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People living in Mesoamerica and what is now the eastern and southwestern United States used turkeys (Meleagris gallopavo)
as sources of meat, eggs, bones, and feathers. Turkey husbandry and domestication are confirmed in two of these regions
(Mesoamerica and the American Southwest), but human-turkey interactions in Eastern North American (eastern
United States and Canada) are not fully explored. We apply stable isotope (δ13C, δ15N) and ancient mitochondrial DNA anal-
yses to archaeofaunal samples from seven sites in the southeastern United States to test whether turkeys were managed or
captively reared. These combined data do not support prolonged or intensive captive rearing of turkeys, and evidence for
less intensive management is ambiguous. More research is warranted to determine whether people managed turkeys in
these areas, and whether this is generalizable. Determining whether turkeys were managed or reared in the southeastern
United States helps define cultural and environmental factors related to turkey management or husbandry throughout North
America. This inquiry contributes to discussion of the roles of intensified human-animal interactions in animal domestication.
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Las personas que vivían en Mesoamérica y lo que ahora es el este y suroeste de los Estados Unidos usaban pavos (Meleagris
gallopavo) como fuente de carne, huevos, huesos y plumas. La cría y la domesticación de pavos están confirmadas en dos de
estas regiones (Mesoamérica y el suroeste de los EstadosUnidos), pero las interacciones entre humanos y pavos en el parte este
de Norteamérica (el este de los Estados Unidos y Canadá) no se exploran completamente. Aplicamos análisis de isótopos
estables (δ13C, δ15N) y de ADN mitocondrial antiguo a muestras de arqueofauna de siete sitios en el sureste de los Estados
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Unidos para determinar si los pavos fueron manejados o criados en cautiverio. Estos datos combinados no apoyan la cría en
cautividad prolongada o intensiva de pavos, y la evidencia de un manejo menos intensivo es ambigua. Se necesita más inves-
tigación para determinar si la gente manejó pavos en estas áreas y si esto es generalizable. Determinar si los pavos fueron
manejados o criados en el sureste de los Estados Unidos ayuda a definir los factores culturales y ambientales relacionados
con el manejo o la cría de pavos en toda Norteamérica. Esta investigación contribuye a la discusión de los roles de las inter-
acciones intensificadas entre humanos y animales en la domesticación animal.

Palabras clave: pavo (Meleagris gallopavo), manejo de animales, sureste de Estados Unidos, período del Misisipio, análisis de
isótopos estables, ADN antiguo

In many parts of the southeastern United
States,1 wild turkeys (Meleagris gallopavo)
were sources of meat, eggs, bones, and feath-

ers for Indigenous Americans. At Mississippian
period (AD 1000–1450) sites in the Southeast,
they were a common food (Peres 2017) and
often associated with contexts related to prestige,
ritual, and feasting (Jackson and Scott 2003;
Ledford and Peres 2018; Reitz et al. 2020).
Given their importance as both utilitarian and rit-
ual resources, and the successful domestication
of the species in both the American Southwest
and Mesoamerica (Manin et al. 2018; Speller
et al. 2010), Indigenous peoples in Eastern
North America (eastern United States and Can-
ada) may have practiced flock management or
small-scale captive rearing to promote turkey
abundance.

Previous suggestions for turkey management
or rearing in the Southeast are based primarily
on sex ratios observed in zooarchaeological
assemblages. Peres and Ledford (2016) argue
that an overabundance of large-bodied male tur-
keys in Mississippian deposits at the Fewkes site
(40WM1) demonstrates potential flock manage-
ment. Wild-kill assemblages typically contain
more females and subadults than large adult
males. Similar evidence suggests that wild poults
( juvenile turkeys) were reared at Moundville
(1TU500; Jackson and Scott 2003:566). Select-
ive hunting or elite provisioning, however,
could also explain the observed overrepresenta-
tion of adult male turkeys in these assemblages.
Other lines of archaeological evidence for turkey
management or rearing are lacking.

Ethnographic and ethnohistoric accounts pro-
vide additional evidence for potential turkey
management and rearing in the Southeast. The
De Soto chronicles (AD 1539–1543) report that
large quantities of turkeys, or “hens,” were

given to Spaniards by Indigenous peoples (Ran-
gel 1993:280–281; Robertson 1993:83, 86, 165).
Although these could be wild hunted turkeys,
these large gifts raise the possibility that turkeys
were penned or reared to ensure sufficient num-
bers were available for ceremonial or political
events. Cherokee and other southeastern ethno-
historic accounts describe using scattered maize
(Zea mays) to lure wild turkeys during hunting
and rearing turkey poults from eggs to ensure
reliable access to meat and feathers or to lure
other wild turkeys (Lawson 1966 [1709]:149;
White 1980; Whitthoft 1946:377). Similar
ethnohistoric accounts of the provisioning or
taming of wild animals exist for other parts of
Eastern North America (e.g., Galton 1865;
Sagard 1939), and a stable isotope study by Mor-
ris and colleagues (2016) suggests maize provi-
sioning of wild turkeys in Late Woodland (AD
900–1600) southwestern Ontario.

Neither turkey domestication, defined as
long-term controlled breeding, nor management,
have been explored extensively in Eastern North
America. Throughout this article we use the term
“management” to broadly refer to human behav-
iors that intentionally promote increased turkey
abundance and availability (Zeder 2015). These
could include selective hunting, seasonal provi-
sioning of wild flocks with maize, or captive
rearing. We specifically use the term “rearing”
to acknowledge the potential for nonintensive
feeding and tending of turkeys without con-
trolled breeding (Vigne 2011; Zeder 2015).

Turkeys are highly tolerant of anthropogenic
environments. In both the American Southwest
and Mesoamerica, turkey management led to
domestication, but it is currently unknown
whether turkey management was practiced in
other parts of the species’ natural range, such
as the Southeast. Small-scale, nonintensive
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rearing could be largely invisible in the zooarch-
aeological record because it may not signifi-
cantly increase the number of turkeys in
archaeological assemblages. We therefore used
stable isotope (δ13C, δ15N) and ancient DNA
(aDNA) analyses to investigate whether turkeys
were managed or captively reared at seven Mis-
sissippian period sites in the southeastern states
of Tennessee and Georgia. Stable isotopes test
for extensive maize consumption, a trait that dis-
tinguishes domestic and captive turkeys in both
the American Southwest and Mesoamerica
from their wild counterparts (Conrad et al.
2016; Lipe et al. 2016; Manin et al. 2018;
McCaffery et al. 2014; Rawlings and Driver
2010; Thornton et al. 2016). Our genetic ana-
lyses assess the degree and nature of mitochon-
drial DNA (mtDNA) variation among the birds,
which might indicate the degree of selective
breeding (if any), the introduction of domestic
turkeys from either Mesoamerica or the Ameri-
can Southwest, or both.

