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Summary 

In this work, we perform semantic segmentation of multiple defect types in electron 

microscopy images of irradiated FeCrAl alloys using a deep learning Mask Regional 

Convolutional Neural Network (Mask R-CNN) model. We evaluate model performance based on 

distributions of defect shapes, sizes, and areal densities relevant to informing physical modeling 

and understanding of irradiated Fe-based materials properties. To better understand the 

performance and present limitations of the model, we provide examples of useful evaluation tests 

which include a suite of random splits, and dataset size-dependent and domain-targeted cross 

validation tests, exposing potential weak points in the model applicability domain. Our model 

predicts the expected irradiation induced material hardening to within 10-20 MPa (about 10% of 

total hardening), on par with experimental error. Finally, we discuss the first phase of an effort to 
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provide an easy-to-use, open-source object detection tool to the broader community for identifying 

defects in new images. 

 

Introduction 

Extended defects in materials are critical in determining their properties and performance. 

The role of defects are particularly important for materials performance in extreme environments, 

where a cornerstone of advanced materials discovery and development is the understanding of the 

production and evolution of defects. In many cases, extreme environments include elevated 

temperatures, stress, corrosion rates, and radiation, which can lead to the production of defects 

including point defects, line dislocations, dislocation loops, cavities/voids, stacking fault 

tetrahedra, and precipitates, to name a few. The nucleation, growth and evolution of these various 

defect types can lead to deleterious changes in materials performance, including the loss of strength 

and ductility. Common, simplified structure-property relationships such as the dispersed barrier 

hardening model1 show that these changes in properties are directly related to the size, number 

density and type of defects present. As a result, a significant portion of the materials discovery for 

extreme environments, development and deployment cycle is spent characterizing and quantifying 

these defects after simulated exposures. This characterization and quantification of defects is 

critical to predict and understand material performance in an array of complex and aggressive 

environments. 

Transmission electron microscopy (TEM) is a popular method for characterizing and 

quantifying defects in materials. Analyzing digitized TEM images is commonly done with 

software packages like ImageJ,2 which enable a user to manually quantify the size, shape, and 

locations of defects in the images. This purely manual, human-based task is very time consuming, 

error prone, inconsistent, generally requires many hours of training and expertise to do well, and 

is not scalable to large dataset sizes. The latter point is particularly important, considering that 

modern TEM instruments can now routinely collect tens of thousands of images or hours of video 

content, the manual analysis of which is not feasible.3 Therefore, the development of automated 

methods for quantifying and analyzing defects in TEM images, as well as understanding the 

advantages, shortcomings, and potential pitfalls of these methods can be used to establish a set of 

best practices for the community as these automated methods witness increased adoption. 
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The rise in popularity of deep learning methods in 2012 revolutionized the field of 

computer vision,4; 5 and the maturation of these methods has direct implications for the present 

problem of automatically characterizing and quantifying defects in TEM images. Deep learning 

techniques typically involve the use of convolutional neural networks (CNNs) and have enabled 

stunning advances ranging from superhuman facial recognition to self-driving vehicles. As a prime 

example, yearly object classification competitions such as the Pattern Analysis, Statistical 

Modeling and Computational Learning Visual Object Classes (PASCAL VOC)6 and ImageNet7 

Large Scale Visual Recognition Challenge  (ILSVRC)8 witnessed a significant advance in 

prediction accuracy after 2012 when the first deep learning-based image classification network, 

AlexNet,5 enabled a performance increase from about 40% correct in the prior two years to nearly 

60% correct in the PASCAL VOC challenge.9 In the following few years, the advances in the deep 

learning object classification methods made these models so adept at classifying the test set images 

at these competitions, that as of 2018 the average classification performance was at or above 90% 

for PASCAL VOC, and greater than 80% for ILSVRC.9  

The coupled use of traditional computer vision and machine learning methods, such as a 

workflow incorporating a sequence of blurring, thresholding, and masking operations combined 

with clustering algorithms or random forest classification models have yielded numerous successes 

in analyzing and quantifying an assortment of features in microscopy images.10; 11; 12 However, 

traditional computer vision methods tend to suffer from reliance on empirically chosen parameters, 

making them useful for limited sets of cases and thus less general and less transferable than deep 

learning-based methods. Deep learning methods are increasingly being adopted in materials 

science.13; 14; 15; 16; 17 In microstructure characterization in materials science,18; 19; 20 the advances 

of these deep learning methods has enabled a shift from the combined use of manually 

implemented and tuned traditional computer vision and machine learning techniques to more 

automatic deep learning methods. The use of deep learning methods has shown success in tasks 

ranging from highlighting defective regions of crystalline materials in high resolution scanning 

TEM (STEM) images,21 segmenting different microstructural phases,22 finding locations of 

individual atoms in a material,23 counting and analyzing nanoparticles,24; 25 identifying and 

classifying surface defect types in steels26; 27 and classifying types of dislocation loops at the 

microscale.28; 29  
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In the past few years, there have been a handful of pioneering studies employing deep 

learning methods to characterize and quantify defects in electron microscopy images. The work of 

Li et al. used a standard CNN architecture coupled with traditional computer vision methods to 

quantify defects in FeCrAl alloys.28 Two key limitations to the work from Li et al. were the ability 

to only identify a single type of defect, and the lack of pixel-level segmentation information from 

the model, prompting the use of traditional computer vision methods that required extensive 

manual tuning to obtain the desired performance. The study of Shen et al. extended the work of Li 

et al. by using the Faster R-CNN (regional convolutional neural network) algorithm on the same 

data from Li et al. and was able to characterize multiple defect types with a fully deep learning 

approach. However, this work still used traditional computer vision methods to extract details of 

predicted defect size.29 In a similar vein, the work of Anderson et al. also used the Faster R-CNN 

algorithm to detect He bubbles, which are sometimes called cavities or voids, in irradiated Ni-

based alloys. Like the works of Li et al. and Shen et al., this study also used additional post-

processing methods separate from the deep learning model to extract materials property 

information such as void sizes, because the Faster R-CNN model does not provide pixel-level 

segmentation information.30 In addition, Shen et al. also employed the YOLO (You Only Look 

Once) object detection model to demonstrate real-time identification and tracking of defect loops 

in FeCrAl alloys for sets of TEM images extracted from video.31 As a final example, the work of 

Roberts et al. employed a model called DefectSegNet, based on the U-net model architecture, as 

the first study to demonstrate pixel-level segmentation of multiple defect types in electron 

microscopy images. This work, while very encouraging, does not conclusively demonstrate 

widespread effectiveness of pixel-wise segmentation models for two reasons. First, images were 

gathered for only a single material alloy and single sample, and two large 2048×2048 images were 

used for each defect type, which, after augmentation, amounted to 48 individual smaller training 

images, likely indicating a narrow model domain and small amount of training data. Second, the 

output of U-net models consists of a single mask for the entire image, denoting whether individual 

pixels are part of a defect or part of the background, thus making quantification of per-defect 

statistics such as size, shape, and density, more difficult, necessitating the use of additional 

techniques beyond the deep learning approach used for detection.32  

In this study, we employ pixel-level segmentation models to create an automated, fully 

deep-learning based approach to classify and analyze multiple defect types in irradiated FeCrAl 
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alloys (an example micrograph is shown in Figure S1 of the Supplementary Information (SI)). 

We highlight analysis of key model performance statistics, with a focus on quantities such as 

predicted distributions of defect shapes, defect sizes, and defect areal densities relevant to 

informing modeling and understanding of irradiated alloy materials properties. In addition, to 

better understand the performance and present limitations of the model, we provide examples of 

useful evaluation tests which include a suite of random splits, and dataset size-dependent and 

domain-targeted cross validation tests. Finally, a significant expansion of the labeling in the image 

database from the works of Li et al.28 and Shen et al.29 to include both more labeled images and to 

include pixel-level segmentation enables us to make a current best-fit segmentation model for 

identifying defect loops in irradiated FeCrAl alloys, which can be used by other researchers to 

make predictions of defects in new images. We provide the final model fit to all images in the 

latest database and a Google Colab notebook to allow users to easily make predictions on new test 

images. This automated analysis provides output of numbers and locations of each defect and the 

test images with the predictions overlayed (see the Data and Code Availability statement in the 

Experimental Procedures section). 

 

Results  

 

Assessing performance of model on single dataset 

 In this section, we assess the Mask R-CNN model performance using the best set of 

hyperparameters obtained from a preliminary survey of roughly 25 Mask R-CNN model runs (see 

Note S1 in the SI). All fits in this section are performed on a single dataset, Dataset1 “initial split”. 

