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Abstract

Strategic behavior in two-sided matching markets
has been traditionally studied in a “one-sided” ma-
nipulation setting where the agent who misreports
is also the intended beneficiary. Our work investi-
gates “two-sided” manipulation of the deferred ac-
ceptance algorithm where the misreporting agent
and the manipulator (or beneficiary) are on differ-
ent sides. Specifically, we generalize the recently
proposed accomplice manipulation model (where a
man misreports on behalf of a woman) along two
complementary dimensions: (a) the two for one
model, with a pair of misreporting agents (man and
woman) and a single beneficiary (the misreporting
woman), and (b) the one for all model, with one
misreporting agent (man) and a coalition of ben-
eficiaries (all women). Our main contribution is
to develop polynomial-time algorithms for finding
an optimal manipulation in both settings. We show
this despite the fact that an optimal one for all strat-
egy fails to be inconspicuous, while it is unclear
whether an optimal two for one strategy has this
property. We also study the conditions under which
stability of the resulting matching is preserved. Ex-
perimentally, we show that two-sided manipula-
tions are more frequently available and offer better
quality matches than their one-sided counterparts.

1 Introduction

The deferred acceptance algorithm [Gale and Shapley, 1962]
is one of the biggest success stories of matching theory
and market design. It has profoundly impacted numer-
ous practical applications including school choice [ Abdulka-
diroglu et al., 2005a; Abdulkadiroglu et al., 2005b] and entry-
level labor markets [Roth and Peranson, 1999] and has in-
spired a long line of work in economics and computer sci-
ence [Gusfield and Irving, 1989; Roth and Sotomayor, 1992;
Roth, 2008; Manlove, 2013].

The success of the deferred acceptance (or DA) algorithm
has been driven by its stability property, which prevents pairs
of agents from preferring each other over their assigned part-
ners. Stability eliminates the incentives for agents to par-
ticipate in secondary markets or ‘scrambles’ [Kojima er al.,
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2013], and has been a key predictor of the long-term suste-
nance of many real-world matching markets [Roth, 2002].

Unfortunately, any stable matching algorithm is known
to be vulnerable to strategic misreporting of preferences by
the agents [Roth, 1982]. For the DA algorithm, in particu-
lar, it is known that truth-telling is a dominant strategy for
the proposing side—colloquially, the men—implying that any
strategic behavior is confined to the proposed-to side—the
women [Dubins and Freedman, 1981; Roth, 1982].

One-sided vs. two-sided manipulation. Given the strong
practical appeal of DA algorithm, significant research effort
has been devoted towards understanding its incentive prop-
erties. Much of this work has focused on “one-sided” ma-
nipulation wherein the agent who misreports is also the in-
tended beneficiary; that is, the misreporting agent and the
beneficiary are on the same side. For this self manipu-
lation problem, the structural and computational questions
have been extensively studied [Dubins and Freedman, 1981;
Gale and Sotomayor, 1985a; Gale and Sotomayor, 1985b;
Teo et al., 2001; Vaish and Garg, 2017]. By contrast, there
are many real-world settings that, in essence, resemble “two-
sided” manipulations where the misreporting agent and the
beneficiary are on different sides. For example, in the student-
proposing school choice, schools could influence the prefer-
ences of students they find “undesirable” (such as those from
low-income backgrounds) by using indirect measures such
as fee hike [Hatfield er al., 2016]. In ridesharing platforms,
a driver may influence the preferences of certain riders by
strategically moving to a farther distance. Similarly, in a gig
economy, freelancers’ preferences over tasks may be affected
by an employer’s restrictive requirements.

Motivated by these examples, recent works have stud-
ied the accomplice manipulation model wherein a man
misreports his preferences in order to help a specific
woman [Bendlin and Hosseini, 2019; Hosseini et al., 2021].
It has been shown via simulations that accomplice manipula-
tion strategies are more frequently available than self manipu-
lation and result in better matches for the woman. Further, an
optimal misreport for the accomplice is known to be incon-
spicuous (i.e., the manipulated list can be derived from his
true list by promoting exactly one woman), efficiently com-
putable, and stability-preserving (i.e., the manipulated DA
matching is stable with respect to the true preferences).
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Who misreports? Who benefits? . Results for opt!mal manlpqlg tion . Reference
Inconspicuous?  Poly-time?  Stability-preserving?

