
Journal of Artificial Intelligence Research 74 (2022) 353–391 Submitted 09/2021; published 05/2022

Ordinal Maximin Share Approximation for Goods

Hadi Hosseini hadi@psu.edu
Pennsylvania State University, University Park

Andrew Searns andrew.searns@jhuapl.edu
Johns Hopkins University Applied Physics Laboratory

Erel Segal-Halevi erelsgl@gmail.com

Ariel University, Ariel

Abstract

In fair division of indivisible goods, `-out-of-d maximin share (MMS) is the value that
an agent can guarantee by partitioning the goods into d bundles and choosing the ` least
preferred bundles. Most existing works aim to guarantee to all agents a constant fraction
of their 1-out-of-n MMS. But this guarantee is sensitive to small perturbation in agents’
cardinal valuations. We consider a more robust approximation notion, which depends only
on the agents’ ordinal rankings of bundles. We prove the existence of `-out-of-b(` + 1

2)nc
MMS allocations of goods for any integer ` ≥ 1, and present a polynomial-time algorithm
that finds a 1-out-of-d 3n2 e MMS allocation when ` = 1. We further develop an algorithm
that provides a weaker ordinal approximation to MMS for any ` > 1.

1. Introduction

Fair division is the study of how to distribute a set of items among a set of agents in
a fair manner. Achieving fairness is particularly challenging when items are indivisible.
Computational and conceptual challenges have motivated researchers and practitioners to
develop a variety of fairness concepts that are applicable to a large number of allocation
problems.1 One of the most common fairness concepts, proposed by Budish (2011), is
Maximin Share (MMS), that aims to give each agent a bundle that is valued at a certain
threshold. The MMS threshold, also known as 1-out-of-d MMS, generalizes the guarantee
of the cut-and-choose protocol. It is the value that an agent can secure by partitioning the
items into d bundles, assuming it will receive the least preferred bundle. The MMS value
depends on the number of partitions, d. When all items are goods (i.e., have non-negative
values), the 1-out-of-d MMS threshold is (weakly) monotonically decreasing as the number
of partitions (d) increases.

When allocating goods among n agents, a natural desirable threshold is satisfying 1-
out-of-n MMS for all agents. Unfortunately, while this value can be guaranteed for n = 2
agents through the cut-and-choose protocol, a 1-out-of-n MMS allocation of goods may not
exist in general for n ≥ 3 (Procaccia & Wang, 2014; Kurokawa, Procaccia, & Wang, 2018).
These negative results have given rise to multiplicative approximations, wherein each agent
is guaranteed at least a constant fraction of its 1-out-of-n MMS. While there have been

1. See Bouveret, Chevaleyre, and Maudet (2016), Lang and Rothe (2016), Markakis (2017), Moulin (2019)
for detailed surveys and discussions.

c©2022 AI Access Foundation. All rights reserved.

Hosseini, Searns & Segal-Halevi

many attempts in developing algorithms that improve the bound to close to 1, the best
currently known fraction is 3

4 + 1
12n (Garg & Taki, 2020).

Despite numerous studies devoted to their existence and computation, there is a concep-
tual and practical problem with the multiplicative approximations of MMS: they are very
sensitive to agents’ precise cardinal valuations. To illustrate, suppose n = 3 and there are
four goods g1, g2, g3, g4 that Alice values at 30, 39, 40, 41 respectively. Her 1-out-of-3 MMS
is 40, and thus a 3

4 fraction guarantee can be satisfied by giving her the bundle {g1} or a
bundle with a higher value. But if her valuation of good g3 changes slightly to 40 + ε (for
any ε > 0), then 3

4 of her 1-out-of-3 MMS is larger than 30, the bundle {g1} is no longer
acceptable for her. Thus, the acceptability of a bundle (in this example {g1}) might be
affected by an arbitrarily small perturbation in the value of an irrelevant good (i.e. g3).

In the microeconomics literature, it is common to measure agents’ preferences as ordinal
rankings of the bundles; even when utility functions are used, it is understood that they
only represent rankings. From this viewpoint, the set of acceptable bundles should only
depend on the ranking of the bundles, and should not be affected by changes in valuations
that—similar to the ε change in the value of g3—do not affect this ranking. According to
this principle, Budish (2011) suggested the 1-out-of-(n + 1) MMS as a relaxation of the
1-out-of-n MMS. In the above example, 1-out-of-4 MMS fairness can be satisfied by giving
Alice {g1} or a better bundle; small inaccuracies or noise in the valuations do not change the
set of acceptable bundles. Hence, this notion provides a more robust approach in evaluating
fairness of allocations.

To date, it is not known if 1-out-of-(n + 1) MMS allocations are guaranteed to exist.
We aim to find allocations of goods that guarantee 1-out-of-d MMS for some integer d > n.
A 1-out-of-d MMS allocation guarantees to each agent a bundle that is at least as good as
the worst bundle in the best d-partition.

The aforementioned guarantee can be naturally generalized to `-out-of-dMMS (Babaioff,
Nisan, & Talgam-Cohen, 2021), that guarantees to each agent the value obtained by par-
titioning the goods into d bundles and selecting the ` least-valuable ones. Therefore, we
further investigate the `-out-of-d MMS generalization that allows us to improve the fair-
ness thresholds. The notion of `-out-of-d MMS fairness is robust in the sense that, a fair
allocation remains fair even when each agent’s utility function goes through an arbitrary
monotonically-increasing transformation. Given these notions, we ask the following ques-
tions:

In the allocation of indivisible goods, (a) For what combinations of integers `
and d, can `-out-of-d MMS allocations be guaranteed? and (b) For what integers
` and d can `-out-of-d MMS allocations be computed in polynomial time?

1.1 Our Contributions

We investigate the existence and computation of ordinal MMS approximations and make
several contributions.

In Section 4, we prove the existence of `-out-of-d MMS allocation of goods when
d ≥ b(` + 1

2)nc (Theorem 1). In particular, 1-out-of-b3n/2c MMS, 2-out-of-b5n/2c MMS,
3-out-of-b7n/2c MMS, and so on, are all guaranteed to exist. This finding generalizes the
previously known existence result of 1-out-of-d3n/2e MMS (Hosseini & Searns, 2021).

354

Ordinal Maximin Share Approximation for Goods

The proof uses an algorithm which, given lower bounds on the `-out-of-d MMS values of
the agents, returns an `-out-of-d MMS allocation. The algorithm runs in polynomial time
given the agents’ lower bounds. However, computing the exact `-out-of-d MMS values is
NP-hard. In the following sections we propose two solutions to this issue.

In Section 5, we present polynomial-time algorithms that find an `-out-of-(d + o(n))
MMS-fair allocation, where d = (` + 1

2)n. Specifically, for ` = 1, we present a polynomial-
time algorithm for finding a 1-out-of-d3n/2e MMS allocation (Theorem 2); this matches the
existence result for 1-out-of-b3n/2c MMS up to an additive gap of at most 1. For ` > 1,
we present a different polynomial-time algorithm for finding a 1-out-of-d(`+ 1

2)n+O(n2/3)e
MMS allocation (Theorem 3).

In Appendix A, we conduct simulations with valuations generated randomly from
various distributions. For several values of `, we compute a lower bound on the `-out-of-
b(`+ 1

2)nc MMS guarantee using a simple greedy algorithm. We compare this lower bound
to an upper bound on the (3

4 + 1
12n)-fraction MMS guarantee, which is currently the best

known worst-case multiplicative MMS approximation.2 We find that, for any ` ≥ 2, when
the number of goods is at least ≈ 20n, the lower bound on the ordinal approximation
is better than the upper bound on the multiplicative approximation. This implies that,
in practice, the algorithm of Section 4 can be used with these lower bounds to attain an
allocation in which each agent receives a value that is significantly better than the theoretical
guarantees.

1.2 Techniques

At first glance, it would seem that the techniques used to attain 2/3 approximation of
MMS should also work for achieving 1-out-of-b3n/2cMMS allocations, since both guarantees
approximate the same value, namely, the 2

3 approximation of the “proportional share” (1
n of

the total value of all goods). In Appendix B we present an example showing that this is not
the case, and thus, achieving ordinal MMS approximations requires new techniques. In this
section, we briefly describe the techniques that we utilize to achieve ordinal approximations
of MMS.

Lone Divider. To achieve the existence result for any ` ≥ 1, we use a variant of the Lone
Divider algorithm, which was first presented by Kuhn (1967) for finding a proportional
allocation of a divisible good (also known as a “cake”). Recently, it was shown that the
same algorithm can be used for allocating indivisible goods too. When applied directly, the
Lone Divider algorithm finds only an `-out-of-((`+1)n−2) MMS allocation (Aigner-Horev &
Segal-Halevi, 2022), which for small ` is substantially worse than our target approximation
of `-out-of-b(` + 1

2)nc. We overcome this difficulty by adding constraints on the ways in
which the ‘lone divider’ is allowed to partition the goods, as well as arguing on which goods
are selected to be included in each partition (see Section 4).

Bin Covering. To develop a polynomial-time algorithm when ` = 1, we extend an algo-
rithm of Csirik, Frenk, Labbè, and Zhang (1999) for the bin covering problem—a dual of

2. In general, ordinal and multiplicative approximations are incomparable from the theoretical standpoint—
each of them may be larger than the other in some instances (see Appendix A). Therefore, we compare
them through simulations using synthetic data.

355

Hosseini, Searns & Segal-Halevi

the more famous bin packing problem (Johnson, 1973). In this problem, the goal is to fill
as many bins as possible with items of given sizes, where the total size in each bin must
be above a given threshold. This problem is NP-hard, but Csirik et al. (1999) presents
a polynomial-time 2/3 approximation. This algorithm cannot be immediately applied to
the fair division problem since the valuations of goods are subjective, meaning that agents
may have different valuations of each good. We adapt this technique to handle subjective
valuations.

2. Related Work

2.1 Maximin Share

The idea of using the highest utility an agent could obtain if all other agents had the same
preferences as a benchmark for fairness, originated in the economics literature (Moulin,
1990, 1992). It was put to practice in the context of course allocation by Budish (2011),
where he introduced the ordinal approximation to MMS, and showed a mechanism that
guarantees 1-out-of-(n + 1) MMS to all agents by adding a small number of excess goods.
In the more standard fair division setting, in which adding goods is impossible, the first
non-trivial ordinal approximation was 1-out-of-(2n−2) MMS (Aigner-Horev & Segal-Halevi,
2022). Hosseini and Searns (2021) studied the connection between guaranteeing 1-out-of-n
MMS for 2/3 of the agents and the ordinal approximations for all agents. The implication
of their results is the existence of 1-out-of-d3n/2e MMS allocations and a polynomial-time
algorithm for n < 6. Whether or not 1-out-of-(n + 1) MMS can be guaranteed without
adding excess goods remains an open problem to date.

The generalization of the maximin share to arbitrary ` ≥ 1 was first introduced by
Babaioff, Nisan, and Talgam-Cohen (2019), Babaioff et al. (2021), and further studied by
Segal-Halevi (2020). They presented this generalization as a natural fairness criterion for
agents with different entitlements. The implication relations between `-out-of-d MMS-
fairness guarantees for different values of ` and d were characterized by Segal-Halevi (2019).
Recently, the maximin share and its ordinal approximations have also been applied to some
variants of the cake-cutting problem (Elkind, Segal-Halevi, & Suksompong, 2021c, 2021b,
2021a; Bogomolnaia & Moulin, 2022).

2.2 Multiplicative MMS Approximations

The multiplicative approximation to MMS originated in the computer science literature
(Procaccia & Wang, 2014). The non-existence of MMS allocations (Kurokawa et al., 2018)
and its intractability (Bouveret & Lemâıtre, 2016; Woeginger, 1997) have given rise to a
number of approximation techniques.