We note here that an overview of the database, including nomenclature for the different data splits 

assessed in this section, and methods used are provided in the Experimental Procedures section.  

Figure 1 provides a graphical representation of the calculated precision, recall, and F1 score for 

the test of finding defects (regardless of whether type is correct) as a function of this IoU cutoff. 

We have found an IoU=0.3 provides a reliable balance of model performance for this defect find 

test while also providing reliable predictions of defect sizes, shapes and densities (to be discussed 

later). In Figure 1, the Mask R-CNN overall F1 score at IoU=0.3 is about 0.8, which is nearly 

identical to the value obtained from Shen et al., who used the Faster R-CNN model as implemented 

in the ChainerCV package.29; 33 This result indicates that the Mask R-CNN model used in this 
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work can provide defect find statistics at the same level of quality as Faster R-CNN, and that the 

use of Detectron2 vs. ChainerCV and different backbone structure (ResNet 50 here, VGG16 in 

Shen et al.) does not appreciably alter the model quality, at least for this case. Figure 2 provides 

three sets of images, comparing the ground truth labels with the Mask R-CNN model predictions. 

Similar to what was observed in the work of Shen et al., from manual inspection the object 

detection model does well overall at correctly categorizing and placing defect locations on the 

image relative to the ground truth. There are some observable errors in the prediction vs. the ground 

truth, such as missing some defects which should be present (false negative), predicting some 

defects to be present which should not be (false positive), and mis-categorizing some defects. 

These types of errors are all to be expected, and more details on their discussion and quantification 

were provided in the study of Shen et al.29 

 

Detailed materials-centric property statistics obtainable from Mask R-CNN model 

In this section, we present a discussion of materials-centric properties obtained from the 

Mask R-CNN model predictions, specifically the distributions of predicted vs. true defect sizes, 

shapes, areal densities, and an approximation of the expected increase in yield stress based on a 

dispersion hardening model. Throughout this section, fits to Dataset1 “initial split” are used, and 

an IoU value of 0.3 is used based on the discussion in the previous section. Figure 3 shows 

histogram distributions of true and predicted values of defect shape and defect size. We examine 

two cases for each distribution: the case where all true and predicted defects are used in the 

analysis, and a second case examining only the instances where a defect was found in the correct 

location, based on the implemented IoU=0.3. These two situations provide us with slightly 

different information regarding the model performance. For the situation assessing all defects 

(Figure 3A and Figure 3C), this comparison is indicative of the errors one may expect for 

applying the model to new test images where the number and locations of defects are not known 

a priori. For the situation assessing only found defects (Figure 3B and Figure 3D), this 

comparison is indicative of how well the model can predict the size and shape of defects for the 

case where it has explicitly found a defect in the correct location. While analysis such as that shown 

in Figure 3B and Figure 3D requires the defect positions to be known a priori, it represents a 

useful analysis as it removes the effect of false positives and false negatives when considering how 

well the model is able to predict defect size and shape. From Figure 3, the error in the mean values 
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of defect shape and size when considering all true and predicted defects are nearly 0% (accurate 

to two decimal places) and 7.1%, respectively. Qualitatively, in Figure 3 the distributions between 

true and predicted defects are generally in very good agreement, and the distributions match more 

closely for the case of comparing found defects only. This result makes sense, given that 

comparing the distributions between all true and predicted defects will have contributions from 

false positives and false negatives which is expected to alter the overall distribution compared to 

only comparing correctly identified defects. Note that the large fractional errors observed for larger 

values of Heywood circularity above about 1.5 are for bins with < 10 defects and therefore 

sensitive to small counting errors. Also, defects with Heywood circularity above about 1.5 almost 

always consist of long edge-on 〈100〉 loops. We speculate the model undercounts the edge-on 〈100〉 loops because of a class imbalance in the dataset where there are fewer 〈100〉 loops 

compared to the other defect types, and we later show that the present model can still be improved 

by adding additional labeled data of 〈100〉 loops. Further, it is possible that the model may confuse 

the edge-on 〈100〉 loops with pre-existing line dislocations, which are considered part of the image 

background and not a feature of interest. The line dislocations are considered part of the 

background and not a defect of interest to detect and quantify because these line dislocations are 

present in the material prior to irradiation.34 For the present application of detecting and 

quantifying defects in FeCrAl alloys, the focus was placed on detecting and quantifying the 

dislocation loops and black dot defects which arise as a consequence of irradiation, thus resulting 

in hardening of the material. 

In Figure 4, we take the defect size distribution data for all true and predicted defects from 

Figure 3A and break it up to be on a per-defect type basis. In Figure 4, the shapes of the predicted 

defect size distributions match well with the true distributions, though two deviations are notable. 

First, in Figure 4A the predicted black dot size distribution skews toward values smaller on 

average than the true values. Second, in Figure 4B the number of predicted instances of 〈111〉 
loops are slightly overestimated in their number and in Figure 4C the instances of 〈100〉 loops are 

slightly underestimated in their number, even though the shape of the predicted size distribution 

matches well with the true distribution. 

 

Another useful way to represent the comparisons of true and predicted defect statistics is 

by way of parity plots. In Figure 5, we present parity plots of the true vs. predicted defect shape, 
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size and densities split out by defect type. Each data point plotted in Figure 5 represents the 

calculated defect statistics from an individual test image. This analysis is useful for picking out 

particular images that may perform better or worse than others, as well as identifying problematic 

outlier images. For example, this analysis enabled us to pick out a single test image with very large 

number of true black dot defects whose count was severely underestimated by the model (lower 

right corner in Figure 5E). This single test image thus contributed to most of the observed error 

for the black dot defect densities. While there is some variation in how well individual images are 

predicted, the model does quite well on the scale of individual images, with mean absolute error 

values of the per-image defect size of about 3 nm and per-image defect density of about 0.5 ×104 

#/nm2 (note we use # as shorthand to denote “number of defects”). It is also notable that when 

taken as an average over the entire test image set, the model predictions improve and become 

excellent for all three properties of interest. We note here that instead of representing the defect 

size as nm, one could also assess the error using units of pixels. In addition, instead of assessing 

defect densities as number of defects per square nm, one could examine the errors in defect counts 

by counting the total true and predicted defects of each type for each image. We have also 

examined the errors in the model performance for this dataset using pixels and total defects per 

image as an assessment of defect size and defect density, respectively (see Figure S2 and Figure 

S3 in the SI). 

As a final visualization to help further quantify and better understand per-image and overall 

model errors, we have taken the same per-image data from above and re-cast the values in terms 

of percent error for each defect type. An example of this result is given in Figure 6 for the case of 

defect size errors. Analogous plots of defect shape and defect density errors can be found in Figure 

S4 and Figure S5 of the SI. Figure 6 enables further comparison between per-image and overall 

expected errors. For instance, in Figure 6 it is evident that the defect size percent errors are 

typically about 30% or lower, and that a single test image shows particularly poor prediction of 〈100〉 loop sizes. Further examination of predictions made on this poorly predicted test image 

show that this large percentage error isn’t due to the model predicting many 〈100〉 loops poorly in 

terms of their size, but rather that the model predicts one large loop in particular as 〈100〉 when 

the ground truth indicates it is a 〈111〉 loop. This loop is much larger than the other 〈100〉 loops 

in the image, resulting in a large size error. It is also worth noting that, when taken as an average, 

the per-image errors for defect sizes are under 20%. Further, if the entire distribution of defect 
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sizes is taken together and not separated on a per-image basis, the average errors drop further and 

are consistently under 10%. 

 A major reason for quantifying the defect type, size, shape and density is that these 

properties play a role in determining alloy mechanical properties. As mentioned in the 

introduction, the dispersed barrier hardening model uses information of defect type, size and 

number density to determine the increase in material yield or ultimate tensile strength (hardening) 

resulting from the creation of defects. Typically, only average size and density information is 

readily available. However, with the use of the present data and models, the full size distributions 

and more detailed defect density data for each defect type are available, enabling a more detailed 

analysis of hardening. Here, we compare the machine learning predicted radiation induced 

hardening for the present data to the hand counting ground truth value. Following the work of Field 

et al.,34 we use the simplified dispersed barrier hardening model with materials constants from 

Field et al.34 (see Note S2 in the SI for more details), and calculate the expected (from the ground 

truth) and predicted (from the Mask R-CNN predictions on test images) hardening. In practice, 

this is done by calculating the hardening contribution of each defect type for each image, then 

summing the contributions together to obtain the total hardening. This summing step can be done 

by either simply adding all the contributions (linear sum) or adding the squares of the contributions 

and taking the square root of this sum of squares (quadrature sum), and it is often unclear which 

method is best when mixed features are present in the microstructure, so we have done both here.34 

From this analysis, we find that, depending on the image examined, the hardening amount ranges 

from about 50-200 MPa. Further, we find that the mean absolute error between true and predicted 

hardening is 16.05 (11.05) MPa based on linear (quadrature) sum, respectively. These absolute 

error values translate into mean absolute percent errors of 12.9% (13.7%) for linear (quadrature) 

sum, respectively. These findings indicate that the present Mask R-CNN model predictions of 

defect sizes and densities can be used to predict the expected hardening with an average error in 

the range of 10-20 MPa, which is approximately 10% of the total expected hardening based on the 

observable defects in the images. Other, non-observable features, such as small vacancy and 

interstitial clusters that exist under the resolution limit of the TEM used as well as precipitates are 

not considered.    