Woman w Woman w v v v Vaish and Garg [2017]

Man m Woman w v v v Hosseini et al. [2021]

Man m and woman w ~ Woman w Open v X Section 3

Man m All women X v v Section 4

Table 1: Summary of previously known (top two rows) and new results (bottom two rows).

Towards coalitional two-sided manipulation. The afore-
mentioned advantages of two-sided manipulation call for a
deeper investigation into the topic. Our work takes a step
in this direction by focusing on coalitional aspects of the
two-sided manipulation problem. Our starting point is the ac-
complice manipulation model [Hosseini et al., 2021], which
involves one misreporting agent and one beneficiary (i.e., a
one for one setting). We consider two coalitional general-
izations of this model: (i) The two for one model, with a
coalition of two misreporting agents (a man and a woman)
and a single beneficiary (the woman), and (ii) the one for
all model, with one misreporting agent (man) and a coali-
tion of beneficiaries (all women). Coalitional manipula-
tion of the DA algorithm has received considerable theoret-
ical interest over the years [Dubins and Freedman, 1981;
Gale and Sotomayor, 1985a; Gale and Sotomayor, 1985b;
Demange et al., 1987; Kobayashi and Matsui, 2010], and
recently its practical relevance has also been discussed. In-
deed, in college admissions in China, universities have been
known to form “leagues” for conducting independent recruit-
ment exams allowing them to jointly manipulate admission
results [Shen et al., 2021]. Prior work on coalitional manipu-
lation has focused exclusively on one-sided manipulation.

Our contributions. We study two coalitional generaliza-
tions of accomplice manipulation and make the following the-
oretical and experimental contributions (see Table 1):

* Two for one: We show that when the accomplice and the
beneficiary can jointly misreport, an optimal pair manip-
ulation strategy can be strictly better for the beneficiary
than either of the optimal individual (i.e., self or accom-
plice) manipulation strategies (Example 1). In contrast
to self and accomplice manipulation, an optimal pair ma-
nipulation may not be stability-preserving (Remark 1)
and it is unclear whether it is inconspicuous. Neverthe-
less, we provide a polynomial-time algorithm for com-
puting an optimal pair manipulation (Theorem 1).

One for all: We observe that optimal manipulation by
the accomplice for helping all women could fail to be
inconspicuous (Example 2). By contrast, when helping
a single woman, an optimal strategy for the accomplice
is known to be inconspicuous [Hosseini et al., 2021].
Despite losing this structural benefit, we develop a
polynomial-time algorithm for computing an optimal
one-for-all strategy (Corollary 1), and show that such a
strategy is stability-preserving (Corollary 3 in [Hosseini
et al., 2022]). In fact, we show that a minimum opti-
mal misreport (i.e., one that pushes up as few women as
possible) can be efficiently computed and provide tight
bounds on size of promoted set [Hosseini ef al., 2022].
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* Experiments: Our simulations on uniformly random
preferences show that two-sided strategies are more fre-
quently available (Figure 2) and result in better matches
than one-sided strategies [Hosseini et al., 2022].

Related Work. The literature on strategic aspects of sta-
ble matching procedures has classically focused on trunca-
tion strategies where the misreported list is a prefix of the
true list [Dubins and Freedman, 1981; Roth, 1982; Roth and
Rothblum, 1999]. Our work, on the other hand, focuses on
permutation manipulation where the manipulated list is a re-
ordering of the true list. Teo er al. [2001] initiated the study
of permutation manipulation by a single woman and provided
a polynomial-time algorithm for finding an optimal misre-
port. Vaish and Garg [2017] showed that an optimal strat-
egy for the woman is inconspicuous and stability-preserving.
Permutation manipulation by a group of agents has been
studied for a coalition of men [Huang, 2006; Huang, 2007]
and for a coalition of women [Kobayashi and Matsui, 2010;
Shen et al., 2021]. In particular, Shen et al. [2021] pro-
vided an algorithm for finding a strategy for a coalition of
women that is Pareto optimal among all stability-preserving
strategies, and showed that such a strategy is inconspicuous.
In the two-sided setting, Bendlin and Hosseini [2019] in-
troduced the accomplice manipulation model and observed
that it can be more beneficial for a woman than optimal self
manipulation. Subsequently, Hosseini et al. [2021] studied
with-regret and no-regret accomplice manipulation, depend-
ing on whether the accomplice’s match worsens or stays the
same. They showed that an optimal no-regret manipulation
is stability-preserving while its with-regret counterpart is not,
and that optimal strategies under both models are inconspicu-
ous and therefore efficiently computable. Our work will focus
exclusively on no-regret strategies.