Turkey management would be consistent with
other examples of complex human-environment
interactions in the Southeast, such as plant
domestication (Smith 2006) and fire and forest
management (Abrams and Nowacki 2008; Del-
court et al. 1998). The Mississippian period is
characterized by widespread maize agriculture,
population growth, construction of large earthen
mounds, and some degree of social inequality.
Within this context, feasting and differential
access to resources were important in negotiating
and displaying status (Blitz 1993; Jackson and
Scott 2003). In other parts of North America, tur-
key management and eventual domestication seem
to have been motivated initially by controlling
access to their feathers (Lipe et al. 2016;McKusick
2001) or by their use as status or ceremonial items
(Thornton and Emery 2017). Increased demand for
political or ceremonial events also could havemoti-
vated turkey management in the Southeast. Alter-
nately, Mississippian peoples in Eastern North
America may not have experimented with turkey
management or rearing, despite adopting other
Mesoamerican domesticates (e.g., maize,
beans [Phaseolus spp.], and squash [Cucurbita
spp.]) and the contemporary rearing of turkeys in
both Mesoamerica and the American Southwest.
Determining whether turkeys were managed or

reared in the Southeast is thus relevant to a broader
understanding of the cultural and environmental
factors associated with the decision to invest in ani-
mal management or domestication. This line of
inquiry also contributes to broader discussions of
human-animal interactions beyond wild or domes-
tic dichotomies (e.g., Zeder 2012, 2015).

North American Turkeys: Genetic and
Dietary Diversity

Six subspecies of wild turkey are found in central
and northern Mexico and the eastern and south-
western United States (Figure 1). The subspecies
native to the eastern United States and Canada
(M. g. silvestris) has the broadest geographic dis-
tribution but is not thought to have been domes-
ticated. In contrast, subspecies native to the
American Southwester and Mesoamerica were
domesticated by approximately 300–100 BC
(Badenhorst and Driver 2009; Lipe et al. 2016;
Thornton and Emery 2017).

Mitochondrial DNA analysis confirms that the
southern Mexican subspecies (M. g. gallopavo)
gave rise to the domestic turkeys bred and reared
throughout the world today (Canales et al. 2019;
Monteagudo et al. 2013; Speller et al. 2010). Gen-
etic evidence also supports the independent
domestication in the American Southwest of at
least one other subspecies of wild turkey (Speller
et al. 2010). Turkeys domesticated in the South-
west, however, do not appear to have contributed
mtDNA to the genetic stock of modern domestic
turkeys (Speller et al. 2010).

Within populations of Southwest archaeo-
logical turkeys, Speller and colleagues (2010)
identified two major mitochondrial DNA hap-
logroups. The most common haplogroup
(referred to as H1) has low genetic diversity and
is genetically distinct from wild and domestic
Mesoamerican turkeys and from the Merriam’s
subspecies (M. g. merriami), which is native to
the Southwest. Speller and colleagues (2010) con-
clude that the H1 haplogroup represents a popula-
tion of managed/domesticated turkeys introduced
to the Southwest from outside the region, whereas
the other major haplogroup (H2) corresponds to
local/wild turkeys. Lipe and colleagues (2016),
however, indicate that turkeys from both hap-
logroups were heavily maize-fed and kept within
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human settlements, clarifying that both hap-
logroups contributed to precolumbian domestic
flocks. Domestic turkeys from Mesoamerica
belong to haplogroup H3 (Speller et al. 2010).
The genetics of archaeological eastern wild tur-
keys (M. g. silvestris) have not been documented
but are expected to be similar to those previously
reported for their modern counterparts (Mock
et al. 2002; Speller et al. 2010).

Dietary Shifts Associated with Management or
Captive Rearing

When animals are brought under human control,
their diets often change due to range restrictions
or consumption of human-provided fodder, food
waste, or both. Stable carbon (13C/12C) and nitro-
gen (15N/14N) isotope ratios serve as proxies for
dietary shifts. Stable isotope analysis identifies
management or captive rearing because dietary
shifts may not be accompanied bymorphological
or genetic changes if breeding is not controlled, if
the captive rearing and breeding process is in its
early stages, or if there is extensive introgression
between wild and captive-reared populations.

Isotopic shifts associated with turkey husbandry
and domestication have been identified in Meso-
america and the American Southwest (Conrad
et al. 2016; Lipe et al. 2016; Manin et al. 2018;
McCaffery et al. 2014; Rawlings and Driver
2010; Thornton et al. 2016, 2012). Dietary shifts
also indicate management or captive rearing of
nondomesticated white-tailed deer (Odocoileus
virginianus), rabbits/hares (Leporidae), golden
eagles (Aquila chrysaetos), and large felids
(Panthera onca, Puma concolor) in Meso-
america (Somerville et al. 2016; Sugiyama
et al. 2018, 2015; White et al. 2004), scarlet
macaws (Ara macao) in the American Southwest
(Somerville et al. 2010), and hutias (Geocapromys
ingrahami) in the Caribbean (LeFebvre et al.
2019).

