nanoparticles in HRTEM images using a U-Net model,
as shown in Figure 5C.[48] In this work, the U-Net model trained on HRTEM images of both CdSe
and Au nanoparticle images produce a pixel-wise F1 score of 0.8. Interestingly, the model
performed better at segmenting Au nanoparticles than CdSe nanoparticles, where pixel-wise F1
scores of 0.89 and 0.59 were obtained for Au and CdSe test images, respectively. The increased
difficulty of segmenting CdSe over Au nanoparticles makes sense, as the lower atomic numbers
of Cd and Se compared to Au make the CdSe particles more difficult to visually resolve in the
HRTEM images, resulting in a lower signal to noise ratio for the CdSe images. As a helpful
demonstration of the general power of deep learning-based methods, Groschner et al. also
compared the performance of their U-Net segmentation model with a number of traditional
computer vision segmentation methods and found that U-Net significantly outperformed all non-
deep learning methods to such an extent that the use of such traditional methods should no
longer be recommended, at least for this particular segmentation task. As a final example,

Nartova et al. employed the Cascade R-CNN model to detect nanoparticles deposited on supports
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used for heterogeneous catalysis.[49] Their model resulted in a particle detection F1 score of
approximately 0.71. They found that the F1 score was improved when just considering the
particles localized to the support surface, as opposed to also including an analysis of particles
that were partially visible or whose intensity was partially occluded by other particles or the
catalyst support. When these two types of particles were treated as separate classes, the model

F1 score saw improvement to about 0.81 for detections of particles on the support surface.

Original Predicted Ground Truth

CdSe

Au

Figure 5. Some examples of object detection of micro and nanoparticles in SEM and TEM images.
(A) Mask R-CNN for particle detection of gas-atomized Ni superalloy powders, where detected
particle bounding boxes and segmentation masks are shown for all particles and satellites (left
image) and highlighting the ability of the model to predict the satellites (right image).[46] (B) TEM
micrograph of SiO;-coated Fe304 nanoparticles (left image) and the detection output marking
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each found nanoparticle using an MO-CNN model (right image).[47] (C) HRTEM micrographs (left
images) of CdSe (top) and Au (bottom) nanoparticles, with U-Net predicted segmentations
(middle images) and ground truth segmentations (right images).[48] All images were adapted
from their corresponding references with permission.

2.3 Finding Individual Atoms in STEM Images

Materials properties and functions are directly tied to the underlying micro, nano, and
atomic structure of the material, where the finest degree of structural information one can obtain
is knowing the position and elemental identity of every atom in a material. Given both the
increased fidelity and quantity of available data from modern EM instruments as described in
Section 1, it would be extremely helpful to develop object detection methods which provided
automatic output of every atom position in STEM images. Toward this goal, seminal work by
Ziatdinov et al. employed fully convolutional networks (FCNs, so named because they do not
contain any fully connected dense layers) to detect individual atoms in STEM images of the two-
dimensional materials graphene and Mo1xWSe».[50] The FCN used in this work employed an
encoder-decoder architecture, very similar to U-Net, and was trained on simulated STEM data of
pristine and defected graphene structures, and augmented variants thereof obtained using
standard methods (e.g., flipping, rotation, noise addition, etc.). An example of the FCN model
applied to an experimental STEM test image of graphene is shown in Figure 6A. The output
produced by the FCN is a probability density map of a given pixel being an atom, where here red
indicates high probability of an atom, progressing to blue and black for low probability. This
probability density output from the final layer of the FCN model is then used as input to a
Laplacian of Gaussian (LoG)-based blob detection algorithm, which yields the final segmented
atom positions, as seen in Figure 6A (right image). The model was also successfully applied to
finding atom positions in a Mo1xWSe; STEM image as well as detecting vacancy and dopant
positions in graphene and Mo1x\W,Se;, demonstrating it can accurately discern different element
types (or a missing atom) based on intensity variations in the STEM images.

A drawback of the work by Ziatdinov et al. discussed above is the focus on hexagonal

symmetry of 2D materials in the training data, limiting the potential domain of model applicability
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to finding atoms in other material structure types or sample morphologies. In particular, as the
model discussed above primarily learned atom type and position based on variations in image
intensity, samples with varying thickness or more complex morphologies (e.g., nanoparticles),
will produce additional challenges with atom type identification as the brightness of the atomic
column depends on both sample thickness and element type. As a step toward building a more
generalizable atom finding model, Ge and Xin have used a similar methodology as Ziatdinov et
al., where here a U-Net model for atom detection is used followed by circular Hough transform
to produce the final atom segmentations.[51] The key advancement put forth by Ge and Xin lies
in the more diverse set of training data employed, effectively expanding the domain of model
applicability. Here, Ge and Xin developed an extensive simulated STEM image database of 10,000
images containing a variety of noise levels, sample thicknesses, imaging conditions, crystal
structures, imaging zone axis, and image field of view. The use of simulated STEM images is
necessary for construction of a sufficiently large training database for training atom finding
models like those of Ge and Xin, and the important role of synthetic data generation for training
improved object detection models is discussed in more detail in Section 3.2. By qualitative visual
inspection, the U-Net model and Hough transform method employed by Ge and Xin appears to
accurately locate atom positions in materials with varying symmetries (e.g., cubic vs. hexagonal),
and morphologies (e.g., bulk vs. samples with surfaces or extended defects).