These algorithms guarantee that each agent receives an approximation of their maximin
share threshold. The currently known algorithms guarantee β ≥ 2/3 (Kurokawa et al.,
2018; Amanatidis, Markakis, Nikzad, & Saberi, 2017; Garg, McGlaughlin, & Taki, 2018)
and β ≥ 3/4 (Ghodsi, HajiAghayi, Seddighin, Seddighin, & Yami, 2018; Garg & Taki, 2020)
in general, and β ≥ 7/8 (Amanatidis et al., 2017) as well as β ≥ 8/9 (Gourvès & Monnot,
2019) when there are only three agents. There are also MMS approximation algorithms for
settings with constraints, such as when the goods are allocated on a cycle and each agent

356

Ordinal Maximin Share Approximation for Goods

must get a connected bundle (Truszczynski & Lonc, 2020). McGlaughlin and Garg (2020)
showed an algorithm for approximating the maximum Nash welfare (the product of agents’
utilities), which also attains a fraction 1/(2n) of the MMS.

Recently, Nguyen, Nguyen, and Rothe (2017) gave a Polynomial Time Approximation
Scheme (PTAS) for a notion defined as optimal-MMS, that is, the largest value, β, for
which each agent receives at least a fraction β of its MMS. Since the number of possible
partitions is finite, an optimal-MMS allocation always exists, and it is an MMS allocation if
β ≥ 1. However, an optimal-MMS allocation may provide an arbitrarily bad ordinal MMS
guarantee. Searns and Hosseini (2020), Hosseini and Searns (2021) show that for every
n, there is an instance with n agents in which under any optimal-MMS allocation only a
constant number of agents (≤ 4) receive their MMS value.

2.3 Fairness Based on Ordinal Information

An advantage of the ordinal MMS approximation is that it depends only on the ranking
over the bundles. Other fair allocation algorithms with this robustness property are the
Decreasing Demands algorithm of Herreiner and Puppe (2002), the Envy Graph algorithm
of Lipton, Markakis, Mossel, and Saberi (2004), and the UnderCut algorithm of Brams,
Kilgour, and Klamler (2012).

Amanatidis, Birmpas, and Markakis (2016), Halpern and Shah (2021) study an even
stronger robustness notion, where the agents report only a ranking over the goods. Their
results imply that, in this setting, the highest attainable multiplicative approximation of
MMS is Θ(1/ log n).

Menon and Larson (2020) define a fair allocation algorithm as stable if it gives an agent
the same value even if the agent slightly changes his cardinal valuations of goods, as long as
the ordinal ranking of goods remains the same. They show that most existing algorithms
are not stable, and present an approximately-stable algorithm for the case of two agents.

Finally, robustness has been studied also in the context of fair cake-cutting. Aziz and Ye
(2014) define an allocation robust-fair if it remains fair even when the valuation of an agent
changes, as long as its ordinal information remains unchanged. Edmonds and Pruhs (2011)
study cake-cutting settings in which agents can only cut the cake with a finite precision.

3. Preliminaries

3.1 Agents and Goods

Let N = [n] := {1, . . . , n} be a set of agents and M denote a set of m indivisible goods. We
denote the value of agent i ∈ N for good g ∈ M by vi(g). We assume that the valuation
functions are additive, that is, for each subset G ⊆M , vi(G) =

∑
g∈G vi(g), and vi(∅) = 0.3

An instance of the problem is denoted by I = 〈N,M, V 〉, where V = (v1, . . . , vn) is the
valuation profile of agents. We assume all agents have a non-negative valuation for each
good g ∈M , that is, vi(g) ≥ 0. An allocation A = (A1, . . . , An) is an n-partition of M that
allocates the bundle of goods in Ai to each agent i ∈ N .

3. In Appendix D we complement our results with a non-existence result for the more general class of
responsive preferences.

357

Hosseini, Searns & Segal-Halevi

It is convenient to assume that the number of goods is sufficiently large. Particularly,
some algorithms implicitly assume that m ≥ n, while some algorithms implicitly assume
that m ≥ ` · n. These assumptions are without loss of generality, since if m in the original
instance is smaller, we can just add dummy goods with a value of 0 to all agents.

3.2 The Maximin Share

For every agent i ∈ N and integers 1 ≤ ` < d, the `-out-of-d maximin share of i from M ,
denoted MMS`-out-of-d

i (M), is defined as

MMS`-out-of-d
i (M) := max

P∈Partitions(M,d)
min

Z∈Union(P,`)
vi(Z)

where the maximum is over all partitions of M into d subsets, and the minimum is over all
unions of ` subsets from the partition. We say that an allocation A is an `-out-of-d-MMS
allocation if for all agents i ∈ N , vi(Ai) ≥MMS`-out-of-d

i (M).

Obviously MMS`-out-of-d
i (M) ≤ `

dvi(M), and the equality holds if and only if M can be

partitioned into d subsets with the same value. Note that MMS`-out-of-d
i (M) is a weakly-

increasing function of ` and a weakly-decreasing function of d.

The value MMS`-out-of-d
i (M) is at least as large, and sometimes larger than, `·MMS1-out-of-d

i (M).
For example, suppose ` = 2, there are d − 1 goods with value 1 and one good with value
ε < 1. Then MMS2-out-of-d

i (M) = 1 + ε but 2 ·MMS1-out-of-d
i (M) = 2ε.

The maximin-share notion is scale-invariant in the following sense: if the values of each
good for an agent, say i, are multiplied by a constant c, then agent i’s MMS value is also
multiplied by the same c, so the set of bundles that are worth for i at least MMS`-out-of-d

i (M)
does not change.

3.3 The Lone Divider Algorithm

A general formulation of the Lone Divider algorithm, based on Aigner-Horev and Segal-
Halevi (2022), is shown in Algorithm 1. It accepts as input a set M of items and a threshold
value ti for each agent i. These values should satisfy the following condition for each agent
i ∈ N .

Definition 1 (Reasonable threshold). Given a set M , a value function vi on M , and an
integer n ≥ 2, a reasonable threshold for vi is a real number ti ∈ R satisfying the following
condition: for every integer k ∈ {0, . . . , n− 1} and any k disjoint subsets B1, . . . , Bk ⊆M ,
if

∀c ∈ [k] : vi(Bc) < ti,

then there exists a partition of M \ ∪c∈[k]Bc into M1 ∪ · · · ∪Mn−k, such that

∀j ∈ [n− k] : vi(Mj) ≥ ti.

Informally, if any k unacceptable subsets are given away, then i can partition the remainder
into n−k acceptable subsets. In particular, the case k = 0 implies that agent i can partition
the original set M into n acceptable subsets.

358

Ordinal Maximin Share Approximation for Goods

ALGORITHM 1: The Lone Divider algorithm. Based on Kuhn (1967).

Input: An instance 〈N,M, V 〉 where N is the set of agents, M is the set of items, V is the vector
of agents’ valuations; and a reasonable threshold vector (ti)

n
i=1 as denoted in Definition 1.

Output: A partition M = A1 ∪ · · · ∪ An such that vi(Ai) ≥ ti for all i ∈ [n].
1: Some arbitrary agent a ∈ N is asked to partition M into |N | disjoint subsets, (Yj)j∈N , with
∀j ∈ N : va(Yj) ≥ ta.

2: Define a bipartite graph G with the agents of N on the one side and the set
Y := {Y1, . . . , Y|N |} on the other side. Add an edge (i, Yj) whenever vi(Yj) ≥ ti.

3: Find a maximum-cardinality envy-free matching5 in G. Give each matched element in Y to the
agent paired to it in N .

4: Let N ← the unallocated agents and M ← the unallocated objects. If N 6= ∅ go back to Step 1.

Given an instance I = 〈N,M, V 〉 with N = [n], a vector (ti)
n
i=1 of real numbers is called

a reasonable threshold vector for I if ti is a reasonable threshold for vi for all i ∈ N .4

Example 1 (Reasonable threshold). Suppose M is perfectly divisible (e.g. a cake), and
let ti := vi(M)/n. This threshold is reasonable, since if some k bundles with value less than
ti are given away, the value of the remaining cake is more than (n− k)ti. Since the cake is
divisible, it can be partitioned into n−k acceptable subsets. This does not necessarily hold
when M is a set of indivisible items; hence, finding reasonable thresholds for indivisible
items setting is more challenging. �

Algorithm Description Algorithm 1 proceeds in the following way: in each step, a
single remaining agent is asked to partition the remaining goods into acceptable bundles—
bundles whose values are above the divider’s threshold. Then, all agents point at those
bundles that are acceptable for them, and the algorithm finds an envy-free matching in the
resulting bipartite graph.5 The matched bundles are allocated to the matched agents, and
the algorithm repeats with the remaining agents and goods. It is easy to see that, if all
threshold values ti are reasonable, then Lone Divider guarantees agent i a bundle with a
value of at least ti. For example, when M is a cake, ti = vi(M)/n is a reasonable threshold
for every i, so Lone Divider can be used to attain a proportional cake-cutting (Kuhn, 1967).

When M is a set of indivisible goods, ti = MMS
`-out-of-[(`+1)n−2]
i (M) is a reasonable

threshold for every ` ≥ 1 (Aigner-Horev & Segal-Halevi, 2022), so these ordinal approxima-
tions can all be computed directly through the Lone Divider algorithm. However, directly
applying the Lone Divider algorithm cannot guarantee a better ordinal approximation, as
we show next.

Example 2 (Execution of Algorithm 1). For simplicity, we present an example for
` = 1. We show that, while Algorithm 1 can guarantee 1-out-of-(2n − 2) MMS, it cannot

4. While we use the Lone Divider algorithm for allocating indivisible goods, it is a more general scheme
that can also be used to divide chores or mixed items, divisible or indivisible. See Aigner-Horev and
Segal-Halevi (2022) for details.

5. An envy-free matching in a bipartite graph (N ∪ Y,E) is a matching in which each unmatched agent
in N is not adjacent to any matched element in Y . The bipartite graph generated by the Lone Divider
algorithm always admits a nonempty envy-free matching, and a maximum-cardinality envy-free matching
can be found in polynomial time (Aigner-Horev & Segal-Halevi, 2022).

359

Hosseini, Searns & Segal-Halevi

1− ε

ε

1− ε

ε

1− ε

ε

1− ε

ε

1− ε

ε

(a)

ε

ε

ε

ε

ε

(b)

1− ε

1− ε

1− ε

1− ε

1− ε

(c)

Figure 1: An illustration of the goods’ values in Example 2, for n = 4.
(a) The 2n− 3 = 5 MMS bundles of some agent.
(b) The unacceptable bundle taken by the first divider.
(c) The remaining goods, which cannot be combined into n− 1 = 3 acceptable bundles.

guarantee 1-out-of-(2n− 3) MMS. Suppose that there are 4n− 6 goods, and that all agents
except the first divider value some 2n − 3 goods at 1 − ε and the other 2n − 3 goods at ε
(see Figure 1). Then the 1-out-of-(2n− 3) MMS of all these agents is 1.

However, it is possible that the first divider takes an unacceptable bundle containing all
2n− 3 goods of value ε. Then, no remaining agent can partition the remaining goods into

n−1 bundles of value at least 1. In this instance, it is clear that while MMS
`-out-of-(2n−2)
i (M)

is a reasonable threshold, MMS
`-out-of-(2n−3)
i (M) is not. �

4. Ordinal Approximation of MMS for Goods

In this section we prove the following theorem.

Theorem 1. Given an additive goods instance, an `-out-of-d MMS allocation always exists
when d = b(`+ 1

2)nc.

The proof is constructive: we present an algorithm (Algorithm 2) for achieving the above
MMS bound. Since the algorithm needs to know the exact MMS thresholds for each agent
(which is NP-hard to compute), its run-time is not polynomial. In Section 5 we present a
different algorithm to compute `-out-of-d MMS allocation when ` = 1 in polynomial-time.

Algorithm 2 starts with two normalization steps, some of which appeared in previous
works and some are specific to our algorithm. For completeness, we describe the normal-
ization steps in Sections 4.1 and 4.2. The algorithm applies to the normalized instance an
adaptation of the Lone Divider algorithm, in which the divider in each step must construct
a balanced partition. We explain this notion in Section 4.3.

360

Ordinal Maximin Share Approximation for Goods

4.1 Scaling

We start by scaling the valuations such that MMS`-out-of-d
i (M) = ` for each agent i. The

scale-invariance property implies that such rescalings do not modify the set of bundles that
are acceptable for i. Then, for each i we perform an additional scaling as follows.

