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ABSTRACT: The pH-dependence of enzyme fold stability and catalytic activity is a fundamentally dynamic, structural property
which is difficult to study. The challenges and expense of investigating dynamic, atomic scale behavior experimentally means that
computational methods, particularly constant  pH molecular dynamics (CpHMD), are  well situated tools for this. However, these
methods often struggle with affordable sampling of sufficiently long timescales while also obtaining accurate  pKa prediction and
verifying the structures they generate. We introduce Titr-DMD, an affordable CpHMD method that  combines the quasi-all-atom
coarse-grained discrete molecular dynamics (DMD) method for conformational sampling with Propka for  pKa prediction, to cir-
cumvent these issues. The combination enables rapid sampling on limited computational resources, while simulations are still per-
formed at atomic scale. We benchmark the method on a set of proteins with experimentally attested pKa and on the pH triggered
conformational change in a staphylococcal nuclease mutant, a rare experimental study of such behavior. Our resu lts show Titr-
DMD to be an effective and inexpensive method to study pH-coupled protein dynamics.

Introduction
Solution pH is a chemical property with an immense effect

on protein behaviors that are difficult to study at the atomic
scale. Peak protein fold stability and catalytic activity are both
dependent on an often narrow range of pH. Understanding the
sequential  and  structural  underpinning  of  these  preferences
contributes to the design and application of enzymes, particu-
larly extremophile enzymes – which would allow for their use
in harsher reaction conditions in industrial catalysis,1–4 and an-
swers a wide range of questions of medical interest as precise
pH regulation is critical for cellular homeostatis.5–7 However,
this  understanding  demands  atomistic  information of  funda-
mentally  dynamic  phenomena.  pH-dependent  dynamics  is
challenging to study experimentally, requiring a combination
of techniques  such as NMR monitored  pH-titration,  circular
dichroism (CD) spectroscopy, and X-ray crystallography none
of  which  alone  provide  the  complete  picture.  Experimental
complexity  leaves  computational  investigation8 as  a  critical
tool to fill in the gaps.

Successful computational methods that assess pH-dependent
protein behavior must accurately couple amino acid protona-
tion  state  change  with  conformational  dynamics.  Typically,
continuum  electrostatic  methods  describe  the  protonation
states of amino acids, assessing the free energy of protonation
and deprotonation events or pKa. Various solutions to the Pois-

son-Boltzmann equation can provide this,9 especially the gen-
eralized  Born  model.10,11 Simpler  electrostatic  methods  are
used  as  well. Tools  such  as  UHBD,12 H++,13 and  Prop-
ka14,15 predict  the  pKa of  amino  acid  residues.  Other
tools,16,17 including FPTS18 rely on Monte Carlo simulations to
sample protonation states as well as solvent and/or ion config-
urations  in  some cases.  All  of  these  methods  are  useful  to
study many pH-dependent protein properties, including charge
regulation during complexation and prediction of some titra-
tion  curves.19 However,  these  methods  operate  with  largely
static structures for the protein with little or no backbone mo-
tion, and so can not fully capture  pH dependent dynamic be-
havior  on their own. Molecular dynamics (MD) can provide
the missing conformational sampling. Such combinations are
known as constant  pH molecular dynamics (CpHMD);  these
methods generally use electrostatic methods to model the pro-
tonation  state  changes  of  amino  acids  over  the  course  of  a
molecular dynamics simulation.

The appropriate sampling of pH-coupled dynamics is diffi-
cult  to  achieve for  all  CpHMD methods and challenging to
verify. The choice of solvation model is central to sampling
and  broadly  breaks  CpHMD  methods  into  two  categories:
those using explicit solvation and those using implicit solva-
tion. Explicit solvent based methods can provide greater accu-
racy  through  atomistic  solvent  treatment,20,21 but  sufficient



sampling is  difficult  to achieve,  as both conformational and
protonation states need to be sampled. Furthermore, protona-
tion sampling is affected by poor overlap between solvent con-
figurations such that protonation state changes are often imme-
diately rejected. To counter this, many groups have applied λ-
dynamics, based off pioneering work by Brooks et al.22 (in turn
based on earlier work with other thermodynamic properties in
mind),23,24 which  treats  the  protonation  state  of  individual
amino acid sites as continuous degrees of freedom rather than
discrete ones sampled distinctly.25–27 Other efforts focus on en-
hancing/accelerating  conformational  sampling  through  GPU
processing28 or  replica  exchange.29–31 Implicit  solvent-based
methods offer  increased sampling without acceleration tech-
niques by treating the surrounding solution as a simple dielec-
tric medium.32–35 Implicit solvent therefore avoids the issue of
solvent configuration sampling altogether.

