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Summary

In this work, we perform semantic segmentation of multiple defect types in electron
microscopy images of irradiated FeCrAl alloys using a deep learning Mask Regional
Convolutional Neural Network (Mask R-CNN) model. We evaluate model performance based on
distributions of defect shapes, sizes, and areal densities relevant to informing physical modeling
and understanding of irradiated Fe-based materials properties. To better understand the
performance and present limitations of the model, we provide examples of useful evaluation tests
which include a suite of random splits, and dataset size-dependent and domain-targeted cross
validation tests, exposing potential weak points in the model applicability domain. Our model
predicts the expected irradiation induced material hardening to within 10-20 MPa (about 10% of

total hardening), on par with experimental error. Finally, we discuss the first phase of an effort to
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provide an easy-to-use, open-source object detection tool to the broader community for identifying

defects in new images.

Introduction

Extended defects in materials are critical in determining their properties and performance.
The role of defects are particularly important for materials performance in extreme environments,
where a cornerstone of advanced materials discovery and development is the understanding of the
production and evolution of defects. In many cases, extreme environments include elevated
temperatures, stress, corrosion rates, and radiation, which can lead to the production of defects
including point defects, line dislocations, dislocation loops, cavities/voids, stacking fault
tetrahedra, and precipitates, to name a few. The nucleation, growth and evolution of these various
defect types can lead to deleterious changes in materials performance, including the loss of strength
and ductility. Common, simplified structure-property relationships such as the dispersed barrier
hardening model' show that these changes in properties are directly related to the size, number
density and type of defects present. As a result, a significant portion of the materials discovery for
extreme environments, development and deployment cycle is spent characterizing and quantifying
these defects after simulated exposures. This characterization and quantification of defects is
critical to predict and understand material performance in an array of complex and aggressive
environments.

Transmission electron microscopy (TEM) is a popular method for characterizing and
quantifying defects in materials. Analyzing digitized TEM images is commonly done with
software packages like ImageJ,> which enable a user to manually quantify the size, shape, and
locations of defects in the images. This purely manual, human-based task is very time consuming,
error prone, inconsistent, generally requires many hours of training and expertise to do well, and
is not scalable to large dataset sizes. The latter point is particularly important, considering that
modern TEM instruments can now routinely collect tens of thousands of images or hours of video
content, the manual analysis of which is not feasible.> Therefore, the development of automated
methods for quantifying and analyzing defects in TEM images, as well as understanding the
advantages, shortcomings, and potential pitfalls of these methods can be used to establish a set of

best practices for the community as these automated methods witness increased adoption.



The rise in popularity of deep learning methods in 2012 revolutionized the field of
computer vision,*; 3 and the maturation of these methods has direct implications for the present
problem of automatically characterizing and quantifying defects in TEM images. Deep learning
techniques typically involve the use of convolutional neural networks (CNNs) and have enabled
stunning advances ranging from superhuman facial recognition to self-driving vehicles. As a prime
example, yearly object classification competitions such as the Pattern Analysis, Statistical
Modeling and Computational Learning Visual Object Classes (PASCAL VOC)® and ImageNet’
Large Scale Visual Recognition Challenge (ILSVRC)® witnessed a significant advance in
prediction accuracy after 2012 when the first deep learning-based image classification network,
AlexNet,’ enabled a performance increase from about 40% correct in the prior two years to nearly
60% correct in the PASCAL VOC challenge.’ In the following few years, the advances in the deep
learning object classification methods made these models so adept at classifying the test set images
at these competitions, that as of 2018 the average classification performance was at or above 90%
for PASCAL VOC, and greater than 80% for ILSVRC.?

The coupled use of traditional computer vision and machine learning methods, such as a
workflow incorporating a sequence of blurring, thresholding, and masking operations combined
with clustering algorithms or random forest classification models have yielded numerous successes
in analyzing and quantifying an assortment of features in microscopy images.'’; !; 12 However,
traditional computer vision methods tend to suffer from reliance on empirically chosen parameters,
making them useful for limited sets of cases and thus less general and less transferable than deep
learning-based methods. Deep learning methods are increasingly being adopted in materials
science.!3; 14; 13; 16: 17 Tn microstructure characterization in materials science,'®; 1°; 20 the advances
of these deep learning methods has enabled a shift from the combined use of manually
implemented and tuned traditional computer vision and machine learning techniques to more
automatic deep learning methods. The use of deep learning methods has shown success in tasks
ranging from highlighting defective regions of crystalline materials in high resolution scanning
TEM (STEM) images,?! segmenting different microstructural phases,? finding locations of

individual atoms in a material,”® counting and analyzing nanoparticles,?*; > identifying and
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classifying surface defect types in steels?®; 27 and classifying types of dislocation loops at the

microscale.?$; 2



In the past few years, there have been a handful of pioneering studies employing deep
learning methods to characterize and quantify defects in electron microscopy images. The work of
Li et al. used a standard CNN architecture coupled with traditional computer vision methods to
quantify defects in FeCrAl alloys.?® Two key limitations to the work from Li et al. were the ability
to only identify a single type of defect, and the lack of pixel-level segmentation information from
the model, prompting the use of traditional computer vision methods that required extensive
manual tuning to obtain the desired performance. The study of Shen et al. extended the work of Li
et al. by using the Faster R-CNN (regional convolutional neural network) algorithm on the same
data from Li et al. and was able to characterize multiple defect types with a fully deep learning
approach. However, this work still used traditional computer vision methods to extract details of
predicted defect size.?” In a similar vein, the work of Anderson et al. also used the Faster R-CNN
algorithm to detect He bubbles, which are sometimes called cavities or voids, in irradiated Ni-
based alloys. Like the works of Li et al. and Shen et al., this study also used additional post-
processing methods separate from the deep learning model to extract materials property
information such as void sizes, because the Faster R-CNN model does not provide pixel-level
segmentation information.?® In addition, Shen et al. also employed the YOLO (You Only Look
Once) object detection model to demonstrate real-time identification and tracking of defect loops
in FeCrAl alloys for sets of TEM images extracted from video.?! As a final example, the work of
Roberts et al. employed a model called DefectSegNet, based on the U-net model architecture, as
the first study to demonstrate pixel-level segmentation of multiple defect types in electron
microscopy images. This work, while very encouraging, does not conclusively demonstrate
widespread effectiveness of pixel-wise segmentation models for two reasons. First, images were
gathered for only a single material alloy and single sample, and two large 2048%2048 images were
used for each defect type, which, after augmentation, amounted to 48 individual smaller training
images, likely indicating a narrow model domain and small amount of training data. Second, the
output of U-net models consists of a single mask for the entire image, denoting whether individual
pixels are part of a defect or part of the background, thus making quantification of per-defect
statistics such as size, shape, and density, more difficult, necessitating the use of additional
techniques beyond the deep learning approach used for detection.*?