• Consider a particular d-partition attaining the maximum in the MMS`-out-of-d
i (M)

definition. Call the d bundles in this partition the MMS bundles of agent i.

• Denote the total value of the `− 1 least-valuable MMS bundles by xi (or just x, when
i is clear from the context). By definition, the value of the `-th MMS bundle must be
exactly `−x, while the value of each of the other d− ` MMS bundles is at least `−x.

• For each MMS bundle with value larger than `−x, arbitrarily pick one or more goods
and decrease their value until the value of the MMS bundle becomes exactly ` − x.
Note that this does not change the MMS value.

After the normalization, the sum of values of all goods is

vi(M) = (d− `+ 1) · (`− xi) + xi

= `+ (d− `)(`− xi) = d+ (d− `)(`− 1− xi).

Since d = b(`+ 1
2)nc ≥ (`+ 1

2)n− 1
2 = `n+ n/2− 1/2,

vi(M) ≥ (`n+ n/2− 1/2) + (`n+ n/2− 1/2− `)(`− 1− xi)
= n · ` + (n− 1) · `(`− 1− xi) + (n− 1) · (`− xi)/2. (1)

The goal of the algorithm is to give each agent i a bundle Ai with vi(Ai) ≥ `. We say
that such a bundle is acceptable for i.

Example 3 (Scaling). To illustrate the parameter x, consider the following two instances
with n = 5, ` = 3 and d = b(`+ 1

2)nc = 17.

1. There are 17 goods with the value of 1.

2. There are 16 goods valued 1.2 and one good with the value of 0.6.

Here, each MMS bundle contains a single good. In both cases, the value of every 3 goods
is at least 3. In the first case x = 2 and the total value is 5 · 3 + 4 · 3 · 0 + 4 · 1/2 = 17. In
the second case, x = 1.8 and the total value is 5 · 3 + 4 · 3 · 0.2 + 4 · 1.2/2 = 19.8. �

4.2 Ordering the Instance

As in previous works (Bouveret & Lemâıtre, 2016; Barman & Krishna Murthy, 2017; Garg
et al., 2018; Huang & Lu, 2021), we apply a preliminary step in which the instance is
ordered, i.e., vi(g1) ≥ · · · ≥ vi(gm) for each agent i ∈ N . Ordering is done as follows:

• Index the goods in M arbitrarily g1, . . . , gm.

361

Hosseini, Searns & Segal-Halevi

ALGORITHM 2: Finding an `-out-of-b(`+ 1
2)nc MMS allocation.

Input: An instance 〈N,M, V 〉 and an integer ` ≥ 1.
Output: An `-out-of-b(`+ 1

2)nc MMS allocation.
1: Scale the valuations of all agents as explained in Section 4.1.
2: Order the instance as explained in Section 4.2.
3: Run the Lone Divider algorithm (Algorithm 1) with threshold values ti = ` for all i ∈ N , with

the restriction that, in each partition made by the lone divider, all bundles must be `-balanced
(Definition 2).

• Tell each agent i to adopt, for the duration of the algorithm, a modified value function
that assigns, to each good gj , the value of the j-th most valuable good according to
i. For example, the new vi(g1) should be the value of i’s most-valuable good; the new
vi(gm) should be the value of i’s least-valuable good; etc. Ties are broken arbitrarily.

During the execution of the algorithm, each agent answers all queries according to
this new value function. For example, an agent asked whether the bundle {g1, g4, g5} is
acceptable, should answer whether the bundle containing his best good, 4th-best good and
5th-best good is acceptable. Once the algorithm outputs an allocation, it can be treated as
a picking sequence in which, for example, an agent who receives the bundle {g1, g4, g5} has
the first, fourth and fifth turns. It is easy to see that such an agent receives a bundle that
is at least as good as the bundle containing her best, 4th-best and 5th-best goods. Hence,
if the former is acceptable then the latter is acceptable too.

Clearly, given an unordered instance, its corresponding ordered instance can be gener-
ated in polynomial time (for each agent i ∈ [n], we need O(m logm) steps for ordering the
valuations). Given an allocation for the ordered instance, one can compute the allocation
for the corresponding unordered instance in time O(n), using the picking-sequence described
above.

4.3 Restricted Lone Divider

In Section 3.3 we illustrated the limitations of the plain Lone Divider algorithm (Algo-
rithm 1). We can improve its performance by restricting the partitions that the lone divider
is allowed to make in Step 1 of Algorithm 1. Without loss of generality, we may assume (by
adding dummy goods if needed) that m ≥ n · `.

For every l ∈ {1, . . . , `}, denote Gn
l := {g(l−1)n+1, . . . , gln}. In other words, Gn

1 contains
the n most-valuable goods; Gn

2 contains the n next most-valuable goods; and so on. Since
the instance is ordered, these sets are the same for all agents.

Definition 2 (`-balanced bundle). Given an ordered instance and an integer ` ≥ 1, a
nonempty bundle B ⊆M is called `-balanced if

• B contains exactly one good from Gn
1 .

• If |B| ≥ 2, then B contains exactly one good from Gn
2 .

• If |B| ≥ 3, then B contains exactly one good from Gn
3 .

362

Ordinal Maximin Share Approximation for Goods

• . . .

• If |B| ≥ `, then B contains exactly one good from Gn
` .

Note that an `-balanced bundle contains at least ` goods. The definition of `-balanced
bundles only constrains the allocation of the first `n goods; there may be arbitrarily many
additional goods in M \

⋃`
i=1G

n
i , and they may be allocated arbitrarily.

Algorithm 2 requires the lone divider to construct a partition in which all n bundles are
`-balanced.

Example 4 (`-balanced bundles). Suppose there are five agents (n = 5) and m = 20
goods, where the value of each good j ∈ [20] is precisely j for all agents. Then, a 1-balanced
bundle must contain a good j ∈ {20, 19, 18, 17, 16}; a 2-balanced bundle must contain a
good from {20, 19, 18, 17, 16} and a good from {15, 14, 13, 12, 11}; a 3-balanced bundle must
contain, in addition to these, a good from {10, 9, 8, 7, 6}; and so on. �

4.4 Construction for a Single Divider

In order to prove the correctness of Algorithm 2, it is sufficient to prove that the threshold
value ti = ` is a reasonable threshold (see Definition 1) for each agent i, with the additional
restriction that all bundles should be `-balanced.

To do this, it is sufficient to consider a single divider, Alice. We denote her normalized
ordered value measure by v, and the sum of her `−1 least-valuable MMS bundles by x. We
consider a particular MMS partition for Alice, and refer to the bundles in this partition as
the MMS bundles.

Assume that k unacceptable bundles (Bc)
k
c=1 have already been given to other agents

and that all these bundles are `-balanced. Therefore, for each c ∈ [k], it must be that
v(Bc) < `.6 We have to prove that Alice can use the remaining goods to construct n − k
acceptable bundles that are also `-balanced. Particularly, we prove below that Alice can
construct n− k acceptable bundles, each of which contains exactly 1 remaining good from
each of Gn

1 . . . , G
n
` .

4.5 Main Idea: Bounding the Waste

Given a bundle Ba, denote its waste by w(Ba) := v(Ba) − `. This is the value the bundle
contains beyond the acceptability threshold of `. Note that the waste of acceptable bundles
is positive and that of unacceptable bundles is negative. The total initial value for Alice is
given by (1). The total waste she can afford in her partition is therefore

v(M)− n · ` = (n− 1) · (`− x)/2 + (n− 1) · `(`− 1− x).

The first term implies that she can afford an average waste of (`−x)/2 for n−1 bundles; the
second term implies that she can afford an average waste of `(`− 1− x) for n− 1 bundles.

6. Recall that the Lone Divider algorithm allocates bundles using an envy-free matching. This means that
all bundles allocated before Alice’s turn are unacceptable to Alice.

363

Hosseini, Searns & Segal-Halevi

Example 5 (Bounding the waste). Consider Example 3. In case (1), the total value is
17 and we need 5 bundles with a value of 3, so the affordable waste is 2. The average over 4
bundles is 0.5 = (3− 2)/2 + 3 · 0. In case (2), the total value is 19.8, so the affordable waste
is 4.8. The average over 4 bundles is 1.2 = (3 − 1.8)/2 + 3 · (0.2). In both cases, if there
are 4 acceptable bundles with that amount of waste, then the remaining value is exactly 3,
which is sufficient for an additional acceptable bundle. �

The following lemma formalizes this observation.

Lemma 1. Suppose there exists a partition of M into

• Some t ≥ 0 bundles with an average waste of at most (`− x)/2 + `(`− 1− x);

• A subset S of remaining goods, with v(S) < `.

Then t ≥ n.

Proof. For brevity, we denote w := (`−x)/2 + `(`− 1−x). The total value of the bundles
equals their number times their average value. So the total value of the t bundles is at most
t · `+ t · w. After adding v(S) < ` for the remaining goods, the sum equals v(M), so

(t+ 1) · `+ t · w > v(M)

≥n · `+ (n− 1) · w (by (1)).

Therefore, at least one of the two terms in the top expression must be larger than the
corresponding term in the bottom expression. This means that either (t + 1)` > n`, or
tw > (n− 1)w. Both options imply t ≥ n.

Remark 1. The value of each MMS bundle is at most `−x. Therefore, any bundle that is
the union of exactly ` such MMS bundles has a waste of at most `(`− x)− ` = `(`− 1− x)
and thus it satisfies the upper bound of Lemma 1. In particular, this is satisfied for every
bundle with at most ` goods.

Below we show how Alice can find a partition in which the average waste is upper
bounded as in Lemma 1. This partition will consist of the following bundles:

• The k previously-allocated bundles, with waste < 0 (since they are unacceptable);

• Some newly-constructed bundles with exactly ` goods and waste ≤ `(` − 1 − x) (by
Remark 1);

• Some newly-constructed bundles with waste at most (`− x)/2;

• Some pairs of bundles, where the waste in one is larger than (`− x)/2 but the waste
in the other is smaller than (`− x)/2, such that the average is at most (`− x)/2.

364

Ordinal Maximin Share Approximation for Goods

4.6 Step 0: Bundles with Exactly ` Goods

Recall that before Alice’s turn, some k bundles have been allocated, with a value of less
than `. Hence, their waste is less than 0. Since these bundles are `-balanced, they contain
exactly one good from each of Gn

1 , . . . , G
n
` (and possibly some additional goods).

Therefore, exactly n− k goods are available in each of Gn
1 . . . , G

n
` .

Next, Alice checks all the `-tuples containing one good from each of Gn
1 . . . , G

n
` (starting

from the highest-valued goods in each set). If the value of such an `-tuple is at least `, then
it is acceptable and its waste is at most `(`− 1− x) by Remark 1.

After Step 0, there are some k′ ≥ k bundles with a waste of at most `(` − 1 −
x), each of which contains exactly one good from each of Gn

1 . . . , G
n
` . Of these, k are

previously-allocated bundles, and k′− k are newly-constructed acceptable bundles. In each
of Gn

1 . . . , G
n
` , there remain exactly n− k′ goods. The total value of each `-tuple of remain-

ing goods from Gn
1 . . . , G

n
` is less than `. Alice will now construct from them some n − k′

bundles with an average waste of at most (` − x)/2 + `(` − 1 − x). Lemma 1 implies the
following lemma on the remaining goods (the goods not in these k′ bundles):

Lemma 2. Suppose there exists a partition of the remaining goods into

• Some t ≥ 0 bundles with an average waste of at most (`− x)/2 + `(`− 1− x);

• A subset S of remaining goods, with v(S) < `.

Then t ≥ n− k′.

Alice’s strategy branches based on the number of high-value goods.

4.7 High-Value Goods

We define high-value goods as goods g with v(g) > (` − x)/2. Denote by h the number of
high-valued goods in M . Since the instance is ordered, goods g1, . . . , gh are high-valued. All
MMS bundles are worth at most ` − x, and therefore may contain at most one high-value
good each. Since the number of MMS bundles is `n+ n/2, we have h ≤ `n+ n/2.