Another approach to improve sampling is the use of coarse-
grained (CG) molecular dynamics methods. CG can be imple-
mented with either explicit or implicit solvent. Most often, CG
models reduce the number of particles needed in a simulation
by condensing atoms into supra-atomic beads. CpHMD meth-
ods based on these kinds of CG force fields, including Mar-
tini,36 HiRE-RNA,37 and OPEP6,38 have been recently devel-
oped. Use of supra-atomic beads is, of course, more approxi-
mate that all-atom methods so this class of CpHMD methods
is most attractive for particularly large systems, such as multi-
protein complexes, or long timescales, such as those of protein
refolding. Another form of CG is to simplify the MD force
field potentials,  reducing the number of calculations needed
each timestep. This sort of CG is done in methods such as dis-
crete molecular dynamics (DMD)39–41 with square-well poten-
tials used in place of continuous ones. Such CG potentials al-
low for quasi-all-atom simulations (with only some non-polar
hydrogen excluded from full atomistic treatment), unlike other
CG models. To our knowledge, no CpHMD methods based on
the CG potential paradigm of DMD yet exist.

Ultimately, regardless of protonation scheme, solvation, and
use of CG, verification of the generated ensemble of confor-
mational  and  protonation  states  is  of  great  important  in  all

CpHMD methods. This is not trivial due to paucity of comple-
mentary  experimental  results.  More  plentiful  indirect  evi-
dence, such as reconstruction of titration curves or estimation
of experimental pKa values, is not sufficient on its own for ver-
fication. Available results used in the past include limited he-
licity and secondary structural information from CD and NMR
spectroscopy,38,42–44 and  occasionally  X-ray  crystal  structures
that demonstrate pH-dependent differences.45 Such verification
is of critical importance when first introducing a method.

We present here Titr-DMD as an undemanding method for
the  investigation  of  pH dependent  protein  behavior.  Our
method dynamically updates the protonation states of a DMD
simulation39–41 using pKa predicted for instantaneous structures
along its trajectory as probabilities. In the current implementa-
tion Titr-DMD uses  pKa values generated through the semi-
empirical electrostatics method Propka, but is not restricted to
that specific tool. It follows a generally similar approach to the
early  CpHMD  promulgated  by  Baptista  et  al.20 However,
DMD’s CG square-well potentials and implicit solvation pro-
vide  rapid  conformational  sampling  at  atomic  resolution on
limited  resources,  while  periodic  protonation  state  reassess-
ment based on Propka confers extensive protonation state sam-
pling. Our program is highly modular for easy modification as
better  approaches  for  instantaneous  pKa prediction  develop.
We benchmark Titr-DMD on both its ability to calculate en-
semble pKa compared to experiment and on its ability to reca-
pitulate the pH-dependent conformational change found exper-
imentally in staphylococcal nuclease (SNase), a rare, well-de-
scribed system.46,47 Titr-DMD proves to be an effective, afford-
able method to study pH-dependent protein dynamic behavior
at atomic scale.

Theory and Methods
Titr-DMD  method. This  method  combines  rapid

DMD39 conformational sampling with a custom algorithm  to
resolve  protonation  based  on  Propka3.114 pKa predictions.
Simulations  are  performed iteratively,  alternating  between a
short DMD simulation and a titration (Titr)-feature  that  dis-
cretely assigns protonation states.  The algorithm for the Titr-
feature itself comprises five steps:  (1) titratable residues are

Figure 1: Schematic of the Titr-feature algorithm. The algorithm runs between short DMD (or any molecular mechanics) simula-
tions to assign discrete protonation states.



identified, (2) contact networks are constructed from the iden-
tified residues, (3) the solvent accessibility of each network is
determined, (4) the probability of protonation state change is
determined for each network or residue, (5) protonation state
changes are determined by a Monte Carlo step (Figure 1).

