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Abstract—Despite the great potential of Federated Learning
(FL) in large-scale distributed learning, the current system is
still subject to several privacy issues due to the fact that local
models trained by clients are exposed to the central server.
Consequently, secure aggregation protocols for FL have been
developed to conceal the local models from the server. However,
we show that, by manipulating the client selection process, the
server can circumvent the secure aggregation to learn the local
models of a victim client, indicating that secure aggregation
alone is inadequate for privacy protection. To tackle this issue,
we leverage blockchain technology to propose a verifiable client
selection protocol. Owing to the immutability and transparency
of blockchain, our proposed protocol enforces a random selection
of clients, making the server unable to control the selection
process at its discretion. We present security proofs showing
that our protocol is secure against this attack. Additionally, we
conduct several experiments on an Ethereum-like blockchain to
demonstrate the feasibility and practicality of our solution.

I. INTRODUCTION

In recent years, Federated Learning (FL) has emerged

as an auspicious large-scale distributed learning framework

that simultaneously offers both high performance in training

models and privacy protection for clients. FL, by design,

allows millions of clients to collaboratively train a global

model without the need of disclosing their private training

data. In each training round, a central server distributes the

current global model to a random subset of clients who will

train locally and upload model updates to the server. Then,

the server averages the updates into a new global model. FL

has inspired many applications in various domains, including

training mobile apps [14], [28], self-driving cars [16], [24],

digital health [6], [25], and smart manufacturing [13], [18].

Although training data never leaves clients’ devices, data

privacy can still be leaked by observing the local model

updates and conducting some attacks such as membership

inference [26], [27]. Thus, FL is not particularly secure against

an honest-but-curious server. To address this issue, recent

research has focused on developing a privacy-preserving FL

framework by devising secure aggregation on the local models

[2], [5], [29]. Specifically, it enables the server to privately

combine the local models in order to update the global model

The first two authors contribute equally to this paper.

without learning any information about each individual local

model. As a result, the local model updates are concealed from

the server, thereby preventing the server from exploiting the

updates of any client to infer their private training data.
However, in this paper, we exploit a gap in the existing

secure aggregation and show that they are inadequate to protect

the data privacy. Particularly, we demonstrate that a semi-

malicious server can circumvent a secure aggregation to learn

the local model updates of a victim client via our proposed

biased selection attack. Intuitively, our attack leverages the fact

that the central server in FL has a freedom to select any pool

of clients to participate in each training round. Hence, it can

manipulate the client selection process to target the victim and

extract their update from the output of the secure aggregation

protocol. We present two different strategies to conduct the

biased selection attack, and show experimentally that the

server can successfully infer some information about the

victim’s private training data without making any additional

security assumptions about the capabilities of the server.
To counter this attack, we focus on strictly enforcing a

random selection of clients on the central server, thereby

preventing it from manipulating the selection process at its

discretion. To this end, we propose using blockchain as a

public trust entity and devise a verifiable random selection

protocol for the server to randomly select a pool of clients

in each training round. Specifically, we utilize the blockchain

as a source of randomness that is used to determine the pool

of clients that will participate in a training round. Via the im-

mutability of blockchain, the clients can verify the correctness

of the random selection protocol, i.e., ensuring that they are

indeed randomly selected. To demonstrate the feasibility of

our solution, we concretely prove that our protocol is secure

against the biased selection attack. We also benchmark the

performance of the proposed protocol with an Ehtereum-like

blockchain and show that it imposes minimal overhead on FL.
Contributions. Our contributions are summarized as follows:

• We propose the biased selection attack where the server

learns the local model updates of a victim in spite of

secure aggregation. We describe two strategies to perform

this attack without making extra security assumptions

on the server. Then, we conduct some experiments to

demonstrate its viability with respect to inferring some

information about the victim’s training data.978-1-6654-9538-7/22/$31.00 ©2022 IEEE
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• As a countermeasure, we devise a verifiable random

selection protocol for the server to randomly select clients

in each training round. Our protocol leverages blockchain

as a source of randomness so that the clients can verify

whether the server correctly follows the selection proto-

col. Therefore, it enforces a random selection of clients,

making the biased selection attack infeasible.

• We present concrete security proofs to show that the

proposed protocol is secure against the attack. We also

analyze the communication and computation cost of the

protocol, together with some benchmarks to show that its

overhead on FL is minimal.