For each j ∈ [h], we denote

• Mj := the MMS bundle containing gj . Since the value of all MMS bundles is at most
(` − x), each MMS bundle contains at most one high-value good, so the Mj are all
distinct.

• Rj := the remainder set of gj , i.e., the set Mj \ {gj}.

• rj := v(Rj).

We consider three cases, based on the number of high-value goods.

Case #1: h ≤ `n. This means that all high-value goods are contained in Gn
1 ∪ · · · ∪Gn

` ,
so after removing (Bc)

k′
c=1, at most `n−`k′ high-value goods remain—at most n−k′ in each

of Gn
1 . . . , G

n
` . Alice constructs the required bundles by bag-filling—a common technique in

MMS approximations (e.g. Garg et al. (2018)).

• Repeat at most n− k′ times:

365

Hosseini, Searns & Segal-Halevi

– Initialize a bag with a good from each of Gn
1 . . . , G

n
` (Step 0 guarantees that the

total value of these goods is less than `).

– Fill the bag with goods from outside Gn
1 . . . , G

n
` . Stop when either no such goods

remain, or the bag value raises above `.

Since all goods used for filling the bag have a value of at most (`− x)/2, the waste of each
constructed bundle is at most (`− x)/2. By construction, all these bundles are acceptable
except the last one. Apply Lemma 2 with S being the set of goods remaining in the last
bag, and t being the number of acceptable bundles constructed by bag-filling. The lemma
implies that t ≥ n− k′.

Case #2: k′ ≥ n/2. Alice uses bag-filling as in Case #1.

Here, the waste per constructed bundle might be more than (` − x)/2. However, since
the value of a single good is at most `− x, the waste of each constructed bundle is at most
`− x.

In each of the k′ bundles of Step 0, the waste is at most `(`− 1− x). Since k′ ≥ n/2 ≥
n − k′, the average waste per bundle is at most `(` − 1 − x) + (` − x)/2. Hence Lemma 2
applies, and at least n− k′ acceptable bundles are constructed.

Case #3: h > `n and k′ < n/2. In this case, Alice will have to construct some bundles
with waste larger than (` − x)/2. However, she will compensate for it by constructing a
similar number of bundles with waste smaller than (` − x)/2, such that the average waste
per bundle remains at most (`− x)/2.

After removing (Bc)
k′
c=1, exactly h − `k′ high-value goods remain. They can be parti-

tioned into two subsets:

• H+ := the (n− k′)` top remaining goods — those contained in Gn
1 ∪ · · · ∪Gn

` ; exactly
n− k′ in each of Gn

1 . . . , G
n
` . By assumption, n− k′ > n/2.

• H− := the other h − `n high-value goods — those not contained in Gn
1 ∪ · · · ∪ Gn

` .
Since h ≤ `n+ n/2, the set H− contains at most n/2 goods.

This is the hardest case; to handle this case, we proceed to Step 1 below.

4.8 Step 1: Bundling High-value Goods.

Alice constructs at most |H−| bundles as follows.

• Repeat while H− is not empty:

– Initialize a bag with the lowest-valued remaining good from each of Gn
1 . . . , G

n
`

(Step 0 guarantees that their total value is less than `).

– Fill the bag with goods from H−, until the bag value raises above `.

Note that |H−| ≤ n/2 < n− k′ = |Gn
1 | = . . . = |Gn

` |, so as long as H− is nonempty, each of
Gn

1 . . . , G
n
` is nonempty too, and Alice can indeed repeat. By construction, all filled bags

except the last one are valued at least `; it remains to prove that the number of these bags
is sufficiently large.

366

Ordinal Maximin Share Approximation for Goods

Let s be the number of acceptable bundles constructed once H− becomes empty. Note
that, in addition to these bundles, there may be an incomplete bundle — the last bundle,
whose construction was terminated while its value was still below `.

Let P+ ⊆ H+ be the set of s` goods from H+ in the acceptable bundles. Denote by
P− ⊆ H− the set of s goods from H− that were added last to these s bundles (bringing
their value from less-than-` to at-least-`). Note that the waste in each of these s bundles
might be larger than (`− x)/2, but it is at most the value of a single good from P−, so the
total waste is at most

∑
j∈P− v(gj).

After this step, besides the s acceptable bundles, there are some (n−k′− s)` high-value
goods remaining in H+ (some ` of these goods are possibly in the incomplete bundle, if such
a bundle exists). Alice now has to construct from them some n− k′− s acceptable bundles.

4.9 Step 2: Using the Remainders.

Alice now constructs acceptable bundles by bag-filling. She initializes each bag with the
incomplete bundle from Step 1 (if any), or with an `-tuple of unused goods from Gn

1 . . . , G
n
` .

Then, she fills the bag with low-value goods from the following remainder sets :

• There are `k remainder sets that correspond to the `k goods allocated within the k
unacceptable bundles (Bc)

k
c=1. We denote them by RU

c,1, . . . , R
U
c,` and their values by

rUc,1, . . . , r
U
c,` for c ∈ [k].

• There are `s+ s remainder sets that correspond to the `s high-value goods in P+ and
the s high-value goods in P−. We denote them by RP

j and their values by rPj for
j ∈ P+ ∪ P−.

By definition, the total value of all these remainders is:

Total-Remainder-Value = v

 ⋃
j∈P+∪P−

RP
j ∪

k⋃
c=1

⋃̀
l=1

RU
c,l


=

∑
j∈P+∪P−

rPj +

k∑
c=1

∑̀
l=1

rUc,l.

For each remainder-set Rj , denote by R′j , the subset of Rj that remains after removing the at

most k unacceptable bundles (Bc)
k
c=1 with more than ` goods.7 Each unacceptable bundle

Bc contains, in addition to the ` high-value goods gc,l for l ∈ {1, . . . , `}, some low-value

goods with a total value of less than
∑`

l=1 r
U
c,l (since the total value of the unacceptable

bundle is less than `). Therefore, the total value of low-value goods included in these
unacceptable bundles is at most

∑k
c=1

∑`
l=1 r

U
c,l (equality holding iff k = 0). Therefore, the

7. Bundles Bc with at most ` goods do not consume anything from the remainder-sets Rj , since they
contain only high-value goods from Gn

1 , . . . , G
n
` . From the same reason, the k′ − k acceptable bundles

constructed in Step 0 do not consume anything from the remainder sets.

367

Hosseini, Searns & Segal-Halevi

total remaining value satisfies

Total-Remainder-Value = v

 ⋃
j∈P+∪P−

R′Pj ∪
k⋃

c=1

⋃̀
l=1

R′Uc,l


≥

 ∑
j∈P+∪P−

rPj +

k∑
c=1

∑̀
l=1

rUc,l

− k∑
c=1

∑̀
l=1

rUc,l

=
∑

j∈P+∪P−

rPj . (2)

The bag-filling proceeds as follows.

1. Initialize a := 1.

2. Initialize a bag with either the incomplete bundle from Step 1 (if any), or some `
unused top goods. We denote the ` top goods used for initializing bag a by gj[a,1] ∈
Gn

1 , . . . , gj[a,`] ∈ Gn
` .

3. Add to the bag the remainder-sets R′Pj and R′Uc,l in an arbitrary order. Stop when
either no such remainder-sets remain, or the bag value raises above `.

4. If there are still some unused remainder-sets and high-value goods, let a := a+ 1 and
go back to Step 2.

The bag-filling stops when either there are no more high-value goods, or no more
remainder-sets. In the former case, Alice has all n − k′ required bundles (s from Step
1 and n−k′−s from Step 2), and the construction is done. We now analyze the latter case.

By construction, we go to the next bag only after the current bag becomes at least `.
Therefore, all bags except the last one are valued at least `. Our goal now is to prove that
the number of these “all bags except the last one” is sufficiently large.

Let t be the number of bundles constructed with a value of at least `. For each a ∈ [t],
The a-th bag contains the high-value goods gj[a,1], . . . , gj[a,`] and some remainder-sets. How
much remainder-sets should it contain? Suppose it contains remainder-sets with a total
value of

∑`
l=1 rj[a,l]. Then, the total bundle value is

∑`
l=1 v(Mj[a,l]). By assumption, the

total value of every ` MMS bundles is at least `, so the bundle value is at least `. Therefore,
to make bundle a acceptable, it is sufficient to add to it a value of

∑`
l=1 rj[a,l].

Denote by j[a, ∗] the index of the last remainder-set added to bag a (bringing its value
from less-than-` to at-least-`). The total value of remainder-sets in the bag is thus less than
rj[a,∗] +

∑`
l=1 rj[a,l].

The total value of remainder-sets in the unfilled (t+ 1)-th bag is less than
∑`

l=1 rj[t+1,l],
where j[t + 1, 1], . . . , j[t + 1, `] are indices of some remaining high-value goods. Therefore,

368

Ordinal Maximin Share Approximation for Goods

the total value of remainder-sets in all t+ 1 bags together satisfies

v

 ⋃
j∈P+∪P−

R′Pj ∪
k⋃

c=1

⋃̀
l=1

R′Uc,l

 <

t∑
a=1

(
rj[a,∗] +

∑̀
l=1

rj[a,l]

)
+

(∑̀
l=1

rj[t+1,l]

)

=

(
t+1∑
a=1

∑̀
l=1

rj[a,l]

)
+

(
t∑

a=1

rj[a,∗]

)
. (3)

Combining (2) and (3) gives

(
t+1∑
a=1

∑̀
l=1

rj[a,l]

)
+

(
t∑

a=1

rj[a,∗]

)
>

∑
j∈P+∪P−

rPj . (4)

In the left-hand side there are `(t+ 1) + t = (`+ 1)t+ ` terms, while in the right-hand side
there are (`+ 1)s terms — `+ 1 for each bundle constructed in Step 1. We now show that
each term in the left-hand side is equal or smaller than a unique term in the right-hand
side. Since the left-hand side is overall larger than the right-hand side, this indicates that
the left-hand side must have more terms, that is, (`+ 1)t+ ` > (`+ 1)s. This implies that
t ≥ s, i.e., Alice has successfully constructed from the remainder-sets some s acceptable
bundles.

• Consider first the `(t + 1) terms rj[a,l], and compare them to rPj for j ∈ P+. Since
the bundles in Step 1 were constructed in ascending order of value, starting at the
lowest-valued available goods in each of Gn

1 . . . , G
n
` , every index j[a, l] is smaller than

any index j ∈ Gn
l . Therefore, every term rj[a,l] is smaller than some unique term rPj

for j ∈ Gn
l , for every l ∈ [`].

• Consider now the t terms rj[a,∗], and compare them to rPj for j ∈ P−. Each of the
indices j[a, ∗] is an index of some unique remainder-set, so it is either equal to some
unique index j ∈ P+ ∪ P−, or to some unique index c,l (the index some remainder-set
RU

c,l of some unacceptable bundle Bc). All indices c,l are in {1, . . . , `n}, so they are
smaller than the indices j ∈ P− . Therefore, every rj[a,∗] is either equal or smaller

than some unique term rPj for j ∈ P−.

So Alice has s new acceptable bundles. The waste of each of these is rj[a,∗], which — as

mentioned above — is equal to or smaller than some unique term rPj for j ∈ P−. Therefore,

the total waste of all these s bundles is at most the following sum of s terms:
∑

j∈P− r
P
j .

Recall that the waste of each of the s acceptable bundles from Step 1 was at most v(gj)
for some j ∈ P−. Therefore, the total waste of the 2s acceptable bundles constructed so far

369

Hosseini, Searns & Segal-Halevi

is at most ∑
j∈P−

rPj +
∑
j∈P−

v(gj)

=
∑
j∈P−

(rPj + v(gj))

=
∑
j∈P−

v(Mj)

≤
∑
j∈P−

(`− x) by the normalization (Section 4.1)

=|P−| · (`− x)

=s · (`− x).

Therefore, the average waste per bundle is at most s(`− x)/(2s) = (`− x)/2.