2 Preliminaries

Problem instance. An instance of the stable marriage
problem [Gale and Shapley, 1962] is given by a tuple
(M, W, =), where M is a set of n men, W is a set of n
women, and > is a preference profile which specifies the
preference lists of the agents. The preference list of a man
m € M, denoted by >,,, is a strict total order over all
women in W. The list >, of a woman w € W is defined
analogously. We will write w; >,, w2 to denote “either
Wy >, Wo OF w1 = we”, and write > _,, to denote the profile
without the list of man m; thus, >= {>_,,,, >, }.

Stable matching. A matching is a function y : M U W —
M UW such that u(m) € W forallm € M, p(w) € M for
all w € W, and p(m) = w if and only if pu(w) = m. Given
a matching u, a blocking pair with respect to the preference
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profile >~ is a man-woman pair (m, w) who prefer each other
over their assigned partners, i.e., w =, p(m) and m =,
w(w). A matching is said to be stable if it does not have any
blocking pair. We will write Sy to denote the set of all stable
matchings with respect to >. Note that in the worst case, the
size of Sy can be exponential in n [Knuth, 1997].

For any pair of matchings p, p’, we will write p =7 g’ to
denote that all men weakly prefer u over p/, i.e., u(m) =,
w'(m) for all m € M (analogously p =y p’ for women).

Deferred acceptance algorithm. The deferred accep-
tance (DA) algorithm is a well-known procedure for finding
stable matchings [Gale and Shapley, 1962]. Given as input
a preference profile, the algorithm alternates between a pro-
posal phase, where each currently unmatched man proposes
to his favorite woman among those who haven’t rejected him
yet, and a rejection phase, where each woman tentatively ac-
cepts her favorite proposal and rejects the rest. The algorithm
terminates when no further proposals can be made.

Gale and Shapley [1962] showed that given any prefer-
ence profile > as input, the matching computed by the DA
algorithm, which we will denote by DA(>-), is stable. Fur-
thermore, this matching is men-optimal as it assigns to each
man his favorite partner among all stable matchings in S .
Subsequently, it was observed that the same matching is also
women-pessimal [McVitie and Wilson, 1971].

Proposition 1 ([Gale and Shapley, 1962; McVitie and Wil-
son, 19711). Let - be a profile and let |1 .= DA(>). Then,
w € So. Furthermore, for any ' € Sy, u =y p' and
wWomw .

Self manipulation. Given a profile > and the matching
i = DA(>), we say that woman w can self manipulate if
there exists a list >/, (which is a permutation of w’s true list
) such that p/(w) =, p(w), where p' == DA(>=_,, =1,).
An optimal self manipulation >/, (with respect to the pro-
file ) is one for which there is no other list >!/ such that
' (w) =y ' (w), where p' := DAy, =10

Accomplice manipulation. A different model of strategic
behavior is accomplice manipulation [Bendlin and Hosseini,
2019; Hosseini et al., 2021], wherein a woman w, instead of
misreporting herself, asks a man m to misreport his prefer-
ence in order to improve w’s match. Formally, given a pro-
file > and a fixed man m, we say that woman w can ma-
nipulate via accomplice m if there exists a list >/, for man
m (which is a permutation of his true list >,,) such that
' (w) =4 p(w), where p == DA(>) and ' = DA(>_.,
,>=1.). An optimal accomplice manipulation >/ (with re-
spect to >) is one for which there is no other list >/, such
that p/’ (w) =, p'(w), where " == DA(>_,, =" ). We will
call woman w a ‘beneficiary’ and man m an ‘accomplice’.
No-regret assumption. In this paper, we will consider two
generalizations of accomplice manipulation: (a) the “two
for one” problem with two misreporting agents (man m and
woman w) and a single beneficiary (woman w), and (b) the
“one for all” problem with a single misreporting agent (man
m) and a coalition of beneficiaries (all women). In both cases,
we will assume no-regret manipulation for the man which
means that m’s match does not worsen upon misreporting,