In this study, we employ pixel-level segmentation models to create an automated, fully

deep-learning based approach to classify and analyze multiple defect types in irradiated FeCrAl



alloys (an example micrograph is shown in Figure S1 of the Supplementary Information (SI)).
We highlight analysis of key model performance statistics, with a focus on quantities such as
predicted distributions of defect shapes, defect sizes, and defect areal densities relevant to
informing modeling and understanding of irradiated alloy materials properties. In addition, to
better understand the performance and present limitations of the model, we provide examples of
useful evaluation tests which include a suite of random splits, and dataset size-dependent and
domain-targeted cross validation tests. Finally, a significant expansion of the labeling in the image
database from the works of Li et al.?® and Shen et al.?’ to include both more labeled images and to
include pixel-level segmentation enables us to make a current best-fit segmentation model for
identifying defect loops in irradiated FeCrAl alloys, which can be used by other researchers to
make predictions of defects in new images. We provide the final model fit to all images in the
latest database and a Google Colab notebook to allow users to easily make predictions on new test
images. This automated analysis provides output of numbers and locations of each defect and the
test images with the predictions overlayed (see the Data and Code Availability statement in the

Experimental Procedures section).

Results

Assessing performance of model on single dataset

In this section, we assess the Mask R-CNN model performance using the best set of
hyperparameters obtained from a preliminary survey of roughly 25 Mask R-CNN model runs (see
Note S1 in the SI). All fits in this section are performed on a single dataset, Dataset] “initial split”.
We note here that an overview of the database, including nomenclature for the different data splits
assessed in this section, and methods used are provided in the Experimental Procedures section.
Figure 1 provides a graphical representation of the calculated precision, recall, and F1 score for
the test of finding defects (regardless of whether type is correct) as a function of this IoU cutoff.
We have found an IoU=0.3 provides a reliable balance of model performance for this defect find
test while also providing reliable predictions of defect sizes, shapes and densities (to be discussed
later). In Figure 1, the Mask R-CNN overall F1 score at [loU=0.3 is about 0.8, which is nearly
identical to the value obtained from Shen et al., who used the Faster R-CNN model as implemented

in the ChainerCV package.?’; 3* This result indicates that the Mask R-CNN model used in this



work can provide defect find statistics at the same level of quality as Faster R-CNN, and that the
use of Detectron2 vs. ChainerCV and different backbone structure (ResNet 50 here, VGG16 in
Shen et al.) does not appreciably alter the model quality, at least for this case. Figure 2 provides
three sets of images, comparing the ground truth labels with the Mask R-CNN model predictions.
Similar to what was observed in the work of Shen et al., from manual inspection the object
detection model does well overall at correctly categorizing and placing defect locations on the
image relative to the ground truth. There are some observable errors in the prediction vs. the ground
truth, such as missing some defects which should be present (false negative), predicting some
defects to be present which should not be (false positive), and mis-categorizing some defects.
These types of errors are all to be expected, and more details on their discussion and quantification

were provided in the study of Shen et al.?

Detailed materials-centric property statistics obtainable from Mask R-CNN model

In this section, we present a discussion of materials-centric properties obtained from the
Mask R-CNN model predictions, specifically the distributions of predicted vs. true defect sizes,
shapes, areal densities, and an approximation of the expected increase in yield stress based on a
dispersion hardening model. Throughout this section, fits to Dataset] “initial split” are used, and
an IoU value of 0.3 is used based on the discussion in the previous section. Figure 3 shows
histogram distributions of true and predicted values of defect shape and defect size. We examine
two cases for each distribution: the case where all true and predicted defects are used in the
analysis, and a second case examining only the instances where a defect was found in the correct
location, based on the implemented IoU=0.3. These two situations provide us with slightly
different information regarding the model performance. For the situation assessing all defects
(Figure 3A and Figure 3C), this comparison is indicative of the errors one may expect for
applying the model to new test images where the number and locations of defects are not known
a priori. For the situation assessing only found defects (Figure 3B and Figure 3D), this
comparison is indicative of how well the model can predict the size and shape of defects for the
case where it has explicitly found a defect in the correct location. While analysis such as that shown
in Figure 3B and Figure 3D requires the defect positions to be known a priori, it represents a
useful analysis as it removes the effect of false positives and false negatives when considering how

well the model is able to predict defect size and shape. From Figure 3, the error in the mean values



of defect shape and size when considering all true and predicted defects are nearly 0% (accurate
to two decimal places) and 7.1%, respectively. Qualitatively, in Figure 3 the distributions between
true and predicted defects are generally in very good agreement, and the distributions match more
closely for the case of comparing found defects only. This result makes sense, given that
comparing the distributions between all true and predicted defects will have contributions from
false positives and false negatives which is expected to alter the overall distribution compared to
only comparing correctly identified defects. Note that the large fractional errors observed for larger
values of Heywood circularity above about 1.5 are for bins with < 10 defects and therefore
sensitive to small counting errors. Also, defects with Heywood circularity above about 1.5 almost
always consist of long edge-on (100) loops. We speculate the model undercounts the edge-on
(100) loops because of a class imbalance in the dataset where there are fewer (100) loops
compared to the other defect types, and we later show that the present model can still be improved
by adding additional labeled data of (100) loops. Further, it is possible that the model may confuse
the edge-on (100) loops with pre-existing line dislocations, which are considered part of the image
background and not a feature of interest. The line dislocations are considered part of the
background and not a defect of interest to detect and quantify because these line dislocations are
present in the material prior to irradiation.’* For the present application of detecting and
quantifying defects in FeCrAl alloys, the focus was placed on detecting and quantifying the
dislocation loops and black dot defects which arise as a consequence of irradiation, thus resulting
in hardening of the material.