Wild turkeys have an omnivorous diet includ-
ing fruits, flowers, seeds, nuts, insects, terrestrial
gastropods, small lizards, and the leaves of
shrubs, forbs, and grasses (Hurst 1992). Most
foods consumed by wild turkeys are C3 plants
(e.g., fruits, shrubs, nuts, and flowers), but native
C4 grasses (e.g., Panicum virgatum, Andropogon

Figure 1. Map of North America showing the geographic ranges of the six subspecies of Meleagris gallopavo
(M. g. silvestris, M. g. osceola, M. g. merriami, M. g. intermedia, M. g. mexicana, M. g. gallopavo) and the Central Ameri-
can ocellated turkey (Meleagris ocellata).
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gerardii) are also available in the Southeast.
Although turkeys often are considered crop
pests, turkeys in maize fields primarily consume
insects and waste grain (i.e., grain left over from
the previous harvest) instead of seedlings or
ripening maize grains (Groepper et al. 2013).
Turkeys will consume maize when it is made
available by people or when crop pests such as
deer, squirrels (Sciuridae), blackbirds (Corvi-
dae), and raccoons (Procyon lotor) knock down
stalks or pull off cobs to obtain grain (Mac-
Gowan et al. 2006; Otieno and Frenette 2017).
Turkeys, therefore, had access to maize, but
large quantities were not likely consumed unless
it was provided to them as bait or fodder (Morris
et al. 2016). Wild southeastern turkeys are
expected to have largely C3-based diets (δ13Cco

< −18‰), whereas captive-reared turkeys
would have C4-based diets (δ13Cco≥−12‰)
reflecting heavy maize consumption. Mixed C3/
C4 diets would indicate that wild turkeys con-
sumed maize-eating insects, foraged in maize
fields or middens, or consumed maize used as a
hunting lure. Captive-reared turkeys fed C3

plants, such as acorns (oak nuts), would be iso-
topically indistinguishable from wild birds.
However, the strong maize signature observed
in domestic turkeys elsewhere in North and Cen-
tral America (Conrad et al. 2016; Jones et al.
2016; Lipe et al. 2016; Manin et al. 2018; Rawl-
ings and Driver 2010; Thornton et al. 2016) sug-
gests that similar patterns could be expected in
the Southeast where maize was a staple resource.

Slightly higher δ15N in domestic turkeys is
reported for both the American Southwest and
Mesoamerica (Lipe et al. 2016; Manin et al.
2018; McCaffery et al. 2014; Thornton et al.
2016). Higher δ15N in captive-reared turkeys
could reflect increased carnivory of animal
pests associated with human settlements (DeNiro
and Epstein 1981; Schoeninger and DeNiro
1984), rearing conditions that promote protein
or water stress (Hobson et al. 1993), consump-
tion of human or animal waste, or consumption
of crops enriched in 15N due to fertilization or
nitrogen-cycle processes associated with crop
or land management practices (Bogaard et al.
2007; Fraser et al. 2011; Guiry et al. 2018,
2020; Hart and Feranec 2020; Hwang et al.
2007; Szpak 2014). These possibilities may

increase captive/domestic turkey δ15N by ∼1 to
4‰ over wild turkeys.

Materials and Methods

Stable Isotope Analysis

We analyzed bone collagen δ13Cco and δ15N in
83 archaeological turkeys from seven Mississip-
pian sites: three mound centers containing mul-
tiple flat-topped earthen mounds arranged
around a central plaza, two towns containing
one or more platform mounds, one small village
site, and one site interpreted as a chiefly com-
pound (Figure 2; Table 1). Twenty-two white-
tailed deer and four canids (Canis sp.) were
included for comparison. Deer are primarily
browsers and are expected to have a C3-based
diet, but their potential to feed in maize fields
makes them a good comparison as a wild and
potentially garden-hunted species. Canids pre-
sumed to be domestic dogs are used as a proxy
for animals feeding largely within human settle-
ment areas. Bone apatite δ13Cap was analyzed in
a subsample of remains (61 turkeys, 5 deer, and 4
canids), but the results are not emphasized due to
the greater potential for diagenesis in bone apa-
tite compared to collagen (King et al. 2011).
Contextual information is lacking for many sam-
ples (see Supplemental Text 1; Supplemental
Table 3), but turkey remains primarily came
from middens or trash pits with smaller quan-
tities from structure floors (n = 2), and burial fill
layers (n = 6).

Within each site, we ensured the sampling of
discrete individuals by restricting our sample to
single skeletal elements from the same side of
the body. When skeletal elements were nonre-
dundant, we relied on element age and size com-
parisons to prevent redundant sampling of
individuals. Isotopic sampling was limited to
adult individuals because very young turkeys
consume large quantities of arthropods and shift
to eating more plants as they mature (Hurst and
Stringer 1975). By only including adult turkeys,
we controlled for age-based dietary variations.

Most samples (n = 97) were processed at
Washington State University (WSU), with a sub-
set (n = 12) processed at the Center for Applied
Isotope Studies (CAIS) at the University of
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Georgia. Nearly identical procedures and equip-
ment were used at both locations using a modi-
fied Longin (1971) method (see Supplemental
Text 2 for a full description of the methods).

Bone collagen δ13C and δ15N values were
accepted when atomic C:N ratios were 2.9–3.6
and when collagen yield was >1% of dry weight
(Ambrose 1990). Data from samples not meeting

Figure 2. Map showing study sites. Middle Cumberland River Valley sites include Fewkes, Mound Bottom, Sandbar
Village, Gordontown, and Inglehame Farm. Key: AL, Alabama; GA, Georgia; KY, Kentucky; MS, Mississippi; NC,
North Carolina; SC, South Carolina; TN, Tennessee.

Table 1. Study Sites According to Chronology and Number of Individuals per Taxa Sampled for Isotopic Analysis.

Site (Site Number) Chronology Site Type Turkey Deer Canid

Fewkes (40WM1) AD 1150–1450 Mound center 37 12 4
Mound Bottom (40CH8) AD 1100–1300 Mound center 22 — —

Toqua (40MF6) AD 1100–1500 Mound center 10 5 —

Inglehame Farm (40WM342) AD 1350–1450 Village 6 — —

Gordontown (40DV6) AD 1250–1450 Town 3 — —

Sandbar Village (40DV36) AD 1000–1450 Towna 1 — —

Irene Mound (9CH1) AD 1150–1450 Chiefly compound 4 5 —

Totals 83 22 4

aSandbar village (40DV36) lacks an earthen mound but is currently interpreted as a peripheral section of the larger
Mississippian town known as the Widemeier site (40DV9) (Smith and Moore 2012).
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these criteria are reported but not included in data
plots and statistical analyses. We assessed differ-
ences in mean δ13C and δ15N across categories
via independent sample two-tailed t-tests assum-
ing unequal variance.