4.10 Step 3: Plain Bag-Filling.

At this stage, there are no more high-value goods outside H+. Therefore, Alice can construct
the remaining bundles by plain bag-filling, initializing each bag with some `-tuple of unused
goods remaining in H+, and filling it with some low-value goods outside H+. Since the waste
in each bundle is at most (`− x)/2, Lemma 2 implies that the total number of constructed
bundles is n− k′.

This completes the proof that ` is a reasonable threshold for Algorithm 2. Therefore,
the algorithm finds the allocation promised in Theorem 1.

4.11 Limits of Algorithm 2

To illustrate the limitation of Algorithm 2, we show that it cannot guarantee 1-out-of-
((`+ 1

2)n− 2) MMS. For simplicity we assume that n is even so that (`+ 1
2)n is an integer.

Example 6 (Tight bound for our technique). Suppose that in the first iteration all
agents except the divider have the following MMS bundles:

• `n− 1 bundles are made of two goods with values 1 − ε and ε.

• One bundle is made of two goods with values 1 − `nε and `nε.

• n/2− 2 bundles are made of two goods with values 1/2, 1/2.

So their 1-out-of-(`n+n/2− 2) MMS equals `. However, it is possible that the first divider
takes an unacceptable bundle containing `−1 goods of value 1−ε, the good of value 1−`nε,
and the `n− 1 goods of value ε. Note that this bundle is `-balanced. All remaining goods
have a value of less than 1, so an acceptable bundle requires at least `+ 1 goods. However,
the number of remaining goods is only `n− `+ 1 + n− 4 = (`+ 1)(n− 1)− 2: `n− ` goods
of value 1 − ε, one good of value `nε and n − 4 goods of value 1/2. Hence, at most n − 2
acceptable bundles can be constructed. �

370

Ordinal Maximin Share Approximation for Goods

1− ε •

ε •

...
11

bundles...

...ε... •

1− ε

ε •

1− 12ε •

12ε

1/2

1/2

Figure 2: An illustration of the goods’ values in Example 6, for n = 6 and ` = 2. Here,
(`+ 1/2)n− 2 = 13. The 2-out-of-13 MMS is 2. Each rectangle represents an MMS bundle
containing two goods. The first divider takes the goods marked by a bullet. Note that this
is a 2-balanced bundle. The next divider cannot construct 5 bundles of value 2 from the
remaining goods.

5. Ordinal Approximation for Goods in Polynomial Time

Algorithm 2 guarantees that each agent receives an `-out-of-d MMS allocation for d ≥
b(` + 1

2)nc. However, the algorithm requires exact MMS values to determine whether a
given bundle is acceptable to each agent. Since computing an exact MMS value for each
agent is NP-hard, Algorithm 2 does not run in polynomial-time even for the case of ` = 1.
The objective of this section is to develop polynomial-time approximation algorithms for
computing `-out-of-d MMS allocations.

We utilize optimization techniques used in the bin covering problem. This problem was
presented by Assmann, Johnson, Kleitman, and Leung (1984) as a dual of the more famous
bin packing problem. In the bin covering problem, the goal is to fill bins with items of
different sizes, such that the sum of sizes in each bin is at least 1, and subject to this,
the number of bins is maximized. This problem is NP-hard, but several approximation
algorithms are known. These approximation algorithms typically accept a bin-covering
instance I as an input and fill at least a · (OPT (I) − b) bins, where a < 1 and b > 0 are
constants, and OPT (I) is the maximum possible number of bins in I. Such an algorithm can
be used directly to find an ordinal approximation of an MMS allocation when all agents have
identical valuations. Our challenge is to adapt them to agents with different valuations.

5.1 The case when ` = 1

For the case when ` = 1, we adapt the algorithm of Csirik et al. (1999), which finds
a covering with at least 2

3 · (OPT (I) − 1) bins (an approximation with a = 2
3 and b = 1).

Algorithm 3 generalizes the aforementioned algorithm to MMS allocation of goods. Thus,
the algorithm of Csirik et al. (1999) corresponds to a special case of Algorithm 3 wherein

• All agents have the same vi (describing the item sizes); and

371

Hosseini, Searns & Segal-Halevi

ALGORITHM 3: Bidirectional bag-filling

Input: An instance 〈N,M, V 〉 and threshold values (ti)
n
i=1.

Output: At most n subsets Ai satisfying vi(Ai) ≥ ti.
1: Order the instance in descending order of value as in Section 4.2, so that for each agent i,
vi(g1) ≥ · · · ≥ vi(gm).

2: for k = 1, 2, . . .: do
3: Initialize a bag with the good gk.
4: Add to the bag zero or more remaining goods in ascending order of value, until at least

one agent i values the bag at least ti.
5: Give the goods in the bag to an arbitrary agent i who values it at least ti.
6: If every remaining agent i values the remaining goods at less than ti, stop.
7: end for

• All agents have the same ti (describing the bin size).8

For this case, we have the following lemma:

Lemma 3 (Lemma 4 of Csirik et al. (1999)). When all agents have the same valuation v
and the same threshold t, Algorithm 3 allocates at least 2

3(OPT (v, t) − 1) bundles, where
OPT (v, t) is the maximum number that can be filled.

Note that Algorithm 3 works for any selection of the threshold values ti, but if the
thresholds are too high, it might allocate fewer than n bundles. Our challenge now is to
compute thresholds for which n bundles are allocated. To compute a threshold for agent i,
we simulate Algorithm 3 using n clones of i, that is, n agents with valuation vi. We look
for the largest threshold for which this simulation allocates at least n bundles.

Definition 3. The 1-out-of-n bidirectional-bag-filling-share of agent i, denoted BBFSn
i , is

the largest value ti for which Algorithm 3 allocates at least n bundles when executed with
n agents with identical valuation vi and identical threshold ti.

The BBFS of agent i can be computed using binary search up to ε, where ε is the
smallest difference between values that is allowed by their binary representation. The
following lemma relates the BBFS to the MMS.

Lemma 4. For any integer n ≥ 1 and agent i ∈ [n],

BBFSn
i ≥MMS

1-out-of-d 3
2
ne

i (M) .

Proof. Let ti := MMS
1-out-of-d 3

2
ne

i (M). By definition of MMS, there is a partition of M into
d3

2ne bundles of size at least ti. By Lemma 3, the Bidirectional-Bag-Filling algorithm with
valuation vi and bin-size ti fills at least 2

3(d3
2ne−1) bundles, which means at least n bundles

8. There is a minor difference: we initialize the first bag with only a single good from the left (g1) before
filling it with goods from the right (gm, gm−1, . . .). In contrast, Csirik et al. (1999) fill the first bag with
several goods from the left (g1, g2, . . . while its value is less than the bin size), and only then start filling
it with goods from the right. However, this difference is not substantial: their proof of the approximation
ratio assumes only that each bin has at least one good from the left and one good from the right, so the
same proof holds for our variant.

372

Ordinal Maximin Share Approximation for Goods

since the number of bundles is an integer. By definition of the BBFS, since Algorithm 3
allocates at least n bundles with threshold ti, we have ti ≤ BBFSn

i .

We define an allocation as BBFS-fair if it allocates to each agent i ∈ [n] a bundle
with a value of at least BBFSn

i . Lemma 4 indicates that a BBFS-fair allocation is also
1-out-of-d3n/2e MMS-fair, though the BBFS may be larger than 1-out-of-d3n/2e MMS.

Lemma 5. A BBFS-fair allocation always exists, and can be found in time polynomial in
the length of the binary representation of the problem.

Proof. We first show that, when Algorithm 3 is executed with threshold values ti = BBFSn
i

for all i ∈ [n], it allocates n bundles. For each j ≥ 1, denote:

• Aj — the bundle allocated at iteration j of Algorithm 3 with the true (different)
valuations v1, . . . , vn.

• Bi
j — the bundle allocated at iteration j of agent i’s successful simulation with thresh-

old ti = BBFSn
i .

We claim that, for every k ≥ 1, the set of goods allocated before step k by the global
algorithm is a subset of the goods allocated before step k during agent i’s simulation, .
That is,

⋃k−1
j=1 Aj ⊆

⋃k−1
j=1 B

i
j for any remaining agent i.

The claim is proved by induction on k. The base is k = 1. Before step 1, both
⋃k−1

j=1 Aj

and
⋃k−1

j=1 B
i
j are empty, so the claim holds vacuously. Let k ≥ 1. We assume the claim is

true before iteration k, and prove that it is still true after iteration k. The initial goods
g1, . . . , gk are obviously allocated in both runs. In agent i’s simulation, some additional
goods gm, . . . , gs are allocated, for some s ≤ m; in the global run, goods gm, . . . , gr are
allocated, for some r ≤ m. The induction assumption implies that r ≥ s (weakly fewer
goods are allocated in the global run). In iteration k, both runs initialize the bag with the
same good gk. In i’s simulation, the bag is then filled with goods gs−1, . . . , gs′ for some
s′ < s, such that vi({gk, gs−1, . . . , gs′}) ≥ ti. In the global run, the bag is filled with goods
gr−1, . . . , gr′ for some r′ < r. It is sufficient to prove that r′ ≥ s′. Indeed, if no agent takes
the bag until it contains the goods ({gk, gr−1, . . . , gs′}), then because r ≥ s, the bag value is
at least vi({gk, gs−1, . . . , gs′}) ≥ ti. Therefore, it is acceptable to agent i, so the algorithm
allocates it (either to i or to another agent).

This completes the proof of the claim. The claim implies that, as long as k < n, the
goods in Bi

n are still available. This means that agent i values the remaining goods at least
ti. This is true for every remaining agent; therefore, the global algorithm continues to run
until it allocates n bundles.

The binary search and the simulation runs for each agent i take time polynomial in the
length of the binary representation of the valuations. Once the thresholds are computed,
Algorithm 3 obviously runs in polynomial time. This completes the proof of the lemma.

Lemmas 4 and 5 together imply:

Theorem 2. There is an algorithm that computes a 1-out-of-d3n/2e MMS allocation in
time polynomial in the length of the binary representation of the problem.

373

Hosseini, Searns & Segal-Halevi

Example 7 (Computing thresholds). Consider a setting with m = 6 goods and n = 3
agents with the following valuations:

g1 g2 g3 g4 g5 g6 ti

v1 10 8 6 3 2 1 9

v2 12 7 6 5 4 2 11

v3 9 8 7 4 3 1 10

Each player computes a threshold via binary search on [0, vi(M)] for the maximum value
ti such that the simulation of Algorithm 3 yields three bundles. For agent 1, the simulation
with t1 = 9 yields bundles {g1}, {g2, g6}, {g3, g4, g5}. The corresponding simulation with
t1 = 10 yields bundles {g1}, {g2, g5, g6} with {g3, g4} insufficient to fill a third bundle.

After all thresholds have been determined from simulations, Algorithm 3 computes the
circled allocation. Theorem 2 guarantees that this allocation is at least 1-out-of-5 MMS.
Here the circled allocation satisfies 1-out-of-3 MMS. �

Remark 2. When n is odd, there is a gap of 1 between the existence result for 1-out-of-
b3n/2c MMS, and the polynomial-time computation result for 1-out-of-d3n/2e MMS.

In experimental simulations on instances generated uniformly at random, Algorithm 3
significantly outperforms the theoretical guarantee of 1-out-of-d3n/2eMMS. In Appendix C,
we provide detailed experimentations and compare the bidirectional bag-filling algorithm
with other bag-filling methods (e.g. the unidirectional bag-filling algorithm).

5.2 The case when ` > 1

So far, we could not adapt Algorithm 3 to finding an `-out-of-b(`+ 1/2)nc MMS allocation
for ` ≥ 2. Below, we present a weaker approximation to MMS, based on the following
lemma.

Lemma 6. For all integers d > ` ≥ 1:

` ·MMS1-out-of-d(M) ≤MMS`-out-of-d(M) ≤ ` ·MMS1-out-of-(d−`+1)(M).

Proof. For the leftmost inequality, Let A1, . . . , Ad be the optimal d-partition in the definition
of MMS1-out-of-d(M), and suppose w.l.o.g. that the bundles are ordered by ascending value.
Then:

` ·MMS1-out-of-d(M) = ` · vi(A1)

≤ vi(A1) + · · ·+ vi(A`)

≤MMS`-out-of-d(M),

where the last inequality follows from the existence of a d-partition in which the ` least-
valuable bundles are A1, . . . , A`.