Understanding variations in model performance based on training and testing data choice: 

random cross validation 
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The performance of machine learning models of all types can be sensitive to the choice of 

data sets used for training and testing. In object detection, cross validation is not typically 

performed, as the data set sizes for both training and testing are often very large (e.g. a few million 

instances). In the limit of large datasets, cross validation will typically not yield significantly 

different results in the model predictions, as the training and test sets are sampled from the same 

domain, and cross validation can become computationally impractical. However, for more specific 

object detection applications such as the present work of finding defects in irradiated alloys, the 

volume of data is typically much smaller, often on the order of a few thousand instances instead 

of a few million.  

Here, to assess the sensitivity of model performance to the choice of which images are used 

for training and testing, we perform random cross validation of the train and test sets. This process 

consists of making five random splits of the images, always holding 21 images out for testing and 

using the remaining images for training. Splitting the images in this way makes it so about 15-20% 

of the total defects are reserved for testing, and that the training and testing sets are drawn from 

roughly the same domain. 

The full results of the random leave out cross validation test are shown in Table S4 of the 

SI, and here we summarize our key findings. It is evident that the effect of different images used 

in training and for testing is moderate in scale, with ranges (standard deviations) of the overall 

defect find F1 score, overall defect type F1 score, average defect size error (all defects) and average 

defect density error of 0.04 (0.02), 0.05 (0.02), 9.25% (3.80%), and 13.65% (5.31%), respectively. 

These ranges and standard deviations in key statistics are larger than what was found from running 

the same model multiple times to assess model randomness (see Note S3 in the SI), which indicates 

that the choice of training and test images, at least for this particular application, may yield 

meaningfully different predictions of model performance.  

Figure 7 provides parity plots visualizing these best and worst cross validation splits for 

predicting defect size and defect density. An observation from Figure 7 is that the error values 

between best and worst cross validation split differ by factors ranging from about 1.5-2.5. More 

specifically, the RMSE of defect density changing from 0.70 ×104 #/nm2 (best) to 1.74 ×104 #/nm2 

(worst) is a factor of 2.5 and RMSE of defect size changing from 6.00 nm (best) to 8.83 nm (worst) 

is a factor of 1.5. For the defect size error, one test image is the main culprit for the worsened trend, 

which can be traced to poor predictions of 〈100〉 loop defect sizes for one image. We speculate 
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this error is due to missing instances of 〈100〉 loops and misidentifying other defect types as 〈100〉 
loops, thus pushing the average 〈100〉 loop size for this image to a small value. For the defect 

density error, three test images showed significant underprediction of defects, which for all cases 

were instances of the model significantly underestimating the number of black dot defects. Overall, 

this analysis indicates that, just as in the case of non-deep learning machine learning applications, 

performing numerous splits of cross validation is useful for obtaining a more informed assessment 

of the model performance. 

 

Understanding limitations of model performance and domain based on training and testing 

data choice: targeted grouped cross validation 

In addition to random leave out tests, it has been demonstrated in other machine learning 

applications of materials science that leaving out physically-motivated groups of data is a useful 

method to more selectively probe model performance.35; 36; 37 Therefore, our second cross 

validation test consists of leaving out physically motivated groups of images in an attempt to more 

rigorously evaluate the domain of applicability of our model. These leave out group (LOG) tests 

are described as follows: LOG Test 1 (leave out irradiation condition): This test keeps the alloys 

consistent between train and test image sets, but the irradiation conditions between the train and 

test sets are different. These irradiation conditions differences make it such that the training set 

will be on smaller 〈111〉 loops and 〈100〉 loops and a higher density of black dots on two alloys 

compared to the larger loops and lower density of black dots in the test set. LOG Test 2 (leave out 

alloy test): This test keeps the irradiation conditions consistent between train and test image sets, 

but the alloys are different. These composition and sink density differences make it such that the 

training set will have large loops compared to the test set. LOG Test 3 (leave out sample and 

microscope type): This test keeps groups in the domain based on the microscope and sample used. 

The training dataset images were acquired on an older microscope (Philips CM200) with simple 

starting microstructures while the test dataset images were acquired on a newer microscopes (FEI 

Talos F200X or JEOL 2100F) with samples that have a more complicated microstructure. The 

training dataset was obtained entirely by Kevin Field, while the test dataset has two microscopists 

one of whom was Kevin Field while the other was Dalong Zhang. 38 

Table 1 summarizes the results for the leave out group cross validation tests. From Table 

1, a few key results emerge. First, the overall defect type F1 scores for the leave out group tests 
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are generally lower, in the range of 0.55-0.69, than the overall defect type F1 scores obtained from 

the random leave out cross validation tests, which were in the range of 0.77-0.82. Both the lower 

values of the overall defect type F1 scores and their larger range for the leave out group tests vs. 

the random leave out tests make sense. The F1 scores are lower for leave out group tests because 

it is a more demanding test of the model, as the test images are further outside the domain of the 

training data than for the random cross validation test, where the training and test data are drawn 

from the same domain of images. As the training and test image sets are more similar for each 

iteration of random cross validation, the range of reported F1 scores is smaller. The leave out group 

tests examined here contain different train/test splits which differ markedly in their character, 

resulting in a larger range of model performance quality.  

In addition to differences of model performance between random vs. leave out group cross 

validation tests, we can assess the change in model performance for the leave out group test when 

the training dataset for each test is changed from using the initial Dataset2 to the newer Dataset2 

expanded dataset. The performance differences in the leave out group tests between the use of 

Dataset2 vs. Dataset2 expanded for training suggests that, for these more demanding tests, the 

larger amount of training data contained in Dataset2 expanded is useful from the standpoint of 

broadening the domain of applicability of the model. For example, for the leave out alloy test, the 

overall defect type F1 score increased from 0.55 to 0.64 when training on Dataset2 vs. Dataset2 

expanded, and for the leave out microscope/sample test, the overall defect type F1 score increased 

from 0.60 to 0.69. For the leave out irradiation test, the F1 score remained approximately 

unchanged between training for the two different datasets. By inspecting the defect type F1 score 

per defect type, we can see that the improvement in model performance for the leave out alloy and 

leave out microscope/sample tests is due to different factors. For the leave out alloy test, the 

improvement in defect type F1 stems from improvements in F1 scores of all three defect types. In 

contrast, for the leave out microscope/sample test, the improvement in defect type F1 comes from 

improvement in correctly identifying the 〈100〉 loops only.  

 

 

 

Examining impact of ground truth labeling by domain experts on model performance 
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As discussed in the introduction, one issue with characterizing and quantifying defects in 

electron microscopy images is that the establishment of the ground truth labels is done manually 

by human domain-expert labelers. This labeling process inherently carries some level of 

subjectivity with it, as different human labelers may disagree about whether a feature in an image 

constitutes a defect being present, and the type of defect. In addition, some labelers may exhibit 

labeling patterns notably distinct from other labelers. For example, in the work of Li et al., when 

comparing the results of five human labelers quantifying the number and size of defects in a set of 

images, two labelers differed in their labeling systematically, with one labeler tending to categorize 

many more image features as defects compared to the other labeler.28 

Here, we assess the performance of Mask R-CNN models trained on different ground truth 

datasets. The full results of this test are shown in Table S5 of the SI (see Note S4), and here we 

summarize our key findings. Overall, results of both datasets show very similar levels of average 

accuracy for all test statistics (e.g., defect find F1 scores of 0.81 and 0.82 for prediction on Dataset1 

and Dataset2, respectively), where the differences in scores between the two datasets is of the same 

magnitude as observed from our test assessing model randomness (see Note S3 in the SI). One 

notable difference is the Dataset1 model tends to show higher density errors for black dots (16.28% 

error vs. 5.06% error for Dataset1 and Dataset2, respectively), and the Dataset2 model tends to 

show higher size errors for black dots (7.40% and 15.37% for Dataset1 and Dataset2, respectively). 