The intervals  between  protonation  state  reassessment  are
run just long enough so that protonation and deprotonation are
equilibrated over the DMD simulation timescale. As isolated
proton  transfer  events,  including many individual  reaction
steps in proteins,48 generally occur on the  femtosecond to pi-
cosecond timescale,49 200 DMD steps  (which is ~10 ps) suf-
fices – a comfortable separation of  1-3 orders of magnitude.
The size  of the timestep allows for  both the consistent and
meaningful application of theory, discussed more thoroughly
throughout the rest of the description of the Titr-DMD method
algorithm, and extensive sampling of a system’s potential pro-
tonation states.  A higher reassessment frequency is therefore
unnecessary and computationally expensive; while additional
time spent on the Titr-feature itself is minimal, a higher fre-
quency  requires  more,  shorter  DMD  simulations  and  thus
more time overhead during the program initialization.

Selection of titratable residues is based on their solution pKa

values. The amino acids aspartate,  glutamate,  histidine, cys-
teine, tyrosine, lysine, and arginine  are the only ones to have
side-chain solution  pKa values in the physiological range of
pH 1-13 and so are the only ones considered. While significant
shifts in pKa often occur when an amino acid is part of a pro-
tein, all other residues have side-chain pKa that fall far enough
out of  the physiological range to be largely irrelevant  in the
vast majority of systems. For the same reason, only the first
protonation/deprotonation event is considered for the included
amino acids; states such as doubly deprotonated lysine or dou-
bly protonated glutamine are inaccessible. The C-terminal car-
boxylate and N-terminal amine could be titrated as well, but
are not currently implemented due to missing DMD potentials
for their less preferred states.

Contact networks are constructed on the basis of the prox-
imity of titratable residues. First, interacting pairs of residues
are identified based on their (de)protonatable heteroatoms that
are within a certain cutoff distance, rp, of each other. The pro-
tonation contact distance rp is selected as 3.5 Å to be consistent
with the DMD definition of a long hydrogen bond. Each thus
defined  network represents a series of residues close enough
that in the timeframe of the DMD phase of the Titr-DMD sim-
ulation the proton exchange is equilibrated between them and
lies firmly under thermodynamic control.

Solvent accessibility of each residue contact network is de-
termined in a manner consistent with Propka, which defines a
specific residue as buried or exposed based on its contact num-
ber, w(N). w(N) is determined by the number of heavy atoms,
N, within 15 Å of the residue’s charge center according to

w (N)={ 0
N−Nmin

Nmax−Nmin

1

if N≤Nmin

if Nmin<N<N max

if N≥Nmax

(1)

The  residue is  thus 0% buried if  N ≤ 280  (Nmin) and 100%
buried  if  N ≥ 560  (Nmax).14 In  the  Titr-feature,  a  network is
considered solvent accessible if  any residue in it  is below a
certain cutoff. As proton exchange is equilibrated within a net-
work, so long as one residue is solvent accessible the rest of
the  network  can  freely  exchange protons  with  solvent.  The
best value of  the solvent access cutoff is  a parameter in the

model and  is often system dependent. We find that the  most
appropriate value  for  the  solvent  access  cutoff  could  range
from 45% to 75% and matters most in systems with important,
frequently buried residues.  Alternative approaches to the sol-
vent access cutoff are also possible.  We discuss this fully  in
the future development of Titr-DMD section and  within our
test system simulations.

The probability of a protonation state change is assessed for
each  titratable  residue  based  on  instantaneous  pKa and  the
residue  network information.  In  the current implementation,
Propka3.1 is used for pKa prediction, based on the latest struc-
ture from the preceding DMD trajectory. The protonation state
change probability is then assessed for each residue. It is cal-
culated differently depending on whether the residue is  in a
solvent accessible or inaccessible network. For a solvent ac-
cessible network the probability is based on the pH of the so-
lution  with  which  the  residue  can  freely  exchange  protons
(solvent  is  treated  implicitly  in  DMD).  This  probability  is
based off the Henderson-Hasselbash equation

pH=pK a+log(
[D ]
[P]