As an extension of the above discussed studies, Wei et al. performed detailed
benchmarking of the models originally fit by Ge and Xin and Ziatdinov et al.[52] Benchmark
studies were performed by quantifying atom finding metrics such as precision, recall, and
distance from correct atom position for [100]-oriented perovskite SrTiOs and monolayer WS..
Generally, it was found that the model Ziatdinov et al. slightly out-performed the model from Ge
and Xin for these particular test cases, though both models failed on more challenging images,
and it was found they failed for different reasons. It was observed that the model of Ziatdinov et
al. has low recall (i.e., misses many atoms) if there is significant contrast variation in the image,
and the model of Ge and Xin performs poorly if the image has large pixel sizes. Both models have
trouble identifying atoms for cases in which there is significant overlap of intensity peaks.

Interestingly, it was found that for many images, both models perform extremely well with recall
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and precision scores nearing perfect performance, and for select images the models (particularly
Ge and Xin) fail in such a manner that very few, if any, atoms are detected, indicating some
underlying fragility in the applicability domain of both models. This work provides the first step
toward the important goal of establishing a community repository of models and data, from
which detailed benchmarking and iterative improvements to both the data and trained models
can be made to facilitate the production of the best atom-finding model. Additional discussion
of this important opportunity for the materials community is provided in Section 3.4.

The use of deep learning models to detect the position of each atom in STEM images
enables the extraction of other useful properties, such as sample thickness and nanoparticle
morphology. For example, Zhang et al. used a VGG16-based CNN to determine the sample
thickness of SrTiO; samples based on the Sr column intensities, with the capability to provide
thickness predictions within about one unit cell across the provided image.[53] Ragone et al. used
CNN models to calculate the atomic column heights of gold nanoparticles imaged at the atomic
scale using HRTEM, enabling detailed inference of the overall nanoparticle morphology, as shown
in Figure 6B.[54] Similar to other atom detection studies, Ragone et al. leveraged simulated STEM
image data, and the trained CNN model was able to translate from simulated images to
reasonable predictions of atomic column heights for experimentally imaged nanoparticles. Lee
et al. built upon the work of Ziatdinov et al. and used an FCN residual U-Net model to detect and
classify individual point defects in the 2D material WSe3-2xTeax.[55] As shown in Figure 6C, their
network is capable of identifying different types of individual points defects in experimental
STEM images, and can even discern between single and double Se vacancies based on the
contrast differences of the Se site column. Moreover, by employing class averaged images with
the FCN defect predictions, information of local lattice expansion and contraction (as a result of
the point defects) and the resulting strain fields was obtained. This work demonstrates the utility
of deep learning methods to help produce new insight on atomic-scale materials structure and

its coupling to materials properties (here, variations in elastic properties from point defects).
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Figure 6. Application examples of using deep learning methods to detect individual atoms in
STEM images. (A) Experimental STEM image of graphene (left image), with atomic positions
predicted by the fully convolutional network (FCN) (middle image), and final, refined atomic
positions marked using the Laplacian of Gaussian (LoG) blob detection method on the FCN output
(right image).[50] (B) Experimental HRTEM image of an individual gold nanoparticle that is about
2.8 nm in size (left image), with corresponding CNN predictions of the atomic column heights for
each column of gold atoms comprising the nanoparticle (center image), and the inferred 3D
morphology of the nanoparticle based on the CNN-extracted column heights (right image).[54]
(C) Annular dark field (ADF) STEM image of the 2D material WSez-2xTeax (upper left), and different
detected defects using an FCN residual U-Net model, where single Se vacancy (SV), double Se
vacancy (DV), Se on a Te site (antisite, SeTe), and 2 Te defects on the Se site (2Te) are shown as
green, pink, blue and red dots, respectively (right upper image). The corresponding atomic
structures of the detected defect types are shown along the bottom.[55] Allimages were adapted
from their corresponding references with permission.
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2.4 Tracking Detected Objects in Electron Microscopy Video

All of the above discussed applications of object detection in EM images have centered
around automatic analysis of individual or static images. As discussed in Section 1, the capability
of drastically increased EM image data generation now includes the generation of full videos
obtained from in situ EM experiments. Such in situ experiments can provide information of
dynamic materials behavior which can be used to better understand the evolution of material
structure and properties.[32,56] For example, the coupling of high temperature defect migration
to grain boundaries with the resulting mechanical properties, or the nucleation and growth of
voids during material irradiation, thus determining materials swelling which can then inform
operational conditions such as temperature or radiation dose. As videos are a time-resolved
sequence of images, objects in each frame of a video can be detected using the same deep
learning-based object detection tools described throughout this section. Two challenges which
emerge from having to perform object detection on a large number of images comprising a video
are (1) long object detection model inference times, making on-the-fly detection and tracking
difficult, and (2) linking detected objects between frames via a tracking algorithm. There are also
challenges with acquiring stable, low noise TEM video suitable for reliable object detection. The
You Only Look Once (YOLO)[57] model has emerged as a leading model for performing object
detection and tracking in videos. Contrary to two-stage object detection models such as Faster
R-CNN and Mask R-CNN, YOLO is a single stage detection framework which enables both faster
training and inference times compared to the R-CNN models. YOLO provides only bounding box
information (similar to Faster R-CNN), so additional image analysis on detected objects is
required if more detailed geometrical information is desired. Application of tracking detected
objects in EM images is presently in the nascent stages, though some notable recent studies have
emerged.