It is not clear what the cause of these differences is, but we speculate it may relate to the nature of 

the ground truth labels, where Dataset1 contains many instances of image features labeled as black 

dot defects that were not labeled as a defect at all in Dataset2. In sum, the Mask R-CNN models 

trained using different ground truth labels perform very similarly, indicating that, at least for this 

case, the labeling performed by a particular domain expert may not hold obvious advantages 

compared to another expert. However, it is worth noting here that if certain biases exist in the 

ground truth labels, for example a labeler who systematically labels certain ambiguous image 

features as being black dot defects, this bias will likely translate to the trained model. Since the 

predictive ability of a model can, as an upper bound, only become as accurate as the ground truth 

data it is trained on, future work should be devoted to establishing publicly available curated 

datasets which can be labeled and analyzed by many researchers in the field. This process will then 

involve subsequent model re-training to converge on the most accurate and predictive model of 

the most relevant metrics as agreed upon by the greater community. 
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Examining effect of data set size on model performance 

Analyzing the impact of training dataset size on the model performance enables one to 

identify the amount of training data required for the model performance to saturate. In addition, 

even if the model performance does not improve beyond a certain amount of training data, it is 

likely the domain of applicability of the model is expanded, as discussed above in the context of 

the leave out group cross validation tests. In this section, we assess the model performance as a 

function of training dataset size in two different ways. First, we use our largest dataset, Dataset2 

expanded, to generate multiple splits of different leave out percent cross validation tests, ranging 

from leave out 10% to leave out 90% of the images as test data. With these leave out percent cross 

validation tests, we assess the performance of the model using parity plots of predicted vs. true 

defect sizes and defect densities of all test set images. For the second test, we construct learning 

curves which plot per-defect type F1 scores as a function of number of defects of each defect type 

used in the training data. For this second test, to construct the learning curves, data from the 

previously discussed leave out group tests, the leave out percent tests to be discussed in this section, 

and additional runs using Dataset1 and random cross validation to construct training sets of varying 

sizes were used. 

 For our first assessment of the effect of dataset size using leave out percent cross validation, 

Figure 8 presents parity plots of defect sizes and defect densities split out by defect type for five 

cases of different dataset sizes. The dataset size was modified by performing multiple iterations of 

leave out percent cross validation, with the leave out fraction consisting of 10%, 25%, 50%, 75%, 

and 90% of the images. Each leave out amount was performed three times, where each time a 

different random portion of the data was left out for testing. A handful of findings are evident from 

Figure 8. In general, the model performance generally improves as less data is held out 

(equivalently, as the amount of training data increases). More specifically, as the leave out fraction 

becomes larger, the ability of the model to predict defect sizes becomes significantly worse on a 

per-image basis, with the RMSE increasing from 3.20 nm (average of 3 iterations of leave out 

10%) to 6.25 nm (average of 3 iterations of leave out 90%), nearly a factor of two increase. 

Interestingly, while the model performance worsens when leaving out up to 90% of the images, 

the predictive performance is still impressively robust in the limit of small amounts of training 

data. This finding may suggest that object detection models like Mask R-CNN may offer useful 
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insights and predictions on rather sparse datasets containing fewer than 1000 training instances, 

and this will be discussed in more detail below. Regarding the predictions of defect density with 

different leave out amounts, the trends when examining all of the data as a function of leave out 

amount do not show as clear of a trend as the case of defect sizes and the trend might be affected 

by the presence of a few images with very high black dot defect densities. However, if the analysis 

is instead focused on the region where the true defect density is less than 10 ×104 #/nm2 (blue 

dashed boxes in Figure 8) which constitutes the vast majority of the images studied in this work, 

then the errors in defect density clearly increase from 1.07 ×104 #/nm2 (leave out 10%) to 1.49 

×104 #/nm2 (leave out 90%). As has been observed in past studies, increasing the amount of training 

data generally results in reduced prediction errors,30 and may also help broaden the applicability 

domain of the model. 

For our second assessment of the effect of dataset size using all of the cross validation tests 

described in this work, Figure 9 contains learning curve plots representing the overall defect type 

F1 score vs. number of training defects (Figure 9A) and the defect type F1 score broken out by 

defect type vs. number of training defects, this time on a log scale (Figure 9B). There are a few 

key pieces of information we can extract from Figure 9A. First, the ability of the model to correctly 

identify defects quickly increases with number of training defects, with a defect ID F1 score 

approaching 0.7 for models trained on fewer than 1000 defect instances. After 1000 defects, 

improvement is incremental with significant diminishing returns, and a defect ID F1 score of about 

0.8 is achievable using greater than 6000 defects. Extrapolating these results suggests that 

achieving a defect ID score meaningfully above 0.8 may require a dataset with greater than 50,000 

defects. In Figure 9A, the data points for our tests of leave out percent cross validation using 

Dataset2 expanded (gray triangles) and random leave out cross validation using Dataset1 (gray 

circles) fall on the same curve. This result makes sense, as both of these methods select training 

and test images at random. These two datasets differ in the criterion used to select how large the 

training sets were, and the test image sets used. The random leave out tests (gray circles) used 

Dataset1, and the test image set was the same in all cases and the number of training images was 

varied. The leave out percent tests (gray triangles) used Dataset2 expanded, and the test image set 

changed for each test. The data points corresponding to the leave out group tests (gray squares), 

except for one instance, always fall below the random cross validation data points for the same 

amount of training data. This is to be expected, given that the leave out group test is more 



 16 

demanding, and the test data is generally further from the domain of the training data compared to 

the random cross validation tests. 

In Figure 9B, we take the same data from Figure 9A, but break out the defect ID F1 scores 

by defect type, and for easier examination of the differences of F1 score between defect types, we 

plot the number of training defects (i.e. the x-axis) using a log scale. Examining the data in this 

manner shows that in the limit of very small datasets, e.g., around only 100 defects, the model still 

performs surprisingly well at correctly identifying black dots and 〈111〉 loops, while there is very 

poor predictive ability of the 〈100〉 loops. Once the number of black dots and 〈111〉 loops used 

for training is in the range of a few hundred, the defect ID F1 score is already above 0.8 for these 

defect types. Thus, expanding the amount of labeled data in our database mainly resulted in the 

model performing better on the 〈100〉 loops, as evidenced by the collection of yellow triangle data 

points with F1 scores in the range of 0.7-0.75 for the highest defect counts. The increasing trend 

of 〈100〉 loop ID F1 score suggests that the model performance on identifying this defect type still 

has room for improvement with the inclusion of additional labeled data, even beyond the expanded 

dataset prepared for this study.  

From Figure 9B, we can see that the performance of the model in identifying black dots is 

highest, followed by 〈111〉 loops, followed by 〈100〉 loops being the worst. This trend is in 

agreement with the qualitative visual complexity of these defect types: black dots are the most 

uniform in size, shape and overall appearance and should thus be easiest to categorize, 〈111〉 loops 

are more varied in their size and appearance than black dots but are not as visually diverse as 〈100〉 
loops, where 〈100〉 loops have both edge-on and face-on orientations, yielding a wider range of 

visually distinct sizes, shapes and contrasts, and the similarity of the edge-on orientation with 

background line dislocations result in a harder classification task. These qualitative comparisons 

are also in-line with the leave out group test results, where the black dot predictions between 

random and leave out group cross validation were effectively identical, while the 〈111〉 loop and, 

in particular, the 〈100〉 loop F1 scores were markedly lower for the leave out group tests compared 

to the random cross validation tests. This performance trend is indicative of black dot defects 

appearing visually very similar between different groups assigned here, whereas the size, shape 

and prevalence of the 〈111〉 and 〈100〉 loops change more dramatically between the train and test 

sets used for the leave out group tests compared to the random cross validation tests. 
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Discussion 

This work and others like it provide an avenue for deep learning models to improve and 

accelerate materials modeling efforts. Understanding the impact of different irradiation-induced 

defects in metal alloys on the resulting materials properties and performance hinges on quantifying 

the numbers, sizes, and shapes of different defect types in the material. The present Mask R-CNN 

model enables fast, automatic quantification for all of these quantities, as well as refinements to 

enable more accurate materials modeling by including quantitative data of defect size and shape 

distributions, instead of just commonly-used average values or models that do not typically include 

effects related to defect shape. 