) (2)

where [D] is the concentration of the deprotonated state and
[P] is the concentration of the protonated state. Therefore, the
probability of adopting the protonated state, PP, can be defined
as

PP=
[P]

[P ]+[D ]
= 10pKa−pH

1+10 pK a−pH (3)

In the solvent inaccessible case, only the titratable protons al-
ready  present  in  the  network  can  be  exchanged.  Buried
residues not part of a network are therefore unable to change
protonation state, unless, over the course of a simulation, they
become solvent accessible or merge with another network. The
probabilities of protonation state changes for the residues in a
contact  network are thus coupled;  protonation state changes
must be determined for the whole network at once, rather than
residue by residue. Solvent inaccessible networks therefore re-
quire full enumeration of all proton configurations across the
network. The preference of a proton to localize on any individ-
ual residue  is determined by its  pKa, but with comparison to
the competing residues in the network rather than the solution
pH. To calculate the probability of a configuration, let R be the
set of all residues in a network and n be the number of titrat-
able protons in that network. Let T|n(R) be the set of all possi-
ble proton configurations S, Q, ... such that T|n(R) = {S ∈ T(R)
: |S| = n}. Then for every S ∈ T|n(R) the probability of adopt-
ing that proton configuration is

PC (R , S)=
∏
s∈S

10pK a (s)

∑
Q∈T∣n(R )

∏
q∈Q

10pKa ,T(q)
(4)

The weighting term for each proton configuration is the prod-
uct of 10 raised to the pKa of each residue that holds a proton
in that state (s ∈ S, q ∈ Q, ...). Equation 4 is used to calculate
the probability of each possible configuration.

Finally, protonation state changes are decided discretely by
a single Monte-Carlo step based on the probabilities generated
for each network. As with the probabilities, the decision differs
slightly  between  solvent  exposed  and  buried  networks.  For
solvent accessible networks, a decimal between 0 and 1 is ran-
domly generated for each residue and compared to its decimal
probability. If it is above that probability the residue is unpro-



tonated, and if below it is protonated. The solvent accessible
approach  holds  regardless  of  what  the  previous  protonation
state was. For solvent inaccessible networks, the decimal prob-
abilities of all potential protonation configurations are put in a
sequential order. A probability range for each configuration, S,
is then defined as from PL up to PL + PC(R,S), where PL is the
sum of all configuration probabilities already considered and
PC(R,S) is that of the current configuration. A decimal between
0 and 1 is then randomly generated, and the configuration is
decided based on which range the random number falls within.
Probabilities are generated and protonation states are decided
just once during the Titr-feature step before moving on to an-
other DMD simulation step. Any changes from the previous
structure are then made, with hydrogen removed when neces-
sary and DMD placing any new hydrogen on the appropriate
heteroatoms.  The structure is  then ready for  the  next DMD
simulation.

A correction is needed to maintain consistency across DMD
energies in a Titr-DMD trajectory. As the Titr-feature may add
and remove hydrogen by exchange with implicit solvent,  the
chemical composition of the system can change. As protona-
tion state changes are done through an external program, the
energy associated with them are not directly taken into account
in the DMD Hamiltonian which only sees the loss and gain of
hydrogen. Consequentially, the correction does not affect how
protonation state changes are made, but is simply for analysis
of the energy trajectory. One approach for an energy correction
would be to use a value for the solvation energy of a proton,
but that can not be obtained directly from experiment and can
only be determined by extrapolation.50 Values that can be ob-
tained  for  the  solvation  energy (-264.351 and  -265.9  kcal/
mol50,52) are large compared to the DMD energy changes asso-
ciated with structural fluctuations (ca. 100 kcal/mol). Unmodi-
fied use of the proton solvation free energy would result in un-
physical behavior – Titr-DMD would always deprotonate any
residue. Appropriate scaling of the solvation energy is one so-
lution. For the current implementation of Titr-DMD an energy
correction for each iteration is obtained instead based on the
Propka pKa of all residues with protonation states that deviate
from the original structure. For each protonation state, take the
following acid dissociation reaction

PRTN⇌ PRTN-+H+
(5)

where PRTN is the original protein and PRTN- is the new state.
The free energy of reaction 5 can be written as