Shen et al. was the first study of its kind to employ the YOLO object detection model to
demonstrate real-time identification and tracking of defect loops in FeCrAl alloys for sets of TEM
images extracted from video.[36] The YOLO model was shown to be extremely effective at
detecting dislocation loops, with very high F1 scores in the range of 0.83-0.93 depending on the

test image examined. As the images used in this work were the result of in situ irradiation, the
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total irradiation dose (as measured in displacements per atom, or dpa) increases with time. As
irradiation damage increases, new dislocation loops are nucleated in the microstructure, and
previously present loops can grow, migrate, and coalesce. Shen et al. were able to detect and
track the dislocation loops throughout the in situ TEM video and calculate key materials
properties like defect density and defect size evolution as a function of dpa (i.e., as a function of
time under irradiation), with YOLO-detected results as a function of irradiation dose compared
with the ground truth calculation displayed in Figure 7. The results of defect density and defect
size as a function of dpa shown in Figure 7 demonstrate the YOLO model can accurately
reproduce both qualitative and quantitative trends of defect size and density changes with
irradiation. Similar work as Shen et al. has been reported by Sainju et al., who were interested in
tracking the radiation defect dynamics of defect clusters (e.g., dislocation loops and stacking-
fault tetrahedra) in pure nickel metal which has undergone krypton ion irradiation. They use a
multiple object-tracking computer vision model to detect and track the defect clusters over time
at high temperature, revealing the expected lifetime of such clusters, which was found to decay
monotonically (i.e., the defects are disappearing) in less than 4 seconds’ time, providing new
insights of irradiation-induced defect dynamics.[58]

The level of analysis made possible by models like YOLO not only provides understanding
of application-specific materials properties such as hardening as a function of irradiation dose,
but may unlock a deeper level of materials data analysis by virtue of efficiently analyzing large
amounts of in situ TEM data, which was not previously possible by traditional analysis methods.
For example, recent work by Nathaniel et al. performed manual analysis of defect density as a
function of distance from grain boundaries in copper bicrystal samples, and characterized grain
boundary defect absorption characteristics based on grain boundary type.[59] Similar studies to
the work of Nathaniel et al. would likely be conducive to deep learning-based object detection
and tracking analysis, such as application of YOLO to track defects in the vicinity of grain
boundaries over time to assess the grain boundary sink strength. Finally, fast inference of the
YOLO model offers the intriguing possibility of deploying a trained detection model and
accompanying software on new TEM instruments for real-time detection and tracking of defects

during irradiation experiments.
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Figure 7. Materials-specific properties extracted from detecting and tracking defects using a
YOLO model on in situ TEM video from the work of Shen et al.[36] (A) A single frame of the video
showing ground truth (cyan) and YOLO predicted (yellow) bounding boxes. (B) The calculated
defect density as a function of dose from the YOLO results (blue) compared to ground truth
calculations (red). (C) The calculated average defect sizes from the YOLO results and subsequent
geometry fitting (blue) compared to ground truth calculations (red). For the ground truth labels
in (C), the triangle, circle and diamond data correspond to the third quartile, median, and first
quartile, respectively, and the grey shaded region corresponds to the third (upper boundary) and
first (lower boundary) quartile of defect size from the YOLO results. All images were adapted
from Ref [36].

3 Opportunities and Challenges for Object Detection in Materials

Science

3.1 Best Practices of Model Evaluation and Applicability

The studies described throughout Section 2 highlight application of a variety of object
detection and segmentation techniques that were found to be successful in characterizing and
guantifying a range of objects of interest in EM images. These and other similar studies tend to
have two factors in common: (1) model performance is typically evaluated for a limited set of
testing data, potentially giving a false impression of model performance quality on new unseen
data and (2) model quality is assessed using primarily statistics-based metrics (e.g., precision,
recall, F1 score), as opposed to materials-centric metrics which seek to connect the model results

to the prediction of a material property or performance metric (e.g., material hardening or
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swelling). Now that application of several object detection and segmentation models is becoming
increasingly straightforward, the arc of research using these tools to characterize EM images will
likely shift from the demonstration these models broadly work for characterizing particular EM
image features to more detailed, meaningful materials domain-based assessment of model
performance.

It is understandable that in initial studies, model performance was evaluated for a limited
set of testing data. This is likely the result of both computational cost of training and evaluating
object detection models, and also the fact that labeled data for EM image analysis tends to be
limited in quantity and quality, where well-curated databases can take years to develop. Given
the increased computational power of new graphical processing units (GPUs), together with
more widespread availability of computing resources such as Google Colab and Amazon Web
Services, more thorough evaluation of model fit statistics is quickly becoming a reality. For
example, the work from Jacobs et al. discussed in Section 2.1 above performed both random and
targeted group cross validation using Mask R-CNN models. Similar to studies employing
traditional machine learning methods for materials property prediction,[60—62] they found that
the nature of the training and test data can have a dramatic impact on the model performance.
As a concrete example, through random cross validation splits of train and test images, they
found the model predicted errors in average defect size can range from about 2 to 11%, while
density errors ranged from about 8 to 22%. Further, as shown in Figure 8, they found the model
performance by defect type was quite sensitive to dataset size and cross validation type, where
random leave out cross validation tended to result in improved performance compared to
targeted group cross validation, where images were separated based on factors such as alloy
type and extent of irradiation.