This work highlights not only the successes and usefulness of deep learning object 

detection methods for finding defects in microscopy images, but also lays out some of the current 

limitations and potential issues to be aware of when evaluating the performance of a model. In 

particular, some high-level findings which may be broadly useful for evaluating model 

performance can be summarized as follows: 

• Understanding variations in model performance based on data choice: We have 

found that the choice of training and test images yield meaningfully different 

predictions of model performance. As an example, we found the error values for 

defect size and density errors between best and worst cross validation split differ 

by factors ranging from about 1.5-2.5. This finding indicates that, just as in 

traditional machine learning evaluations, cross validation is a useful tool to employ 

for evaluating performance of object detection models. 

• Understanding limitations of model performance and domain: The leave out group 

tests examined in this work contain groups of train and test images which differ 

markedly in their character, for example, separating sets of images based on alloy 

type, resulting in a larger range of model performance quality compared to random 

cross validation. For these more demanding tests, we found that the larger amount 

of training data contained in our expanded database was useful for broadening the 

domain of applicability of the model but did not improve the model performance in 

random cross validation. This finding suggests that expansions of present databases 

should be focused on including data that exists in different domains from what is 

already present and that reducing cross validation score may not be a good metric 
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to assess the value of additional data as it misses gains in the domain of applicability 

of the model. 

• Impact of domain expert labeling to make ground truth: The generation of ground 

truth labels can be subjective, leading to different labels from different domain 

experts. When considering model performance on the same dataset labeled by 

different experts, we found that very similar levels of average accuracy for all test 

statistics were obtained, where the differences in scores between the two datasets 

is of the same magnitude as observed from our test assessing model randomness. 

However, if certain biases exist in the ground truth labels, for example a labeler 

systematically labels certain ambiguous image features as being black dot defects, 

this bias will likely translate to the trained model. 

• Impact of dataset size on model performance: We found that leaving out up to 90% 

of the images, the predictive performance is still impressively robust in the limit of 

small amounts of training data. More specifically, we found that a defect ID F1 

score approaching 0.7 for models trained on fewer than 1000 defect instances, while 

achieving scores significantly above 0.8 was estimated to potentially require more 

than 50,000 instances. This finding suggests that these models may be reliably 

trained on datasets that can be generated with modest human labeling efforts of 

even just a few hours. 

We would like to point out that one shortcoming of the present work is that our model is 

restricted to a single material class (FeCrAl alloys) and uses data for a single STEM imaging 

condition (bright field, [100] on-zone). Regarding material type, defects like the dislocation loops 

studied here will manifest with different geometries if the material is changed from, for example, 

a ferritic steel with the body-centered-cubic crystal structure like the FeCrAl alloys studied here, 

to an austenitic steel with the face-centered-cubic crystal structure. This change in defect geometry 

will thus necessitate either training a new model or re-training the present model with these defect 

instances to increase the model domain and enable accurate predictions on a new material. 

Regarding imaging condition, analyzing images where the imaging was conducted using a 

different zone axis (e.g. [111] instead of [100] used here), even for the FeCrAl alloys studied here, 

will result in the defect loops having different orientations and shapes, e.g. a loop being in plan-

view vs. edge-on, and varying image contrasts will change what the model feature map perceives 
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as indicating defected vs. background regions, again necessitating model re-training. We note that 

model re-training on new datasets may be very time consuming due to the need for acquiring 

sufficient labeled data. In this regard, state-of-the-art methods such as single or few-shot learning 

may be promising avenues for training new models using very few instances of new labeled data.39 

We believe the potential of using object detection models for analyzing electron 

microscopy images is far from being realized. One area of future work in this space might focus 

on developing a more general defect model for irradiated alloys that incorporates more than the 

three defect types considered here, and is further able to classify dislocation lines, cavities and 

voids formed from gas bubbles, and precipitates, perhaps also taking into account different 

imaging conditions. Another area of promising future work centers around the exploration and 

development of methods for synthetic training data generation, including physics-based modeling 

such as the common “multi-slice” simulations, lower-order models based on simplified 

assumptions and physical descriptions, and machine learning-centric methods of synthetic data 

generation such as through the use of generative adversarial networks (GANs).40; 41; 42 These 

methods may enable more robust and rapid model training and evaluation, as the reliance on costly 

and time-consuming experimental data labeling would be reduced, perhaps significantly. A key 

development to support adoption of these new methods is developing community-based software 

packages that enables rapid cloud-based dissemination of automated detection packages. To 

accomplish this, it will be essential to establish a community-agreed on minimum performance 

metric for the adoption and use of any developed automated defect detection framework. 

Furthermore, the formation of a robust, community-driven database of labeled TEM images for 

rapid development and qualification of automated defect detection frameworks will greatly 

accelerate the development and assessment of new models. Improved data sharing frameworks 

such as the Materials Data Facility43 (MDF) and cloud-based services for hosting machine learning 

models such as DLHub44; 45 are enabling the intersection of materials data and trained machine 

learning models in a manner that will likely be transformative to the materials research community 

in the coming years. As a step toward this goal, and in the same spirit as similar efforts of 

democratization of deep learning models like that of von Chamier et al.,46 we have made the final 

trained Mask R-CNN model, images, and analysis scripts publicly available, along with an easy-

to-use Google Colab notebook for running the trained model on user-provided images and for re-
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training the model provided additional labeled data (see the Data and Code Availability statement 

in the Experimental Procedures section). 

The results of the present study demonstrate that the use of standard, off-the-shelf object 

detection models is extremely effective at quantifying the average size, shape, and density of 

different object types in the context of defects in electron microscopy images. The findings of this 

work and findings in recent similar studies29; 30; 31; 32 suggest the maturation of computing 

hardware (e.g., faster GPUs) and object detection software (e.g., open source Detectron2 package) 

has reduced the barrier required to perform meaningful object detection tasks. Consistent with 

these advancements, several companies have developed software packages to aid in performing 

both traditional computer vision analysis and deep learning analysis of images, including semantic 

segmentation of objects in images. These tools include Reactiv IP’s Smart Image Processing 

package, Object Research Systems’ Dragonfly package, and EPFL’s DeepImageJ package, to 

name a few. Application-specific use of object detection methods with these commercial packages 

or open source packages like Detectron2, such as model evolution via re-training on newly 

available data, cloud-based model hosting for broad dissemination, along with the implementation 

of new state-of-the-art object detection methods such as few-shot learning39 or vision transformers 

(ViTs),47; 48; 49 may enable a transformative leap in the manner in which electron microscopy 

image analysis is performed.  

 

Experimental Procedures 

Resource availability 

Lead contact 

Further information and requests should be directed to and will be fulfilled by the lead contact, 

Ryan Jacobs (rjacobs3@wisc.edu). 

 

Materials availability 

This study did not generate new unique reagents. 

 

Data and code availability  

The datasets generated during and/or analyzed during the current study are available on Figshare 

(https://doi.org/10.6084/m9.figshare.14691207.v3). The trained model on all images comprising 
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Dataset2 expanded, a Google Colab notebook and associated python scripts to make predictions 

on new images and save the associated data is also available on Figshare 

(https://doi.org/10.6084/m9.figshare.14691207.v3). Supporting information discussing the effect 

of model randomness and model hyperparameters on initial model performance, additional 

analysis plots of predicted materials properties, and more information the hardening calculations 

is also available. 

 

FeCrAl image database 

The image database used in this study consists of FeCrAl alloys which have undergone 

neutron or ion irradiation. The images are exactly those available derived from a series of published 

studies from Field et al.34; 50; 51, although some of the data has yet to be summarized in a 

publication and we have extended the labeling, as discussed below. The samples are all FeCrAl 

alloys but vary in composition, microstructure (including grain size and line dislocation density) 

and irradiation conditions. All images are from a single TEM imaging condition, specifically [100] 

on-zone bright field STEM. These imaging conditions produce defects appearing as black contrast 

features on a white background. In the case of irradiated FeCrAl, on-[100] zone imaging results in 

open single edge elliptical loops that are dislocation loops with a Burgers vector of  
𝑎0 2⁄ 〈111〉 

(henceforth referred to as 〈111〉 loops), open double edge elliptical loops and closed elliptical solid 

loops that are dislocation loops with a Burgers vector of 𝑎0〈100〉 (henceforth referred to as 〈100〉 
loops), and closed circular solid dots that are typically called black dot defects with a Burgers 

vector of either 
𝑎0 2⁄ 〈111〉 or 𝑎0〈100〉 (henceforth referred to as black dots). An example 

experimental micrograph showing the visual characteristics of each labeled defect type is shown 

in Figure S1 in the SI.  