In Figure 4, we take the defect size distribution data for all true and predicted defects from
Figure 3A and break it up to be on a per-defect type basis. In Figure 4, the shapes of the predicted
defect size distributions match well with the true distributions, though two deviations are notable.
First, in Figure 4A the predicted black dot size distribution skews toward values smaller on
average than the true values. Second, in Figure 4B the number of predicted instances of (111)
loops are slightly overestimated in their number and in Figure 4C the instances of (100) loops are
slightly underestimated in their number, even though the shape of the predicted size distribution

matches well with the true distribution.

Another useful way to represent the comparisons of true and predicted defect statistics is

by way of parity plots. In Figure 5, we present parity plots of the true vs. predicted defect shape,



size and densities split out by defect type. Each data point plotted in Figure S represents the
calculated defect statistics from an individual test image. This analysis is useful for picking out
particular images that may perform better or worse than others, as well as identifying problematic
outlier images. For example, this analysis enabled us to pick out a single test image with very large
number of true black dot defects whose count was severely underestimated by the model (lower
right corner in Figure 5E). This single test image thus contributed to most of the observed error
for the black dot defect densities. While there is some variation in how well individual images are
predicted, the model does quite well on the scale of individual images, with mean absolute error
values of the per-image defect size of about 3 nm and per-image defect density of about 0.5 x10*
#/nm? (note we use # as shorthand to denote “number of defects”). It is also notable that when
taken as an average over the entire test image set, the model predictions improve and become
excellent for all three properties of interest. We note here that instead of representing the defect
size as nm, one could also assess the error using units of pixels. In addition, instead of assessing
defect densities as number of defects per square nm, one could examine the errors in defect counts
by counting the total true and predicted defects of each type for each image. We have also
examined the errors in the model performance for this dataset using pixels and total defects per
image as an assessment of defect size and defect density, respectively (see Figure S2 and Figure
S3 in the SI).

As a final visualization to help further quantify and better understand per-image and overall
model errors, we have taken the same per-image data from above and re-cast the values in terms
of percent error for each defect type. An example of this result is given in Figure 6 for the case of
defect size errors. Analogous plots of defect shape and defect density errors can be found in Figure
S4 and Figure S5 of the SI. Figure 6 enables further comparison between per-image and overall
expected errors. For instance, in Figure 6 it is evident that the defect size percent errors are
typically about 30% or lower, and that a single test image shows particularly poor prediction of
(100) loop sizes. Further examination of predictions made on this poorly predicted test image
show that this large percentage error isn’t due to the model predicting many (100) loops poorly in
terms of their size, but rather that the model predicts one large loop in particular as (100) when
the ground truth indicates it is a (111) loop. This loop is much larger than the other (100) loops
in the image, resulting in a large size error. It is also worth noting that, when taken as an average,

the per-image errors for defect sizes are under 20%. Further, if the entire distribution of defect



sizes is taken together and not separated on a per-image basis, the average errors drop further and
are consistently under 10%.

A major reason for quantifying the defect type, size, shape and density is that these
properties play a role in determining alloy mechanical properties. As mentioned in the
introduction, the dispersed barrier hardening model uses information of defect type, size and
number density to determine the increase in material yield or ultimate tensile strength (hardening)
resulting from the creation of defects. Typically, only average size and density information is
readily available. However, with the use of the present data and models, the full size distributions
and more detailed defect density data for each defect type are available, enabling a more detailed
analysis of hardening. Here, we compare the machine learning predicted radiation induced
hardening for the present data to the hand counting ground truth value. Following the work of Field
et al.,* we use the simplified dispersed barrier hardening model with materials constants from
Field et al.>* (see Note S2 in the SI for more details), and calculate the expected (from the ground
truth) and predicted (from the Mask R-CNN predictions on test images) hardening. In practice,
this is done by calculating the hardening contribution of each defect type for each image, then
summing the contributions together to obtain the total hardening. This summing step can be done
by either simply adding all the contributions (linear sum) or adding the squares of the contributions
and taking the square root of this sum of squares (quadrature sum), and it is often unclear which
method is best when mixed features are present in the microstructure, so we have done both here.?*
From this analysis, we find that, depending on the image examined, the hardening amount ranges
from about 50-200 MPa. Further, we find that the mean absolute error between true and predicted
hardening is 16.05 (11.05) MPa based on linear (quadrature) sum, respectively. These absolute
error values translate into mean absolute percent errors of 12.9% (13.7%) for linear (quadrature)
sum, respectively. These findings indicate that the present Mask R-CNN model predictions of
defect sizes and densities can be used to predict the expected hardening with an average error in
the range of 10-20 MPa, which is approximately 10% of the total expected hardening based on the
observable defects in the images. Other, non-observable features, such as small vacancy and
interstitial clusters that exist under the resolution limit of the TEM used as well as precipitates are
not considered.

Understanding variations in model performance based on training and testing data choice:

random cross validation



The performance of machine learning models of all types can be sensitive to the choice of
data sets used for training and testing. In object detection, cross validation is not typically
performed, as the data set sizes for both training and testing are often very large (e.g. a few million
instances). In the limit of large datasets, cross validation will typically not yield significantly
different results in the model predictions, as the training and test sets are sampled from the same
domain, and cross validation can become computationally impractical. However, for more specific
object detection applications such as the present work of finding defects in irradiated alloys, the
volume of data is typically much smaller, often on the order of a few thousand instances instead
of a few million.

Here, to assess the sensitivity of model performance to the choice of which images are used
for training and testing, we perform random cross validation of the train and test sets. This process
consists of making five random splits of the images, always holding 21 images out for testing and
using the remaining images for training. Splitting the images in this way makes it so about 15-20%
of the total defects are reserved for testing, and that the training and testing sets are drawn from
roughly the same domain.

The full results of the random leave out cross validation test are shown in Table S4 of the
SI, and here we summarize our key findings. It is evident that the effect of different images used
in training and for testing is moderate in scale, with ranges (standard deviations) of the overall
defect find F1 score, overall defect type F1 score, average defect size error (all defects) and average
defect density error of 0.04 (0.02), 0.05 (0.02), 9.25% (3.80%), and 13.65% (5.31%), respectively.
These ranges and standard deviations in key statistics are larger than what was found from running
the same model multiple times to assess model randomness (see Note S3 in the SI), which indicates
that the choice of training and test images, at least for this particular application, may yield
meaningfully different predictions of model performance.