For the rightmost inequality, let B1, . . . , Bd be the optimal d-partition in the definition
of MMS`-out-of-d(M), and suppose w.l.o.g. that the bundles are ordered by ascending value.

374

Ordinal Maximin Share Approximation for Goods

Then:

MMS`-out-of-d(M) = vi(B1) + · · ·+ vi(B`)

≤ ` · vi(B`)

≤ ` ·MMS1-out-of-(d−`+1)(M),

where the last inequality is proved by the partition with (d − ` + 1) bundles: B1 ∪ · · · ∪
B`, B`+1, . . . , Bd, in which the value of each bundle is at least vi(B`).

For any positive integer d, we can approximate MMS1-out-of-d(M) by using an approxi-
mation algorithm for bin-covering, which we call Algorithm JS (Jansen & Solis-Oba, 2003).

Lemma 7 (Jansen and Solis-Oba (2003)). For any ε > 0, Algorithm JS runs in time
Õ
(

1
ε6
m2 + 1

ε8.76

)
.9 If the sum of all valuations is at least 13t/ε3 (where t is the bin size),

then Algorithm JS fills at least (1− ε) ·OPT(I)− 1 bins.

We can choose ε based on the instance, and get the following simpler guarantee.

Lemma 8. Algorithm JS fills at least

OPT− 2.35 ·OPT2/3 − 1

bins, and runs in time Õ(m4).

Proof. If any input value is at least t, then it can be put in a bin of its own, and this is
obviously optimal. So we can assume w.l.o.g. that all input values are smaller than t.

Let s be the sum of values, and set ε := (13t/s)1/3. The number of bins in any legal
packing is at most s/t, so

OPT ≤s/t
t/s ≤1/OPT

ε ≤(13/OPT)1/3

≈ 2.35/OPT1/3.

The ε is chosen such that s = 13t/ε3. So by Lemma 7, the number of bins filled by
Algorithm JS is at least

OPT− ε ·OPT− 1

≥OPT− 2.35 ·OPT2/3 − 1.

Since by assumption each value is smaller than t, we have s < mt, so ε > (13/m)1/3 and
1/ε ∈ O(m1/3). Therefore, the run-time is in

Õ

(
1

ε6
m2 +

1

ε8.8

)
≈Õ

(
m2 ·m2 +m2.92

)
≈Õ

(
m4
)
.

9. A more exact expression for the run-time is O
(

1
ε5
· ln m

ε
·max (m2, 1

ε
ln ln 1

ε3
) + 1

ε4
TM(1

ε2
)
)
, where TM(x)

is the run-time complexity of the best available algorithm for matrix inversion, which is currently
O(x2.38). We simplified it a bit for clarity, and used Õ to hide the logarithmic factors.

375

Hosseini, Searns & Segal-Halevi

Analogously to the definition of the BBF-Share (BBFS) (Definition 5.1), we define the
1-out-of-d JS-Share (JSS) of each agent i as the largest value ti for which Algorithm JS fills
at least d bins when executed with valuation vi and bin-size ti. The JSS can be computed
up to any desired accuracy using binary search.

Clearly, MMS1-out-of-d
i (M) ≥ JSSd

i . Analogously to Lemma 4, we have

Lemma 9. For any integer d ≥ 1 and agent i ∈ [n]:

JSSd
i ≥MMS

1-out-of-dd+15·d2/3+1e
i (M) .

Proof. Let ti := MMS
1-out-of-dd+15·d2/3+1e
i (M). By definition of MMS, there is a partition

of M into dd + 15 · d2/3 + 1e bundles of size at least ti. By Lemma 8, Algorithm JS with
bin-size ti fills at least

(d+ 15 · d2/3 + 1)− 2.35 · (d+ 15 · d2/3 + 1)2/3 − 1

≥(d+ 15 · d2/3 + 1)− 2.35 · (16d)2/3 − 1

≥(d+ 15 · d2/3 + 1)− 14.92d2/3 − 1

≥d

bins. By definition of the JSS, since Algorithm JS allocates at least d bins with size ti, we
have ti ≤ JSSd

i .

Now, each agent can participate in the algorithm of Section 4 without computing the
exact MMS value. Given an integer ` ≥ 2, let d := b(`+ 1

2)nc. Each agent i can compute the

value of JSSd
i using binary search. The search also finds a partition of M into d bundles,

each of which has a value of at least JSSd
i . The agent can now use this partition for scaling:

the valuations are scaled such that the value of each bundle in the partition is exactly 1.
The algorithm in Section 2 guarantees to each agent a bundle with value at least `, which

is at least ` · JSSd
i . By Lemma 9, this value is at least ` ·MMS

1-out-of-dd+15d2/3+1e
i (M). By

the right-hand side of Lemma 6, it is at least MMS
`-out-of-dd+15d2/3+`e
i (M). Thus, we have

proved the following theorem.

Theorem 3. Let ` ≥ 2 an integer, and d := b(` + 1
2)nc. It is possible to compute an

allocation in which the value of each agent i is at least

MMS
`-out-of-dd+15d2/3+`e
i (M) ,

in time Õ
(
n ·m4

)
.

6. Future Directions

The existence of tighter ordinal approximations that improve `-out-of-b(` + 1/2)nc MMS
allocations is a compelling open problem. Specifically, one can generalize the open problem
raised by Budish (2011) and ask, for any ` ≥ 1 and n ≥ 2: does there exist an `-out-of-
(`n+ 1) MMS allocation?

376

Ordinal Maximin Share Approximation for Goods

For the polynomial-time algorithm when ` = 1, we extend the bin covering algorithm
of Csirik et al. (1999). We believe that the interaction between this problem and fair
allocation of goods may be of independent interest, as it may open new ways for developing
improved algorithms. For example, Csirik et al. (1999) also present a 3/4 approximation
algorithm for bin covering, which may potentially be adapted to yield a 1-out-of-d4n/3e
MMS allocation. Similarly, Csirik, Johnson, and Kenyon (2001) and Jansen and Solis-Oba
(2003) present polynomial-time approximation schemes for bin covering, which may yield
even better MMS approximations in future work.

Finally, it is interesting to study ordinal maximin approximation for items with non-
positive valuations (i.e. chores), as well as for mixtures of goods and chores. Techniques
for allocation of goods do not immediately translate to achieving approximations of MMS
when allocating chores, so new techniques are needed (Hosseini, Searns, & Segal-Halevi,
2022).

Acknowledgments

Hadi Hosseini acknowledges support from NSF IIS grants #2052488 and #2107173. Erel
Segal-Halevi is supported by the Israel Science Foundation (grant no. 712/20).

We are grateful to Thomas Rothvoss, Ariel Procaccia, Joshua Lin, Inuyasha Yagami,
Chandra Chekuri, Neal Young, and the anonymous referees of EC 2021 and JAIR for their
valuable feedback.

377

Hosseini, Searns & Segal-Halevi

APPENDIX

Appendix A. Comparing Ordinal and Multiplicative Approximations

Our ordinal guarantees may be better than the best known multiplicative MMS approxi-
mation (i.e. 3/4) when the number of goods is large compared to the number of agents.

To illustrate, consider the extreme case in which there are infinitely many goods of
equal value (alternatively, suppose there are infinitely many goods with values that are
independent and identically-distributed random variables). Then 1-out-of-n MMS converges
to 1/n (with probability 1, by the law of large numbers).10 The `-out-of-(` + 1

2)n MMS
converges to 2`/(2` + 1) of this value, which is larger than 3/4 + 1/(12n) for ` ≥ 2, and
approaches 1 when `→∞.

In this section, we present a simple simulation experiment that compares the value of
the `-out-of-d MMS guaranteed by Theorem 1 (where d = b(` + 1/2)nc) with the best
known multiplicative approximation of 1-out-of-n MMS, which is 3

4 + 1
12n (Garg & Taki,

2020). Our results show that the ordinal approximation for ` ≥ 2 is better than the
multiplicative approximation already for m ≈ 20n, when the values are sampled from some
natural distributions. We note that the simulations only compare the worst-case guarantees
and not the actual algorithm performance.

Since computing the exact MMS is NP-hard,11 we used a lower bound for our ordinal
approximation and an upper bound for the “competition”, so that our ratio is a lower bound
for the real ratio. For our ordinal approximation, we computed a lower bound using the
greedy number partitioning algorithm (Graham, 1966, 1969). This algorithm is known to
attain a reasonable approximation of the maximin share both in the worst case (Deuermeyer,
Friesen, & Langston, 1982; Csirik, Kellerer, & Woeginger, 1992) and in the average case
(Frenk & Kan, 1986). Given an integer d, the algorithm initializes d empty bundles. It
iterates over the goods in descending order of their value, and puts the next good in the
bundle with the smallest total value so far (breaking ties arbitrarily). Once all goods are
allocated, the sum of values in the ` bundles with the smallest values is a lower bound
for the `-out-of-d MMS. Taking instead the smallest value times ` (which approximates
` ·MMS1-out-of-d) yields nearly identical results. For the multiplicative approximation, we
just use the proportional share vi(M)/n as an upper bound for agent i’s 1-out-of-n MMS.

For various values of m, we chose m random integers to use as the good values. We
performed three simulations, in which the values were distributed (a) uniformly at random
in [1, 1000], (b) uniformly at random in [1000, 2000], and (c) geometrically with mean value
of 1000. We modified n between 4 and 20, and m between 4n and 80n. The results for all
n were very similar. While our approximation for ` = 1 is generally worse than 3/4 of the
MMS, our approximation for ` ≥ 2 is better already for m ≈ 20n, and it becomes better as
m grows. Figure 3 illustrates these observations.12

10. An accurate computation of the convergence rate of the MMS to 1/n is beyond the scope of the present
paper. We refer the interested reader to Mertens (2001), who studies a closely-related problem: the
probability distribution of the smallest difference between the highest-valued bundle and the lowest-
valued bundle in an n-partition.

11. Using integer linear programming, we could compute the exact value of 1-out-of-4 MMS for m > 200
goods in reasonable time. However, we were not able to scale our computations for larger values of n.

12. Source code for the experiments is available at https://github.com/erelsgl/ordinal-maximin-share.

378

Ordinal Maximin Share Approximation for Goods

(a) Values distributed uniformly in [1, . . . , 1000]:

(b) Values distributed uniformly in [1000, . . . , 2000]:

(c) Values distributed geometrically with mean value 1000:

Figure 3: The value of the `-out-of-d MMS (where d = (` + 1/2)n) guaranteed by our
Theorem 1, as a fraction of the 1-out-of-n MMS, for different values of ` and n (at the left
n = 4 and at the right n = 20). The horizontal black line represents 3/4 + 1/(12n) of the
1-out-of-n MMS

379

Hosseini, Searns & Segal-Halevi

Appendix B. Failure of Some Common Techniques for
Approximate-MMS Allocation

Our 1-of-b3n/2c MMS guarantee seems very similar to multiplicative 2/3-MMS approxi-
mation, as both can be seen as approximations of 2/3 · (vi(M)/n). One could expect that
the same techniques should work in both cases. To illustrate that this is not the case, we
consider one such technique, recently used by Garg et al. (2018) to find a 2/3-MMS alloca-
tion in polynomial time. For completeness, we briefly describe their algorithm below (the
detailed steps can be found in Garg et al. (2018)):

1. Scale the valuations such that all n agents value the set of all goods at 3n/2 (this
implies that their MMS value is at most 3/2).

2. Order the instance such that vi(g1) ≥ · · · ≥ vi(gm) to all agents i.

3. If an agent i values g1 by at least 1, then allocate g1 to i and recurse with the remaining
goods and n− 1 agents.

4. If an agent i values {gn, gn+1} by at least 1, then allocate {gn, gn+1} to i and recurse
with the remaining goods and n− 1 agents.

