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Abstract

For object reallocation problems, if preferences are strict but otherwise unrestricted, the Top Trading 
Cycles rule (TTC) is the leading rule: It is the only rule satisfying efficiency, individual rationality, and 
strategy-proofness. However, on the subdomain of single-peaked preferences, Bade (2019) defines a new 
rule, the “crawler”, which also satisfies these three properties. (i) The crawler selects an allocation by 
“visiting” agents in a specific order. A natural “dual” rule can be defined by proceeding in the reverse 
order. Our first theorem states that the crawler and its dual are actually the same. (ii) Single-peakedness of 
a preference profile may in fact hold for more than one order and its reverse. Our second theorem states 
that the crawler is invariant to the choice of the order. (iii) For object allocation problems (as opposed to 
reallocation problems), we define a probabilistic version of the crawler by choosing an endowment profile 
at random according to a uniform distribution, and applying the original definition. Our third theorem states 
that this rule is the same as the “random priority rule”.
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1. Introduction

Consider a group of agents each of whom is endowed with an indivisible good, called an 
“object”. Each agent has preferences over the objects. The initial allocation may not be effi-
cient (in the sense of Pareto efficiency) and the issue arises of reallocating the objects so as to 
achieve efficiency as well as possibly other socially desirable properties. An example of this type 
of problems is when the agents are households and the objects are housing units they own (the 
stylized “housing” market of Shapley and Scarf, 1974). A rule is a single-valued mapping that 
associates with each such problem an allocation, interpreted as a recommendation for the prob-
lem. If preferences are strict but otherwise unrestricted, the Top Trading Cycles rule (TTC) is the 
leading rule (Shapley and Scarf, 1974): It is the only rule satisfying the three desirable properties 
of “efficiency”, “individual rationality”,1 and “strategy-proofness” (Ma, 1994).2

Interestingly, TTC is not the only rule satisfying these properties on the subdomain of “single-
peaked” preferences (Bade, 2019). Returning to our example of a housing market, suppose that 
the housing units are of different sizes and that each household evaluates units based on their 
size. A single person may prefer a small unit; a family with children may prefer a large one. 
Each household has an ideal size; the further the size of a unit is from this ideal size, in either 
direction, the less desirable the unit is. Thus, households have single-peaked preferences with 
respect to size. Instead of size, the order could be based on how expensive units are, or on their 
proximity to a school or to the central business district. Many other examples can be found where 
agents have single-peaked preferences with respect to some reference order on the object set.3

On the single-peaked domain, Bade (2019) defines a new rule, which she calls the “crawler”, 
and shows that this rule, as TTC does, satisfies efficiency, individual rationality, and strategy-
proofness. The idea underlying the crawler is as follows. Objects are labeled in such a way that 
preferences are single-peaked with respect to this order. Similarly, agents are ordered according 
to their ownership of the objects. They are visited from left to right and each agent in turn is 
asked if he most prefers his endowment or an object to the left of his endowment. If he answers 
yes, he is asked which object he most prefers. He is assigned that object and leaves. Otherwise, 
the agent on his immediate right is asked the same question. At least one agent has to most prefer 
his endowment or an object to the left of his endowment. So some agent is eventually assigned 
an object, and he leaves with his assignment. Then the problem is updated as follows. Consider 
all of the agents whose endowments are between the object assigned to the agent who left and the 
object that agent owned (if the agent is not assigned his endowment). For each of those agents, 
ownership is shifted by one spot to the right. The sweeping process is repeated in the updated 
problem, and continues until every agent has been assigned an object.

1 Another common name for this property is the “endowment lower bound”.
2 Other proofs of this uniqueness result can be found in Svensson (1999), Anno (2015), Sethuraman (2016), and Bade 

(2019).
3 Accordingly, this domain has been studied from several other viewpoints (Liu, 2018; Damamme et al., 2015; Beynier 

et al., 2019). Moreover, for other types of resource allocation problems, a single-peakedness is a natural assumption. An 
example is when an infinitely divisible commodity has to be fully allocated among a group of agents (Sprumont, 1991).
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Obviously, one could define a “dual” rule by visiting agents from right to left (Bade, 2019). 
One would expect the crawler and its dual to differ. Because each of the two crawlers visits agents 
in a specific order, one may conjecture that the specific order that is chosen confers a particular 
advantage to some agents based on the location of their endowments relative to the location of 
the other agents’ endowments. Our first result is that they are in fact the same (Theorem 1). Thus, 
whether agents are visited from left to right or from right to left makes no difference.

Moreover, there may be multiple orders over the object set with respect to which a given pref-
erence profile is single-peaked.4 The crawler could select different allocations for these various 
orders. Then again, depending on which order we choose, certain agents would be favored at the 
expense of others. Our second result is that here too the crawler is in fact invariant to the order 
over the object set for which single-peakedness holds (Theorem 2).

Another important class of problems is “object allocation problems”; there, instead of be-
ing owned individually, objects are owned collectively. Well-studied rules for object allocation 
problems are the “sequential priority rules”5: To each order on the agent set is associated such a 
rule: The agent who is first is assigned his most preferred object; the agent who is second is as-
signed his most preferred object among the remaining ones; and so on. We may ask whether the 
crawler bears some relation to the sequential priority rules. Because the procedures underlying 
the definitions of the crawler and of the sequential priority rules are based on completely differ-
ent considerations, one may doubt that such a relation exists. Yet, our third theorem provides a 
positive answer to this question. It is based on allowing a rule to select a probability distribution 
over allocations. That is, the rule is probabilistic.

Given a preference profile, let us select an endowment profile at random according to a uni-
form distribution, and apply the crawler to the induced object reallocation problem. We call the 
probabilistic rule so defined the “crawler from random endowments”. We prove that the crawler 
from random endowments is the same probabilistic rule as “the random priority rule” (Abdulka-
diroglu and Sönmez, 1998): Choose an order on the agent set at random according to a uniform 
distribution and apply the induced sequential priority rule (Theorem 3).6

Equivalence results in the same vein already provided in the literature (Knuth, 1996; Abdulka-
diroglu and Sönmez, 1998; Pathak and Sethuraman, 2011; Lee and Sethuraman, 2011; Sönmez 
and Ünver, 2005; Ekici, 2020; Carroll, 2014; Bade, 2020). Each of them states that a probabilistic 
version of (a generalized) TTC is equivalent to the random priority rule (or a variant). However, 
as we show in Section 3.1, our result cannot be deduced from any of these equivalences.

This paper is organized as follows. In Section 2, we define the model. We formally define the 
crawler. Also, we define a dual rule by visiting agents from right to left as opposed to from left to 
right, and state our first equivalence result: the crawler and this dual rule are the same. Our second 
equivalence result is that the crawler is invariant to the order over the object set that preserves 
single-peakedness. In Section 3, we define the crawler from random endowments, and state our 
third equivalence result: the crawler from random endowments is the same as the random priority 
rule. Proofs are collected in the appendix.

4 Escoffier et al. (2008) define an algorithm that identifies all of the orders over an object set with respect to which a 
preference profile is single-peaked.
5 Another common name for these rules is “serial dictatorship”.
6 Another common name for the random priority rule is the “random serial dictatorship”.
3
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2. Model

There is a set N = {1, 2, . . . , n} of agents and a set O of objects (|O| = n). Each agent is 
endowed with one object in O , no two agents being endowed with the same object. We denote 
by ω the endowment profile, i.e., ω = (ω1, ω2, . . . , ωn) where the ith coordinate of ω is the 
object owned by agent i. Each agent i ∈ N has strict preferences Pi over O . Let P be the set of 
all preferences. We write Ri to denote the “at least as desirable as” relation associated with Pi . 
That is, for each pair o, o′ ∈ O , o Ri o′ if and only if either o Pi o′ or o = o′. We represent Pi by 
an ordered list of the objects, such as

Pi : o, õ, o′, . . . .

Let PN be the set of preference profiles for N . Our generic notation for a preference profile is 
P = (Pi)i∈N .