Figure 7 provides parity plots visualizing these best and worst cross validation splits for
predicting defect size and defect density. An observation from Figure 7 is that the error values
between best and worst cross validation split differ by factors ranging from about 1.5-2.5. More
specifically, the RMSE of defect density changing from 0.70 x10*#/nm? (best) to 1.74 x10*#/nm?
(worst) is a factor of 2.5 and RMSE of defect size changing from 6.00 nm (best) to 8.83 nm (worst)
is a factor of 1.5. For the defect size error, one test image is the main culprit for the worsened trend,

which can be traced to poor predictions of (100) loop defect sizes for one image. We speculate
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this error is due to missing instances of (100) loops and misidentifying other defect types as (100)
loops, thus pushing the average (100) loop size for this image to a small value. For the defect
density error, three test images showed significant underprediction of defects, which for all cases
were instances of the model significantly underestimating the number of black dot defects. Overall,
this analysis indicates that, just as in the case of non-deep learning machine learning applications,
performing numerous splits of cross validation is useful for obtaining a more informed assessment

of the model performance.

Understanding limitations of model performance and domain based on training and testing
data choice: targeted grouped cross validation

In addition to random leave out tests, it has been demonstrated in other machine learning
applications of materials science that leaving out physically-motivated groups of data is a useful
method to more selectively probe model performance.’; 3¢; 37 Therefore, our second cross
validation test consists of leaving out physically motivated groups of images in an attempt to more
rigorously evaluate the domain of applicability of our model. These leave out group (LOG) tests
are described as follows: LOG Test 1 (leave out irradiation condition): This test keeps the alloys
consistent between train and test image sets, but the irradiation conditions between the train and
test sets are different. These irradiation conditions differences make it such that the training set
will be on smaller (111) loops and (100) loops and a higher density of black dots on two alloys
compared to the larger loops and lower density of black dots in the test set. LOG Test 2 (leave out
alloy test): This test keeps the irradiation conditions consistent between train and test image sets,
but the alloys are different. These composition and sink density differences make it such that the
training set will have large loops compared to the test set. LOG Test 3 (leave out sample and
microscope type): This test keeps groups in the domain based on the microscope and sample used.
The training dataset images were acquired on an older microscope (Philips CM200) with simple
starting microstructures while the test dataset images were acquired on a newer microscopes (FEI
Talos F200X or JEOL 2100F) with samples that have a more complicated microstructure. The
training dataset was obtained entirely by Kevin Field, while the test dataset has two microscopists
one of whom was Kevin Field while the other was Dalong Zhang. 3%

Table 1 summarizes the results for the leave out group cross validation tests. From Table

1, a few key results emerge. First, the overall defect type F1 scores for the leave out group tests
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are generally lower, in the range of 0.55-0.69, than the overall defect type F1 scores obtained from
the random leave out cross validation tests, which were in the range of 0.77-0.82. Both the lower
values of the overall defect type F1 scores and their larger range for the leave out group tests vs.
the random leave out tests make sense. The F1 scores are lower for leave out group tests because
it is a more demanding test of the model, as the test images are further outside the domain of the
training data than for the random cross validation test, where the training and test data are drawn
from the same domain of images. As the training and test image sets are more similar for each
iteration of random cross validation, the range of reported F1 scores is smaller. The leave out group
tests examined here contain different train/test splits which differ markedly in their character,
resulting in a larger range of model performance quality.

In addition to differences of model performance between random vs. leave out group cross
validation tests, we can assess the change in model performance for the leave out group test when
the training dataset for each test is changed from using the initial Dataset2 to the newer Dataset2
expanded dataset. The performance differences in the leave out group tests between the use of
Dataset2 vs. Dataset2 expanded for training suggests that, for these more demanding tests, the
larger amount of training data contained in Dataset2 expanded is useful from the standpoint of
broadening the domain of applicability of the model. For example, for the leave out alloy test, the
overall defect type F1 score increased from 0.55 to 0.64 when training on Dataset2 vs. Dataset2
expanded, and for the leave out microscope/sample test, the overall defect type F1 score increased
from 0.60 to 0.69. For the leave out irradiation test, the F1 score remained approximately
unchanged between training for the two different datasets. By inspecting the defect type F1 score
per defect type, we can see that the improvement in model performance for the leave out alloy and
leave out microscope/sample tests is due to different factors. For the leave out alloy test, the
improvement in defect type F1 stems from improvements in F1 scores of all three defect types. In
contrast, for the leave out microscope/sample test, the improvement in defect type F1 comes from

improvement in correctly identifying the (100) loops only.

Examining impact of ground truth labeling by domain experts on model performance
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As discussed in the introduction, one issue with characterizing and quantifying defects in
electron microscopy images is that the establishment of the ground truth labels is done manually
by human domain-expert labelers. This labeling process inherently carries some level of
subjectivity with it, as different human labelers may disagree about whether a feature in an image
constitutes a defect being present, and the type of defect. In addition, some labelers may exhibit
labeling patterns notably distinct from other labelers. For example, in the work of Li et al., when
comparing the results of five human labelers quantifying the number and size of defects in a set of
images, two labelers differed in their labeling systematically, with one labeler tending to categorize
many more image features as defects compared to the other labeler.?8

Here, we assess the performance of Mask R-CNN models trained on different ground truth
datasets. The full results of this test are shown in Table S5 of the SI (see Note S4), and here we
summarize our key findings. Overall, results of both datasets show very similar levels of average
accuracy for all test statistics (e.g., defect find F1 scores of 0.81 and 0.82 for prediction on Dataset1
and Dataset2, respectively), where the differences in scores between the two datasets is of the same
magnitude as observed from our test assessing model randomness (see Note S3 in the SI). One
notable difference is the Dataset] model tends to show higher density errors for black dots (16.28%
error vs. 5.06% error for Dataset] and Dataset2, respectively), and the Dataset2 model tends to
show higher size errors for black dots (7.40% and 15.37% for Datasetl and Dataset2, respectively).
It is not clear what the cause of these differences is, but we speculate it may relate to the nature of
the ground truth labels, where Datasetl contains many instances of image features labeled as black
dot defects that were not labeled as a defect at all in Dataset2. In sum, the Mask R-CNN models
trained using different ground truth labels perform very similarly, indicating that, at least for this
case, the labeling performed by a particular domain expert may not hold obvious advantages
compared to another expert. However, it is worth noting here that if certain biases exist in the
ground truth labels, for example a labeler who systematically labels certain ambiguous image
features as being black dot defects, this bias will likely translate to the trained model. Since the
predictive ability of a model can, as an upper bound, only become as accurate as the ground truth
data it is trained on, future work should be devoted to establishing publicly available curated
datasets which can be labeled and analyzed by many researchers in the field. This process will then
involve subsequent model re-training to converge on the most accurate and predictive model of

the most relevant metrics as agreed upon by the greater community.
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Examining effect of data set size on model performance