As mentioned above, the image database used in this work was previously used in the 

works of Li et al. and Shen et al., however these studies did not include pixel-level segmentation 

information. For this study, the image database was updated to include new labeling, specifically 

new ground truth pixel-level segmentation annotations. We developed three datasets of labels. The 

first considered a set of 107 images that were labeled with pixel-level segmentation by a first group 

of domain experts who found 5,382 defect instances. Note that this is not all the images in the full 

set of images. We call this set of 107 images and 5,382 defect instances “Dataset1”. Then, to better 

understand how the labeling might impact results the same 107 images were labeled by a second 
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set of domain experts, this time finding 5,053 defect instances. We call this set of 107 images and 

5,053 labels “Dataset2”. Finally, to explore how using a larger set of labeled images might impact 

the results, we labeled additional images and joined them with Dataset2. This led to a new dataset 

with 182 annotated images and 13,675 defect instances, which we denote as “Dataset2 expanded”. 

Table S6 in the SI (see Note S5) contains a summary of the basic characteristics of each dataset, 

including number of images and number of each labeled defect type. Numerous different splits of 

train and test images and their associated defects are used throughout this work. Table S7 in the 

SI provides a summary of the number of images and each defect type present in the various train 

and test datasets analyzed in this study. All segmentation mask annotations for both image datasets 

were made using the VGG Image Annotator web application.52 All of the data for these three 

datasets has been made available on Figshare (see the Data and Code Availability statement in 

the Experimental Procedures section). 

 

Mask R-CNN methods 

Throughout this study, we use the Mask R-CNN model as implemented in the Detectron2 

package, which uses PyTorch as the backend. The Detectron2 package was developed by the 

Facebook AI Research (FAIR) team.53 Detectron2 is freely available and enables implementation 

of many object detection models, such as Faster R-CNN,54 Mask R-CNN,55 and Cascade R-CNN.56 

These object detection models have been pre-trained on either the ImageNet7 or Microsoft COCO57 

(Common Objects in Context) image databases, enabling use of the transfer learning technique. 

When using transfer learning, the model backbone weights are frozen to those obtained from the 

previous ImageNet or Microsoft COCO image training, save for a small number of terminal layers 

(2 throughout this work). The weights in these terminal layers are then updated during the training 

process to tune the model for the particular application of interest, in this case detecting certain 

defect types in electron microscopy images. All post-processing of Mask R-CNN model 

predictions and associated analysis was performed using in-house Python scripts, which we have 

made available on Figshare (see the Data and Code Availability statement in the Experimental 

Procedures section). 

In this work, we evaluate the performance of our Mask R-CNN models on a number of 

different application-specific test central to understanding the impact of different defect types on 

the mechanical properties of an irradiated alloy. These tests include how well the model can predict 
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the areal density and size of defects in an image, and how well the model can discern the location 

and type of defects in an image. Explanations of the key we quantify to evaluate the overall 

performance of the Mask R-CNN model are summarized in Table S8 of the SI. Note that the 

Heywood circularity factor is defined as the perimeter of an object divided by the circumference 

of a circle of the same area. 

When training and using object detection models, a key performance parameter to choose 

is that of the intersection-over-union (IoU) score. The IoU score is used as a threshold value to 

decide whether a predicted object mask overlaps sufficiently with a ground truth mask such that 

the prediction can be considered a successfully “found” object. When evaluating an image, there 

is a list of true defect masks and predicted defect masks. To decide whether a defect has been 

found in the correct location, the IoU of every predicted defect is calculated for each true defect, 

and the defect with the highest IoU score is considered the best possible match. Then, if this 

computed IoU score is above the designated threshold, this predicted defect is considered to be 

found. Each true defect can only be found one time, so if multiple predicted defects are found to 

pass the IoU threshold with a particular true defect, the predicted defect with the highest IoU score 

is considered the found defect, and the other defect(s) would then be considered false positives. 

 In addition to the particular set of application-specific test statistics as summarized in Table 

S8 in the SI, we performed a number of different detailed test types. A summary of the different 

types of tests performed, what aspects of the model or data are changed in each test, and the 

rationale for performing each test is provided in Table S9 of the SI. These different test types, 

particularly assessing the impact of different train/test image splits, dataset size, and impact of 

ground truth labels, may serve as a basis for better understanding the successes and limitations of 

object detection models, especially in the context of characterizing and quantifying objects in 

electron microscopy images. 

 

Acknowledgements 

We would like to thank Wisconsin Applied Computing Center (WACC) and Colin Vanden Heuvel 

for providing access to CPU/GPU cluster, Euler. This work used the Extreme Science and 

Engineering Discovery Environment (XSEDE), which is supported by National Science 

Foundation grant number ACI-1548562. Specifically, it used the Bridges-2 system through 

allocation TG-DMR090023, which is supported by NSF award number ACI-1928147, at the 



 24 

Pittsburgh Supercomputing Center (PSC).58 Research was sponsored by the Department of Energy 

(DOE) Office of Nuclear Energy, Advanced Fuel Campaign of the Nuclear Technology Research 

and Development program (formerly the Fuel Cycle R&D program). Neutron irradiation of 

FeCrAl alloys at Oak Ridge National Laboratory’s High Flux Isotope Reactor user facility was 

sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. 

Additional support for K.G.F., D.M. and R.J. was provided by Idaho National Laboratory as part 

of the Department of Energy (DOE) Office of Nuclear Energy, Nuclear Materials Discovery and 

Qualification Initiative (NMDQi). Additional support for R.J. was provided by the National 

Science Foundation (NSF) under NSF Award No. 1931298. 

 

Author Contributions 

R. J. performed the model analysis and wrote the manuscript. M. S. and Y. L. acquired and 

annotated the data and performed model analysis. W. H., X. L., R. H., J. G., D. W. Z. X., Z. H. 

and C. W. annotated the data and performed preliminary model analysis. K. G. F. and D. M. 

oversaw the project. All authors reviewed the manuscript. 

 

Declaration of Interests 

The authors declare no competing interests. 

 

References 

1. Seeger, A., Diehl, J., Mader, S., and Rebstock, H. (1957). Work-hardening and work-softening 

of face-centred cubic metal crystals. Philos. Mag. 2, 323–350. 

https://doi.org/10.1080/14786435708243823. 

2. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of 

image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089. 

3. Jesse, S., Chi, M., Belianinov, A., Beekman, C., Kalinin, S. V., Borisevich, A.Y., and Lupini, 

A.R. (2016). Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography. 

Sci. Rep. 6, 26348. https://doi.org/10.1038/srep26348. 

4. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (MIT Press). 

5. Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). ImageNet Classification with Deep 

Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 1–9. 



 25 

https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007. 

6. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., and Zisserman, A. 

(2014). The Pascal Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis. 111, 

98–136. https://doi.org/10.1007/s11263-014-0733-5. 

7. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-

Scale Hierarchical Image Database. 2009 IEEE Conf. Comput. Vis. Pattern Recognit. 

8. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., 

Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. Int. J. 

Comput. Vis. 115, 211–252. 

9. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., and Pietikäinen, M. (2020). 

Deep Learning for Generic Object Detection: A Survey. Int. J. Comput. Vis. 128, 261–318. 

https://doi.org/10.1007/s11263-019-01247-4. 

10. DeCost, B.L., Francis, T., and Holm, E.A. (2017). Exploring the microstructure manifold: 

Image texture representations applied to ultrahigh carbon steel microstructures. Acta Mater. 133, 

30–40. https://doi.org/10.1016/j.actamat.2017.05.014. 

11. Groom, D.J., Yu, K., Rasouli, S., Polarinakis, J., Bovik, A.C., and Ferreira, P.J. (2018). 

Automatic segmentation of inorganic nanoparticles in BF TEM micrographs. Ultramicroscopy 

194, 25–34. https://doi.org/10.1016/j.ultramic.2018.06.002. 

12. DeCost, B.L., and Holm, E.A. (2015). A computer vision approach for automated analysis 

and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133. 

https://doi.org/10.1016/j.commatsci.2015.08.011. 

13. Goh, G.B., Hodas, N.O., and Vishnu, A. (2017). Deep learning for computational chemistry. 

J. Comput. Chem. 38, 1291–1307. https://doi.org/10.1002/jcc.24764. 

14. Dimiduk, D.M., Holm, E.A., and Niezgoda, S.R. (2018). Perspectives on the Impact of 

Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and 

Structures Engineering. Integr. Mater. Manuf. Innov. 7, 157–172. 

https://doi.org/10.1007/s40192-018-0117-8. 

15. Nash, W., Drummond, T., and Birbilis, N. (2018). A review of deep learning in the study of 

materials degradation. Npj Mater. Degrad. 2, 1–12. https://doi.org/10.1038/s41529-018-0058-x. 