A problem is defined by a preference profile and an endowment profile. An allocation is a list 
x = (x1, x2, . . . , xn) such that for each i ∈ N , xi ∈ O , and for each pair i, j ∈ N such that i �= j , 
xi �= xj . Let X be the set of allocations. A rule is a single-valued mapping ϕ : PN × X → X
that associates with each problem (P, ω) ∈PN ×X an allocation x ∈ X .

Let L be the set of strict orders on O . We consider the following restriction on preference 
profiles. There is an order ≺∈ L such that for each agent, there is an object with the property that 
the further with respect to ≺ an object is from that distinguished object, in either direction, the 
worse off he is. Formally, a preference profile P is single-peaked if there is ≺∈ L such that for 
each i ∈ N , there is an object, which we denote by p(Pi), such that for each pair o, o′ ∈ O , if 
either o′ ≺ o � p(Pi) or p(Pi) � o ≺ o′, then o Pi o′.

Throughout, we consider preference profiles that are single-peaked with respect to some ref-
erence order on the object set. Given ≺∈ L, for each o ∈ O , we denote by o − 1 and o + 1 the 
objects that are adjacent to object o.7 Likewise, given ≺∈ L, for each i ∈ N , we denote by i − 1
and i + 1 the agents whose endowments are adjacent to that of agent i.8 Moreover, for each pair 
i, j ∈ N , if agent j is to the right of agent i, we write that i ≺ j .

Let f : {1, 2, · · · , n} → N be a bijection and let f = (f (1), f (2), · · · , f (n)) be the resulting 
strict order on N . Let F be the set of all orders on N . For each i ∈ N , each Pi ∈ P , and each 
O ′ ⊆ O , let Xi(O

′) be the most preferred object of agent i in O ′ at Pi , i.e.,

Xi(O
′) = o ⇐⇒ o ∈ O ′ and for each o′ ∈ O ′\{o}, o Pi o′.

We conclude this section by defining three basic properties of rules. Recall that ϕ is our 
generic notation for a rule. First, we require that for each problem, the chosen allocation be such 
that there is no other allocation that all agents find at least as desirable and at least one agent 
prefers:

Efficiency: For each (P, ω) ∈ PN × X , there is no x ∈ X such that (i) for each i ∈ N , 
xi Ri ϕi(P, ω), and (ii) there is j ∈ N such that xj Pj ϕj (P, ω).

Second, we require that for each problem, each agent find his assignment at least as desirable 
as his endowment:

7 Obviously, the leftmost object has no object to its left, and the rightmost object has no object to its right.
8 The agent whose endowment is leftmost has no one to his left, and the agent whose endowment is rightmost has no 

one to his right.
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Individual rationality: For each (P, ω) ∈PN ×X and each i ∈ N ,

ϕi(P,ω) Ri ωi.

Third, we require that no agent ever benefit by misrepresenting his preferences:

Strategy-proofness: For each (P, ω) ∈PN ×X , each i ∈ N , and each P ′
i ∈P ,

ϕi((Pi,P−i ),ω) Ri ϕi((P
′
i , P−i ),ω).

2.1. The crawler

In the context of object reallocation problems with strict preferences, TTC has been the central 
rule in the literature: It is the only rule satisfying efficiency, individual rationality, and strategy-
proofness (Ma, 1994). However, on the single-peaked domain, TTC is not the only rule satisfying 
these properties. Bade (2019) defines a new rule for this domain, and shows that this rule also 
satisfies these three properties.

The idea underlying the rule is as follows. Objects are labeled in such a way that preferences 
are single-peaked with respect to the order. Agents are visited according to the way the objects 
they own are ordered, from left to right, we say “in ascending order”. Each agent in turn is asked 
if he most prefers his endowment or an object to the left of his endowment. If yes, he is further 
asked which specific object it is. Depending on his answer, we take one of the following actions:

(1) If an agent’s most preferred object is to the right of his endowment, we move to the next 
agent.

(2) If an agent’s most preferred object is his endowment or an object to the left of his endowment, 
he receives his most preferred object and leaves with it.

When an agent leaves, the problem is updated as follows. Consider agents whose endowments 
are between the object assigned to the agent who left and the object that agent owned. The 
ownership of each such agent is shifted by one spot to the right. Hence, each of these agents 
owns a new object. The sweeping procedure is repeated in the updated problem. In anticipation 
of a forthcoming definition, we refer to the rule just defined as the ascending crawler. We denote 
it by ACR.

The formal description is as follows.

Ascending crawler, ACR: Let ≺∈ L, P ∈PN , where P is single-peaked with respect to ≺, and 
ω ∈X .

Label the objects in O0 ≡ O in such a way that for each t ∈ {1, . . . , n − 1 }, ot ≺ ot+1. 
Label the agents in N0 ≡ N in such a way that for each t ∈ {1, . . . , n − 1}, we have ωit ≺ ωit+1 . 
Let Ô0 = {o1, . . . , on} and N̂0 = {i1, . . . , in}.

At each Step k ≥ 1, let

k∗ ≡ min{1,··· ,n−k}

{
t : ot Pit ot+1, where ot , ot+1 ∈ Ôk−1

}
.

Let ACRik∗ (P, ω) = Xik∗ (Ok−1). Let Ok ≡ Ok−1\{Xik∗ (Ok−1)} and Nk ≡ Nk−1\{ik∗}.
Label the objects in Ok in such a way that for each t ∈ {1, . . . , n −k−1}, ot ≺ ot+1. Label the 

agents in Nk in such a way that for each t ∈ {1, . . . , n − k − 1}, at Step k − 1, we have it ≺ it+1. 
Let Ôk = {o1, . . . , on−k} and N̂k = {i1, . . . , in−k}.
5
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The procedure terminates when no agent remains. Because there are finite numbers of agents, 
there are finitely many steps.

Example 1. Illustrating the ascending crawler. Let N = {1, 2, 3, 4}. Let ω1 ≺ ω2 ≺ ω3 ≺ ω4. 
Let P ∈PN be defined by

P1 : ω4, ω3, ω2, ω1

P2 : ω2, ω1, ω3, ω4

P3 : ω1, ω2, ω3, ω4

P4 : ω2, ω1, ω3, ω4.

At each step, we ask the following question to the agent we visit;
‘Among the available objects, is your most preferred object either your endowment or an 

object to the left of your endowment? If the answer is yes, which object is it?’9

Step 1: Agent 1 is queried first. Because his answer is no, agent 2 is queried next. Agent 2 
answers yes, and that he most prefers his endowment. Hence, he receives his endowment. He 
leaves with it.

Step 2: Agent 1 is queried first. Because his answer is no, agent 3 is queried next. Agent 3 
answers yes, and that he most prefers ω1. Hence, he receives that object and leaves with it. The 
ownership of agent 1 is shifted by one spot to the right.

Step 3:We repeat the sequence of queries. Agent 4 is the first agent who answers yes to the first 
question, and he most prefers object ω3. Hence, he receives that object and leaves with it. The 
ownership of agent 1 is shifted by one spot to the right.

Step 4: Agent 1 is the only agent who has not been assigned an object yet and object ω4 is the 
only available object. Hence, agent 1 receives object ω4 and leaves with it.

Because no agent remains, the algorithm terminates, yielding

ACR(P,ω) = (ω4,ω2,ω1,ω3).

Fig. 1 illustrates the process. At each step, the agent who is assigned an object at that step is 
circled. At each step, the agents who have already been assigned objects are shown in boxes.

We restate a result due to Bade (2019).

Theorem. The ascending crawler is efficient, individually rational, and strategy-proof.

2.2. The first equivalence result: equivalence between the ascending crawler and the 
descending crawler

Of course, as pointed out by Bade (2019), a “dual” rule can be defined by visiting agents from 
right to left, let us say “in descending order”. Let us call this dual rule the descending crawler. 
We denote it by DCR. We omit the formal definition and only show how to apply it to our 
Example 1.

9 For the agent whose endowment is leftmost, we ask ‘among the available objects, is your most preferred object your 
endowment?’
6
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P3

P2 P4 P1

object 1 2 3 4

agent 1 2 3 4

step 1 1 2 3 4

step 2 1 2 3 4

step 3 2 1 43

step 4 2 13 4

Fig. 1. The ascending crawler.