ie., p'(m) = p(m).
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Interestingly, for both generalizations mentioned above,

the no-regret assumption implies that the accomplice’s match
stays the same, i.e., u(m) = p'(m). Indeed, in the one-for-all
problem, it follows from the strategyproofness of the DA al-
gorithm for the proposing side that p(m) =, u'(m). Along
with the no-regret assumption, this implies pu(m) = p'(m).
For the two-for-one problem where both man m and woman
w can misreport, it is known that m cannot be strictly better
off unless w is strictly worse off [Huang, 2007, Corollary 4].
To prevent the beneficiary w from being worse off, we must
ensure that man m’s match does not improve, implying once
again that u(m) = p/(m).
Inconspicuous manipulation. A misreported list (or strat-
egy) ., for an accomplice m is said to be inconspicuous if
it can be derived from his true list >,, by promoting at most
one woman and making no other changes. Similarly, when
the misreporting agent is a woman w, inconspicuousness in-
volves promoting at most one man in her true list >,,.

Push up and push down operations. For any man m &
M, let =L and =% denote the parts of m’s list above and
below his DA partner, respectively. That is, =,,= (=1
,1(m), =R). We say that man m pushes up a set X C W
if the new list is == (=2 UX,u(m),=E \X). Sim-
ilarly, pushing down a set Y C W results in =Y +:= (=L
\Y, u(m), =5 UY). The exact positions at which agents in
X (orY) are placed above (or below) p(m) is not important,
as long as the sets are appropriately pushed above (or below)
w(m). Huang [2006] has shown that the DA outcome remains
unchanged if each man m arbitrarily permutes the part of his

list above and below his DA-partner p(m).

Proposition 2 ([Huang, 2006]). Let >~ be a profile and let
p == DA(>). For any man m € M with true list =,,= (=L,

,u(m),>%), let =/ = (7P (=L), u(m), 77 (=E)), where
7l and 7 are arbitrary permutations. Let ji' == DA(>_,,

=) Then, 1/ = pu.

3 Two for One: Helping a Single Woman
Through Pair Manipulation

In this section, we will consider the “two for one” generaliza-
tion of accomplice manipulation where the accomplice and
the strategic woman can jointly misreport in order to benefit
the latter. To see how such a generalization can be useful, let
us start with an example showing that pair manipulation can
be strictly more beneficial for the woman compared to either
self or accomplice manipulation (Example 1).

Example 1 (Pair manipulation can be strictly better than
accomplice or self manipulation). Consider the following
preference profile where the DA outcome is underlined. The
notation “mq : ws w3 wgq wy w1’ denotes that m1’s top
choice is ws, second choice is w3, and so on.

mi:ws Wi W4 W2 W1 wi:M3 Mg Ms M1 M2
me: wi w1 ws ws Wa wa: M1 ME M3 M2 My
ms: @ wy wi; w2 w3 w3: M5 Ma M3 M2 M
M4 w1 W4 W5 W2 W3 wa: My M5 M3 My Mma
ms: W3 w4 W3 Wi Ws ws: ms M2 M ms mi

Suppose the manipulating pair is (my,wy). Since my is
the only man who proposes to w; during the execution of DA
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== > —m =
——_— >_w: {>_—wa >_z]} _— >_>k

Figure 1: Preference profiles under pair manipulation.

algorithm on this profile, it follows that there is no beneficial
self manipulation strategy for w.

To find an optimal accomplice manipulation for my, it suf-
fices to focus on inconspicuous strategies [Hosseini et al.,
2021]. It is straightforward to verify that promoting any
woman below w3 in mq’s list does not result in a better match
for wi. In fact, none of the other men can give wy a better
partner via no-regret manipulation.