Organization. The rest of the manuscript is structured in

the following manner. Section II establishes the preliminaries

for our paper. We present the biased selection attack in

Section III. Section IV describes our proposed client selection

protocol. We then provide security and performance analysis

in Section V. Experiments to evaluate our solution are given

in Section VI. We discuss some related work in Section VII

and finally provide concluding remarks in Section VIII.
II. PRELIMINARIES

A. Federated Learning and Secure Aggregation

Depending on how training data is distributed among the

participants, there are two main versions of federated learning:

horizontal and vertical. In this paper, we focus on a horizontal

setting in which different data owners hold the same set of

features but different sets of samples.

Typically, an FL process follows the FedAvg framework

[22] which comprises multiple rounds. In this setting, a server

and a set U of n = |U| clients participate in a collaborative

learning process. Each client u ∈ U holds a training dataset

Du and agrees on a single deep learning task and model

architecture to train a global model. A central server S keeps

the parameters Gt of the global model at round t. Let xt
u

be a vector representing the parameters of the local model of

client u at round t. Each training round includes the following

phases:

1) Client selection: S samples a subset of m clients U ′ ⊆ U
and sends them the current global model Gt.

2) Client computation: each selected client u ∈ U ′ updates

Gt to a new local model xt
u by training on their private

data Du, and uploads xt
u to the central server S .

3) Aggregation: the central server S averages the received

local models to generate a new global model as follows:

Gt+1 =
1

m

∑

u∈U ′

xt
u (1)

The training continues until the global model converges.

To counter several attacks conducted based on the local

model updates of clients, such as inference attacks by the

server [1], [11], the Aggregation phase can be replaced by a

secure aggregation protocol such that each xt
u is not exposed

to the server [2], [5], [29]. By leveraging cryptographic secure

multiparty computation (SMC), the secure aggregation proto-

cols can guarantee that the server cannot learn any information

about each local model update, but still be able to construct

the sum of all updates. Specifically, with secure aggregation,

the equation (1) is replaced by:

Gt+1 =
1

m

∏

{xt
u
|u∈U ′}

[

∑

u∈U ′

xt
u

]

(2)

where
∏

X [f(X, ·)] denotes an abstract secure computation

protocol on some function f(X, ·) and X is a private input.

The protocol
∏

X [f(X, ·)] is: (1) correct if it outputs the same

value as f(X, ·), and is: (2) secure if it does not reveal X

during the execution of the protocol.
B. Blockchain

Blockchain, introduced in [23], is a type of distributed

ledger, jointly maintained by a set of nodes in a network, called

miners. Blockchain can provide guarantees on the correctness

(i.e. tamper-resistance) and security of the ledger without the

need of trust on a central trusted party.
A consensus protocol for maintaining blockchain is called

secure if it satisfies the following two security properties:

1) persistence: all honest miners have the same view of the

ledger; and 2) liveness: the valid transactions will eventually

be added to the ledger.
In this work, we consider a proof-of-work (PoW)

blockchain, in which miners compete to solve a PoW puzzle.

The miner who solves the puzzle can append a new block into

a blockchain data structure. The PoW blockchain is shown to

be secure under the assumption that the honest miners hold the

majority of mining power [12]. The security of the protocol is

parameterized by the length of the hash function κ ∈ N [12],

called security parameter.
The blockchain is used in our client selection protocol to

ensure 1) all clients in FL have the same views on the selected

clients, and 2) a provably random selection of the client.

C. Verifiable random function

To implement the provable random client selection, we

use a cryptographic tool called verifiable random functions

(VRF) [10]. VRF is a public-key pseudorandom function

that provides proofs showing that its outputs were calculated

correctly and randomly, i.e., hard to predict. Consider a user

with secret and public keys sk and pk. The user can use

VRF to generate a function output σ and a proof π for any

input value x by running a function VRFprovesk(x). Everyone

else, using the proof π and the public key pk, can check that

the output σ was calculated correctly by calling a function

VRFverify(pk, σ, π). Yet, the proof π and the output σ does

not reveal any information on the secret key sk.
In our protocol, the input value x in the VRF is a random-

ness rnd, extracted from the blockchain. Each client i ∈ U
independently computes an VRF output σi on the input value

rnd to determine whether or not i is selected into the pool.

III. BIASED SELECTION ATTACK AND SECURE CLIENT

SELECTION PROBLEM

This section describes a simple yet effective biased selection

attack and defines necessary properties of a secure client

selection. First, we establish the threat model as follows.
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clients compute a randomness rnd by hashing together the

block headers of κ blocks created during the previous training

round. The chain quality of the blockchain means that, with

high probability, at least one of those blocks must be from an

honest miner [12]. Thus, rnd includes at least one unbiased

random source.