Example 1 (Continued). Illustrating the descending crawler. At each step, we ask the following 
question to the agent we visit;

‘Among the available objects, is your most preferred object either your endowment or an 
object to the right of your endowment? If the answer is yes, which object is it?’10

Step 1: Agent 4 is queried first. Because his answer is no, agent 3 is queried next. Because 
his answer is no, agent 2 is queried next. Agent 2 answers yes, and that he most prefers his 
endowment. Hence, he receives his endowment and leaves with it.

Step 2: Agent 4 is queried first. Because his answer is no, agent 3 is queried next. Because his 
answer is no, agent 1 is queried next. Agent 1 answers yes, and that he most prefers object ω4. 
Hence, he receives that object and leaves with it. The ownership of each of agents 3 and 4 is 
shifted by one spot to the left.

Step 3:We repeat the sequence of queries. Agent 3 is the first agent who answers yes to the first 
question, and he most prefers object ω1. Hence, he receives that object and leaves with it.

Step 4: Agent 4 is the only agent who has not been assigned an object yet and object ω3 is the 
only available object. Hence, agent 4 receives object ω3 and leaves with it.

10 For the agent whose endowment is rightmost, we ask ‘among the available objects, is your most preferred object your 
endowment?’
7
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P3

P2 P4 P1

object 1 2 3 4

agent 1 2 3 4

step 1 1 2 3 4

step 2 1 2 3 4

step 3 2 4 13

step 4 2 13 4

Fig. 2. The descending crawler.

Because no agent remains, the algorithm terminates, yielding

DCR(P,ω) = (ω4,ω2,ω1,ω3).

Fig. 2 illustrates the process.

In the example, the assignments obtained by applying the two rules are the same. In general, 
one would expect the two rules to select different allocations. However, it turns out that these 
allocations are always the same:

Theorem 1. The ascending crawler is the same rule as the descending crawler. That is, ACR =
DCR.

Because the ascending crawler visits agents from left to right, one might have conjectured that 
this specific order confers a particular advantage to some agents based on the location of their 
endowments relative to the location of other agents’ endowments. Specifically, because agents 
whose endowments are on the left side of the order are visited first, one may suspect that these 
agents enjoy some advantage at the expense of the agents whose endowments are on the right 
side of the order. However, Theorem 1 implies that the order in which agents are visited gives no 
benefit to any particular agent.
8
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Hereafter, for simplicity, we refer to these rules as the crawler, using the notation CR. With-
out loss of generality, for each endowment profile, when we operate the crawler, we apply the 
ascending procedure.

2.3. The second equivalence result: the crawler is invariant to the order over the object set that 
preserves single-peakedness

There may be multiple orders on the object set with respect to which a preference profile is 
single-peaked. If a preference profile is single-peaked with respect to ≺, it is obviously single-
peaked with respect to the reverse order. A preference profile may be single-peaked with respect 
to more than one order and its reverse, however. Here is an example of such a preference profile.

Example 2. A preference profile that is single-peaked with respect to more than one order and 
its reverse. Let N = {1, 2, 3, 4, 5, 6}. Let P ∈ PN be defined by

P1,2,3 : ω1, ω2, ω3, ω4, ω5, ω6

P4,5,6 : ω2, ω1, ω5, ω3, ω6, ω4.

There are four orders over the object set with respect to which the profile is single-peaked;

ω6 ≺ ω5 ≺ ω1 ≺ ω2 ≺ ω3 ≺ ω4 and its reverse ω4 ≺′ ω3 ≺′ ω2 ≺′ ω1 ≺′ ω5 ≺′ ω6

ω6 ≺̂ ω5 ≺̂ ω2 ≺̂ ω1 ≺̂ ω3 ≺̂ω4 and its reverse ω4 ≺̃ ω3 ≺̃ ω1 ≺̃ ω2 ≺̃ ω5 ≺̃ ω6.

One may think that the crawler selects different allocations for the various orders with respect 
to which a preference profile is single-peaked. For each ≺∈ L, we denote by CR≺ the crawler 
with respect to order ≺. Theorem 1 implies the following result:

Corollary 1. Let ≺, ≺′∈ L be such that ≺ and ≺′ are reverse to each other. For each (P, ω) ∈
PN ×X such that P is single-peaked with respect to ≺ and ≺′,

CR≺(P,ω) = CR≺′
(P,ω).

It turns out that the crawler is invariant with respect to the choice of an order.

Theorem 2. The crawler is invariant with respect to the choice of an order on the object set that 
preserves single-peakedness of preference profiles. That is, for each (P, ω) ∈PN ×X and each 
pair ≺, ≺′∈ L such that P is single-peaked with respect to ≺ and ≺′,

CR≺(P,ω) = CR≺′
(P,ω).

Theorem 2 states that the crawler is robust not only to the choice of an order on the object 
set and its reverse with respect to which single-peakedness holds but also to the choice of any 
order with respect to which a given preference profile is single-peaked. This result provides an 
additional fact that the crawler does not favor particular agents on the basis of the location of 
their endowments at the expense of the others.
9
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3. The third equivalence result: equivalence between the crawler from random 
endowments and the random priority rule

Instead of each agent being endowed with one object, agents may collectively own a set of 
objects and a rule then has to assign each agent one object. We refer to this type of problems as 
“object allocation problems”. Although the crawler is defined for reallocation problems, it can 
help provide solutions to object allocation problems. To explain how, we first define the concept 
of a “sequential priority rule”: To each order on the agent set is associated such a rule. The first 
agent in the order receives his most preferred object, the second agent in the order receives his 
most preferred object among the remaining ones, and so on (the formal definition is given below). 
None of these rules treats agents fairly. However, their unfairness can be mitigated by considering 
lotteries. Formally, a lottery is a probability distribution over allocations, p = (p1, · · · , pn!), 
such that for each k, pk ≥ 0, and 

∑
k pk = 1. We denote the degenerate lottery that assigns 

probability 1 to allocation x by px . Let �(X ) be the set of all lotteries. A probabilistic rule is a 
single-valued mapping which associates a lottery with each preference profile. The average of all 
sequential priority rules is obtained by choosing the order on the agent set at random according 
to a uniform distribution and applying the induced sequential priority rule. The rule so defined is 
called the “random priority rule” (Abdulkadiroglu and Sönmez, 1998).

We study the relationship between the random priority rule and the crawler from random 
endowments: For each problem, choose an endowment profile at random according to a uniform 
distribution, and apply the crawler to the induced object reallocation problem. The procedures 
underlying the crawler and the sequential priority rules are quite different. Thus, one should be 
doubtful that there is any relationship between the random priority rule and the crawler from ran-
dom endowments. However, as we show, the probability distributions over allocations obtained 
by applying these two rules are the same (Theorem 3).

Let us now formally define the family of rules under discussion. Here, a problem is simply 
defined as a preference profile. However, the crawler selects an allocation on the basis of both a 
preference profile and an endowment profile, so that the family of rules that we are defining are 
parametrized by the endowment profile ω. We indicate this parametrization with the superscript 
ω, and denote the rule associated with the parameter ω by CRω.

Given f ∈ F , the sequential priority rule induced by f , SP f : PN → X , is defined by 
setting, for each P ∈PN ,

SP
f

f (1)(P ) = Xf (1)(O),

SP
f

f (2)(P ) = Xf (2)

(
O \

{
SP

f

f (1)(P )
})

,

...

SP
f

f (i)(P ) = Xf (i)

⎛
⎝O \

i−1⋃
j=1

{
SP

f

f (j)(P )
}⎞
⎠ ,

...

SP
f

f (n)(P ) = Xf (n)

⎛
⎝O \

n−1⋃
j=1

{
SP

f

f (j)(P )
}⎞
⎠ .
10
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The random priority rule, RP : PN → �(X ), is defined by setting, for each P ∈PN ,

RP(P ) =
∑
f ∈F

1

n!p
SPf (P ).