The DA matching when mq and wq jointly misreport with
=y = W1 = Ws = W3 = wy = wa and =y, = M3 = ms -
my = my = mg is marked by “x”. Note that the strategic
woman w1 is now able to match with her top choice without
worsening the match of the accomplice m;. O

Since pair manipulation can be strictly more beneficial than
either self or accomplice manipulation, it is natural to ask
whether an optimal pair manipulation can be efficiently com-
puted. Our main result in this section is that an optimal pair
manipulation can be computed in polynomial time.

3.1 Computing an Optimal Joint Strategy

A natural approach for finding an optimal joint strategy is
to combine (or “concatenate”) an optimal self manipulation
for the woman and an optimal accomplice manipulation for
the man. However, as we saw in Example 1, an optimal pair
manipulation may exist despite there being no beneficial ac-
complice nor self manipulations. Further, Example 3 in the
full version of the paper [Hosseini et al., 2022] shows that the
woman’s match could actually worsen by naively combining
the respective individual strategies. Thus, pair manipulation
appears to be “more than just the sum of its parts”.

Another natural approach is to combine inconspicuous (but
not necessarily individually optimal) strategies of the accom-
plice and the strategic woman. However, as we discuss in the
appendix of [Hosseini et al., 2022], there are some subtleties
that arise from this approach that become difficult to resolve.
We leave the question of determining whether optimal pair
manipulation is inconspicuous as an open problem.

Nevertheless, the idea of looking for structure in the indi-
vidual strategies turns out to be useful. To see why, consider
a manipulating pair (m,w). Let =}, and >} denote the re-
spective lists of m and w under an optimal pair manipulation,
and let =*:= {>~_(;,, w}, =1, = | denote the corresponding
preference profile.

Since it is easier to think about single-agent misreports, let
us break down the transition from the true profile > to the
pair manipulation profile >* in two steps: First, swap w’s list
in > to obtain the intermediate profile =%:= {>_,,,>%},
and then swap m’s list in >* to get >*; see Figure 1. We
will show that this two-step approach allows us to impose
additional structure on the individual strategies >, and > .

Let us start by analyzing woman w’s strategy > . Con-
sider the transition >— > in Figure 1, where w is the only
misreporting agent. Let R,, denote the set of preference
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Algorithm 1 Computing an optimal pair manipulation

Input: Profile >, accomplice m, beneficiary w
Output: Optimal pair manipulations >, and >,
1: Initialize (™, =7, =) < (1t = DA(>), >m, >w)
2: Compute R,
3: for each ~,,€ R,, do

4 Compute R,,

5 for each ~/,€ R, do

6: W = DA(™_ fmw}s =y =)

7 if 1/ (w) = p* (w) and ' (m) = p(m) then
8 Update (11", =y =) 4 (s =1y =)
9:

return >, and >,

lists that can be obtained from w’s true list >,, by mov-
ing some pair of men to the top two positions, i.e., R, =
{(my, mj, = \{mi,m;}) : my,m; € M}. In Lemma I,
we show that for an arbitrary misreport by w, there exists a
listin R,, that creates the same matching for all agents. Thus,
it follows that >} € R,,. Observe that the set RR,, is of poly-
nomial size O(n?) and can be efficiently enumerated.

Lemma 1. Let > be a profile and let !, be any misreport
for a fixed woman w. Then, there exists a list =!! € R,
that achieves the same matching, i.e., u” = ', where j/ ==
DA(> _w, >=1,) and pi”" == DA(>_,, =10).

Next consider the transition >"“— >* in Figure 1. For
this step, man m is the only misreporting agent. We define
“.n as the list obtained by promoting m’s original match,
namely p(m), to the top of his original list >~,,, and define

Ry = {=m}U (ST W # pu(m)} as the set consisting
of the list >,,, as well as all preference lists that are obtained
by individually pushing up each woman other than p(m) to
the top position in the list =,,. Further, we say that an arbi-
trary misreport >/ is feasible if m matches with p(m) under
== {>_{m,w}> =m> =} In Lemma 2, we show that for
an arbitrary feasible misreport by the accomplice, there ex-
ists another feasible list in R,,, that results in the same partner
for w. Thus, we can assume that > € R,,. Again, observe
that the set R,, is of polynomial size O(n).