Ancient DNA Extraction and Analysis

Ancient DNAwas extracted from 31 turkey skel-
etal elements in two laboratories: WSU and the
University of York (BioArCh). At WSU, DNA
extraction followed methods described by
Kemp and colleagues (2014) and Moss and col-
leagues (2014). At BioArCh, extraction methods
followed those established by Yang and collea-
gues (1998) and modified as described in Speller
and colleagues (2010; see Supplemental Text 3
for full description of the laboratory methods).

At both laboratories, overlapping amplicons
were sequenced to cover a maximum of 506 bp
of the turkey mtDNA D-loop spanning nucleo-
tide positions 15507–16013 (based on a com-
plete mtDNA genome of GenBank specimen
EF153719; Guan et al. 2009). DNA extracts
were PCR amplified using primers described in
Kemp and colleagues (2017) and Speller and col-
leagues (2010). Successfully amplified PCR
products were sequenced using forward or
reverse primers or both at Eurofins Genomics
(Ebersberg, Germany), Elim Biopharm (Hay-
ward, California) or MC Lab (South
San Francisco, California). Canid samples were
amplified for various stretches of the D-loop
using primers and conditions described by
Kemp and colleagues (2017).

Turkey sequences were visually edited, and
multiple sequences from the same bone were
compiled into consensus sequences using Chro-
masPro software (www.technelysium.com.au)
or Sequencher (version 4.8). The 25 turkey con-
sensus sequences were submitted to GenBank
under Accessions: MN587233-MN587257. The
obtained ancient DNA sequences were
BLAST-compared through GenBank to evaluate
their identification asM. gallopavo. Multiple repli-
cates of amplification and sequencing were used to
confirm novel mutations and haplotypes and to
resolve postmortem nucleotide damage. The
obtained sequences were authenticated based on
multiple criteria, including (a) the use of dedicated
aDNA facilities, (b) no amplifications of expected

length within the blank extracts and PCR negative
controls, (c) multiple haplotypes observed within
the dataset, and (d) amplification and sequencing
conducted in independent laboratories yielding
consistent results.

Initially, sequences were truncated to 435 bp
(position 15567–16002) to remove primer
sequences and make them comparable to pub-
lished sequences. The obtained D-loop
sequences were compared with 502 M. gallo-
pavo sequences, including archaeological tur-
keys from the American Southwest (Kemp
et al. 2017; Speller et al. 2010) and Mesoamerica
(Manin et al. 2018), modern commercial breeds
(Monteagudo et al. 2013), and North American
wild turkeys (Mock et al. 2002; Szalanski et al.
2000). Multiple alignments of the haplotype
sequences and published Meleagris mtDNA ref-
erence sequences were conducted using Clus-
talW (Thompson et al. 1994) through BioEdit
(Hall 1999). Median-joining networks were cre-
ated using Network (v. 5.0) and Network Pub-
lisher (Bandelt et al. 1999). Haplotype (h) and
nucleotide (π) diversity were assessed based on
a 309-bp fragment (positions 15651–15960)
for which the majority of individuals contained
sequence data and for which no polymorphisms
could be observed within the larger 435-bp frag-
ment. Diversity values were calculated for the
Fewkes samples, contemporaneous archaeological
turkey populations from the American Southwest
(Kemp et al. 2017), and modern eastern wild tur-
key populations (Mock et al. 2002) using DnaSP
v 5.10 (Librado and Rozas 2009). To ensure con-
sistency with the Fewkes assemblage, diversity
values for the comparative populations were
assessed based on the same 309-bp fragment.

Genetic distances between populations of
wild North American turkeys (Mock et al.
2002), American Southwest archaeological tur-
keys (Kemp et al. 2017; Speller et al. 2010),
and the Fewkes archaeological turkeys were cal-
culated on this same 309-bp fragment, using
Arlequin 3.5 software (Excoffier and Lischer,
2010). FST pairwise comparisons were obtained
with the Reynold’s coancestry coefficient calcu-
lation, and associated p values were calculated on
1,023 repetitions. Negative indices and distances
that were not significantly different at a 0.05
threshold were considered as null. A neighbor
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joining tree of the distances matrix was created
using the “ape” library (Paradis et al. 2004) imple-
mented in R 3.3.3 (R Core Team 2017).

The canid samples yielded no amplicons, so
we could not confirm species/subspecies (i.e.,
domestic dog [Canis lupus familiaris], wolf
[Canis lupus], or coyote [Canis latrans]). Given
that coyotes expanded into the Southeast in recent
times (Hody and Kays 2018), the canids are likely
dogs or wolves. Regardless of subspecies, δ13C
can be used as a proxy for human interaction or
management with C3-based diets expected in
wild canids and more C4-based diets in tame or
domesticated canids (Monagle et al. 2018).

Results

Isotopic Evidence of Paleodiet

With the exception of one deer, all archaeo-
logical samples were well preserved, yielding
acceptable atomic C:N ratios (2.9–3.6) and colla-
gen yield weights (>1%). Accuracy of measured
δ13C and δ15N was better than ± 0.2‰ based on
replicate analysis (n >10) of laboratory standards.
Precision of δ13C and δ15N measured from
repeated chemical isolation of collagen from
archaeological samples (n = 8) was ± 0.15 and
± 0.10‰ for δ13Cco and δ15N, respectively. Full
isotopic results appear in Supplemental Table 1.

All southeastern turkeys had relatively low
δ13Cco (mean =−20.1‰; range =−15.4 to
−22.2‰; Table 2), which distinguishes them
from archaeological domestic turkeys from the
American Southwest and Mesoamerica that con-
sumed amaize-based diet (δ13Cco≥−12‰; Lipe
et al. 2016; Manin et al. 2018; Rawlings and Dri-
ver 2010; Thornton et al. 2016; Figure 3).
Instead, turkeys from the Southeast resemble
archaeological turkeys reported from southern
Ontario (mean δ13Cco =−20.6‰; Figure 3;
Guiry et al. 2021; Morris et al. 2016). Turkey
δ13Cco did not vary significantly between sites
in Tennessee and Georgia (t-test p = 0.24) nor
between sites with earlier (e.g., Mound Bottom)
and later (e.g., Fewkes) Mississippian occupa-
tions (t-test p = 0.29). Eight turkeys had slightly
higher δ13Cco (−15.4 to −18.0‰) representing
some consumption of C4 resources. Except for
a turkey from Inglehame Farm (δ13Cco =
−15.47‰), all turkeys with higher δ13Cco

(≥−18‰) were from Fewkes (δ13Cco =−16.6
to −18.0; Figure 4). Available contextual infor-
mation is limited, but the turkeys with mixed
C3/C4 diets do not appear to be restricted to
any particular context; instead they came from
various site areas and deposit types including
middens, structures, and burial fill deposits (see
Supplemental Text 1; Supplemental Table 3).