The crawler from random endowments RCR : PN → �(X ), is defined by setting, for 
each P ∈ PN ,

RCR(P ) =
∑
ω∈X

1

n!p
CRω(P ).

Here is our third equivalence result:

Theorem 3. The crawler from random endowments is the same probabilistic rule as the random 
priority rule. That is, RCR = RP .

The proof involves constructing a mapping g : X → F by recursively finding pairs of agents 
such that for each pair, one “envies” the other, and giving higher priority to the second agent 
than to the first agent. Then we show that (i) the allocation selected by the crawler given an 
endowment profile is the same as the allocation selected by the sequential priority rule induced 
by the order on the agent set that is selected by applying the mapping to that endowment profile, 
and (ii) the mapping is one-to-one and onto.

3.1. Discussion

Following the equivalence result between the core from random endowments and the random 
priority rule (Knuth, 1996; Abdulkadiroglu and Sönmez, 1998), several other equivalence results 
have been proved (Pathak and Sethuraman, 2011; Lee and Sethuraman, 2011; Sönmez and Ünver, 
2005; Ekici, 2020; Carroll, 2014; Bade, 2020). Each of these papers generalizes TTC in some 
fashion, and shows that the probabilistic rule associated with the generalized TTC is the same 
as the random priority rule (or a variant of it). None of these rules are equivalent to the crawler. 
Hence, our Theorem 3 cannot be deduced from any of these results.

A large family of rules, which are efficient, strategy-proof, and non-bossy,11 is defined by 
Pycia and Ünver (2017). They show that on the domain of strict preferences, any rule satisfy-
ing the above properties is a member of this family. Rules in their family, the so-called “trading 
cycles” rules, are parametrized by what they call a “control-rights structure” (the formal defini-
tion is given in the appendix). The procedure underlying their definition is similar to TTC, but 
control-rights structures add flexibility to TTC. Now, given a control-rights structure, the associ-
ated probabilistic rule is obtained by permuting the agent set at random according to a uniform 
distribution, and applying the induced rule.

For each rule in the trading cycles family, the probabilistic rule associated with it is the same 
rule as the random priority rule (Bade, 2020). This result holds for each preference profile, and 
in particular of course, it holds on the subdomain of problems with profiles of single-peaked 
preferences. Thus, on this domain, her equivalence result remains true; yet, on this domain, there 
may be rules that are not trading cycles rules, but are still efficient, strategy-proof, and non-bossy. 

11 Formally, ϕ is non-bossy if for each (P, ω) ∈ PN × X , each i ∈ N , and each P ′
i

∈ P , if ϕi

((
P ′

i
,P−i

)
,ω

)
= ϕi

((
Pi,P−i

)
,ω

)
, then ϕ

((
P ′,P−i

)
,ω

) = ϕ
((

Pi,P−i

)
,ω

)
.

i

11
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In fact, the crawler is an example of such a rule.12 Therefore, our Theorem 3 cannot be deduced 
from Bade (2020)’s previous result.

4. Conclusion

We have shown three equivalence results pertaining to a new rule defined by Bade (2019)
for object reallocation problems when preferences are single-peaked. Our first equivalence result 
states that this rule, which she calls the crawler and which we call the ascending crawler, is the 
same as the dual rule that she proposes, and which we call the descending crawler. Thus, the 
order in which agents are visited does not confer any particular advantage to some agents based 
on the location of their endowments relative to the location of the other agents’ endowments.

Furthermore, single-peakedness of a preference profile may hold with respect to more than 
one order on the object set that differs from the reverse of another order. Our second equivalence 
result states that for each single-peaked preference profile, the crawler is invariant with respect 
to the choice of an order on the object set that preserves single-peakedness of the profile. This 
result provides additional fact that the crawler does not favor particular agents on the basis of the 
location of their endowments at the expense of the others.

Our third equivalence result concerns object allocation problems, and state that the probability 
distribution over allocations selected by the crawler from random endowments is the same as the 
probability distribution selected by the random priority rule. This equivalence result provides 
another structural analysis of the crawler.

Appendix A. Proof of Theorem 1

We use two facts to prove Theorem 1. First, because both the ascending and the descending 
crawlers are individually rational,

Fact 1. For each (P, ω) ∈PN ×X and each i ∈ N ,

p(Pi) = ωi =⇒ ACRi(P,ω) = ωi = DCRi(P,ω).

Second for each problem and each pair of adjacent agents, if each of them prefers the en-
dowment of the other agent to his own, the allocation selected by the ascending crawler remains 
the same even if they swap their endowments before the ascending crawler is applied (Tamura, 
2021). Also, an analogous argument holds for the descending crawler.13

Formally, for each ω ∈ X and each pair i, j ∈ N , let ωi,j ∈X be obtained from ω by swapping 
the endowments of agent i and j . That is, ωi,j

i = ωj , ω
i,j
j = ωi , and for each k ∈ N \ {i, j}, 

ω
i,j
k = ωk .

Fact 2 (Tamura, 2021). For each (P, ω) ∈PN ×X and each i ∈ N ,

ωi+1 Pi ωi and ωi Pi+1 ωi+1 =⇒
ACR(P,ωi,i+1) = ACR(P,ω) and DCR(P,ωi,i+1) = DCR(P,ω).

12 Proof is in the Online Appendix.
13 Tamura (2021) calls the ascending crawler simply the crawler.
12
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Proof of Theorem 1. Let (P, ω) ∈ PN × X . The proof is by induction on n (the number of 
agents).

Suppose that n = 1. Then ACR(P, ω) = ω = DCR(P, ω).
Let k ∈N . Suppose that when n < k,

ACR(P,ω) = ω = DCR(P,ω).

We show that when n = k,

ACR(P,ω) = DCR(P,ω). (1)

Without loss of generality, suppose that agent 1 is the first agent who is assigned an object 
when the ascending crawler is applied to (P, ω). Suppose that p(P1) = ω1. Then by Fact 1,

ACR1(P,ω) = DCR1(P,ω).

After agent 1 leaves with his assignment, there are k − 1 remaining agents. By the induction 
hypothesis, (1) holds. Suppose that p(P1) �= ω1. Note that for each i ∈ N such that ωi ≺ ω1, we 
have ωi ≺ p(Pi). We call agent a the agent whose endowment is assigned to agent 1 when the 
ascending crawler is applied to (P, ω), i.e., ωa = ACR1(P, ω). This means that ωa = p(P1). 
Also, let {i1, . . . , ik} ⊂ N be the set of agents whose endowments are between ωa and ω1 and 
ωik ≺ . . . ≺ ωi1 . Starting with ω, suppose that agents 1 and i1 swap their endowments before 
either the ascending or the descending crawler is applied to (P, ω). By Fact 2,

ACR(P,ω) = ACR(P,ω1,i1) and DCR(P,ω) = DCR(P,ω1,i1).

Let ω̃ ≡ ω1,i1 . Starting with ω̃, suppose that agents 1 and i2 swap their endowments before the 
ascending or the descending crawler is applied to (P, ω̃). By Fact 2,

ACR(P,ω) = ACR(P, ω̃) = ACR(P, ω̃1,i2) and

DCR(P,ω) = DCR(P, ω̃) = DCR(P, ω̃1,i2).

Let ω̂ ∈ X be such that ω̂1 = ωa , ω̂a = ωik , and for each l ∈ {1, . . . , k}, ω̂il = ωil−1 (where 
ω̂i1 = ω1). By an analogous argument,

ACR(P,ω) = ACR(P, ω̂) and DCR(P,ω) = DCR(P, ω̂).

By Fact 1,

ACR1(P,ω) = ACR1(P, ω̂) = ω̂1 = DCR1(P, ω̂) = DCR1(P,ω).

After agent 1 leaves with his assignment, there are k − 1 remaining agents. By the induction 
hypothesis, (1) holds. �
Appendix B. Proof of Theorem 2

Let ≺, ≺′∈ L be such that ≺′ is not the reverse of ≺. Let P ∈ PN be single-peaked with 
respect to both ≺ and ≺′. Let o, o ∈ O be such that there is pair i, j ∈ N such that p(Pi) = o

and p(Pj ) = o, and for each i ∈ N , o � p(Pi) � o. By Corollary 1, without loss of generality, 
suppose that o �′ o.