Lemma 2. Let > be a profile and let -, and >, be any
misreports for a fixed pair (m,w) such that p'(m) = p(m),
where i := DA(>) and (' = DA(>_ {m,w}s > m> =) Then,
there exists a list !, € Ry, such that p”(m) = p(m) and
p'(w) = p'(w), where p" := DA(= _{mw}, >m, =)
Although the lists in sets R,, and R,, are not necessarily
inconspicuous versions of the true lists >,,, and >,,, respec-
tively, we have been able to identify nominally-sized sets of
misreports R,,, and R,, that are sufficient to check, leading
to a simple algorithm for finding an optimal pair manipula-
tion strategy: Enumerate the sets R,, and R,,, evaluate the
DA outcome for each possible >, € R,,, >, € R, pair, and
return the strategy that gives the best match for the woman w
without regret for the accomplice m; see Algorithm 1.
Theorem 1. An optimal pair manipulation can be computed
in O(n®) time.
Remark 1. In Example 5 in [Hosseini et al., 2022], we

show that optimal pair manipulation could fail to be stability-
preserving. Thus, an unrestricted pair manipulation (i.e.,
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when the manipulated matching is not required to be stable
with respect to true preferences) can be strictly better than an
optimal stability-preserving pair manipulation.

4 One for All: Helping All Women Through a
Single Accomplice

Let us now consider a different generalization of accomplice
manipulation which we call “one for all” manipulation where
a single accomplice (man m) misreports in order to improve
the outcome for all women in W. Recall that due to the no-
regret assumption, the manipulated match of the accomplice
m is the same as his true match. As we are interested in
improving a group of agents, it will be helpful to define the
notions of Pareto improvement and Pareto optimal strategies.

Pareto optimal and optimal strategies. Let > be the true
preference profile and let ;1 := DA(>-). We say that a strategy
=/ of the accomplice Pareto improves another strategy >/,
if W/ =w p’ and ' (w) =, p”’(w) for some w € W, where
w' = DA(>_pm,=1,) and p”’ == DA(>_p,, =1 ). A strategy
= is Pareto optimal if ;i > p and there is no other strat-
egy > that Pareto improves >/ . Further, a strategy >/, is
optimal if ¢/ = p and for any other strategy >/ , we have
' =w p'’. Thus, given a Pareto optimal strategy, any other
strategy that improves some woman must make some other
woman worse off, while the outcome under an optimal strat-
egy simply cannot be improved for any woman. Similarly,
we say that a matching p’ = DA(>_,, =",) is “Pareto op-
timal” (respectively, “optimal”) if the corresponding strategy
>/ is Pareto optimal (respectively, optimal). Note that an
optimal strategy is also Pareto optimal. The finiteness of the
strategy space implies that a Pareto optimal strategy is guar-
anteed to exist. Whether an optimal strategy also always ex-
ists is not immediately clear; however, if an optimal strategy
exists, then the set of Pareto optimal matchings—the Pareto
frontier—must be a singleton, consisting only of the optimal
matching. There can be multiple optimal strategies, but all
such strategies must induce the same optimal matching.

Let us now proceed to analyzing the structure of (Pareto)
optimal strategies. When an accomplice manipulates on be-
half of a single beneficiary woman (i.e., “one for one”), it
is known that there always exists an optimal strategy that is
inconspicuous [Hosseini et al., 2021]. By contrast, when
an accomplice misreports on behalf of multiple women (i.e.,
“one for all”), an inconspicuous strategy may no longer be
optimal (Example 2).