Analyzing the impact of training dataset size on the model performance enables one to
identify the amount of training data required for the model performance to saturate. In addition,
even if the model performance does not improve beyond a certain amount of training data, it is
likely the domain of applicability of the model is expanded, as discussed above in the context of
the leave out group cross validation tests. In this section, we assess the model performance as a
function of training dataset size in two different ways. First, we use our largest dataset, Dataset2
expanded, to generate multiple splits of different leave out percent cross validation tests, ranging
from leave out 10% to leave out 90% of the images as test data. With these leave out percent cross
validation tests, we assess the performance of the model using parity plots of predicted vs. true
defect sizes and defect densities of all test set images. For the second test, we construct learning
curves which plot per-defect type F1 scores as a function of number of defects of each defect type
used in the training data. For this second test, to construct the learning curves, data from the
previously discussed leave out group tests, the leave out percent tests to be discussed in this section,
and additional runs using Dataset] and random cross validation to construct training sets of varying
sizes were used.

For our first assessment of the effect of dataset size using leave out percent cross validation,
Figure 8 presents parity plots of defect sizes and defect densities split out by defect type for five
cases of different dataset sizes. The dataset size was modified by performing multiple iterations of
leave out percent cross validation, with the leave out fraction consisting of 10%, 25%, 50%, 75%,
and 90% of the images. Each leave out amount was performed three times, where each time a
different random portion of the data was left out for testing. A handful of findings are evident from
Figure 8. In general, the model performance generally improves as less data is held out
(equivalently, as the amount of training data increases). More specifically, as the leave out fraction
becomes larger, the ability of the model to predict defect sizes becomes significantly worse on a
per-image basis, with the RMSE increasing from 3.20 nm (average of 3 iterations of leave out
10%) to 6.25 nm (average of 3 iterations of leave out 90%), nearly a factor of two increase.
Interestingly, while the model performance worsens when leaving out up to 90% of the images,
the predictive performance is still impressively robust in the limit of small amounts of training

data. This finding may suggest that object detection models like Mask R-CNN may offer useful

14



insights and predictions on rather sparse datasets containing fewer than 1000 training instances,
and this will be discussed in more detail below. Regarding the predictions of defect density with
different leave out amounts, the trends when examining all of the data as a function of leave out
amount do not show as clear of a trend as the case of defect sizes and the trend might be affected
by the presence of a few images with very high black dot defect densities. However, if the analysis
is instead focused on the region where the true defect density is less than 10 x10* #/nm? (blue
dashed boxes in Figure 8) which constitutes the vast majority of the images studied in this work,
then the errors in defect density clearly increase from 1.07 x10* #/nm? (leave out 10%) to 1.49
x10*#/nm? (leave out 90%). As has been observed in past studies, increasing the amount of training
data generally results in reduced prediction errors,*® and may also help broaden the applicability
domain of the model.

For our second assessment of the effect of dataset size using all of the cross validation tests
described in this work, Figure 9 contains learning curve plots representing the overall defect type
F1 score vs. number of training defects (Figure 9A) and the defect type F1 score broken out by
defect type vs. number of training defects, this time on a log scale (Figure 9B). There are a few
key pieces of information we can extract from Figure 9A. First, the ability of the model to correctly
identify defects quickly increases with number of training defects, with a defect ID F1 score
approaching 0.7 for models trained on fewer than 1000 defect instances. After 1000 defects,
improvement is incremental with significant diminishing returns, and a defect ID F1 score of about
0.8 is achievable using greater than 6000 defects. Extrapolating these results suggests that
achieving a defect ID score meaningfully above 0.8 may require a dataset with greater than 50,000
defects. In Figure 9A, the data points for our tests of leave out percent cross validation using
Dataset2 expanded (gray triangles) and random leave out cross validation using Dataset] (gray
circles) fall on the same curve. This result makes sense, as both of these methods select training
and test images at random. These two datasets differ in the criterion used to select how large the
training sets were, and the test image sets used. The random leave out tests (gray circles) used
Datasetl, and the test image set was the same in all cases and the number of training images was
varied. The leave out percent tests (gray triangles) used Dataset2 expanded, and the test image set
changed for each test. The data points corresponding to the leave out group tests (gray squares),
except for one instance, always fall below the random cross validation data points for the same

amount of training data. This is to be expected, given that the leave out group test is more

15



demanding, and the test data is generally further from the domain of the training data compared to
the random cross validation tests.

In Figure 9B, we take the same data from Figure 9A, but break out the defect ID F1 scores
by defect type, and for easier examination of the differences of F1 score between defect types, we
plot the number of training defects (i.e. the x-axis) using a log scale. Examining the data in this
manner shows that in the limit of very small datasets, e.g., around only 100 defects, the model still
performs surprisingly well at correctly identifying black dots and (111) loops, while there is very
poor predictive ability of the (100) loops. Once the number of black dots and (111) loops used
for training is in the range of a few hundred, the defect ID F1 score is already above 0.8 for these
defect types. Thus, expanding the amount of labeled data in our database mainly resulted in the
model performing better on the (100) loops, as evidenced by the collection of yellow triangle data
points with F1 scores in the range of 0.7-0.75 for the highest defect counts. The increasing trend
of (100) loop ID F1 score suggests that the model performance on identifying this defect type still
has room for improvement with the inclusion of additional labeled data, even beyond the expanded
dataset prepared for this study.