Claim 1. For each pair o, o′ ∈ O ,

o ≺ o ≺ o′ ≺ o ⇐⇒ o ≺′ o ≺′ o′ ≺′ o.
13



Y. Tamura and H. Hosseini Journal of Economic Theory 203 (2022) 105466
Proof of Claim 1. Let o ∈ O be such that o ≺ o ≺ o. Let i, j ∈ N be such that p(Pi) = o and 
p(Pj ) = o. Because Pi and Pj are single-peaked with respect to ≺,

o Pi o Pi o and o Pj o Pj o. (2)

Agent i’s preferences imply that one of the following conditions holds:

(i) o ≺′ o ≺′ o, (ii) o ≺′ o ≺′ o, (iii) o ≺′ o ≺′ o, or (iv) o ≺′ o ≺′ o.

Conditions (ii) and (iv) contradict the assumption that o �′ o. Condition (iii) contradicts the 
hypothesis that Pj is single-peaked with respect to ≺′. Therefore, Condition (i) holds.

Now let o, o′ ∈ O be such that o ≺ o ≺ o′ ≺ o. By the above argument, o ≺′ o, o′ ≺′ o. Note 
that o Pi o Pi o′ Pi o. Because Pi is single-peaked with respect to ≺′, o ≺′ o′. �
Proof of Theorem 2. Let ≺, ≺′∈ L be such that ≺�=≺′. Let (P, ω) ∈ PN × X be such that P
is single-peaked with respect to both ≺ and ≺′. The proof is by induction on n (the number of 
agents).

Suppose that n = 1. Then CR≺(P, ω) = CR≺′
(P, ω). Let k ∈ N . Suppose that when n < k, 

we have CR≺(P, ω) = CR≺′
(P, ω).

We show that when n = k,

CR≺(P,ω) = CR≺′
(P,ω). (3)

Suppose that for each o ∈ O , o � o � o. This implies ≺′ is the reverse of ≺. By Theorem 1, (3)
holds. Suppose that there is o ∈ O such that either o ≺ o or o ≺ o. By Claim 1, for each pair 
o, o′ ∈ O , o ≺ o ≺ o′ ≺ o if and only if o ≺′ o ≺′ o′ ≺′ o. Without loss of generality, suppose that 
agent 1 is the first agent who is assigned an object when CR≺ is applied to (P, ω). Suppose that 
p(P1) = ω1. By Fact 1,

CR≺
1 (P,ω) = ω1 = CR≺′

1 (P,ω).

After agent 1 leaves with his assignment, there are k − 1 remaining agents. By the induction 
hypothesis, (3) holds. Suppose that p(P1) �= ω1. Note that for the agents whose endowments 
are between o and o, agent 1 is the first agent who is assigned an object when CR≺′

is applied 
to (P, ω). Hence, for each i ∈ N such that o �′ ωi ≺ ω1, we have ωi ≺′ p(Pi). We call agent 
a ∈ N the agent whose endowment is assigned to agent 1 when CR≺′

is applied to (P, ω), i.e., 
ωa = CR≺′

1 (P, ω). Note that ωa = p(P1). Also, let {i1, . . . , ik} ⊂ N be the set of agents whose 
endowments are between ωa and ω1 and ωik ≺ . . . ≺ ωi1 . Hence,

ωa ≺′ ωik ≺′ . . . ≺′ ωi1 ≺′ ω1.

Let ω̂ ∈ X be such that ω̂1 = ωa , ω̂a = ωik , and for each l ∈ {1, . . . , k}, ω̂il = ωil−1 (where 
ω̂i1 = ω1). By applying Fact 2,

CR≺′
(P, ω̂) = CR≺′

(P,ω).

By Fact 1,

CR≺′
1 (P,ω) = p(P1) = CR≺

1 (P,ω).

After agent 1 leaves with his endowment, there are k − 1 remaining agents. By the induction 
hypothesis, (3) holds. �
14
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Appendix C. Proof of Theorem 3

Let P ∈ PN . The following lemma shows that for each allocation selected by the sequential 
priority rule induced by a given order on the agent set, there is an endowment profile for which 
the crawler selects the same allocation at the endowment profile. Conversely, for each allocation 
selected by the crawler at a given endowment profile, there is an order on the agent set such that 
the sequential priority rule induced by the order selects the same allocation.

Lemma 1.{
x ∈ X : there is f ∈F such that SP f (P ) = x

}
= {

x ∈X : there is ω ∈X such that CRω(P ) = x
}
.

Given a preference profile, the set of allocations selected by TTC at the various endowment 
profiles is the same as the set of allocations selected by the sequential priority rules induced by 
the various orders on the agent set (Knuth, 1996; Abdulkadiroglu and Sönmez, 1998).14 We show 
that the set of allocations selected by the crawler at the various endowment profiles is the same 
as the set of allocations selected by TTC at the various endowment profiles. Combining these 
results, we derive Lemma 1.

Lemma (Knuth, 1996; Abdulkadiroglu and Sönmez, 1998).{
x ∈ X : there is f ∈F such that SP f (P ) = x

}
= {

x ∈X : there is ω ∈X such that T T Cω(P ) = x
}
.

(4)

Proof of Lemma 1. We show that for each ω ∈X , there is ω′ ∈ X such that

T T Cω(P ) = CRω′
(P ).

This implies that{
x ∈X : there is ω ∈ X such that T T Cω(P ) = x

}
⊆ {

x ∈X : there is ω ∈ X such that CRω(P ) = x
}
.

The proof for the other direction is analogous. Hence, we only show one direction.
Let ω ∈X . Because the crawler is individually rational, for each i ∈ N ,

CR
T T Cω(P )
i (P ) Ri T T Cω

i (P ).

Because TTC is efficient, there is no i ∈ N such that

CR
T T Cω(P )
i (P ) Pi T T Cω

i (P ).

This implies that

CRT T Cω(P )(P ) = T T Cω(P ).

14 Abdulkadiroglu and Sönmez (1998) also show that for each allocation in the set, the frequency of the selection of 
that allocation by TTC is the same as that by the sequential priority rules.
15
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Together with (4), we have{
x ∈ X : there is f ∈ F such that SP f (P ) = x

}
= {

x ∈X : there is ω ∈ X such that CRω(P ) = x
}
. �

We now construct a mapping g from X into F and show that (i) the crawler induced by an 
endowment profile and the sequential priority rule induced by the order on the agent set given by 
the mapping g select the same allocation, and (ii) the mapping is one-to-one and onto.

Mapping g is constructed by the procedure described below. There are two phases. In Phase 1, 
we construct “envy graphs”, and in Phase 2, we derive an order on the agent set.

Phase 1 proceeds as follows: At Round 1, (1) for each agent i ∈ N , we identify j ∈ N who 
receives agent i’s most preferred object. If j �= i, we say that agent i envies agent j . (2) For each 
agent, if he is envied by someone and he envies someone else, we connect these envy relations. 
For each sequence of agents such that each agent in the sequence, except for the first agent, 
envies the agent on his immediate left and no agent envies the last agent in the sequence, we 
connect all of these envy relations. Because the crawler is efficient, the first and the last agents 
cannot be the same, i.e., there is no cycle of envy. We call the resulting connected envy relations 
a maximal envy chain. (3) For each pair of maximal envy chains formed at Round 1, if there is 
an agent who belongs to both, we “attach” them at this agent. The result is a subgraph of the envy 
graph. (4) We remove any agent who does not envy anyone from the preference profile. Also, we 
update the preferences of the remaining agents as follows: for each agent who envies someone, 
we restrict his preferences to the objects that are not his most preferred object. At each Round 
r ≥ 2, we repeat this procedure among the remaining agents. Moreover, at Step 3, in addition 
to each pair of maximal envy chains formed at Round r , for each pair of maximal envy chains 
such that one forms at that round and the other forms at an earlier round, if there is an agent who 
belongs to both chains, we attach these chains at this agent. Phase 1 terminates when all agents 
are removed. The resulting graph is the envy graph.