Example 2 (Inconspicuous strategy can be suboptimal).
Consider the following preference profile where the DA out-
come is underlined.

mi:iw] w2 W3 W4 Ws wi: M M2 M3 M4 Mms
mo: w2 W3 W4 Ws W1 wz: M3 M4 M5 M1 M2
m3:ws Wi Wi Ws W4 w3: M5 M5 Mg My M3
my:wg W5 W1 W2 W3 wa: ME M3 M2 M1 M4
ms:ws Wi w3 w2 Wi ws: M) Mz M3 Ms My

Suppose the accomplice is m; and all women are benefi-
ciaries. The DA matching after my submits the optimal no-
regret manipulated list »;m:: Wo > Wy = W1 > W3 > Ws
is marked by “x”. Notice that > is derived from »,,

* . my
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by pushing up wo and w4 and therefore is not inconspicu-
ous. The manipulation results in the women-optimal match-
ing, where all women are matched with their top choices.

There is no inconspicuous strategy that my (or any other
man for that matter) can report to produce the same match-
ing; indeed, if my were to push up only wa, then only wy and
ws would improve, and if he were to push up only w,, then
only wy and ws would improve. This observation highlights
the conflict between optimality and inconspicuousness when
the set of beneficiaries consists of all women.

Our main result in this section is that an optimal strategy
for the accomplice is guaranteed to exist and computable in
polynomial time (Theorem 2). In the full version [Hosseini
et al., 20221, we prove a stronger result: Among all optimal
strategies, we can efficiently compute one that promotes the
smallest number of women in accomplice’s list.

4.1 Computing an Optimal Strategy

Recall from Proposition 2 that even if each man m arbitrarily
permutes the part of his list above and below his DA-partner
w(m), the DA outcome remains unchanged. This result shows
that any strategy of the accomplice m, without loss of gener-
ality, can be expressed in terms of only push up and push
down operations, where a set of women is pushed above the
DA partner 1(m), and another disjoint set of women is pushed
below pi(m). We will now provide a structural simplification:
Any matching obtained by a combination of push up and push
down operations in the accomplice’s list can be weakly im-
proved for all women by the push up operation alone.

Proposition 3. Let - be a profile. For any fixed man m and
any subsets X C W andY C W of women who are ranked
below and above j1(m), respectively, let =':= {~_,,, =XT}
denote the profile after pushing up the set X and let »":=
{=_n, =XTY4Y denote the profile after pushing up X and
pushing down Y in the true preference list >, of man m.
Then, 1 =w u”, where 1/ :== DA(>") and /' := DA(>"").

Having established that push up operations suffice, let us
now examine which subset of women the accomplice should
push up. Given a profile > and an accomplice m, define
the no-regret set WR == {w € W :="i= {~_,,,=u"
} is a no-regret profile} as the set of all women who do not
cause m to incur regret when pushed up individually, and its
complement with-regret set WR .= W \ WNR,

We will first show that pushing up any subset of no-regret
women does not cause regret for the accomplice (Lemma 3).

Lemma 3. Let > be a profile and let |1 *= DA(>). For any
subset Y C WNR et =Y = {»_,, =Y} denote the prefer-
ence profile after pushing up the set'Y in the true preference
list =, of man m, and let i¥ = DA(>=Y). Then, m does not
incur regret under =Y, i.e., u¥ (m) = pu(m).

In contrast to Lemma 3, any subset Y C W that contains at
least one woman from the with-regret set (i.e., Y N WR £ D)
causes regret for the man m (Lemma 4).

Lemmad4. Let w' € WR and let Y C W be such that w' €
Y. Then, m incurs regret under =Y = {~_,,,=Y1} ie,
p(m) =, ¥ (m), where i¥ == DA(-Y).
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Together, Lemmas 3 and 4 imply that a push up operation is
no-regret if and only if the pushed-up set is a subset of WNR,
Thus, an optimal (or Pareto optimal) strategy should promote
some subset of WNR | This observation, however, does not au-
tomatically provide an efficient algorithm for computing the
desired strategy because brute force enumeration of subsets
of WNR could take exponential time. Also, in case an op-
timal strategy does not exist, the Pareto frontier of strategies
can be exponential in size, again ruling out exhaustive search.

Our main result of this section (Theorem 2) alleviates both
of the above concerns. We show that not only does an optimal
strategy always exist, but also that pushing up the entire no-
regret set WNR achieves such an outcome.

Theorem 2. An optimal one-for-all strategy for the accom-
plice is to push up the no-regret set WNR in his true list.

Our proof of Theorem 2 leverages the following known re-
sult which says that the matching resulting from a no-regret
push up operation is weakly preferred by all women.