Table 2. Summary Statistics for Southeast Archaeological Turkeys, Deer, and Canids.

Site (# Samplesa)
Mean
δ13Cco

STDEV b

δ13Cco

Range
δ13Cco Mean δ15N

STDEVb

δ15N
Range
δ15N

Mean
δ13Cap

Turkeys
Fewkes (n = 37) −19.87 1.74 −22.20 to −15.42 4.46 0.42 3.77 to 5.88 −10.76
Toqua (n = 10) −21.01 0.54 −21.88 to −20.24 4.66 0.42 4.09 to 5.30 —

Mound Bottom (n = 22) −20.25 0.98 −22.11 to −18.69 4.54 0.51 3.54 to 5.78 −12.60
Sandbar Village (n = 1) −22.08 — — 4.13 — — −10.47
Inglehame Farm (n = 6) −20.01 2.40 −22.15 to −15.47 4.61 0.44 4.05 to 5.21 −12.36
Gordontown (n = 3) −19.74 0.58 −20.29 to −19.13 4.37 0.13 4.23 to 4.45 −11.86
Irene Mound (n = 4) −19.71 0.59 −20.44 to −19.13 5.02 0.35 4.59 to 5.33 −8.83
Deer
Fewkes (n = 12) −21.88 0.64 −25.60 to −20.72 4.20 0.87 2.21 to 5.90 —

Toqua (n = 5) −22.22 0.39 −22.56 to −21.62 4.73 0.93 3.45 to 6.03 —

Irene Mound (n = 5) −22.29 0.49 −23.04 to −21.74 4.91 0.52 4.40 to 5.49 −11.13
Canids
Fewkes (n = 4) −9.73 1.32 −11.55 to −8.46 6.81 0.68 5.98 to 7.44 −6.27
aNumber of collagen samples per site. 61 samples also were run for δ13Cap including turkeys from Fewkes (n = 37), Mound
Bottom (n = 14), Sandbar Village (n = 1), Inglehame Farm (n = 4), Gordontown (n = 1), and Irene Mound (n = 4), deer from
Irene Mound (n = 5), and canids from Fewkes (n = 4).
bSTDEV = standard deviation.
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Moreover, Fewkes turkeys recovered within the
same feature, including refuse pits and burial
fill deposits, show variable δ13Cco, indicating
that turkeys with varying diets were disposed of
in the same location.

Among the archaeological turkeys, there is a
weak positive correlation between δ13Cco and
δ15N (r = 0.264; Figure 5). Elevated δ15N has
also been observed in archaeological domestic
turkeys and other taxa consuming crops (e.g.,
Barton et al. 2009; Guiry et al. 2018, 2020;
Lipe et al. 2016; Manin et al. 2018; Thornton
et al. 2016). This association lends some support
to the contribution of maize to diets of south-
eastern archaeological turkeys with elevated
δ13Cco, but other explanations including the con-
sumption of maize-consuming insects, and pro-
tein or water stress cannot be ruled out.

Southeastern archaeological turkeys have
slightly higher δ13Cco than archaeological deer
from the same site (deer mean δ13Cco =−22.1‰;
t-test p < 0.01), which could be due to turkeys’
greater omnivory (i.e., trophic level increases in

δ13C; Caut et al. 2009) or their greater consump-
tion of mast and seeds that have slightly higher
δ13C in comparison to leaves that deer consume
in greater quantities (Cernusak et al. 2009). The
diets of archaeological turkeys and deer contrast
with those of southeastern archaeological canids
tested in this study (mean δ13Cco =−9.7‰; mean
δ15N = 6.8‰) and humans reported from pub-
lished sources (n = 69, mean δ13Cco =−9.9‰;
n = 21, mean δ15N = 10.2‰), which consumed
more maize and fed at higher trophic levels (Fig-
ure 3; Table 2). High δ13Cco in the archaeological
canids suggests that they were tame or domesti-
cated animals feeding within human settlements.
The isotopic similarity of southeastern archaeo-
logical turkeys to deer and their pronounced iso-
topic separation from southeastern canids and
humans contrast with isotopic patterns observed
at sites in the American Southwest and Meso-
america where domestic turkeys were reared on
maize (Conrad et al. 2016; Lipe et al. 2016;
Manin et al. 2018; McCaffery et al. 2014; Rawl-
ings and Driver 2010; Thornton et al. 2016).

Figure 3. Comparison of mean (± 1 standard deviation) δ13Cco of archaeological fauna from the Southeast (SE) includ-
ing turkeys (triangles), deer (diamond), and canids (square) compared to published values of archaeological turkeys
from southern Ontario, Canada (Guiry et al. 2021; Morris et al. 2016), domestic turkeys fromMesoamerica (MesoAM)
(Thornton et al. 2016) and the American Southwest (SW) (Conrad et al. 2016; Lipe et al. 2016; Kellner et al. 2010;
McCaffery et al. 2014; Rawlings and Driver 2010), and Mississippian period (AD 1150–1550) humans (circles) from
Irene Mound (Hutchinson et al. 1992), and four sites in Tennessee’s Cumberland River Valley (Mound Bottom, Good-
lettsville, Arnold, and Averbuch; Buikstra et al. 1988).
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The preferential routing of carbon from die-
tary protein to bone collagen (Ambrose and
Norr 1993) allows for the potential underestima-
tion of maize consumption in δ13Cco if the pro-
tein component of the diet is largely C3

(Froehle et al. 2010, 2012; Harrison and Katzen-
berg 2003). This could be expected in turkeys
eating maize and invertebrates that fed on C3

resources. The contribution of C4 resources to
southeastern turkey diets is somewhat more
evident in bone apatite (δ13Cap =−8.00 to
−15.66‰), but the amount is less than that
consumed by southeastern canids (δ13Cap =−5
to −6.9‰, this study; see also Emerson et al.
2020; Guiry et al. 2021; Hogue 2003) and
Mesoamerican domestic turkeys (δ13Cap =−0.6
to −7.8‰; Thornton et al. 2016; Figure 6).
Although some southeastern turkeys consumed
a mixed C3/C4 diet, δ13Cap does not indicate
extensive consumption of maize or other C4

plants. The isotopic results thus do not support
extensive maize provisioning or captive rearing
of turkeys at the sampled Mississippian sites.