Phase 2 proceeds as follows: (1) initially, the agents are ordered in such a way that for each 
pair i, j ∈ N , agent i comes earlier than agent j if and only if ωi ≺ ωj . (2) For the agents 
who form a component of the envy graph, we permute their positions in the order based on the 
following two criteria. (i) Consider a set of agents who form a maximal envy chain. For each 
pair of agents in the chain, if one envies the other, the second agent comes earlier than the first 
agent in the updated order. (ii) For each pair of agents who do not belong to the same maximal 
envy chain, their relative positions in the order are determined according to the positions of their 
endowments and their assignments as described below.

Here is the formal definition. For each agent, we define two sets of objects, a set of eliminated 
objects and a set of residual objects, that are updated at each round. Recall that for each Pi ∈ P
and each O ′ ⊆ O , we denote by Xi(O

′) the most preferred object of agent i in O ′ at Pi .
Let ω ∈X .

Phase 1: Construct the envy graph.

Round 0: For each i ∈ N , let

O0
i = O and E0

i = ∅.

Round r ≥ 1:

Step 1: Identify each pair i,j ∈ N such that agent i envies agent j for X(Or−1).
i

16
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ik → ·· · → i1

jk′ → · · · → j1

l

(a) Configuration 1.

ik → ·· · → i1

jk′ → · · · → j1

l

(b) Configuration 2.

ik → ·· · → i1

(c) Configuration 3.

Fig. 3. Possible configurations of a component in a subgraph of the envy graph.

For each i ∈ N such that Or−1
i �= ∅, identify j ∈ N such that CRω

j (P ) = Xi(O
r−1
i ). If j �= i, 

write i → j . Also, let Er
i = {Xi(O

r−1
i )}. If j = i, let Er

i = Or−1
i . Notice that each agent envies 

at most one agent at each round.

Step 2: Identify all maximal envy chains.15

Step 3: Construct subgraphs of the envy graph.

For each pair of maximal envy chains such that one forms at Round r and the other forms 
at Round r ′ ≤ r , if there is an agent who belongs to both, attach them at this agent. There are 
three possible configurations described below. Each component in a subgraph of the envy graph 
is either a maximal envy chain or a combination of these three configurations.

Let I, J ⊆ N be such that the agents in I form a maximal envy chain at Round r ′ and the 
agents in J form a maximal envy chain at Round r . Let k, k′ ∈ {1, . . . , n − 1}.
Configuration 1: There is {i0, . . . , ik} ⊆ I and {j0, . . . , jk′ } ⊆ J , where i0 = j0 ≡ l, such that

ik → . . . → i1 → l and jk′ → . . . → j1 → l.

Connect them as described in Fig. 3a.

Configuration 2: There is {i1, . . . , ik+1} ⊆ I and {j1, . . . , jk′+1} ⊆ J , where ik+1 = jk′+1 ≡ l, 
such that

l → ik → . . . → i1 and l → jk′ → . . . → j1.

Connect them as described in Fig. 3b.

Configuration 3: There is {i1, . . . , ik} ⊆ I and {j1, j2} ⊆ J , where i1 = j1 and ik = j2, such that

ik → . . . → i1 and j2 → j1.

Connect them as described in Fig. 3c.
Because the crawler is efficient, no cycle forms. We illustrate two examples of a subgraph of 

the envy graph (Fig. 4).

Step 4: Update each agent’s set of residual objects.

For each i ∈ N , let Or
i = Or−1

i \Er
i .

15 For each sequence of agents {i1, i2, . . . , ik} ⊆ N for some k ∈ {1, . . . , n} such that for each k′ ∈ {2, . . . , k}, ik′ →
ik′−1, agent i1 does not point to any agent, and no agent points to ik , we concatenate these relations, i.e.,

ik → ik−1 → . . . → i2 → i1.
17
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i2 →
i1 →

j2
→ j1

→ l
→ m3

→ m2
→ m1

→
k

(a)

i

j2 → j1

k2 → k1

l

→

→

→

→
(b)

Fig. 4. Two examples of a subgraph of the envy graph. Fig. 4a is a combination of Configurations 1, 2, and 3. Fig. 4b is 
a combination of Configurations 1 and 2.

Phase 1 terminates at the round when for each i ∈ N , Or
i = ∅. Let S ∈ {1, . . . , n}. Let C =

{C1, . . . , CS} be the partition of N such that for each s ∈ {1, . . . , S}, the agents in Cs form a 
component in the envy graph.16

Phase 2: Derive an order on the agent set.

Let g0(ω) ∈ F be defined by setting, for each pair i, j ∈ N ,

g0
i (ω) < g0

j (ω) ⇐⇒ ωi ≺ ωj .

Let g(ω) ∈ F be defined by setting for each s ∈ {1, . . . , S},⋃
i∈Cs

gi(ω) =
⋃
i∈Cs

g0
i (ω).

Let s ∈ {1, . . . , S}, and let k, k′ ∈ {1, . . . , n}. Let {i1, . . . , ik, j1, . . . , jk′ , l} ⊆ N .

Case 1: Cs = {i1, . . . , ik} is such that

ik → ik−1 → . . . → i2 → i1.

Let g(ω) ∈ F be such that for each pair m, m′ ∈ {1, . . . , k},
gim(ω) < gim′ (ω) ⇐⇒ m < m′.

Case 2: The agents in Cs form a component in the envy graph that is as simple as one of the 
three configurations described above.

Configuration 1: Cs = {i1, . . . , ik, j1, . . . , jk′ , l} is such that the agents in Cs form a component 
in the envy graph as described in Fig. 3a. Let g(ω) ∈F be such that

1. for each i ∈ Cs , gl(ω) ≤ gi(ω);
2. for each pair m, m′ ∈ {1, . . . , k}, gim(ω) < gim′ (ω) ⇐⇒ m < m′; and
3. for each pair m, m′ ∈ {1, . . . , k′}, gjm(ω) < gjm′ (ω) ⇐⇒ m < m′.

First, the order between i1 and j1 is determined as follows. Let g(ω) ∈ F be such that if 
ωi1 ≺ ωj1 and there is no q ′ ∈ {2, . . . , k′} such that ωi1 ≺ ωjq′ � CRω

i1
(P ), CRω

j1
(P ) � ωj1 , 

then gi1(ω) < gj1(ω); otherwise, gi1(ω) > gj1(ω). Without loss of generality, suppose that 

16 A component may contain only one agent.
18
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gi1(ω) < gj1(ω). Next find a pair of agents i, j ∈ {i1, . . . , ik} such that agent j1 is located be-
tween agents i and j by following the procedure below. Then apply an analogous procedure to 
agent j2, and so on.

Step 1: Identify the smallest p ∈ {2, . . . , k} such that either (i) ωj1 ≺ ωip , or (ii) ωip ≺ ωj1 and 
there is q ′ ∈ {2, . . . , k′} such that ωip ≺ ωjq′ � CRω

j1
(P ) � ωj1 . Let p

1 = p if such a value 

exists; otherwise let p1 = k + 1. Let g(ω) ∈ F be such that gi
p1−1

(ω) < gj1(ω) < gi
p1

(ω). If 

p1 = k + 1, the order on Cs is determined.

Step q ≥ 2: Identify the smallest p ∈ {pq−1, . . . , k} such that either (i) ωjq ≺ ωip , or 
(ii) ωip ≺ ωjq and there is q ′ ∈ {q + 1, . . . , k′} such that ωip ≺ ωjq′ � CRω

jq
(P ) � ωjq . 

Let pq = p if such a value exists; otherwise let pq = k + 1. Let g(ω) ∈ F be such that 
gipq−1(ω) < gj1(ω) < gipq (ω). If pq = k + 1, the order on Cs is determined.

Configuration 2: Cs = {i1, . . . , ik, j1, . . . , jk′ , l} is such that the agents in Cs form a component 
in the envy graph as described in Fig. 3b. Let g(ω) ∈F be such that

1. for each i ∈ Cs , gl(ω) ≥ gi(ω);
2. for each pair m, m′ ∈ {1, . . . , k}, gim(ω) < gim′ (ω) ⇐⇒ m < m′; and
3. for each pair m, m′ ∈ {1, . . . , k′}, gjm(ω) < gjm′ (ω) ⇐⇒ m < m′.