Proposition 4 ([Hosseini et al., 2021]). Let = be a preference
profile and let ;1 := DA(>). For any man m, let == {~_,,
, =X} and p/ := DA(>'). If m does not incur regret, then
w €8y and thus 1/ =y pand p =p 1.

Proof. (of Theorem 2) From Proposition 2, we know that any
accomplice manipulation can be simulated via push up and
push down operations. Proposition 3 shows that any combi-
nation of push up and push down operations can be weakly
improved for all women by push up only. From Lemma 4,
we know that the desired push up set, say Y C W, should not
contain any woman from the with-regret set W . Therefore,
Y C WNR, From Lemma 3, we know that pushing up Y sat-
isfies no-regret assumption. If Y # WNR (thus, Y C WNR),
then Proposition 4 shows that =Y:= {~_,,, ="} can be
weakly improved for all women by additionally pushing up
the women in WNR\ Y. Thus, pushing up all women in WNR
gives an optimal no-regret accomplice manipulation strategy
for helping all women, as desired. O

Theorem 2 readily gives a polynomial-time algorithm for
computing an optimal strategy (Corollary 1).

Corollary 1. An optimal one-for-all strategy for the accom-
plice can be computed in O(n?) time.

Although pushing up the entire no-regret set WNR is opti-
mal (Theorem 2), the accomplice may want to displace as few
women as possible in order to remain close to his true prefer-
ence list. In the full version [Hosseini er al., 2022], we pro-
vide a polynomial-time algorithm for computing a minimum
optimal strategy (i.e., one that promotes the smallest number
of women). We also show that the size of the promoted set is
at most | 251 | and that this bound is tight.

S Experimental Results

Let us now experimentally compare the two-sided and one-
sided models in terms of the fraction of instances where each
model improves upon truthful reporting. In our experimen-
tal setup, the preferences of n men and n women are drawn
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Figure 2: Comparing one-sided and two-sided strategies for helping
a single woman (left) and for helping a// women (right) in terms of
the fraction of instances where a (Pareto) improvement is possible
over truthful reporting.

uniformly at random.! For each value of n € {4,6,...,20},
we independently sample 1000 preference profiles. For the
two-for-one part, we compute the fraction of instances where
some man m can jointly misreport with a fixed woman w to
improve her match, and compare it with the analogous frac-
tion where only one of m (accomplice) or w (self) can mis-
report; see Figure 2 (left). Similarly, for the one-for-all part,
we compute the fraction of instances where some man can
misreport to help all women (i.e., weakly improve all and
strictly improve some compared to their true matches), and
compare it with the analogous fraction where a woman helps
all women; see Figure 2 (right). Figure 2 shows that two-
sided strategies are more frequently available than one-sided;
in roughly 2% more instances under the two-for-one setting
and roughly 10% more instances under the one-for-all. In the
full version [Hosseini et al., 2022], we show that two-sided
manipulation outperforms one-sided in terms of the extent of
improvement for the beneficiary/beneficiaries, i.e., the differ-
ence between the ranks of old and new matched partner(s).

6 Concluding Remarks

We studied two coalitional generalizations of two-sided ma-
nipulation of the DA algorithm. Moving from single-agent
to coalitional manipulation impacted the structure of opti-
mal strategies in the form of loss of inconspicuousness, but
we showed that efficient computation can still be achieved.
Going forward, it will be interesting to consider manipu-
lation by arbitrary coalitions of men and women. An-
other relevant direction could be to interpret two-sided ma-
nipulation as a bribery problem [Faliszewski et al., 2009;
Boehmer et al., 2021] wherein there is a cost associated with
each pairwise swap in an agent’s true list. Finally, extensions
of our work to more general preference models (e.g., partial
orders), as well as experimental evaluation on non-uniform
distributions or real-world data, will also be of interest.
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!The assumption about uniformly random preferences is quite
common in the literature on strategic aspects of stable matchings;
see, for example, [Teo et al., 2001; Kojima et al., 2013; Immorlica
and Mahdian, 2015; Aziz er al., 2015; Ashlagi et al., 2017].
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