Ancient mtDNA Results

We recovered mitochondrial DNA from 25 of the
31 turkey bones (81%), which yielded DNA
sequences consistent with M. gallopavo. Five
of the samples yielded the entire 435-bp
sequence, and an additional 10 samples yielded
partial mtDNA profiles (309 bp) sufficient for
haplotype identification (Table 3). From these
observations, four distinct haplotypes were
recovered from the remains: eHap1 (seven indi-
viduals), eHap2 (six individuals), eHap3 (one
individual), and eHap4 (one individual). The
remaining 10 samples produced sequences too
short in length to be used to confidently assign
membership in one mitochondrial lineage or
another (these are indicated as “partial” in
Table 3).

The two more common haplotypes identified
in the archaeological remains, eHap1 and eHap2,
are observed in modern eastern wild turkeys
(M. g. silvestris), whereas eHap3 and eHap4
are unique, differing by a single mutation from
haplotypes observed in eastern wild turkey and

Figure 4. Median (horizontal line), mean (X) and interquartile range (box) of Southeast turkey δ13Cco.
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Rio Grande wild turkey (M. g. intermedia) popu-
lations, respectively (Supplemental Figure 1).
Fewkes turkeys group closely with most of the
eastern wild turkeys, and the population is not
significantly different from neighboring wild
modern eastern populations from the Black War-
rior and Scotch wildlife management areas in
Alabama and the Ozark Mountains in Missouri
(Figure 7). The recovered haplotypes, however,
are distinct from turkeys recovered from archaeo-
logical sites in the American Southwest (Kemp
et al. 2017; Speller et al. 2010) and Mexico
(Manin et al. 2018; Supplemental Figure 1).

Genetic diversity indices for Fewkes turkeys
indicate they are more similar to modern wild tur-
key populations than to managed or domestic
archaeological turkey stocks. The haplotype
diversity of the Fewkes assemblage is 0.657,
within the range (0.556–0822) of modern eastern
wild turkey populations from surrounding states
(Figure 8; Supplemental Table 2). In contrast,
haplotype diversity for contemporaneous archae-
ological turkey stocks in the American

Southwest (Kemp et al. 2017) is much lower,
ranging from 0 to 0.222. The turkeys from south-
western sites such as Shields Pueblo, Sand Can-
yon, Arroyo Hondo, and Albert Porter Pueblo
display reduced genetic diversity associated
with captive rearing (Figure 8) and, in the case
of Shields Pueblo, evidence for enriched δ13C
associated with maize provisioning (Rawlings
and Driver 2010).

Discussion and Conclusions

Isotopic and genetic analyses of Mississippian
turkeys show no evidence of prolonged or inten-
sive captive rearing at the southeastern sites
tested. Unlike archaeological turkeys from the
American Southwest and Mesoamerica, south-
eastern turkeys show no evidence of extensive
maize consumption or evidence of genetic man-
agement. Moreover, genetic analysis does not
indicate domestic turkeys were introduced from
other regions.

Figure 5. δ13Cco and δ15N for archaeological turkeys, deer, and canids.

804 Vol. 86, No. 4, 2021AMERICAN ANTIQUITY

https://doi.org/10.1017/aaq.2021.58 Published online by Cambridge University Press

https://doi.org/10.1017/aaq.2021.58


Isotopic Indicators of Rearing, Provisioning,
and Garden-Hunting

C4/maize-based diets of archaeological canids in
this and other studies (e.g., Emerson et al. 2020;
Guiry et al. 2021; Hogue 2003) indicate that
maize was an abundant food resource available
to animals in Mississippian communities. If
southeastern turkeys were reared in pens or
were free-range village animals, they should
have had higher δ13C and δ15N similar to archae-
ological domestic turkeys in Mesoamerica and
the American Southwest (Conrad et al. 2016;
Lipe et al. 2016; McCaffery et al. 2014; Rawl-
ings and Driver 2010; Thornton et al. 2016), as
well as the isotopic outlier from southern Ontario
(Morris et al. 2016). Higher turkey δ13Cco (>
−12‰) in these other regions is attributed to
heavy maize consumption, whereas higher
δ15N in captive turkeys is ascribed to the con-
sumption of fertilized maize, greater ingestion
of insects, consumption of human or animal
feces, or some combination of these factors

(McCaffery et al. 2014; Rawlings and Driver
2010; Thornton et al. 2016). Substantially higher
δ13Cco and δ15N was not observed in our south-
eastern turkeys nor in archaeological turkeys
from other southeastern sites (Manzano et al.
2019; Price 2009; Rogers 2011).

Although no southeastern turkeys fell within
the range of domestic turkeys from other regions,
slightly higher δ13Cco (−18 to −15.42‰) indi-
cates a mixed C3/C4 diet in eight southeastern
archaeological turkeys. Similar levels of δ13Cco

(−18.3 to −14.7‰) were observed in 10% of
the archaeological turkeys from southern Ontario
(Guiry et al. 2021; Morris et al. 2016). Morris
and colleagues (2016) interpret such intermedi-
ate values as evidence of turkey management
through intentional maize provisioning. How-
ever, the amount of maize available to wild-
foraging turkeys in the absence of intentional
human provisioning remains difficult to quantify,
and some wild, nonprovisioned taxa have been
shown to consume large quantities of maize
(Guiry et al. 2021, 2020).