From Figure 9B, we can see that the performance of the model in identifying black dots is
highest, followed by (111) loops, followed by (100) loops being the worst. This trend is in
agreement with the qualitative visual complexity of these defect types: black dots are the most
uniform in size, shape and overall appearance and should thus be easiest to categorize, (111) loops
are more varied in their size and appearance than black dots but are not as visually diverse as (100)
loops, where (100) loops have both edge-on and face-on orientations, yielding a wider range of
visually distinct sizes, shapes and contrasts, and the similarity of the edge-on orientation with
background line dislocations result in a harder classification task. These qualitative comparisons
are also in-line with the leave out group test results, where the black dot predictions between
random and leave out group cross validation were effectively identical, while the (111) loop and,
in particular, the (100) loop F1 scores were markedly lower for the leave out group tests compared
to the random cross validation tests. This performance trend is indicative of black dot defects
appearing visually very similar between different groups assigned here, whereas the size, shape
and prevalence of the (111) and (100) loops change more dramatically between the train and test

sets used for the leave out group tests compared to the random cross validation tests.
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Discussion

This work and others like it provide an avenue for deep learning models to improve and
accelerate materials modeling efforts. Understanding the impact of different irradiation-induced
defects in metal alloys on the resulting materials properties and performance hinges on quantifying
the numbers, sizes, and shapes of different defect types in the material. The present Mask R-CNN
model enables fast, automatic quantification for all of these quantities, as well as refinements to
enable more accurate materials modeling by including quantitative data of defect size and shape
distributions, instead of just commonly-used average values or models that do not typically include
effects related to defect shape.

This work highlights not only the successes and usefulness of deep learning object
detection methods for finding defects in microscopy images, but also lays out some of the current
limitations and potential issues to be aware of when evaluating the performance of a model. In
particular, some high-level findings which may be broadly useful for evaluating model
performance can be summarized as follows:

o Understanding variations in model performance based on data choice: We have
found that the choice of training and test images yield meaningfully different
predictions of model performance. As an example, we found the error values for
defect size and density errors between best and worst cross validation split differ
by factors ranging from about 1.5-2.5. This finding indicates that, just as in
traditional machine learning evaluations, cross validation is a useful tool to employ
for evaluating performance of object detection models.

e Understanding limitations of model performance and domain: The leave out group
tests examined in this work contain groups of train and test images which differ
markedly in their character, for example, separating sets of images based on alloy
type, resulting in a larger range of model performance quality compared to random
cross validation. For these more demanding tests, we found that the larger amount
of training data contained in our expanded database was useful for broadening the
domain of applicability of the model but did not improve the model performance in
random cross validation. This finding suggests that expansions of present databases
should be focused on including data that exists in different domains from what is

already present and that reducing cross validation score may not be a good metric
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to assess the value of additional data as it misses gains in the domain of applicability
of the model.

o Impact of domain expert labeling to make ground truth: The generation of ground
truth labels can be subjective, leading to different labels from different domain
experts. When considering model performance on the same dataset labeled by
different experts, we found that very similar levels of average accuracy for all test
statistics were obtained, where the differences in scores between the two datasets
is of the same magnitude as observed from our test assessing model randomness.
However, if certain biases exist in the ground truth labels, for example a labeler
systematically labels certain ambiguous image features as being black dot defects,
this bias will likely translate to the trained model.

e Impact of dataset size on model performance: We found that leaving out up to 90%
of the images, the predictive performance is still impressively robust in the limit of
small amounts of training data. More specifically, we found that a defect ID F1
score approaching 0.7 for models trained on fewer than 1000 defect instances, while
achieving scores significantly above 0.8 was estimated to potentially require more
than 50,000 instances. This finding suggests that these models may be reliably
trained on datasets that can be generated with modest human labeling efforts of
even just a few hours.

We would like to point out that one shortcoming of the present work is that our model is
restricted to a single material class (FeCrAl alloys) and uses data for a single STEM imaging
condition (bright field, [100] on-zone). Regarding material type, defects like the dislocation loops
studied here will manifest with different geometries if the material is changed from, for example,
a ferritic steel with the body-centered-cubic crystal structure like the FeCrAl alloys studied here,
to an austenitic steel with the face-centered-cubic crystal structure. This change in defect geometry
will thus necessitate either training a new model or re-training the present model with these defect
instances to increase the model domain and enable accurate predictions on a new material.
Regarding imaging condition, analyzing images where the imaging was conducted using a
different zone axis (e.g. [111] instead of [100] used here), even for the FeCrAl alloys studied here,
will result in the defect loops having different orientations and shapes, e.g. a loop being in plan-

view vs. edge-on, and varying image contrasts will change what the model feature map perceives
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as indicating defected vs. background regions, again necessitating model re-training. We note that
model re-training on new datasets may be very time consuming due to the need for acquiring
sufficient labeled data. In this regard, state-of-the-art methods such as single or few-shot learning
may be promising avenues for training new models using very few instances of new labeled data.*

We believe the potential of using object detection models for analyzing electron
microscopy images is far from being realized. One area of future work in this space might focus
on developing a more general defect model for irradiated alloys that incorporates more than the
three defect types considered here, and is further able to classify dislocation lines, cavities and
voids formed from gas bubbles, and precipitates, perhaps also taking into account different
imaging conditions. Another area of promising future work centers around the exploration and
development of methods for synthetic training data generation, including physics-based modeling
such as the common “multi-slice” simulations, lower-order models based on simplified
assumptions and physical descriptions, and machine learning-centric methods of synthetic data
generation such as through the use of generative adversarial networks (GANSs).40; 41, 42 These
methods may enable more robust and rapid model training and evaluation, as the reliance on costly
and time-consuming experimental data labeling would be reduced, perhaps significantly. A key
development to support adoption of these new methods is developing community-based software
packages that enables rapid cloud-based dissemination of automated detection packages. To
accomplish this, it will be essential to establish a community-agreed on minimum performance
metric for the adoption and use of any developed automated defect detection framework.
Furthermore, the formation of a robust, community-driven database of labeled TEM images for
rapid development and qualification of automated defect detection frameworks will greatly
accelerate the development and assessment of new models. Improved data sharing frameworks
such as the Materials Data Facility** (MDF) and cloud-based services for hosting machine learning
models such as DLHub*; 4 are enabling the intersection of materials data and trained machine
learning models in a manner that will likely be transformative to the materials research community
in the coming years. As a step toward this goal, and in the same spirit as similar efforts of
democratization of deep learning models like that of von Chamier et al.,* we have made the final
trained Mask R-CNN model, images, and analysis scripts publicly available, along with an easy-

to-use Google Colab notebook for running the trained model on user-provided images and for re-
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training the model provided additional labeled data (see the Data and Code Availability statement
in the Experimental Procedures section).