While results like those shown in Figure 8 are not surprising, there are two takeaway
messages that are worth keeping in mind. First, baseline model performance on any metric
should be evaluated at least by some kind of random cross validation technique.[40,46] This way,
key metrics like object size distribution can be quoted with an average, standard deviation, and
range of values. Such baseline performance measures give potential users of the model a sense

of the scale of errors to expect on test images that are, to a first approximation, drawn from the
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same domain as the training data. More targeted, grouped cross validation is useful for
understanding weak areas in the model domain of applicability. In general, the test used to
evaluate the model should mirror how the model is expected to be used in production, where

random (grouped) cross validation performance is qualitatively reflective of test images drawn

from inside (outside) the training image domain.
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Figure 8. Mask R-CNN F1 score of identifying different defect types in EM images of FeCrAl alloys
as a function of dataset size and type of cross validation split. Blue, red and yellow shapes denote
black dot, (111) and (100) dislocation loop defect types, respectively. The circle and triangle
shapes are different types of random cross validation assessment, while the squares denote
targeted grouped cross validation. Figure adapted with permission from Ref [40].

Model quality is often assessed using primarily statistics-based metrics such as precision
and recall. This is a sensible starting point to gauge general model performance, but such
statistics-based metrics alone are not sufficient to understand how model performance
correlates to materials application-specific quantities. For example, for detecting and segmenting
nanoparticles, one statistics-based metric reported may be pixel accuracy. However, it is difficult
to connect how, for example, a 90% pixel classification accuracy for detecting nanoparticle vs.
background in an image can be used to form desired connections with the underlying materials
properties. An example of such a property from nanoparticle segmentation may be quantifying

the distribution of nanoparticle sizes and shapes and relating these size and shape distributions

to the resulting catalytic activity for a particular chemical reaction. For materials science
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applications of object detection, gauging the usefulness of a model will be contingent on not only
analyzing basic detection statistics, but forming connections on how model performance on
these basic detection statistics corresponds to prediction accuracy of the resulting material

properties and performance for a particular application.

3.2 Generating synthetic data for improved model development

The performance of object detection models can generally only be as good as the input
data used to train the model, and acquiring, curating and annotating a large amount of high-
quality training image data is a time- and resource-intensive task. While most object detection
model training uses traditional methods of image augmentation such as random flipping,
rotations, cropping, resizing, and contrast or brightness adjustments of images, the inclusion of
synthetic data is a highly promising method toward expanding the amount and domain of image
training data. Currently, the generation of synthetic data can broadly be placed into one of three
groups: (1) Physics-based simulation of image features, (2) deep learning-based generative
models such as generative adversarial networks (GANs),[63] and (3) direct rendering. The use of
synthetic data to improve model training has already found many notable successes in the
broader scientific and medical communities. For example, GANs have been successfully used to
simulate computed tomography and X-ray images of various organs, improving classification
models of cancer detection.[64] In addition, the autonomous vehicle company Waymo uses a
direct rendering computer program called Simulation City to simulate a diverse array of events
and situations likely to be encountered by an autonomous vehicle, and also employs specialized
GAN models to create synthetic camera and LiDAR sensor data. In this case, the scalability of
synthetic data generation is a key advantage, and as of 2020, Waymo’s database contains 15
billion miles of simulated driving data, compared to 20 million miles of real driving.[65,66]
Therefore, in a broad sense synthetic data will likely play a key role in the coming years for
developing the most accurate and reliable object detection models for a range of applications.

For generating synthetic EM images for materials science applications, one promising

avenue is the use of physics-based modeling. This modeling may take the form of multislice
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simulations, where the interaction of an electron beam in an electron microscope with the atomic
structure of a material is modeled to produce a simulated STEM image.[67] The multislice
method has been successful in simulating a number of materials at the atomic scale, for example
pristine perovskite SrTiOs; and Si with a dislocation core,[53,68] high resolution TEM images of
individual carbon nanotubes,[69] and IlI-V semiconductor quantum well heterostructures,[70] as
shown in Figure 9A. Multislice simulated images such as these depict a complete atomic-scale
STEM image, and can be used as input for segmentation and object detection tasks such as those
tasked with finding every atom in an image, as discussed in Section 2.3. Multislice simulations
have also been used to create synthetic images of helium voids (sometimes called cavities), with
a representative example of a synthetic underfocused void shown in Figure 9B from work of Yao
et al.[71] Helium voids were the subject of object detection by Anderson et al.[38] as discussed
in Section 2.1, and inclusion of synthetic cavities can be used to augment existing experimental
databases to expand the model training domain to include different size distributions, focusing
and imaging conditions, and noise levels to improve model training. Initial work in this space from
Field et al. has combined simulated voids onto experimental images containing real voids in an
effort to improve object detection model training.[72] A present challenge is how to best
integrate individual simulated synthetic voids with real or simulated background EM images (see
Figure 9C) with reliable, automatic annotation for fast construction of larger synthetic training
datasets, and present work is ongoing toward addressing this challenge and testing the impact
of synthetic data on model performance.