Figure 6. Collagen and apatite δ13C for archaeological turkeys, deer, and canids plotted with reference to C3-based
(dashed line) and C4-based (solid line) protein models by Kellner and Schoeninger (2007).
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In the American Southwest, small subsets of
archaeological turkeys also yield δ13Cco, indicat-
ing a mixed C3/C4 diet. These individuals are
either free-range domestic turkeys eating a mix
of human-provided maize and wild foods (Jones
et al. 2016) or wild turkeys that occasionally raided
maize fields or consumed wild C4/CAM resources
(Conrad et al. 2016; McCaffery et al. 2014).
Similar uncertainty exists for interpreting
archaeological Mesoamerican ocellated turkeys
(Meleagris ocellata) with intermediate δ13Cco

(−18 to −13‰). These could be wild garden-
hunted birds or intentionally provisioned animals
(Manin et al. 2018; Thornton et al. 2016).

Accurately reconstructing where precolumbian
turkeys fall on the wild to domestic continuum is

crucial for understanding how people influenced
and interacted with animal populations through
direct (e.g., provisioning) and indirect means
(e.g., landscape or land cover modification).
Unfortunately, determining the human agency or
intentionality in managing and promoting turkey
populations is not as simple as observing the
degree to which isotopic ratios deviate from an
expectedwild, C3-based diet. Although stable iso-
tope analysis can readily identify domestic or
captive-reared birds consuming almost exclu-
sively human-provided maize (δ13Cco >−12‰),
isotopic analyses less readily document lower
levels of human provisioning because wild turkey
diets can vary greatly and regions differ in the
availability of wild C4 resources. The method

Table 3. Summary of Turkey mtDNA Results.

Specimen Laba Coordinates Mutations Haplotype

FEW-0151 WSU; BioArCh 15651–15800; 15875–16013 Partial
FEW-0152 BioArCh Fail
FEW-0154 BioArCh 15651–15960 15808C, 15886T, 15953C eHap2
FEW-0155 WSU; BioArCh 15554–15800; 15875–16013 (15886T, 15953C) Partial
FEW-0158 WSU; BioArCh 15875–16013 (15953C) Partial
FEW-0159 BioArCh Fail
FEW-0160 WSU Fail
FEW-0161 BioArCh 15651–15960 15677C, 15749G, 15796T, 15808C,

15864C, 15953C
eHap3

FEW-0162 WSU; BioArCh 15554–16013 15808C, 15953C eHap1
FEW-0163 WSU 15730–16013 (15808C, 15953C) Partial
FEW-0164 WSU; BioArCh 15651–16013 15808C, 15886T, 15953C eHap2
FEW-0165 WSU; BioArCh 15651–16013 15808C, 15953C eHap1
FEW-0166 WSU; BioArCh 15554–16013 15808C, 15953C eHap1
FEW-0167 WSU; BioArCh 15651–16013 15808C, 15953C eHap1
FEW-0168 WSU; BioArCh 15651–16013 15808C, 15886T, 15953C eHap2
FEW-0169 WSU; BioArCh 15651–15800 Partial
FEW-0170 WSU; BioArCh 15651–16013 15808C, 15953C eHap1
FEW-0171 WSU 15730–15967 (15886T, 15953C) Partial
FEW-0172 WSU Fail
FEW-0173 WSU; BioArCh 15651–15800 Partial
FEW-0174 WSU; BioArCh 15651–15960 15808C, 15886T, 15953C eHap2
FEW-0175 WSU 15730–15874 (15808C) Partial
FEW-0176 WSU; BioArCh 15651–15931 (15808C, 15886T) Partial
FEW-0177 WSU; BioArCh 15651–16013 15808C, 15953C eHap1
FEW-0178 WSU; BioArCh 15554–16013 15686T, 15808C, 15953C eHap4
FEW-0179 WSU Fail
FEW-0181 WSU; BioArCh 15651–15996 15808C, 15886T, 15953C eHap2
FEW-0183 WSU; BioArCh 15554–15960 15808C, 15886T, 15953C eHap2
FEW-0184 WSU; BioArCh 15730–16013 (15953C) Partial
FEW-0185 BioArCh Fail
FEW-0186 WSU; BioArCh 15554–16013 15808C, 15953C eHap1

Note: Sequences and mutational positions are relative to the turkey mtDNA reference sequence (EF153719; Guan et al. 2009).
aWSU =Washington State University Ancient DNA Lab; BioArCh = University of York Ancient DNA Lab.
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also cannot detect captive or managed turkeys pro-
visioned with C3 resources such as acorns because
their δ13C would be identical to wild turkeys.

Highly diverse and variable wild turkey diets
are a complicating factor. As opportunistic omni-
vores, turkeys may show great intra- and

Figure 7. Unrooted neighbor-joining tree displaying the relationship between the Fewkes turkeys and North American
modern (Mock et al. 2002) and archaeological (Speller et al. 2010) turkey populations. Comparative sequences were
obtained from GenBank. Fewkes turkeys are compared with archaeological samples from the American Southwest
and modern North American wild subspecies. The first letter of each population abbreviation refers to the subspecies
designation (E =M.g. silvestris (Eastern); F =M.g. osceola (Florida); R =M.g. intermedia (Rio Grande). Additionally,
MWT=M.g. merriami (Merriam’s), MGM=M.g. mexicana (Gould’s), and SW dom. = archaeological Southwest
domestic turkeys.
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interannual dietary variation sensitive to local
environmental factors, such as the amount and
configuration of forest cover and proximity to
water (Otieno and Frenette 2017). Wild turkeys
could display a broad range of isotopic values
reflecting this dietary diversity. Across their
broad geographic range, modern North Ameri-
can turkeys exhibit δ13Cco indicative of pure C3

to highly mixed C3/C4 diets, which argues in
favor of wild turkey isotopic diversity (δ13Cco:
−21.5 to −14.7‰, reflecting 1.5‰ correction
for modern burning of fossil fuels to make mod-
ern δ13Cco comparable to archaeological δ13Cco;
Jones et al. 2016; Lipe et al. 2016; Morris et al.
2016). Significant changes in land cover and
configuration, wildlife management practices,
hunting pressure, and the shift to mechanized
agriculture further complicate the comparison
of modern and archaeological turkey diets
because they alter the balance of C3 and C4

resources in turkey habitats and diets.
Seasonal maize provisioning of turkeys is one

of several possible explanations for slightly
higher δ13C observed in southeastern archaeo-
logical turkeys. Other explanations include turkey
consumption of insects or other invertebrates,
native C4 grasses, or maize damaged by other

crop pests. Slightly higher turkey δ13C should
be interpreted cautiously until we have a better
idea of the full range of nonprovisioned turkey
diets, as these values could reflect a diversity of
human-animal interactions from wild hunting to
active provisioning.