The results of the present study demonstrate that the use of standard, off-the-shelf object
detection models is extremely effective at quantifying the average size, shape, and density of
different object types in the context of defects in electron microscopy images. The findings of this
work and findings in recent similar studies®; 3°; 3!; 32 suggest the maturation of computing
hardware (e.g., faster GPUs) and object detection software (e.g., open source Detectron2 package)
has reduced the barrier required to perform meaningful object detection tasks. Consistent with
these advancements, several companies have developed software packages to aid in performing
both traditional computer vision analysis and deep learning analysis of images, including semantic
segmentation of objects in images. These tools include Reactiv IP’s Smart Image Processing
package, Object Research Systems’ Dragonfly package, and EPFL’s Deeplmagel package, to
name a few. Application-specific use of object detection methods with these commercial packages
or open source packages like Detectron2, such as model evolution via re-training on newly
available data, cloud-based model hosting for broad dissemination, along with the implementation
of new state-of-the-art object detection methods such as few-shot learning® or vision transformers
(ViTs),*; #8; 49 may enable a transformative leap in the manner in which electron microscopy

image analysis is performed.

Experimental Procedures

Resource availability

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact,
Ryan Jacobs (rjacobs3@wisc.edu).

Materials availability

This study did not generate new unique reagents.
Data and code availability
The datasets generated during and/or analyzed during the current study are available on Figshare

(https://doi.org/10.6084/m9.figshare.14691207.v3). The trained model on all images comprising
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Dataset2 expanded, a Google Colab notebook and associated python scripts to make predictions
on new 1images and save the associated data is also available on Figshare
(https://doi.org/10.6084/m9.figshare.14691207.v3). Supporting information discussing the effect
of model randomness and model hyperparameters on initial model performance, additional
analysis plots of predicted materials properties, and more information the hardening calculations

1s also available.

FeCrAl image database

The image database used in this study consists of FeCrAl alloys which have undergone
neutron or ion irradiation. The images are exactly those available derived from a series of published
studies from Field et al.34; °%; 3! although some of the data has yet to be summarized in a
publication and we have extended the labeling, as discussed below. The samples are all FeCrAl
alloys but vary in composition, microstructure (including grain size and line dislocation density)
and irradiation conditions. All images are from a single TEM imaging condition, specifically [100]
on-zone bright field STEM. These imaging conditions produce defects appearing as black contrast

features on a white background. In the case of irradiated FeCrAl, on-[100] zone imaging results in
open single edge elliptical loops that are dislocation loops with a Burgers vector of ao/ 2 (111)

(henceforth referred to as (111) loops), open double edge elliptical loops and closed elliptical solid
loops that are dislocation loops with a Burgers vector of ay(100) (henceforth referred to as (100)
loops), and closed circular solid dots that are typically called black dot defects with a Burgers
vector of either aO/ 2(111) or ag(100) (henceforth referred to as black dots). An example
experimental micrograph showing the visual characteristics of each labeled defect type is shown
in Figure S1 in the SI.

As mentioned above, the image database used in this work was previously used in the
works of Li et al. and Shen et al., however these studies did not include pixel-level segmentation
information. For this study, the image database was updated to include new labeling, specifically
new ground truth pixel-level segmentation annotations. We developed three datasets of labels. The
first considered a set of 107 images that were labeled with pixel-level segmentation by a first group
of domain experts who found 5,382 defect instances. Note that this is not all the images in the full
set of images. We call this set of 107 images and 5,382 defect instances “Dataset1”. Then, to better

understand how the labeling might impact results the same 107 images were labeled by a second
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set of domain experts, this time finding 5,053 defect instances. We call this set of 107 images and
5,053 labels “Dataset2”. Finally, to explore how using a larger set of labeled images might impact
the results, we labeled additional images and joined them with Dataset2. This led to a new dataset
with 182 annotated images and 13,675 defect instances, which we denote as “Dataset2 expanded”.
Table S6 in the SI (see Note S5) contains a summary of the basic characteristics of each dataset,
including number of images and number of each labeled defect type. Numerous different splits of
train and test images and their associated defects are used throughout this work. Table S7 in the
SI provides a summary of the number of images and each defect type present in the various train
and test datasets analyzed in this study. All segmentation mask annotations for both image datasets
were made using the VGG Image Annotator web application.’? All of the data for these three
datasets has been made available on Figshare (see the Data and Code Availability statement in

the Experimental Procedures section).

Mask R-CNN methods

Throughout this study, we use the Mask R-CNN model as implemented in the Detectron2
package, which uses PyTorch as the backend. The Detectron2 package was developed by the
Facebook Al Research (FAIR) team.>3 Detectron?2 is freely available and enables implementation
of many object detection models, such as Faster R-CNN,3 Mask R-CNN,>* and Cascade R-CNN.3¢
These object detection models have been pre-trained on either the ImageNet’ or Microsoft COCO>’
(Common Objects in Context) image databases, enabling use of the transfer learning technique.
When using transfer learning, the model backbone weights are frozen to those obtained from the
previous ImageNet or Microsoft COCO image training, save for a small number of terminal layers
(2 throughout this work). The weights in these terminal layers are then updated during the training
process to tune the model for the particular application of interest, in this case detecting certain
defect types in electron microscopy images. All post-processing of Mask R-CNN model
predictions and associated analysis was performed using in-house Python scripts, which we have
made available on Figshare (see the Data and Code Availability statement in the Experimental
Procedures section).

In this work, we evaluate the performance of our Mask R-CNN models on a number of
different application-specific test central to understanding the impact of different defect types on

the mechanical properties of an irradiated alloy. These tests include how well the model can predict
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the areal density and size of defects in an image, and how well the model can discern the location
and type of defects in an image. Explanations of the key we quantify to evaluate the overall
performance of the Mask R-CNN model are summarized in Table S8 of the SI. Note that the
Heywood circularity factor is defined as the perimeter of an object divided by the circumference
of a circle of the same area.