In addition to physics-based simulation, another promising avenue toward effective
synthetic data generation is through the use of GANs. Briefly, GANs consist of two neural
networks, a generator and a discriminator. The generator network seeks to create new synthetic
images which are of sufficient quality as to fool the discriminator, which seeks to classify true vs.
synthetic images. In materials science, different types of GANs have been successfully used to
create synthetic microstructural images for numerous materials. As a first example, Lee et al.
employed three types of GAN models, namely a deep convolutional GAN (DCGAN),[73] a cycle-
consistent GAN (cycle-GAN)[74] and a conditional GAN (pix2pix)[75] to generate synthetic optical

microscopy and EM images of steel surfaces and different lithium ion battery electrode
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morphologies.[76] While their DCGAN-generated images were qualitatively sensible in their
visual features, the cycle-GAN generated images ended up being superior. An advantage to the
trained cycle-GAN model is the ability to make generated EM images using optical microscopy
images as training, and vice versa, which could aid in expanding the domain of training data used
in subsequent object detection or segmentation tasks. As the cycle-GAN employs two sets of
image types in the training data which contain similar visual features (e.g., images of zebras and
horses have similar features but are different animals), one may use cycle-GAN and similar
models to generate synthetic EM images of different imaging modes, e.g., secondary vs.
backscatter SEM images, or underfocused vs. overfocused helium cavities in TEM images. As a
second example, Ma et al. employed both simulated and synthetic data made using the pix2pix
conditional GAN to augment their real data of polycrystalline iron microstructures.[77] In this
case, the simulated data were too pristine and did not accurately reflect the imperfect features
of real micrographs, and the use of the pix2pix GAN trained on real and simulated data resulted
in synthetic microstructure images with more realistic features. Using the real and synthetic data,
U-net segmentation models were trained and evaluated on real images. Initial tests showed best
performance (measured as mean average precision (mAP)) with U-Net trained only on real data
(mAP=0.585), poor performance when trained only on simulated data (mAP=0.112), and good
but slightly degraded performance (compared to using only real data) when real and simulated
data were used together with training (mAP=0.504). These findings make sense, considering the
overly idealized nature of the simulated data. Given this, Ma et al. then used different fractions
of real and simulated data to train a pix2pix GAN to turn the simulated images into more realistic
synthetic images, and trained a new U-Net model this time combining real and synthetic data.
They found that using just 35% of the real image dataset, combined with the synthetic data, was
sufficient to yield the same level of performance (mAP=0.586) as the previous U-Net model
trained using all of the real data, and which resulted in improved grain boundary segmentation
as shown in Figure 9D. These findings demonstrate the power of synthetic data methods for data
augmentation, lessening the need for large amounts of curated experimental data for
segmentation model training. As a third and final example, Hsu et al. used a Wasserstein GAN

(WGAN)[78] to generate synthetic 3D microstructures of porous solid oxide fuel cell anodes, with
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an example shown in Figure 9E.[79] These electrodes are chemically and structurally complex,
consisting of interconnected grain structures of Ni, yttria-stabilized zirconia, and porous spaces.
They found that WGAN-based synthetic images more closely resembled experimental images
than corresponding simulated images based on a number of microstructure properties, including
volume fraction, particle size, tortuosity factor, etc. This finding suggests, at least for this
application, that WGAN-generated synthetic images have closer physical resemblance to real
images than 3D simulated microstructures. These and similar studies highlight the power of using
GANs in conjunction with, or totally in place of, real data for subsequent materials analysis.
However, it is worth noting that one drawback to using GANs as to opposed to physics-based
simulations is the need for some initial seed of training data, which must be sufficiently large to
train a reliable, stable GAN to generate synthetic data.

A third method researchers are presently exploring for synthetic data generation is that
of direct rendering of images. As a first example, Cid-Mejias et al. used the animation software
Blender[80] to create artificial SEM images containing different sizes and geometries of
nanoparticles, e.g., cuboids, spherical particles, platelets, etc.[81] This was accomplished by
creating 3D representations of different types of nanoparticle shapes, and embedding them into
a Blender scene comprising the objects, lights and camera. The camera was positioned to mimic
the angle of an SEM detector, and the lighting was also made to mimic typical SEM bright field
image contrast. Since the type and size of each nanoparticle placed in the synthetic image is
known, such a synthetic dataset has the needed annotation information for use in object
detection. Another study that employed Blender for direct rendering of synthetic images was Mill
et al.[82] In this work, synthetic microscopy images of SiO; and TiO2 nanoparticles were created.
Compared to the study from Cid-Mejias et al., the work by Mill et al. was able to automate the
Blender scene generation process, streamlining and accelerating the task of synthetic data
generation. U-Net models were separately trained on real and rendered synthetic nanoparticle
images. Encouragingly, both U-Net models showed high quality results on experimental test data,
and while the U-Net model trained on experimental data slightly outperformed the model
trained on synthetic data, the model trained on synthetic data still displayed high performance

metrics with pixel F1 scores of 0.923 and 0.930 for segmenting TiO; and SiO, nanoparticles,
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respectively. As a final example, Trampert et al. rendered synthetic dense grain microstructures
using Voronoi tessellations combined with traditional computer vision techniques to add low and
high frequency noise components to yield more realistic-looking textured microstructures, two
examples of which are shown in Figure 9F.[83] Using about 5000 synthetic images, they trained
a ResNet50-based U-Net model to perform segmentation of the grain boundaries. Using 12
experimental images as test data, the model trained solely using synthetic data resulted in high
pixel-wise segmentation accuracy (about 99%), and visually provided visually reasonable
segmentations of grain boundaries for the real images.