First, the order between i1 and j1 is determined as follows. Let g(ω) ∈ F be such that if 
ωi1 ≺ ωj1 and there is no q ′ ∈ {2, . . . , k′} such that ωi1 ≺ ωjq′ � CRω

i1
(P ), CRω

j1
(P ) � ωj1 , 

then gi1(ω) < gj1(ω); otherwise, gi1(ω) > gj1(ω). Without loss of generality, suppose that 
gi1(ω) < gj1(ω). Next find a pair of agents i, j ∈ {i1, . . . , ik} such that agent j1 is located be-
tween agents i and j by following the procedure below. Then apply an analogous procedure to 
agent j2, and so on.

Step 1: Identify the smallest p ∈ {2, . . . , k} such that either (i) ωj1 ≺ ωip , or (ii) ωip ≺ ωj1 and 
there is q ′ ∈ {2, . . . , k′} such that ωip ≺ ωjq′ � CRω

j1
(P ) � ωj1 . Let p

1 = p if such a value 

exists, otherwise let p1 = k + 1. Let g(ω) ∈ F be such that gi
p1−1

(ω) < gj1(ω) < gi
p1

(ω). If 

p1 = k + 1, the order on Cs is determined.

Step q ≥ 2: Identify the smallest p ∈ {pq−1, . . . , k} such that either (i) ωjq ≺ ωip , or 
(ii) ωip ≺ ωjq and there is q ′ ∈ {q + 1, . . . , k′} such that ωip ≺ ωjq′ � CRω

jq
(P ) � ωjq . 

Let pq = p if such a value exists; otherwise let pq = k + 1. Let g(ω) ∈ F be such that 
gipq−1(ω) < gj1(ω) < gipq (ω). If pq = k + 1, the order on Cs is determined.

Configuration 3: Cs = {i1, . . . , ik} is such that the agents in Cs form a component in the envy 
graph as described in Fig. 3c. Let g(ω) ∈F be such that for each pair m, m′ ∈ {1, . . . , k},

gim(ω) < gim′ (ω) ⇐⇒ m < m′.

Case 3: The agents in Cs form a component in the envy graph that is a combination of the three 
configurations and maximal envy chains. Suppose that there is {i1, . . . , ik} ⊂ Cs such that agents 
i1, . . . , ik form a component in the envy graph as described in Fig. 3c. Eliminate the arrow from 
agent ik to agent i1. Identify a subset C′

s = {i1, . . . , ik, j1, . . . , jk′ , l} ⊆ Cs such that C′
s form a 

component of the envy graph that is configured as in either (1) or (2), and adding any agent to 
C′

s is no longer configured as in any of (1) and (2). Identify the order on C′
s by following the 
19
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Fig. 5. Envy graph formed by the agents in N .

1 → 2

5 → 4

3

→

→

(a)

6

1 → 2

5 → 4
→

→

(b)

Fig. 6. Possible selection of a subgraph.

procedure as described in Case 2. Update the envy graph as follows: (i) relabel the agents in C′
s

in such a way that gi1(ω) < . . . < gik+k′+1
(ω), and define the chain ik+k′+1 → . . . → i1. (ii) For 

each i ∈ C′
s and each j ∈ Cs\C′

s , if agent i points to agent j in the original envy graph, agent i
still points to agent j . Similarly, for each i ∈ C′

s and each j ∈ Cs\C′
s , if agent j points to agent i

in the original envy graph, agent j still points to agent i. Repeat the procedure with the updated 
envy graph. Whenever identifying the order on a subset C′

s , for each pair of agents who are in 
C′

s and are not in the same chain, their orders are determined according to their endowments 
and assignments. Hence, no matter which subset of agents we choose, we indeed obtain a unique 
order on the agent set. Finally, if the updated envy graph is a chain, identify the order by following 
the procedure described in Case 1. Example 3 illustrates this procedure.

Example 3. Let N = {1, . . . , 6}. Let ≺∈ L be defined by ω1 ≺ ω2 ≺ . . . ≺ ω6. Let P ∈ PN be a 
single-peaked preference profile with respect to ≺ such that

P1 : ω4, ω5, . . .

P2 : ω3, ω4, . . .

P3 : ω3, . . .

P4 : ω3, ω2, . . .

P5 : ω3, ω2, ω1, . . .

P6 : ω1, . . . .

Then

CRω(P ) = (ω5,ω4,ω3,ω2,ω1,ω6).

The agents in N form an envy graph as described in Fig. 5. First, eliminate the arrow from agent 
5 to agent 3. Similarly, eliminate the arrows from agent 6 to agents 2, 3, and 4, respectively. 
Identify a subset C′ ⊂ N such that C′ form a subgraph that is configured as either (1) or (2), 
and adding any agent to C′ is no longer configured as either (1) or (2). There are two possible 
cases (Fig. 6).
20
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Without loss of generality, let us choose 6a. By following the description in Configuration 1,

g3(ω) < g2(ω) < g1(ω) < g4(ω) < g5(ω). (5)

Update the envy graph according to (5):

6 → 5 → 4 → 1 → 2 → 3.

By following the description in Case 1, we obtain

g3(ω) < g2(ω) < g1(ω) < g4(ω) < g5(ω) < g6(ω).

We show that the crawler induced by an endowment profile and the sequential priority rule 
induced by the order on the agent set given by the mapping select the same allocation,

Claim 2. For each ω ∈X ,

CRω(P ) = SP g(ω)(P ).

Proof of Claim 2. Suppose that there is a sequence of agents {i1, · · · , ik} ⊆ N for some k ∈
{1, . . . , n} such that

• for each k′ ∈ {1, · · · , k − 1},
SP

g(ω)
ik′ (P ) = CRω

ik′+1
(P ) Pik′ CRω

ik′ (P ); and

• CRω
ik
(P ) Pik SP

g(ω)
ik

(P ).

This implies that gik−1(ω) < gik (ω). However, because CRω
ik
(P ) Pik−1 CRω

ik−1
(P ), there is r ∈ N

such that agent ik−1 envies agent ik at Round r . This implies that gik (ω) < gik−1(ω), contradicting 
the first inequality. �

Let ω, ω′ ∈ X be such that if there is a pair i, j ∈ N such that ω′
i = ωj , both agents i and j

belong to either an envy chain or a sugraph of an envy graph that is configured as in (3). We show 
that if the allocations are the same for ω and ω′, the two endowment profiles are the same.

Claim 3. Let ω, ω′ ∈ X be such that for each N ′ ⊆ N such that the agents in N ′ form either an 
envy chain or a subgraph of the envy graph that is configured as in (3) at ω, we have 

⋃
i∈N ′ ωi =⋃

i∈N ′ ω′
i . If CRω′

(P ) = CRω(P ), then ω′ = ω.

Proof of Claim 3. Let k ∈ {1, . . . , n}. Let N ′ = {1, · · · , k} ⊆ N be such that at the end of 
Phase 1,

• the agents in N ′ form a chain 1 → . . . → k17; and
• no agent points to agent 1.

17 For each l ∈ {1, . . . , k − 2}, agent l may also point to agent l′ ≥ l + 2.
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Let ω, ω′ ∈ X be such that CRω′
(P ) = CRω(P ), 

⋃
i∈N ′ ωi = ⋃

i∈N ′ ω′
i , and if there is a pair 

i, j ∈ N\N ′ such that ωi = ω′
j , both agents i and j belong to either an envy chain or a subgraph 

configured as in (3). We show that ωN ′ = ω′
N ′ .

Let O ′ ≡ ⋃
i∈{1,...,k} CRω

i (P ). Notice that for each k′ ∈ {2, . . . , k − 1}, there is no l ∈ {1, . . . ,
k − 1} such that l < k′ and agent l’s assignment is between agents k′ and k′ + 1’s assignments. 
Moreover, for each k′ ∈ {1, . . . , k − 1}, if there is o ∈ O \ O ′ such that object o is between 
agents k′ and k′ + 1’s assignments, the agent who receives object o does not envy agent k′ + 1. 
The proof is by induction on k.