When training and using object detection models, a key performance parameter to choose
is that of the intersection-over-union (IoU) score. The IoU score is used as a threshold value to
decide whether a predicted object mask overlaps sufficiently with a ground truth mask such that
the prediction can be considered a successfully “found” object. When evaluating an image, there
is a list of true defect masks and predicted defect masks. To decide whether a defect has been
found in the correct location, the IoU of every predicted defect is calculated for each true defect,
and the defect with the highest IoU score is considered the best possible match. Then, if this
computed IoU score is above the designated threshold, this predicted defect is considered to be
found. Each true defect can only be found one time, so if multiple predicted defects are found to
pass the IoU threshold with a particular true defect, the predicted defect with the highest IoU score
is considered the found defect, and the other defect(s) would then be considered false positives.

In addition to the particular set of application-specific test statistics as summarized in Table
S8 in the SI, we performed a number of different detailed test types. A summary of the different
types of tests performed, what aspects of the model or data are changed in each test, and the
rationale for performing each test is provided in Table S9 of the SI. These different test types,
particularly assessing the impact of different train/test image splits, dataset size, and impact of
ground truth labels, may serve as a basis for better understanding the successes and limitations of
object detection models, especially in the context of characterizing and quantifying objects in

electron microscopy images.
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Figure and Table legends

Figure 1. Summary of model classification performance. Model performance as a function of
IoU cutoff between predicted and ground truth. The model was fit and evaluated using Datasetl
“Initial split”.

Figure 2. Examples of images with true and predicted labels. Examples of labeled ground truth
(left columns) and Mask R-CNN predicted (right column) images. The red, yellow, and blue masks
denote (111) loops, (100) loops and black dot defects, respectively. The predictions shown here
were made with IToU=0.3 from a model fit and evaluated on Dataset] “initial split”.

Figure 3. True and predicted defect size and shape distributions. Histograms comparing
distributions of true and predicted defect sizes (A, B) and defect shapes (C, D), computed as the
Heywood circularity, for all true and predicted defects (A, C) and only those defects found in the
correct location (IoU = 0.3) (B, D). Note that the defect number histograms in (C, D) are log scale.
The dashed lines indicate the cumulative distributions of defect sizes and shapes, with object totals
denoted by the right-hand axis.

Figure 4. True and predicted defect size distributions, by defect type. Histograms of defect
size distributions for all found defects split out by defect type: (A) black dot defects, (B) (111)
loop defects and (C) (100) loop defects. The dashed lines indicate the cumulative distributions of
defect sizes, with object totals denoted by the right-hand axis.

Figure 5. Parity plots of per-image and average defect property predictions. Parity plots
comparing true and predicted defect sizes (A, B), shapes (C, D), and densities (E, F) on a per-
validation image basis (A, C, E, left column) and averaged over all validation images (B, D, F,
right column). In all panels, blue, red and yellow points represent values for black dots, (111)
loops, and (100) loops, respectively. For the panels averaged over all validation images (B, D, F),
the points denote the average value for the respective defect type and the error bars are the standard
deviations in the true and predicted values. In (E), the statistics listed in blue correspond to the
datapoints enclosed in the dashed blue box, which removes the single outlier image with
significantly underestimated number of black dot defects.

Figure 6. Defect size percent errors by test image. Bar plot showing the per-image predicted
defect size percent error for each defect type. Also provided on the right-hand side of the plot are
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the per-image average and the values obtained from the full distribution. The test images shown
here are from Datasetl “initial split”. The labels along the x-axis denote the test image names for
test images comprising the Dataset] “initial split” test image set. The label “Per-Image average”
consists of the averaged per-image defect size percent error, while the label “Full distribution
average” corresponds to the average percent error of every individual defect, as if considering all
test images constitute one large image.

Figure 7. Parity plots showing best and worst model performance. Parity plots showing the
predicted vs. true defect sizes (A) and densities (B), where each data point results from a specific
test image. The green circle and blue square data denote the best and worst CV split for each
quantity, respectively.

Figure 8. Model performance with varying amounts of test images. Parity plots comparing true
and predicted defect sizes (left) and densities (right) for three random splits of 10% (A, B), 25%
(C, D), 50% (E, F), 75%, (G, H), and 90% (I, J) cross validation. The blue, red, and yellow data
points denote average values from an individual test image for black dot, a°/2(111) and a,(100)
loops, respectively. For the plots of defect density, the blue dashed box and corresponding statistics
are for images where the true densities are less than 10 x10*#/nm?.

Figure 9. Model classification performance as function of training set size. Learning curve
plots of (A) overall defect type F1 score as a function of number of training defects and (B) defect
type F1 score split out by defect type as a function of number of training defects. Note the x-axis
of (B) is on a log scale.

Table 1. Summary of leave out group cross validation test results.

Number of
train
Dataset images Nun.lber of Defect ID F1 Defect ﬁn(i
Group test tvoe (defects), | test images @ IoU =03 F1 @ IoU =
yp number of | (defects) ’ 0.3
defects per
type
12 (370) bdot: 0.86
Leave out bdot: 117 (111): 0.85
irradiation Dataset2 1111y 195 | 264 | (100): 026 0.79
(100): 58 Overall: 0.66
21 (1340) bdot: 0.85
}rf;dvlzt‘:g; g{aﬁgi bdot: 707 | 9(649) | (111):0.81 0.80
P (111): 423 (100): 0.22
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(100): 210

Overall: 0.63

9 (649) bdot: 0.80
bdot: 268 (111): 0.50
Leave out alloy Dataset2 (111): 334 51 (6837) (100): 0.36 0.69
(100): 47 Overall: 0.55
18 (1732) bdot: 0.87
Dataset2 bdot: 767 (111): 0.62
Leave out alloy expanded (111): 651 51 (6837) (100): 0.43 0.66
(100): 314 Overall: 0.64
18 (1606) bdot: 0.81
Leave out bdot: 598 (111): 0.68
microscope/sample Dataset2 (111): 792 70(3285) (100): 0.33 0.75
(100): 216 Overall: 0.60
69 (8569) bdot: 0.82
Leave out Dataset2 bdot: 4038 (111): 0.68
microscope/sample | expanded | (111): 2493 70 (3285) (100): 0.57 0.75
(100): 2038 Overall: 0.69
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