5. At this point, all agents value g1, . . . , gn at less than 1, and gn+1, . . . , gm at most 1/2.
Allocate the goods using bag-filling, initializing each bag j ∈ [n] with the good gj .

They prove that the reductions in Steps (3) and (4) above do not change the MMS value of
the remaining agents. While the former reduction is valid regardless of the number of MMS
bundles, the latter reduction crucially depends on the fact that there are n MMS bundles,
which implies (by the pigeonhole principle) that at least one MMS bundle contains at least
two goods from {g1, . . . , gn+1}. This no longer holds when there are 3n/2 MMS bundles.
Therefore, allocating goods {gn, gn+1} is no longer a valid reduction. Moreover, if we scale
the valuations as in Step (1), we may be unable to give each agent a value of at least 1.

Example 8. Suppose n = 20, there are 30 goods with value 1− ε and one good with value
30ε. The instance is already normalized, since vi(M) = 30 = 3n/2 for all i ∈ N . The
value of all goods is less than 1. However, the value of {gn, gn+1} is more than 1, and if
we allocate such pairs of goods to agents, at most 15 agents will receive a bundle. This
example shows that the threshold of 2vi(M)/(3n) might be too high (too wasteful) for this
problem. �

Note that the challenging case in Section 4.7 (Case #3, for ` = 1) is exactly the case in
which more than n MMS bundles contain high-value goods, and each such good is contained
in a unique MMS bundle.

Appendix C. Bidirectional vs Unidirectional Bag-Filling

Theorem 2 guarantees that the bidirectional bag-filling algorithm with a careful set up of
thresholds (Algorithm 3) will compute an allocation which satisfies at least 1-of-(3n/2 + 1)
MMS. We empirically evaluated this algorithm by selecting different ways to set agent’s
thresholds. As a baseline, we use a simpler, unidirectional bag-filling algorithm, where

380

Ordinal Maximin Share Approximation for Goods

the goods are put into bags in decreasing order of their value. For each version we ran
two sets of experiments: (i) one experiment where agents threshold values are computed
individually, and (ii) one experiment where all agents’ thresholds are a common fraction of
their proportional share.

In each experiment, we generated 1,000 instances for each pair of n ∈ [3, 20] and m ∈
[n, 100]13 where the valuations were uniformly distributed from [0, 1000] and then ordered.

C.1 Individual Thresholds

For each agent, we utilize binary search to find the largest individual threshold where that
agent can form at least n bundles in successful simulations, as explained in Section 5. To
compare the bidirectional and unidirectional bag-filling approaches, we first compute the
value that each agent received, as a fraction of his proportional share Propi := vi(M)/n.
We then plot the minimum ratio any agent received over all 1,000 instances, the average
ratio all agents received over 1,000 instances, and the minimum of the average ratios of all
agents per instance.

If the valuations were perfectly divisible (say as m → ∞), we would expect that the

1-of-(3n/2 + 1) MMS would equate to approximately vi(M)
3n/2 ≈ 2/3vi(M)

n = 2/3Propi. Since
proportionality implies MMS, it is an upper bound for MMS values, each agent’s 1-of-
(3n/2 + 1) MMS is at most 2/3Propi.

Figure 4 and Figure 5 show that, while both the bidirectional and unidirectional algo-
rithms exceed the 2/3 ratio on most instances, the bidirectional algorithm averages slightly
higher (about 5%), with a higher minimum average. Note that the unidirectional bag-filling
algorithm is not guaranteed to give every agent 1-of-(3n/2 + 1) MMS.

13. Observe that when m < 3n/2 + 1, the 1-of-(3n/2 + 1) MMS is 0 for all agents. Thus any allocation
satisfies this property.

381

Hosseini, Searns & Segal-Halevi

Thresholds computed individually:

Figure 4: The minimum, average, and minimum average (minimum over all instances of the
average value of agents within the instance) value received by agents in both bidirectional
and unidirectional bag-filling for various n and m. Bidirectional bag-filling always exceeded
its unidirectional counterpart.

382

Ordinal Maximin Share Approximation for Goods

(a) Bidirectional: Minimum (b) Unidirectional: Minimum

(c) Bidirectional: Average (d) Unidirectional: Average

(e) Bidirectional: Minimum Average (f) Unidirectional: Minimum Average

Figure 5: In each figure, the x axis is the number of goods (m) and the y axis is the number
of agents (n). The color represents the fraction of proportional allocations (in percent).

383

Hosseini, Searns & Segal-Halevi

Thresholds computed using a common ratio:

Figure 6: The minimum, average, and minimum average (minimum over all instances of the
average value of agents within the instance) value received by agents in both bidirectional
and unidirectional bag-filling for various n and m. Bidirectional bag-filling always exceeded
its unidirectional counterpart.

C.2 Common Thresholds

We run binary search to find the largest percentage t where the bidirectional bag-filling
algorithm gives each agent that agent at least tvi(M)

n . The ratio was computed up to an
error tolerance of 0.1%. For this experiment we tracked the minimum ratio and the average
ratio guaranteed to all agents across the 1,000 instances.

We observe that the bidirectional bag-filling algorithm outperforms the unidirectional
bag-filling algorithm, especially when the number of goods is small relative to the number
of agents (m < 2n). Interestingly, Figure 6 illustrates that bidirectional bag-filling achieves
a higher fraction of proportionality with respect to all measures (minimum, average, and
minimum average over all instances) compared to the unidirectional bag-filling algorithm.

384

Ordinal Maximin Share Approximation for Goods

(a) Bidirectional: Minimum (b) Unidirectional: Minimum

(c) Bidirectional: Average (d) Unidirectional: Average

Figure 7: In each figure, the x axis is the number of goods (m) and the y axis is the number
of agents (n). The color represents the fraction of proportional allocations (in percent).

Appendix D. Beyond Additive Valuations

In this section, we show that no meaningful ordinal MMS approximation is possible when
generalizing additive valuations to responsive valuations (defined below), even for two
agents. Moreover, this result implies that ordinal MMS approximations cannot be extended
to submodular valuations.

The class of responsive valuations was introduced in the literature on matching markets
(Roth, 1986; Alkan, 1999; Klaus & Klijn, 2005; Hatfield, 2009) and has recently been used in
fair item allocation (Aziz, Biro, Lang, Lesca, & Monnot, 2019; Kyropoulou, Suksompong,
& Voudouris, 2020; Babaioff et al., 2021). Formally, a valuation v : 2M → R+ is called
responsive if for any two goods x, y ∈M and any subset Z ⊆M :

v(x) ≤ v(y) ⇐⇒ v(Z) ≤ v(Z ∪ {x}) ≤ v(Z ∪ {y}).

Responsive valuations have several equivalent definitions (Aziz, Gaspers, Mackenzie, &
Walsh, 2015). One of them uses the notion of domination. Given a valuation v on individual
goods, a bundle X is dominated by a bundle Y , denoted X -v Y , if there is an injection
f : X → Y such that v(x) ≤ v(f(x)) for all x ∈ X. The valuation v is called responsive if

X -v Y =⇒ v(X) ≤ v(Y).

Intuitively, responsive valuations presume that agents rank individual goods, and that their
ranking of bundles is consistent with the ranking of goods.

If v is additive then it is clearly responsive, but the opposite is not necessarily true.
For example, suppose there are four goods with v(w) < v(x) < v(y) < v(z). Then the
responsiveness condition does not imply anything about the relation between {z} and {x, y},
since none of them dominates the other. Similarly, responsiveness does not imply anything
regarding {w, z} and {w, x, y}, since none of them dominates the other. So it is possible that
v({z}) < v({x, y}) < v({w, x, y}) < v({w, z}). This is impossible with additive valuations.

The technique of picking-sequences, used for un-ordering an instance (see Section 4.2),
works for responsive preferences too. In fact, for each agent i, the bundle picked by i during

385

Hosseini, Searns & Segal-Halevi

the picking-sequence dominates the bundle allocated to i by the algorithm on the ordered
instance (the picking-sequence implements the injection f). Similarly, Lemma 5, ensuring
the existence of a BBFS-fair allocation, holds for responsive preferences too, since the proof
only requires containment of bundles. Therefore, the class of responsive preferences initially
seems like a good candidate for generalizing our results.

Unfortunately, we show below that, with responsive valuations, no meaningful ordinal
approximation is possible, even for two agents. This indicates that the ordinal maximin-
share approxiation may be too strong for handling non-additive valuations.

Proposition 1. For any integer d ≥ 1, there is an instance with two agents with responsive
valuations, in which no allocation guarantees both agents their 1-out-of-d maximin-share.

Proof. We construct an instance with m = 2d
2 − 1 goods. They are ranked the same for

both agents: vi(g1) > . . . > vi(gm) for i ∈ {1, 2}.
For each j ∈ [d2], we denote by Bj the set of bundles that contain a majority of the

goods in {g1, . . . , g(2j)−1}. Note that Bj ⊆ 2M . For example:

• B1 is the set of all bundles that contain g1;

• B2 is the set of all bundles that contain at least two goods from {g1, g2, g3};

• B3 is the set of all bundles that contain at least four goods from {g1, . . . , g7};

• Bd2 is the set of all bundles that contain at least 2d
2−1 goods from M .

Let X,Y be some bundles such that X ∈ Bj and Y ∈ 2M\Bj for some j ∈ [d2]. The majority
assumption implies that X cannot be dominated by Y : there cannot be an injection from
a majority to a minority. Therefore, a responsive valuation may assign a larger value to X
than to Y .

Before proceeding with the proof, we exemplify it for the special case d = 2. We define
the valuations of two agents as follows.

• For agent 1, we set v1(X) = 1 for any X ∈ (B1 ∩ B2) ∪ (B3 ∩ B4), and smaller
values for other bundles. Then MMS1-out-of-d

1 = 1, since M can be partitioned into
{g1, g2, g3} ∈ B1 ∩B2 and {g4, . . . , g7, g8, . . . , g15} ∈ B3 ∩B4.

• For agent 2, we set v2(X) = 1 for any X ∈ (B1 ∩ B3) ∪ (B2 ∩ B4), and smaller
values for other bundles. Then MMS1-out-of-d

2 = 1, since M can be partitioned into
{g1; g4, . . . , g7} ∈ B1 ∩B3 and {g2, g3; g8, . . . , g15} ∈ B2 ∩B4.

Note that the agents’ valuations are consistent with responsiveness. For example, consider
a bundle Y 6∈ (B1∩B2)∪(B3∩B4). Then either Y 6∈ B1∪B3 or Y 6∈ B1∪B4 or Y 6∈ B2∪B3

or Y 6∈ B2 ∪ B4. In any case, Y cannot dominate any bundle X ∈ (B1 ∩ B2) ∪ (B3 ∩ B4).
So assigning to X a higher value than to Y is consistent with responsive valuations.

Suppose now that an allocation (A1, A2) gives agent 1 a value of at least 1. This
means that either A1 ∈ B1 ∩ B2 or A1 ∈ B3 ∩ B4. If A1 ∈ B1 ∩ B2, then A1 contains g1

and a majority of the goods from {g1, g2, g3}. This means that A2 cannot contain g1 and
cannot contain a majority of {g1, . . . , g3}. So A2 6∈ B1 and A2 6∈ B2. This means that
A2 6∈ (B1 ∩ B3) ∪ (B2 ∩ B4), so the value of agent 2 is less than MMS1-out-of-d

2 . Similarly,

386

Ordinal Maximin Share Approximation for Goods

if A1 ∈ B3 ∩ B4, then A2 6∈ B3 and A2 6∈ B4, so again the value of agent 2 is less than
MMS1-out-of-d

2 . We conclude that no allocation gives both agents their 1-out-of-d MMS.
We now generalize this construction to any integer d.

• Let v1(X) = 1 for any bundle satisfying

X ∈
d⋃

i=1

 d⋂
j=1

B(i−1)d+j


and smaller values for other bundles.

• Let v2(X) = 1 for any bundle satisfying

X ∈
d⋃

i=1

 d⋂
j=1

B(j−1)d+i


and smaller values for other bundles.