In addition to standard methods like transfer learning, data augmentation, and the more
novel uses of synthetic data generation as discussed above, there are additional emerging
methods of overcoming the scarcity of labeled data. Two such methods gaining traction are the
use of single- or few-shot learning methods[84] and the introduction of physics-based priors into
object detection models. Few-shot learning may be a promising avenue for training new models
using very few instances of new labeled data. For example, recent work from Akers et al.[85]
used few-shot learning approaches to successfully classify and segment different material phases
comprising STEM-imaged heterostructures and nanoparticles. In this approach, a single STEM
image containing regions of different material types (e.g., thin film SrTiO3 deposited on Ge) is
broken up into several sub-images (sometimes called chips or superpixels, and these chips may
be on the order of 100x100 pixels in size), which are classified by a domain expert and the visual
features are encoded into representative class prototypes using, e.g., a ResNet101 network. The
classification and segmentation are performed at the superpixel level, and the work of Akers et
al. demonstrated that reliable accuracy can be obtained by training a model on approximately 10
chips for each class (i.e., material) type in the STEM image. In addition to few-shot learning
approaches, methods which seek to encode physical rules governing the structure of materials
into their models can reduce the possible feature space the model must learn to accurately
detect objects in an image, thus reducing the amount of required training data. As an example of
this, the work of Fu et al. encoded object shape and symmetry rules as physical priors into the
Faster R-CNN detection framework.[86] They demonstrated the use of this physics-aware object

detection framework on the problem of segmenting oriented fibers in fiber-reinforced
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composites and dendrites in microstructural images of Ni-based superalloys. They found that the
inclusion of the physics-based priors in the Faster R-CNN model resulted in improved
performance with respect to detected pixel precision, recall, and F1 scores compared to a
conventional Faster R-CNN model, suggesting that less labeled data may be needed when the

physics-based priors were included in the model.
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Figure 9. Survey of examples of synthetic image data generation for materials applications. (A)
IlI-V semiconductor quantum well heterostructure showing sequence of materials and their
respective band alignment (top), synthetic STEM image from multislice simulation (middle) and
real STEM image (bottom).[70] (B) An individual underfocused helium void from multislice
simulations.[71] (C) An experimental underfocused STEM image with simulated helium voids
interspersed. A couple examples of real and simulated voids are marked with white arrows.[72]
(D) A polycrystalline iron micrograph comparing the raw (left image) and annotated real image
(middle left image) with a U-Net segmented image trained only using 35% of the real database
(middle right image) and combination of real and synthetic data (right image).[77] (E) Schematic
workflow of a WGAN to create synthetic 3D solid oxide fuel cell electrode microstructures,
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showing examples of real and synthetic images.[79] (F) Examples of synthetic and real grain
structures created using simulated Voronoi tessellations with added noise to provide more
realistic textural features.[83] All images were adapted from their respective references with
permission.

3.3 Influence of ground truth subjectivity and achieving community consensus labels

The complex nature of EM images often makes ground truth labeling and annotation of
images not only a highly time intensive task but one that is challenging due to its subjectivity.
Domain experts can disagree about, for example, whether a dislocation loop in an FeCrAl alloy
STEM micrograph is correctly oriented and closed such that it should be annotated as a (111)
loop or instead should be designated as a line dislocation, or whether a black dot defect is indeed
a black dot or should be classified as a small (111) loop. Another example of subjective labeling
was discussed in the work of Cohn et al., where labelers had to decide whether surface features
of powder particles should be classified as satellites, or whether they were simply abnormal
shaped protrusions from the host particle surface.[46] As a final example, Nartova et al.
separately labeled and classified nanoparticles based on whether it appeared the particle was
residing on the catalyst support surface and had well-defined edges, or whether the nanoparticle
was occluded by the support or other nearby nanoparticles.[49]

One step toward understanding the impact of ground truth labeling on model
performance is to perform round-robin tests where different researchers, preferably
experienced domain experts, each separately label and annotate a set of images, and the
distributions of key dataset features like number and size of each type of object are compared.
Then, basic statistics such as the average, range, and standard deviation of the numbers and sizes
of labels across all labelers can be established and compared against the model predictions and
any previously developed ground truth labels. Informative examples of such round robin tests
were performed in the work of Li et al.[31] and Roberts et al.,[39] with key results of their round
robin tests shown in Figure 10. Plots like those shown in Figure 10 are helpful to illustrate not
just comparison of model performance against a ground truth, but, since the ground truth itself

is subjective, what level of uncertainty may be present in the ground truth labels. Establishing
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this baseline uncertainty is important, as it can help one establish whether model errors
compared to a particular set of ground truth labels are significant, and whether the performance
of a model may be deemed acceptable, for instance, if it is expected to perform more or less like

a typical domain expert labeler.
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Figure 10. Examples of image labeling round robin tests establishing some basic statistics of
ground truth subjectivity, and comparison with model predictions. (A) From the work of Li et al.
identifying dislocation loops in irradiated FeCrAl alloys, plots of mean loop diameter (top) and
number of identified loops (bottom) identified by five different labelers compared to the
previously established ground truth (blue diamonds) and model predictions (red squares).[31]
(B) From the work of Roberts et al. identifying dislocation lines, precipitates and voids, plots of
the defect diameter (top) and defect density (bottom) identified by six different labelers
compared to the established ground truth (red squares) and DefectSegNet model predictions
(blue circles).[39]