2. VRF-based random election. After extracting the random-

ness, each client i uses the VRF to check whether or not she/he

is selected in this round. The client i computes the output σi

and the proof πi of the VRF based on the randomness rnd, i.e.,

(σi, πi)← VRFproveski(rnd). If the VRF output σi is smaller

than a given threshold, i.e., σi < c2κ, the client i is qualified

to be selected. Here, c = m
n

is the selection probability, i.e.,

the fraction of selected clients per round. If the client i is

qualified, she/he sends a message (σi, πi, pki) to the server.

3. Initial selection. Let Pt be the set of public keys of qualified

clients that are verified by the server. The server submits an

initial selection transaction that consists of the Merkle tree

root MRoot(Pt) to the blockchain. After the transaction is

included to the blockchain, the server provides a Merkle proof

MProof(pki
?
∈ Pt) for each client i ∈ U .

4. Dispute. If a qualified client i ∈ U does not receive

any Merkle proof from the server, or finds any discrepancy

between the Merkle root obtained from the server to the one

that the server submitted to the blockchain, it will start a

dispute process. The client will submit proof of qualification

directly to blockchain to force the inclusion of itself into

the pool. More concretely, at block height ` + τ , the client

can submit a transaction containing the tuple (σi, πi, pki) to

the blockchain. The client i also includes the Merkle proof

MProof(pki
?
∈ U) to show that its public key is registered.

5. Final selection. At block height `+2τ , the server submits a

final selection transaction that contains the information of all

dispute transactions. Let Pt be the set of the public keys of

dispute clients, i.e., the clients who submitted dispute transac-

tions. Then, similar to the initial selection, the server constructs

a Merkle tree Merklef based on Pf . The server submits a

final selection transaction that consists of the Merkle tree root

MRoot(Pf ) and sends a Merkle proof MProof(pki
?
∈ Pf )

to each client i ∈ U . Here, before adding the final selection

transaction to the blockchain, the miners verify that all public

keys of the dispute clients are included in the MRootf . The

correctness will be enforced through smart contracts, executed

by all miners in the blockchain.

V. SECURITY ANALYSIS

In this section, we analyze the security of our protocol

in Algo. 1. We start with the construction of our PVer(·)
function, followed by the proof sketches on the three security

properties, defined in Section II.

Pool membership verification function. We describe the

function PVer(stj , ω
(i)
j ) that verifies if the client i is selected

in the view of the client j.

For each client j with the state stj , the function

PVer(stj , ω
(i)
j ) extracts the blockchain Cj from the local state

stj and then proceeds as follows.

• The function verifies whether or not (1)

VRFverify(pki, σi, πi) = 1. (2) the initial selection

transaction and the final commitment transaction are

included in the header blockchain Cj . If those conditions

do not hold, it returns ⊥.

• If all conditions hold, i.e., the proof ω
(i)
j is valid, the

function verifies (1) σi < c2κ, and (2) pki is included in

MRoot or in MRootf . If those conditions hold, it returns

1, i.e., the client i is selected.

• Otherwise, the function returns 0, i.e., the client i is not

selected.

Recall that in our protocol, for each qualified client j, the

server provides only ω
(j)
j , the proof of membership of j. The

proof consists of (1) the VRF output and the public key of j

(σj , πj , pkj), (2) the initial selection transaction that consists

of MRoott, (3) the Merkle proof MProoft(pkj), (4) the final

selection transaction that consists of MRootf , and (5) the

Merkle proof MProoff (pkj).
Pool from all clients’ views. We say a client i is selected

if there exists an honest client j and a proof ω
(i)
j such that

PVer(stj , ω
(i)
j ) = 1. Let P be the set of selected clients, i.e.,

P = {i : ∃ honest client j, ω
(i)
j , s.t.,PVer(stj1 , ω

(i)
j ) = 1}.

We first prove that all honest clients have the same view

on the set P of selected clients. Intuitive, as the blockchain

maintains an immutable ledger, all honest clients have the

same view on the commitment transactions. Thus, they can

extract the same list of selected clients.

Lemma V.1 (Pool consistency). For any client i ∈ U , and

any honest clients j1, j2, we have,

Pr

[

∃ ω
(i)
j1
, ω

(i)
j2

PVer(stj1 , ω
(i)
j1
) = 1∧

PVer(stj2 , ω
(i)
j2
) = 0

]

≤ e−Ω(κ)

We omit the proof due to the space limit and outline the

main intuition. As all the honest clients have the same view

on the blockchain, the valid proofs ω
(i)
j1
, ω

(i)
j2

must have the

same Merkle tree roots MRoott and MRootf . Recall that, the

client i is considered to be selected if it is included in MRoott
and MRootf . Thus, the honest clients have the same view on

whether or not the client i is selected.
Next, we prove that the fraction of honest selected clients

is proportional to the fraction of honest clients. Intuitively,

the VRFs guarantee the randomness in selecting the qualified

clients, i.e., the fraction of honest qualified clients is propor-

tional to the fraction of honest clients. Plus, the dispute ensures

that all honest qualified clients are selected.