Implications for Human-Turkey Interactions in
Eastern North America

Increasing data indicate past human-animal
interactions in North America that defy simple
classifications of species as either wild or domes-
tic (e.g., Jones et al. 2016; LeFebvre and
deFrance 2018; LeFebvre et al. 2019; Morris
et al. 2016; Somerville et al. 2016; Sugiyama
et al. 2015, 2017; Thornton and Emery 2017;
Valadez Azúa 2003). It is likely that Mississip-
pian populations occasionally provisioned tur-
keys with dried maize and tolerated or even
promoted their presence in fields or middens as
a means of pest control, thereby increasing
local wild game populations. Higher δ13C in
archaeological turkeys broadly indicates turkeys’
tendency to tolerate anthropogenic habitats,
which inevitably brought them into greater and
more complex interactions with human popula-
tions. This mirrors recent observations of
domesticated millet (Panicum miliaceum,
Setaria italica) consumption by wild pheasants
(Phasianus colchicus) at the Dadiwan site in
China 5,900–7,900 years ago (Barton et al.
2020). In the case of turkeys, provisioning
them with maize would promote higher winter
survival rates, larger brood sizes, and smaller
home ranges while decreasing fear of humans,
all of which would increase local access to tur-
keys and promote further human-turkey
interactions.

Regardless of whether Mississippian popu-
lations intentionally provisioned turkeys to
improve hunting or to manage wild populations,
our sample does not indicate long-term captive
rearing or controlled breeding. Our sample,
however, is limited in size and geographic
scope and may not be representative of all Mis-
sissippian sites in the Southeast. Current
research on North American plant and animal
domestication reveals that the domestication
process was characterized by prolonged periods
of low-intensity cultivation or rearing and that

Figure 8. Haplotype and nucleotide diversity of the Few-
kes turkey assemblage compared to modern eastern
wild turkey (M.g. silvestris) populations and archaeo-
logical turkeys from sites in the American Southwest
(SW) listed in Supplementary Material Table 2.
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regions varied greatly in the timing and inten-
sity of food production (Smith 2011, 2017).
For example, turkey domestication in the
American Southwest originally focused on low-
level rearing primarily for feathers, with more
intensive rearing for subsistence purposes
emerging centuries later and only in areas of
highest population pressure (Kohler et al.
2012; Lipe et al. 2016). In the Maya region,
domestic turkeys were first adopted from
northern Mesoamerica in the Late Preclassic
(∼350 BC) but were reared in very small num-
bers at select sites for use in elite ceremonial
display until more widespread adoption after
AD 1000 (Thornton and Emery 2017; Thornton
et al. 2012). In both cases, turkey rearing was
not initially accompanied by substantial
increases in the numbers of turkeys in zooarch-
aeological assemblages, nor was turkey rearing
necessarily present at all contemporary sites.

Wild turkey provisioning or captive rearing of
poults hatched from wild-collected eggs may
have occurred in Eastern North America on a
limited basis at a few sites or in specific regions.
Future research may reveal evidence for
small-scale and patchily distributed turkey rear-
ing in Eastern North America. The single
maize-fed turkey identified by Morris and col-
leagues (2016) from southern Ontario supports
the need for expanded isotopic testing to docu-
ment the existence and extent of this practice.
Additional lines of evidence, such as demo-
graphic profiles and paleopathology, should
also be explored in more depth because of the
potential for managed or captive turkeys to be
provisioned with foods other than maize.

The wild turkey’s tameness and tolerance for
anthropogenic environments predispose it to
greater and more complex interactions with
humans and their built environments. The well-
established history of plant cultivation in Eastern
North America also provides a cultural context
for the emergence of other complex human-
environment interactions including animal man-
agement or rearing beyond domestic dogs.
Finally, it remains possible that the idea for tur-
key rearing diffused to Eastern North America
from the American Southwest or Mesoamerica.
Our study found no evidence of turkeys being
introduced from these confirmed centers of

turkey domestication, but the regions share
some cultural foundations and subsistence prac-
tices, and there is limited evidence of economic
interaction (Blitz 2010; Carpenter 2020; Wash-
burn et al. 2014).

Although the potential for turkey rearing and
domestication existed in the Southeast, there are
many types of intensified human-animal interac-
tions that would not lead to either outcome
(Vigne 2011; Zeder 2015). The decision to
engage in more controlled use of animal
resources is highly complex and is influenced
by many factors, including the local diversity,
abundance, seasonality, and sustainability of
wild faunal resources; the amount of surplus
crops available for use as animal fodder; and
the social demand for particular animal
resources. Eastern North America differs from
other regions where turkey domestication
emerged (i.e., American Southwest and Central
Mexico) in terms of the overall diversity and
abundance of faunal resources used by past soci-
eties. In particular, the greater availability of
aquatic taxa and overall ecological productivity
of the Eastern Woodlands offered more options
for protein acquisition. Within this ecological
context, specialization or greater reliance on tur-
keys may have been less likely. The wetter and
mixed landscape mosaic of forest and agricul-
tural fields in Eastern North America also could
sustain higher populations of turkeys near
human settlements. Maize provisioning, or fal-
low field and forest management could be an
effective means of promoting local turkey popu-
lations without investing resources in animal
rearing.

Reconstructing the nature of human-turkey
interactions in Eastern North America is critical
to understanding the overall process of turkey
domestication throughout the Americas.
Through comparative assessment of spatial and
temporal variation in the types and intensity of
turkey use, management, or domestication prac-
ticed, it will be possible to assess the social and
environmental contexts that influenced region-
specific interaction with this potential animal
domesticate. The current study, by expanding
research on turkey domestication in the Ameri-
can Southeast, moves us toward this goal, but
additional detailed studies throughout the
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turkey’s natural range are needed before we can
advance more formal theories.
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