At present, researchers taking part in individual studies may refine labels on their own
data over time, perform round robin tests like those shown in Figure 10, and examine incorrect

model predictions to better understand underlying features which may have caused the model
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to misclassify or totally exclude certain features of an image. These tasks are all worthwhile to
better understand model performance, but as object detection tools and methods continue to
develop and are more widely adopted throughout the greater materials science community, it
will be highly desirable to develop and maintain canonical benchmark datasets which can be
iteratively refined to achieve community-consensus labeling. Datasets with community-
consensus labels would be highly valuable in the pursuit of developing the most highly accurate
and transferable object detection models. Opportunities for the community to establish tools for
the improved development and dissemination of both data and models will be discussed more
in Section 3.4.

Regarding establishing community-consensus labels and annotations for EM image
datasets, there is an instructive study by Hattrick-Simpers et al. involving classifying X-ray
diffraction (XRD) data from high throughput experiments which contains general concepts that
could be applied to EM image object detection.[87] XRD is used to identify the crystal structure
of materials, which can change as a function of temperature and composition. The motivation
for the work of Hattrick-Simpers et al. centered around the fact that modern high-throughput
experiments generate large amounts of XRD data which, analogous to the large amounts of EM
image data discussed here, is too much for manual analysis by domain experts. It is of interest to
train machine learning models to predict material structure from the XRD results to inform future
experiments, however even domain expert analysis of the XRD data can be difficult and
subjective, much like the annotation of objects in EM images. This case study by Hattrick-Simpers
et al. compared the ability of domain experts and materials data science experts for the task of
material phase identification of Nb-doped VO, as a function of temperature and Nb doping,
where each peak in the XRD spectra were to be labeled as belonging to a tetragonal, monoclinic,
or mixed phase. Consensus labels were determined by calculating the mode of the classification
across all labelers, and the uncertainty of each label was quantified by computing the Shannon
entropy value for the distribution of labels provided across all XRD data. Using these methods, it
was found that the human labelers broadly agreed with each other regarding the correct peak
labels, while there was some substantial disagreement between human labelers and the machine

learning models. Moreover, the degree of disagreement was quantified, yielding useful insights
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regarding which portions of the data resulted in the highest uncertainty. These and similar
methods could be applied to EM image datasets used for training object detection models, where
large-scale community voting results could be quantified to achieve consensus for the most
accurate object labels. Furthermore, the uncertainty of community-wide object labels can be
qguantified, and labeled objects which show high uncertainty (from higher rate of disagreement
between researchers) and are thus more subjective can be automatically flagged for further
inspection and label refinement. It is worth noting here that such consensus assessment for
dataset labeling could also be applied to evaluating a large set of trained object detection models
from the community. It is foreseeable that researchers will train different types of object
detection models (e.g. Mask R-CNN vs. vision transformer, or YOLO vs. Faster R-CNN), and seek
to compare performance between the models on many datasets. Here, sets of predicted labels
from many models could be compared with the community consensus labels, and uncertainty in
the labels may also be quantified to provide a more detailed assessment both between model

types and against the community-established ground truth.

3.4 Development and deployment of data and models for the community

The final step of machine learning model development is deployment of the model to a
broader community. Many of the application-specific studies discussed throughout this review
have sought to deploy their models to the public, and their efforts to do so are briefly summarized
here. As an application-specific example, Nartova et al. developed the web service ParticlesNN,
which enables segmentation of nanoparticles in an image uploaded by the user.[49] Cohn et al.
have a software package called AMPIS (Additive Manufacturing Powder Instance Segmentation)
for particle detection and segmentation in powder images using their trained Mask R-CNN
model.[46] Ziatdinov et al. developed the python package AtomAl, a toolkit to leverage their
deep CNNs for individual atom detection in STEM images.[88,89] Doty et al. packaged the few-
shot learning methods described in the work of Akers et al.[85] into a web-based graphical user
interface called pyCHIP, which lowers the barrier for classifying and segmenting material

microstructures in STEM images using few-shot learning methods.[90] Finally, Jacobs et al.
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packaged their trained Mask R-CNN model and provided a Google Colab notebook which
facilitates straightforward inference and analysis of predicted dislocation loops and black spot
defects on new test images without the need for any python coding.[40] There are also examples
of additional open source toolkits well-equipped to perform a variety of object detection and
segmentation tasks on EM images, such as PyJAMAS,[91] ZeroCostDL4Mic,[92] and
ImageDataExtractor,[93] among others. It is worth noting that as the barrier required to perform
meaningful object detection tasks has substantially reduced in the past few years, several
companies and research institutions have developed software packages to aid in performing both
traditional computer vision analysis and deep learning analysis of images, including semantic
segmentation of objects in images. These tools include Reactiv IP’s Smart Image Processing
package,[94] Object Research Systems’ Dragonfly package,[95] and EPFL's Deeplmagel
package,[96] to name a few. As a final example, Theia Scientific is developing web-based object
detection software used to run on electron microscopes to provide real-time object detection,
guantification analysis and tracking in electron microscopy images.[97]