Lemma V.2 (Pool quality). Let H be the set of honest clients

in the set of selected clients P . For ε > 0, we have,

Pr[
H ∩ P

P
≥ α(1− ε)] ≥ 1− e−Ω(nc−log κ)

Authorized licensed use limited to: University of Florida. Downloaded on August 30,2022 at 22:32:05 UTC from IEEE Xplore.  Restrictions apply. 





time can be reduced by several folds using parallel computing

(not shown in here). The computation for each client is also

very short with a negligible time in the registration, and a

0.031s time per training round.

The baseline protocol incurs negligible computing times for

both the server and the clients.

B. Dispute cost

We now measure the dispute cost of the server and the

average dispute cost of each client. We consider a scenario

in which the number of clients is n = 1000k, the selection

probability c = 1%, the probability that qualified clients

submit a dispute transaction is 1%. We report the cost of the

server and the average cost of each client in 1, 000 training

round.

Storage (KB) Computation cost (gas)

The server 70.35 4.7× 10
9

Each client 0.01 2.1× 10
5

TABLE II: The storage and computation costs for dispute.

As shown in Table. II, the average dispute cost of each client

is much smaller than that, paid by the server. The storage costs

for the server and each client are 140.7KB and 0.01KB,

respectively. Similarly, the gas cost for the server and each

client are 4.7× 109 and 2.1× 105, respectively.

VII. RELATED WORK

Secure aggregation in FL. Leveraging secret sharing and ran-

dom masking, Bonawitz et al. [5] propose a secure aggregation

method and apply it to deep neural networks to aggregate

client-provided model updates. In [2] and [29], the authors

utilize homomorphic encryption to blindly aggregate the model

updates into global models. These secure aggregation proto-

cols can scale up to millions of devices, and are robust to

clients dropping out. Generic secure MPC based on secret

sharing that securely computes any function among multiple

parties [4], [8], [20] can also be used as secure aggregation

in FL. However, they are not scalable enough due to the high

complexity in both computation and communication.

Although these protocols provide strong security guarantees

with respect to concealing the local model updates from

the server, they are only applicable to an honest-but-curious

adversary. They assume that the server honestly follows the

protocol, including the random client selection. We show that

the server can easily manipulate the selection process to bypass

the secure aggregation and learn the local model update of a

victim. We also devise a verifiable random selection protocol

as a countermeasure to prevent the server from manipulating

the selection of participating clients, thereby maintaining the

security guarantees of secure aggregation protocols.

Integration of Blockchain and FL. Recently, there have been

multiple studies focusing on integrating the immutability and

transparency properties of blockchain into FL. For instance,

Bao et al. [3] propose FLChain which is an auditable and

decentralized FL system that can reward the honest clients

and detect the malicious ones. Zhang et al. [30] propose

a blockchain-based federated learning approach for IoT de-

vice failure detection. Kang et al. [15] develop a reputation

management scheme using blockchain to manage and select

reliable clients, thereby avoiding unreliable model updates. In

[17], [21], the authors utilize blockchain for the exchange and

aggregation of local model updates without a central server.

The above-mentioned systems cannot be employed directly

to address the biased selection attack because they are not

designed specifically for protecting client model updates.

Additionally, they are not compatible to be used with a secure

aggregation protocol. Our approach is different in a way that

we use blockchain as a source of randomness for the client

selection protocol, such that it enforces the random selection

of clients, making the biased selection attack infeasible.

VIII. CONCLUSION

In this paper, we have shown that using the secure aggrega-

tion protocols alone is not adequate to protect the local model

updates from the server. Via our proposed biased selection

attack, we have demonstrated that the server can manipulate

the client selection process to learn the local model update

of a victim, effectively circumventing the security guarantees

of the secure aggregation protocols. To counter this attack and

ensure privacy protection for the local model updates, we have

proposed a verifiable client selection protocol using blockchain

as a source of randomness. As a result, it enforces a random

selection of clients in each training round, thereby preventing

the server from manipulating the client selection process.

We have proven its security against the proposed attack and

analyzed its computation cost with Ethereum Solidity to show

that it imposes negligible overhead on FL.
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