Suppose that k = 1. Because 
⋃

i∈N ′ ωi = ⋃
i∈N ′ ω′

i , we have ωN ′ = ω′
N ′ .

Let K ∈ {2, · · · , n}. Suppose that for each k ≤ K − 1, we have ωN ′ = ω′
N ′ . Now we consider 

k = K . We show that ω′
K = ωK . Then by the induction hypothesis, ω′

N ′ = ωN ′ . Let o ∈ O be such 
that CRω

K(P ) = o. Because CRω′
(P ) = CRω(P ), at both ω and ω′, for each k′ ∈ {1, . . . , K −

1}, agent k′ + 1 receives his assignment earlier than agent k′. In particular, agent K is the first 
agent who receives his assignment in N ′. This means that there is no l ∈ {1, . . . , K − 1} such 
that agent l’s endowment is between object o and agent K’s endowment.

Case 1: Either for each i ∈ N ′, ωi � o or for each i ∈ N ′, o � ωi . Because there is no l ∈
{1, . . . , K − 1} such that agent l’s endowment is between object o and agent iK ’s endowment, 
ωK = ω′

K .

Otherwise, there is a pair i, j ∈ N ′ such that ωi � o � ωj , and there is no l ∈ N ′\{i, j} such 
that either ωi ≺ ωl � o or o � ωl ≺ ωj . Let i, j ∈ N ′ be such a pair.

Case 2: Either i = K or j = K . Without loss of generality, suppose that i = K . So 
ωK � o ≺ ωj . Let M ⊂ N be such that for each a ∈ M , agent a receives his assignment 
earlier than agent K when the endowment profile is ω. Let

S1 ≡ {
a ∈ N : ωK ≺ ωa ≺ ωj and CRω

a (P ) � ωK

}
,

T1 ≡ {
a ∈ N : ωK ≺ ωa ≺ ωj , CRω

a (P ) � ωa, and ωK ≺ CRω
a (P ) ≺ o

}
, and

U1 ≡ {
a ∈ N : ωK ≺ ωa ≺ CRω

a (P ) ≺ o
}
.

Because CRω
K(P ) = o, we have |M ∩ (S1 ∪ T1 ∪ U1)| = |o − ωK | − 1. Let

E1 = {o′ ∈ O : there is a ∈ S1 ∪ T1 ∪ U1 such that ωa = o′}.
Suppose that ω′

K = ωj . Let i′ ∈ {1, . . . , K − 1} be such that ω′
i′ = ωK . Hence, ω′

i′ � o ≺ ω′
K . 

Let

S2 ≡
{
a ∈ N : ω′

i′ ≺ ω′
a ≺ ω′

K and CRω′
a (P ) � ω′

i′
}

,

T2 ≡
{
a ∈ N : ω′

i′ ≺ ω′
a ≺ ω′

K, CRω′
a (P ) � ω′

a, and ω′
i′ ≺ CRω′

a (P ) ≺ o
}

, and

U2 ≡
{
a ∈ N : ω′

i′ ≺ ω′
a ≺ CRω′

a (P ) ≺ o
}

.

Notice that N ′ ∩ (S1 ∪ T1 ∪ U1) = ∅. This means that for each a ∈ N such that ω′
a ∈ E1, 

CRω′
a (P ) ≺ o. Otherwise, there are a pair a, a′ ∈ N ′ and b ∈ N\N ′ with either ωb ∈ E1 or 

ω′
b ∈ E1 such that agent b envies agent a and agent a′ envies both agents a and b. This means 

that b ∈ N ′, contradicting the fact that b /∈ N ′. Hence, |S2 ∪ T2 ∪ U2| ≥ |o − ω′′ | − 1.

i
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At ω′, the ownership of agent i′ can be shifted to object o before agent K is visited. Hence, if 
there is o′ ∈ O ′ such that o′ Pi′ CRω

i′ (P ) and o′ � o, we have CRω′
i′ (P ) Pi CRω

i′ (P ), contradict-
ing the hypothesis that CRω′

(P ) = CRω(P ).
Suppose that for each o′ ∈ O ′ such that o′ Pi CRω

i′ (P ), we have o ≺ o′. Without loss of gener-
ality, let m ∈ {1, . . . , K}, and {o1, . . . , om} ⊂ O be such that for each o′ ∈ {o1, . . . , om}, o′ ∈ O ′
and o ≺ o1 ≺ . . . ≺ om. The fact that agent K receives object o at ω′ implies that the ownership 
of agent i′ is shifted to object o1 earlier than the agent who receives object o1 at ω is either 
visited and receives his assignment, or his ownership is shifted to object o1. If o1 Pi′ CRω

i′ (P ), 
then CRω′

i′ (P ) Pi′ CRω
i′ (P ). This contradicts the hypothesis that CRω′

(P ) = CRω(P ). Suppose 
that object o1 is assigned to the same agent for both ω and ω′. This means that the ownership 
of agent i′ is shifted to object o2 before the agent who receives object o2 at ω is either vis-
ited and receives his assignment, or his ownership is shifted to object o2. If o2 Pi′ CRω

i′ (P ), 
then CRω′

i′ (P ) Pi′ CRω
i′ (P ). This contradicts the hypothesis that CRω′

(P ) = CRω(P ). By an 
analogous argument, CRω′

i′ (P ) Pi CRω
i′ (P ). This contradicts the hypothesis that CRω′

(P ) =
CRω(P ). Therefore, ω′

K = ωK . �
We are ready to show that mapping g is one-to-one.

Claim 4. For each pair ω, ω′ ∈X ,

g(ω) = g(ω′) =⇒ ω = ω′.

Proof of Claim 4. Let ω, ω′ ∈ X be such that g(ω) = g(ω′). Hence, CRω(P ) = CRω′
(P ). Let 

i, j ∈ N be such that ω′
i = ωj . Let S ∈ {1, . . . , n}. Let {C1, . . . , CS} be the partition of N such that 

for each s ∈ {1, . . . , S}, the agents in Cs form a component in the envy graph. Let s ∈ {1, . . . , S}
be such that i ∈ Cs . Suppose that j /∈ Cs . There is k ∈ Cs such that gk(ω

′) �= gk(ω). Hence, 
g(ω) �= g(ω′), contradicting the hypothesis that g(ω) = g(ω′). Suppose that j ∈ Cs . Suppose 
that neither envy chain nor subgraph configured as in (3) to which both agents i and j belong 
exists. Then there is a pair k, k′ ∈ Cs such that

gk(ω) < gk′(ω) and gk(ω
′) > gk′(ω′).

Hence, g(ω′) �= g(ω), contradicting the hypothesis that g(ω) = g(ω′). Finally, suppose that either 
an envy chain or a subgraph configured as in (3) to which both agents i and j belong exists. By 
Claim 3, ω′

i = ωi . �
Finally, we show that mapping g is onto.

Claim 5. For each f ∈F , there is ω ∈X such that g(ω) = f .

Proof of Claim 5. By Claims 2 and 4, for each x ∈X ,∣∣{ω ∈ X : CRω(P ) = x
}∣∣ ≤

∣∣∣{f ∈F : SP f (P ) = x
}∣∣∣ .

Hence,∑ ∣∣{ω ∈X : CRω(P ) = x
}∣∣ ≤

∑ ∣∣∣{f ∈ F : SP f (P ) = x
}∣∣∣ .
x∈X x∈X
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However, the left-hand side of the inequality is equal to the number of possible endowment 
profiles and its right-hand side is equal to the number of orderings over the agents. Both of these 
numbers equal to n!. Therefore, for each x ∈X ,∣∣{ω ∈ X : CRω(P ) = x

}∣∣ =
∣∣∣{f ∈ F : SP f (P ) = x

}∣∣∣ .
This implies that for each f ∈F , there is ω ∈ X such that g(ω) = f . �
Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2022 .105466.
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