16. Agrawal, A., and Choudhary, A. (2019). Deep materials informatics: Applications of deep 

learning in materials science. MRS Commun. 9, 779–792. https://doi.org/10.1557/mrc.2019.73. 



 26 

17. Morgan, D., and Jacobs, R. (2020). Opportunities and Challenges for Machine Learning in 

Materials Science. Annu. Rev. Mater. Res. 50, 71–103. https://doi.org/10.1146/annurev-matsci-

070218-010015. 

18. Holm, E.A., Cohn, R., Gao, N., Kitahara, A.R., Matson, T.P., Lei, B., and Yarasi, S.R. 

(2020). Overview: Computer vision and machine learning for microstructural characterization 

and analysis. Metall. Mater. Trans. A 51A, 1–22. https://doi.org/https://doi.org/10.1007/s11661-

020-06008-4. 

19. Ge, M., Su, F., Zhao, Z., and Su, D. (2020). Deep learning analysis on microscopic imaging 

in materials science. Mater. Today Nano 11, 100087. 

https://doi.org/10.1016/j.mtnano.2020.100087. 

20. Park, C., and Ding, Y. (2019). Automating material image analysis for material discovery. 

MRS Commun. 9, 545–555. https://doi.org/10.1557/mrc.2019.48. 

21. Dennler, N., Foncubierta-Rodriguez, A., Neupert, T., and Sousa, M. (2021). Learning-based 

defect recognition for quasi-periodic HRSTEM images. Micron 146, 103069. 

https://doi.org/10.1016/j.micron.2021.103069. 

22. Kim, H., Inoue, J., and Kasuya, T. (2020). Unsupervised microstructure segmentation by 

mimicking metallurgists ’ approach to pattern recognition. Sci. Rep. 1–11. 

https://doi.org/10.1038/s41598-020-74935-8. 

23. Ziatdinov, M., Dyck, O., Maksov, A., Li, X., Sang, X., Xiao, K., Unocic, R.R., Vasudevan, 

R., Jesse, S., and Kalinin, S. V. (2017). Deep Learning of Atomically Resolved Scanning 

Transmission Electron Microscopy Images: Chemical Identification and Tracking Local 

Transformations. ACS Nano 11, 12742–12752. https://doi.org/10.1021/acsnano.7b07504. 

24. Oktay, A.B., and Gurses, A. (2019). Automatic detection, localization and segmentation of 

nano-particles with deep learning in microscopy images. Micron 120, 113–119. 

https://doi.org/10.1016/j.micron.2019.02.009. 

25. Okunev, A.G., Mashukov, M.Y., Nartova, A. V., and Matveev, A. V. (2020). Nanoparticle 

recognition on scanning probe microscopy images using computer vision and deep learning. 

Nanomaterials 10, 1–16. https://doi.org/10.3390/nano10071285. 

26. Fu, G., Sun, P., Zhu, W., Yang, J., Cao, Y., Yang, M.Y., and Cao, Y. (2019). A deep-

learning-based approach for fast and robust steel surface defects classification. Opt. Lasers Eng. 

121, 397–405. https://doi.org/10.1016/j.optlaseng.2019.05.005. 



 27 

27. Liu, Y., Xu, K., and Xu, J. (2019). Periodic surface defect detection in steel plates based on 

deep learning. Appl. Sci. 9, 3127. https://doi.org/10.3390/app9153127. 

28. Li, W., Field, K.G., and Morgan, D. (2018). Automated defect analysis in electron 

microscopic images. Npj Comput. Mater. 4, 1–9. https://doi.org/10.1038/s41524-018-0093-8. 

29. Shen, M., Li, G., Wu, D., Liu, Y., Greaves, J., Hao, W., Krakauer, N.J., Krudy, L., Perez, J., 

Srrenivasan, V., et al. (2021). Multi Defect Detection and Analysis of Electron Microscopy 

Images with Deep Learning. Comput. Mater. Sci. 199, 110576. 

30. Anderson, C.M., Klein, J., Rajakumar, H., Judge, C.D., and Béland, L.K. (2020). Automated 

Detection of Helium Bubbles in Irradiated X-750. Ultramicroscopy 217, 113068. 

https://doi.org/10.1016/j.ultramic.2020.113068. 

31. Shen, M., Li, G., Wu, D., Yaguchi, Y., Haley, J.C., Field, K.G., Morgan, D., Ridge, O., and 

Ridge, O. (2021). A deep learning based automatic defect analysis framework for In-situ TEM 

ion irradiations. Comput. Mater. Sci. 197, 110560. 

https://doi.org/10.1016/j.commatsci.2021.110560. 

32. Roberts, G., Haile, S.Y., Sainju, R., Edwards, D.J., Hutchinson, B., and Zhu, Y. (2019). Deep 

Learning for Semantic Segmentation of Defects in Advanced STEM Images of Steels. Sci. Rep. 

9. https://doi.org/10.1038/s41598-019-49105-0. 

33. Niitani, Y., Ogawa, T., Saito, S., and Saito, M. (2017). ChainerCV: a Library for Deep 

Learning in Computer Vision. In MM ’17: Proceedings of the 25th ACM International 

Conference on Multimedia, pp. 1217–1220. 

34. Field, K.G., Hu, X., Littrell, K.C., Yamamoto, Y., and Snead, L. (2015). Radiation tolerance 

of neutron-irradiated model Fe-Cr-Al alloys. J. Nucl. Mater. 465, 746–755. 

https://doi.org/10.1016/j.jnucmat.2015.06.023. 

35. Meredig, B., Antono, E., Church, C., Hutchinson, M., Ling, J., Paradiso, S., Blaiszik, B., 

Foster, I., Gibbons, B., Hattrick-Simpers, J., et al. (2018). Can machine learning identify the next 

high-temperature superconductor? Examining extrapolation performance for materials discovery. 

Mol. Syst. Des. Eng. 3, 819–825. https://doi.org/10.1039/c8me00012c. 

36. Lu, H.-J., Zou, N., Jacobs, R., Afflerbach, B., Lu, X.-G., and Morgan, D. (2019). Error 

assessment and optimal cross-validation appraoches in machine learing applied to impurity 

diffusion. Comput. Mater. Sci. 169, 109075. 

37. Ward, L., Keeffe, S.C.O., Stevick, J., Jelbert, G.R., Aykol, M., and Wolverton, C. (2018). A 



 28 

machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 159, 102–111. 

https://doi.org/10.1016/j.actamat.2018.08.002. 

38. Zhang, D., Briggs, S.A., Edmondson, P.D., Gussev, M.N., Howard, R.H., and Field, K.G. 

(2019). Influence of welding and neutron irradiation on dislocation loop formation and α′ 

precipitation in a FeCrAl alloy. J. Nucl. Mater. 527, 151784. 

https://doi.org/10.1016/j.jnucmat.2019.151784. 

39. Akers, S., Kautz, E., Trevino-Gavito, A., Olszta, M., Matthews, B.E., Wang, L., Du, Y., and 

Spurgeon, S.R. (2021). Rapid and flexible segmentation of electron microscopy data using few-

shot machine learning. Npj Comput. Mater. 7. https://doi.org/10.1038/s41524-021-00652-z. 

40. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., 

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural 

Information Processing Systems. 

41. Ma, W., Kautz, E.J., Baskaran, A., Chowdhury, A., Joshi, V., Yener, B., and Lewis, D.J. 

(2020). Image-driven discriminative and generative machine learning algorithms for establishing 

microstructure-processing relationships. J. Appl. Phys. 128, 134901. 

https://doi.org/10.1063/5.0013720. 

42. Hsu, T., Epting, W.K., Kim, H., Abernathy, H.W., Hackett, G.A., Rollett, A.D., Salvador, 

P.A., and Holm, E.A. (2021). Microstructure Generation via Generative Adversarial Network for 

Heterogeneous, Topologically Complex 3D Materials. JOM 73, 90–102. 

https://doi.org/10.1007/s11837-020-04484-y. 

43. Blaiszik, B., Chard, K., Pruyne, J., Ananthakrishnan, R., Tuecke, S., and Foster, I. (2016). 

The Materials Data Facility: Data Services to Advance Materials Science Research. JOM 68, 

2045–2052. https://doi.org/10.1007/s11837-016-2001-3. 