The above discussion of community-consensus labeled data and present methods of model
deployment brings forth the broader question: How can materials science researchers interact
with image data and models in a way which most productively advances the state of the art for
the entire community? Development, refinement, and deployment of the best performing state-
of-the-art object detection models will depend critically on the organization and accessibility of
data and models. As an answer to the above question and a means toward accomplishing this
vision, there is an ongoing initiative as part of the National Science Foundation’s
Cyberinfrastructure for Sustained Scientific Innovation (CSSl) to develop the Foundry, which will
provide flexible, integrated, cloud-based management of machine learning projects in materials
science, from organizing, publishing, and structuring data to hosting models to disseminating
results that are machine and human accessible and reproducible in ways that support a
networked materials innovation ecosystem.[98,99] While the Foundry will operate on data and
machine learning models in a general way across disciplines and data and model modalities (e.g.,
tabular vs. image data, random forest vs. Mask R-CNN), it also holds the potential to revolutionize

the use of object detection models for EM image and video analysis. The successful invocation of
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Foundry would make updating existing datasets and re-training a previously hosted model
straightforward, and enable cross-model and cross-dataset comparisons of predictions and
uncertainties essentially turn-key. As a first step toward this goal, the work of Wei et al.[52]
discussed in Section 2.3 involved the re-training and evaluation of atom finding CNNs from
Ziatdinov et al. and Ge and Xin on datasets used in their work. With these datasets and models
in hand, more detailed assessments of new model performance, benchmarked against previous
models, and expansion of model domain by inclusion of new data will be made possible.

Given the rapid pace of development of new object detection models in the computer
science field and their adoption and use in materials science applications, enabling the cross-
model evaluations in a community-based infrastructure tool like the Foundry would be
particularly worthwhile. The pace of model advancement has been fast, with a new model type
releasing almost each year on average. More specifically, the Faster R-CNN,[19] Mask R-CNN,[20]
and Cascade R-CNN[100] models were published in 2017, 2017, and 2018, respectively, while the
newest models based on vision transformers (ViTs), the DEtection TRansformer (DETR) and
Deformable DETR models were both released in 2020.[35,101] Generally, researchers in
materials science have taken 3-4 years since the release of a new model to publish work using
the model, where the Faster R-CNN model was used by Anderson et al. in 2020 and Shen et al. in
2021 (3 and 4 years after model release, respectively),[37,38] the Mask R-CNN model was used
by Cohn et al. in 2021 and Jacobs et al. in 2021 (4 years after release in both cases), and the
Cascade R-CNN model was used by Nartova et al. in 2022 (4 years after release).[40,46,49] A very
recent study by Zhang et al. published in 2022 employed the Deformable DETR ViT model to
detect particles in cryo-EM images, and appears to be the first such publication of using a ViT
model to detect objects in EM images.[102] Moving forward, accelerating adoption of state-of-
the-art object detection models from the computer science field to application on materials
science problems and benchmarking performance against different R-CNN, ViT, and new state-
of-the-art model types will be essential, and ideally performed on a series of canonical,

community-consensus labeled datasets.
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4 Summary

In this review, the current state of the use of deep learning-based object detection and
segmentation methods for analyzing EM images is summarized. The motivation for the use of
deep learning methods to analyze EM images has been necessitated by recent advancements in
EM detector technology, enabling modern instruments to collect terabytes of data in a single
session, including acquisition of real-time video from in situ experiments. Four key application
spaces of object detection models in materials EM images were discussed: quantification of
defects such as dislocation loops and voids in EM images relevant for nuclear materials
applications, characterizing micro and nanoparticles for applications in additive manufacturing
and catalysis, finding individual atoms in STEM images, thus informing atomic scale structure and
properties, and tracking detected objects from in situ video, enabling new understanding of
dynamic materials properties such as defect migration as a function of time and irradiation dose.
Following these case study examples of the use of object detection in materials science, a series
of topics related to ongoing opportunities and challenges for the continued development of these
methods in materials research are examined. Of the many fruitful areas of continued research,
here the focus was placed on topics such as enumerating best practices of model evaluation and
applicability, where targeted cross validation schemes to assess model domain will play an
important role in evaluating model application to new test data, and model evaluation beyond
typical statistics-based metrics like pixel accuracy to more materials application focused metrics
like predicted hardening or swelling to evaluate model performance can provide more informed
assessment of model performance. The role of synthetic data to improve model domain and
overall performance was discussed, including data generated from physical simulation, from
generative models like GANs, and through direct rendering using animation tools like Blender.
Looking to the future for what an ideal materials community interacting with codified EM image
databases and trained object detection models might look like, key issues like the subjectivity of
ground truth labels and their refinement through community-consensus labeling and uncertainty
guantification is described, and a vision for a data- and model-sharing infrastructure which allows
for the iterative refinement, assessment and dissemination of state-of-the-art models and

methods becomes commonplace, enabling accelerated understanding of materials phenomena.
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