Note that agent 1’s valuations are consistent with responsiveness, since any bundle not in⋃d
i=1

(⋂d
j=1B(i−1)d+j

)
cannot dominate a bundle from

⋃d
i=1

(⋂d
j=1B(i−1)d+j

)
, and simlarly

for agent 2.
To compute the agents’ MMS, define d2 bundles as follows. For each j ∈ [d2], let

Gj = {g2(j−1) , . . . , g(2j)−1}.

For example, G1 = {g1}, G2 = {g2, g3}, G3 = {g4, . . . , g7}, and so on. Note that the Gj are
pairwise-disjoint, and for any j ∈ [d2], Gj ∈ Bj since it contains the majority of goods in
{g1, . . . , g(2j)−1}. Then:

• MMS1-out-of-d
1 = 1, by the partition with parts Pi :=

(⋃d
j=1G(i−1)d+j

)
for i ∈ [d].

• MMS1-out-of-d
2 = 1, by the partition with parts Qi :=

(⋃d
j=1G(j−1)d+i

)
for i ∈ [d].

Suppose now that an allocation (A1, A2) gives agent 1 a value of at least 1. This means

that A1 ∈
(⋂d

j=1B(i1−1)d+j

)
for some i1 ∈ [d]. Then, A2 6∈ B(i1−1)d+j for any j ∈ [d]. So

A2 6∈
(⋂d

j=1B(j−1)d+i2

)
for any i2 ∈ [d]. So the value of agent 2 is less than 1.

We conclude that no allocation gives both agents their 1-out-of-d MMS. The proof holds
for any positive integer d.

Remark 3. Babaioff et al. (2021) prove that responsive preferences are a subset of submod-
ular preferences. Every submodular preference relation can be represented by a submodular
valuation function. Therefore, the impossibility in Proposition 1 extends to submodular val-
uations too.

387

Hosseini, Searns & Segal-Halevi

References

Aigner-Horev, E., & Segal-Halevi, E. (2022). Envy-free matchings in bipartite graphs and
their applications to fair division. Information Sciences, 587, 164–187.

Alkan, A. (1999). On the properties of stable many-to-many matchings under responsive
preferences. In Current Trends in Economics, pp. 29–39. Springer.

Amanatidis, G., Birmpas, G., & Markakis, E. (2016). On truthful mechanisms for maximin
share allocations. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pp. 31–37.

Amanatidis, G., Markakis, E., Nikzad, A., & Saberi, A. (2017). Approximation algorithms
for computing maximin share allocations. ACM Transactions on Algorithms (TALG),
13 (4), 52.

Assmann, S. F., Johnson, D. S., Kleitman, D. J., & Leung, J.-T. (1984). On a dual version
of the one-dimensional bin packing problem. Journal of algorithms, 5 (4), 502–525.

Aziz, H., Biro, P., Lang, J., Lesca, J., & Monnot, J. (2019). Efficient reallocation under
additive and responsive preferences. Theoretical Computer Science, 790, 1–15.

Aziz, H., Gaspers, S., Mackenzie, S., & Walsh, T. (2015). Fair assignment of indivisible
objects under ordinal preferences. Artificial Intelligence, 227, 71–92.

Aziz, H., & Ye, C. (2014). Cake cutting algorithms for piecewise constant and piecewise
uniform valuations. In International Conference on Web and Internet Economics, pp.
1–14. Springer.

Babaioff, M., Nisan, N., & Talgam-Cohen, I. (2019). Fair allocation through competitive
equilibrium from generic incomes. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, pp. 180–180.

Babaioff, M., Nisan, N., & Talgam-Cohen, I. (2021). Competitive equilibrium with indivisi-
ble goods and generic budgets. Mathematics of Operations Research, 46 (1), 382–403.

Barman, S., & Krishna Murthy, S. K. (2017). Approximation algorithms for maximin fair
division. In Proceedings of the ACM Conference on Economics and Computation, pp.
647–664.

Bogomolnaia, A., & Moulin, H. (2022). Guarantees in fair division: General or monotone
preferences.. arXiv preprint 1911.10009.

Bouveret, S., Chevaleyre, Y., & Maudet, N. (2016). Fair allocation of indivisible items. In
Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (Eds.), Handbook
of Computational Social Choice, chap. 13, pp. 284–310. Cambridge University Press.

Bouveret, S., & Lemâıtre, M. (2016). Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30 (2),
259–290.

Brams, S. J., Kilgour, & Klamler, C. (2012). The undercut procedure: an algorithm for the
envy-free division of indivisible items. Soc. Choice Welf., 39 (2-3), 615–631.

Budish, E. (2011). The combinatorial assignment problem: Approximate competitive equi-
librium from equal incomes. Journal of Political Economy, 119 (6), 1061–1103.

388

Ordinal Maximin Share Approximation for Goods

Csirik, J., Frenk, J. B. G., Labbè, M., & Zhang, S. (1999). Two simple algorithms for bin
covering. Acta Cybernetica, 14 (1), 13–25.

Csirik, J., Johnson, D. S., & Kenyon, C. (2001). Better approximation algorithms for bin
covering. In SODA, Vol. 1, pp. 557–566.

Csirik, J., Kellerer, H., & Woeginger, G. (1992). The exact lpt-bound for maximizing the
minimum completion time. Operations Research Letters, 11 (5), 281–287.

Deuermeyer, B. L., Friesen, D. K., & Langston, M. A. (1982). Scheduling to maximize
the minimum processor finish time in a multiprocessor system. SIAM Journal on
Algebraic Discrete Methods, 3 (2), 190–196.

Edmonds, J., & Pruhs, K. (2011). Cake cutting really is not a piece of cake. ACM Trans-
actions on Algorithms (TALG), 7 (4), 1–12.

Elkind, E., Segal-Halevi, E., & Suksompong, W. (2021a). Graphical cake cutting via max-
imin share. In Proceedings of the International Joint Conference on Artificial Intelli-
gence IJCAI.

Elkind, E., Segal-Halevi, E., & Suksompong, W. (2021b). Keep your distance: Land division
with separation. In Proceedings of the International Joint Conference on Artificial
Intelligence IJCAI.

Elkind, E., Segal-Halevi, E., & Suksompong, W. (2021c). Mind the gap: Cake cutting with
separation. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
5330–5338.

Frenk, J. B. G., & Kan, A. R. (1986). The rate of convergence to optimality of the LPT
rule. Discrete Applied Mathematics, 14 (2), 187–197.

Garg, J., McGlaughlin, P., & Taki, S. (2018). Approximating maximin share allocations. In
2nd Symposium on Simplicity in Algorithms (SOSA 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Garg, J., & Taki, S. (2020). An improved approximation algorithm for maximin shares. In
Proceedings of the ACM Conference on Economics and Computation, pp. 379–380.

Ghodsi, M., HajiAghayi, M., Seddighin, M., Seddighin, S., & Yami, H. (2018). Fair allocation
of indivisible goods: Improvements and generalizations. In Proceedings of the ACM
Conference on Economics and Computation, pp. 539–556. ACM.

Gourvès, L., & Monnot, J. (2019). On maximin share allocations in matroids. Theoretical
Computer Science, 754, 50–64.

Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell system technical
journal, 45 (9), 1563–1581.

Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17 (2), 416–429.

Halpern, D., & Shah, N. (2021). Fair and efficient resource allocation with partial informa-
tion. In Proceedings of the International Joint Conference on Artificial Intelligence
IJCAI, pp. 224–230.

389

Hosseini, Searns & Segal-Halevi

Hatfield, J. W. (2009). Strategy-proof, efficient, and nonbossy quota allocations. Social
Choice and Welfare, 33 (3), 505–515.

Herreiner, D., & Puppe, C. (2002). A simple procedure for finding equitable allocations of
indivisible goods. Soc. Choice Welf., 19 (2), 415–430.

Hosseini, H., & Searns, A. (2021). Guaranteeing maximin shares: Some agents left behind.
In Zhou, Z.-H. (Ed.), Proceedings of the International Joint Conference on Artificial
Intelligence IJCAI, pp. 238–244. International Joint Conferences on Artificial Intelli-
gence Organization. Main Track.

Hosseini, H., Searns, A., & Segal-Halevi, E. (2022). Ordinal maximin share approximation
for chores. In Proceedings of the International Conference on Autonomous Agents and
MultiAgent Systems, p. forthcoming.

Huang, X., & Lu, P. (2021). An algorithmic framework for approximating maximin share
allocation of chores. In Proceedings of the ACM Conference on Economics and Com-
putation (EC-21), pp. 630–631.

Jansen, K., & Solis-Oba, R. (2003). An asymptotic fully polynomial time approximation
scheme for bin covering. Theoretical Computer Science, 306 (1-3), 543–551.

Johnson, D. S. (1973). Near-optimal bin packing algorithms. Ph.D. thesis, Massachusetts
Institute of Technology.

Klaus, B., & Klijn, F. (2005). Stable matchings and preferences of couples. Journal of
Economic Theory, 121 (1), 75–106.

Kuhn, H. W. (1967). On games of fair division, pp. 29–37. Princeton University Press.

Kurokawa, D., Procaccia, A. D., & Wang, J. (2018). Fair enough: Guaranteeing approximate
maximin shares. Journal of the ACM (JACM), 65 (2), 8.

Kyropoulou, M., Suksompong, W., & Voudouris, A. A. (2020). Almost envy-freeness in
group resource allocation. Theoretical Computer Science, 841, 110–123.

Lang, J., & Rothe, J. (2016). Fair division of indivisible goods. In Economics and Compu-
tation, pp. 493–550. Springer.

Lipton, R. J., Markakis, E., Mossel, E., & Saberi, A. (2004). On approximately fair al-
locations of indivisible goods. In Proceedings of the ACM conference on Electronic
commerce, pp. 125–131. ACM.

Markakis, E. (2017). Approximation algorithms and hardness results for fair division with
indivisible goods. In Trends in Computational Social Choice, pp. 231–247. AI Access.

McGlaughlin, P., & Garg, J. (2020). Improving Nash social welfare approximations. Journal
of Artificial Intelligence Research, 68, 225–245.

Menon, V., & Larson, K. (2020). Algorithmic stability in fair allocation of indivisible goods
among two agents.. arXiv preprint 2007.15203.

Mertens, S. (2001). A physicist’s approach to number partitioning. Theoretical Computer
Science, 265 (1-2), 79–108.

Moulin, H. (1990). Uniform externalities: Two axioms for fair allocation. Journal of Public
Economics, 43 (3), 305–326.

390

Ordinal Maximin Share Approximation for Goods

Moulin, H. (1992). Welfare bounds in the cooperative production problem. Games and
Economic Behavior, 4 (3), 373–401.

Moulin, H. (2019). Fair division in the internet age. Annual Review of Economics, 11 (1),
407–441.

Nguyen, N.-T., Nguyen, T. T., & Rothe, J. (2017). Approximate solutions to max-min fair
and proportionally fair allocations of indivisible goods. In Proceedings of the Con-
ference on Autonomous Agents and MultiAgent Systems, pp. 262–271. International
Foundation for Autonomous Agents and Multiagent Systems.

Procaccia, A. D., & Wang, J. (2014). Fair enough: Guaranteeing approximate maximin
shares. In Proceedings of the ACM conference on Economics and computation, pp.
675–692. ACM.

Roth, A. E. (1986). On the allocation of residents to rural hospitals: A general property of
two-sided matching markets. Econometrica, 54 (2), 425–427.

Searns, A., & Hosseini, H. (2020). Fairness does not imply satisfaction (student abstract).
Proceedings of the AAAI Conference on Artificial Intelligence, 34 (10), 13911–13912.

Segal-Halevi, E. (2019). The maximin share dominance relation.. arXiv preprint 1912.08763.

Segal-Halevi, E. (2020). Competitive equilibrium for almost all incomes: existence and
fairness. Autonomous Agents and Multi-Agent Systems, 34 (1), 1–50.

Truszczynski, M., & Lonc, Z. (2020). Maximin share allocations on cycles. Journal of
Artificial Intelligence Research, 69, 613–655.

Woeginger, G. J. (1997). A polynomial-time approximation scheme for maximizing the
minimum machine completion time. Operations Research Letters, 20 (4), 149–154.

391