44. Chard, R., Li, Z., Chard, K., Ward, L., Babuji, Y., Woodard, A., Tuecke, S., Blaiszik, B., 

Franklin, M.J., and Foster, I. (2019). DLHub: Model and data serving for science. Proc. - 2019 

IEEE 33rd Int. Parallel Distrib. Process. Symp. IPDPS 2019 283–292. 

https://doi.org/10.1109/IPDPS.2019.00038. 

45. Chard, R., Ward, L., Li, Z., Babuji, Y., Woodard, A., Tuecke, S., Chard, K., Blaiszik, B., and 

Foster, I. (2019). Publishing and serving machine learning models with DLHub. ACM Int. Conf. 

Proceeding Ser. https://doi.org/10.1145/3332186.3332246. 

46. von Chamier, L., Laine, R.F., Jukkala, J., Spahn, C., Krentzel, D., Nehme, E., Lerche, M., 



 29 

Hernández-Pérez, S., Mattila, P.K., Karinou, E., et al. (2021). Democratising deep learning for 

microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 1–18. https://doi.org/10.1038/s41467-

021-22518-0. 

47. Zhang, C., Li, H., Wan, X., Chen, X., Yang, Z., Feng, J., and Zhang, F. (2022). TransPicker: 

a Transformer-based Framework for Particle Picking in cryoEM Micrographs. In 2021 IEEE 

International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1179–1184. 

48. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2020). Deformable DETR: 

Deformable Transformers for End-to-End Object Detection. ArXiv:2010.04159 1–16. 

49. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020). 

End-to-End Object Detection with Transformers. In European Conference on Computer Vision 

(ECCV), pp. 213–229. 

50. Field, K.G., Briggs, S.A., Hu, X., Yamamoto, Y., Howard, R.H., and Sridharan, K. (2017). 

Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated 

commercial FeCrAl alloy. J. Nucl. Mater. 483, 54-61. 

https://doi.org/10.1016/j.jnucmat.2016.10.050. 

51. Field, K.G., Briggs, S.A., Sridharan, K., Yamamoto, Y., and Howard, R.H. (2017). 

Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa. J. 

Nucl. Mater. 495, 20-26. https://doi.org/10.1016/j.jnucmat.2017.07.061. 

52. Dutta, A., Gupta, A., and Zisserman, A. (2020). VGG Image Annotator (VIA). 

53. Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. (2019). Detectron2. 

54. Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: Towards Real-Time Object 

Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–

1149. https://doi.org/10.1109/TPAMI.2016.2577031. 

55. He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). Mask R-CNN. Int. Conf. Comput. 

Vis. 

56. Cai, Z., and Vasconcelos, N. (2018). Cascade R-CNN: Delving into High Quality Object 

Detection. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 6154–6162. 

57. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., and 

Zitnick, C.L. (2014). Microsoft COCO: Common Objects in Context. Eur. Conf. Comput. Vis. 

740–755. 

58. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., 



 30 

Lathrop, S., Lifka, D., Peterson, G., Roskies, R., Scott, J., Wilkins-Diehr, N. (2014). XSEDE: 

Accelerating Scientific Discovery. Comput. Sci. Eng. 120, 4–5. 

 

Figure and Table legends 

 

Figure 1. Summary of model classification performance. Model performance as a function of 

IoU cutoff between predicted and ground truth. The model was fit and evaluated using Dataset1 

“initial split”. 

 

Figure 2. Examples of images with true and predicted labels. Examples of labeled ground truth 

(left columns) and Mask R-CNN predicted (right column) images. The red, yellow, and blue masks 

denote 〈111〉 loops, 〈100〉 loops and black dot defects, respectively. The predictions shown here 

were made with IoU=0.3 from a model fit and evaluated on Dataset1 “initial split”. 

 

Figure 3. True and predicted defect size and shape distributions. Histograms comparing 

distributions of true and predicted defect sizes (A, B) and defect shapes (C, D), computed as the 

Heywood circularity, for all true and predicted defects (A, C) and only those defects found in the 

correct location (IoU = 0.3) (B, D). Note that the defect number histograms in (C, D) are log scale. 

The dashed lines indicate the cumulative distributions of defect sizes and shapes, with object totals 

denoted by the right-hand axis. 

 

Figure 4. True and predicted defect size distributions, by defect type. Histograms of defect 

size distributions for all found defects split out by defect type: (A) black dot defects, (B) 〈111〉 
loop defects and (C) 〈100〉 loop defects. The dashed lines indicate the cumulative distributions of 

defect sizes, with object totals denoted by the right-hand axis. 

 

Figure 5. Parity plots of per-image and average defect property predictions. Parity plots 

comparing true and predicted defect sizes (A, B), shapes (C, D), and densities (E, F) on a per-

validation image basis (A, C, E, left column) and averaged over all validation images (B, D, F, 

right column). In all panels, blue, red and yellow points represent values for black dots, 〈111〉 
loops, and 〈100〉 loops, respectively. For the panels averaged over all validation images (B, D, F), 

the points denote the average value for the respective defect type and the error bars are the standard 

deviations in the true and predicted values. In (E), the statistics listed in blue correspond to the 

datapoints enclosed in the dashed blue box, which removes the single outlier image with 

significantly underestimated number of black dot defects. 

 

Figure 6. Defect size percent errors by test image. Bar plot showing the per-image predicted 

defect size percent error for each defect type. Also provided on the right-hand side of the plot are 
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the per-image average and the values obtained from the full distribution. The test images shown 

here are from Dataset1 “initial split”. The labels along the x-axis denote the test image names for 

test images comprising the Dataset1 “initial split” test image set. The label “Per-Image average” 
consists of the averaged per-image defect size percent error, while the label “Full distribution 
average” corresponds to the average percent error of every individual defect, as if considering all 
test images constitute one large image. 

 

 

Figure 7. Parity plots showing best and worst model performance. Parity plots showing the 

predicted vs. true defect sizes (A) and densities (B), where each data point results from a specific 

test image. The green circle and blue square data denote the best and worst CV split for each 

quantity, respectively.  

 

 

Figure 8. Model performance with varying amounts of test images. Parity plots comparing true 

and predicted defect sizes (left) and densities (right) for three random splits of 10% (A, B), 25% 

(C, D), 50% (E, F), 75%, (G, H), and 90% (I, J) cross validation. The blue, red, and yellow data 

points denote average values from an individual test image for black dot, 𝑎0 2⁄ 〈111〉 and 𝑎0〈100〉 
loops, respectively. For the plots of defect density, the blue dashed box and corresponding statistics 

are for images where the true densities are less than 10 ×104 #/nm2. 

 

 

Figure 9. Model classification performance as function of training set size. Learning curve 

plots of (A) overall defect type F1 score as a function of number of training defects and (B) defect 

type F1 score split out by defect type as a function of number of training defects. Note the x-axis 

of (B) is on a log scale. 

 

Table 1. Summary of leave out group cross validation test results. 

Group test Dataset 
type 

Number of 
train 

images 
(defects), 

number of 
defects per 

type 

Number of 
test images 

(defects) 

Defect ID F1 
@ IoU = 0.3 

Defect find 
F1 @ IoU = 

0.3 

Leave out 
irradiation 

Dataset2 

12 (370) 
bdot: 117 〈111〉: 195 〈100〉: 58 

9 (649) 

bdot: 0.86 〈111〉: 0.85 〈100〉: 0.26 

Overall: 0.66 

0.79 

Leave out 
irradiation 

Dataset2 
expanded 

21 (1340) 
bdot: 707 〈111〉: 423 

9 (649) 
bdot: 0.85 〈111〉: 0.81 〈100〉: 0.22 

0.80 
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〈100〉: 210 Overall: 0.63 

Leave out alloy Dataset2 

9 (649) 
bdot: 268 〈111〉: 334 〈100〉: 47 

51 (6837) 

bdot: 0.80 〈111〉: 0.50 〈100〉: 0.36 

Overall: 0.55 

0.69 

Leave out alloy 
Dataset2 
expanded 

18 (1732) 
bdot: 767 〈111〉: 651 〈100〉: 314 

51 (6837) 

bdot: 0.87 〈111〉: 0.62 〈100〉: 0.43 

Overall: 0.64 

0.66 

Leave out 
microscope/sample 

Dataset2 

18 (1606) 
bdot: 598 〈111〉: 792 〈100〉: 216 

70 (3285) 

bdot: 0.81 〈111〉: 0.68 〈100〉: 0.33 

Overall: 0.60 

0.75 

Leave out 
microscope/sample 

Dataset2 
expanded 

69 (8569) 
bdot: 4038 〈111〉: 2493 〈100〉: 2038 

70 (3285) 

bdot: 0.82 〈111〉: 0.68 〈100〉: 0.57 

Overall: 0.69 

0.75 

 

 