ΔGdeprot=G(PRTN -)+G(H+)−G(PRTN ) (6)

Additionally, the Ka of the reaction is defined as

K a=10−ΔGdeprot /RT
(7)

Hence

G(PRTN-)+G(H+)=G(PRTN )−RTln(10−pK a)
(8)

where G(PRTN) is the uncorrected DMD energy and the left-
hand side of the reaction is a corrected energy for a compara-
ble system with the same chemical composition. For the proto-
nation reaction, casting PRTN as PRTN+ and PRTN- as PRTN
in the original reaction gives the equation

G(PRTN+)−G(H+)=G(PRTN )+RTln(10−pK a)
(9)

The energy associated with each protonation state change from
the PRTN structure can therefore be written as ±RTln(10-pKa),
positive for protonation and negative for deprotonation.  The

corrections are on the scale of 2-20 kcal/mol, consistent with
DMD energy fluctuations. Correction terms are calculated for
each iteration and summed with its DMD energy for the cor-
rected energy.

Current  limitations  of  Titr-DMD. The  scope  of  Titr-
DMD leaves it  with a few limitations,  which are worth de-
scribing here. Its reliance on Propka and DMD implicit solvent
means that it does not take interactions with ions in solution
into account. Other methods rely on Debye-Huckel theory to
do this.18 As covered in  the Results  and Discussion section,
benchmarking suggests that Propka does not always provide
accurate  pKa’s for certain, specific residues, namely cysteine
and  aspartate  residues  with  very  acidic  pKa’s  (around  1.0).
However, Propka does quite well with glutamate and asparate
residues with  pKas’ near to or higher than the solution value
(above 4.5). The protonation of cysteine in disulfide bridges –
and thus breaking of disulfide bridges – is not allowed in the
current implementation. Titr-DMD does not assess protonation
state  changes  to  the  C-terminal  carboxylate  or  N-terminal
amine. Titr-DMD has so far not been used to study catalytic
protonation and deprotonation events, so it is unclear how well
it can describe highly coupled, hydrogen bonding residues of-
ten involved in these processes.53 However, Titr-DMD may ob-
tain  reasonably  accurate  pKa’s  for  catalytically  coupled
residues as both DMD and Propka contain hydrogen bonding
terms. Investigations of such behavior are beyond the scope of
this initial publication and left for future studies.

Future  development of  Titr-DMD. The modularity  of
Titr-DMD allows for easy adaptation and refinement. Changes
to the method do not require reparameterization of the force-
field. Future developments of Propka or any other tool to cal-
culate the instantaneous pKa of a protein conformer can be ex-
changed  to  generate  the  probabilities  of  protonation  state
change and improve the quantitative accuracy of the feature.
The Titr-feature could even be paired with another molecular
mechanics method besides DMD, so long as it is in implicit
solvent  for  consistency with the probabilities  of  protonation
state change. Alternatives to the somewhat system dependent
solvent  access  cutoff  are also of  interest.  One is  to  use the
Propka buried percentage as a scalar probability of solvent ac-
cessibility rather than assign a sharp cutoff, while another is
based on the solvent-accessible surface (SAS) determined by
reduced surface.  The SAS method defines the contour of the
protein that can be accessed by solvent  by rolling a sphere
with  the  van  der  Waals  radius  of  the  solvent  (the  ‘probe’)
across  the  protein,  avoiding  the  van  der  Waals  radii  of  the
other atoms.54 The solvent accessibility of any residue can be
determined by measuring the distance of its titratable group to
the nearest vertex of the water SAS. If the vertex is within the
van der Waals radius of the titratable group, it is solvent acces-
sible. We are currently investigating a SAS approach for future
developments.

Benchmark systems. Most of the systems considered for
pKa prediction have been studied extensively both experimen-
tally and with other computational methods (Figure 2).  Hen
egg-white lysozyme (HEWL) was used as it is a prototypical
system for CpHMD benchmarking. The input structure of the
protein  was  taken  from  the  Protein  Data  Bank  (PDB  ID
1LZN).55 All solvent molecules were removed for the simula-
tion – water, nitrogen trioxide, and the sodium ion. As HEWL
only reports experimental pKa for GLU, ASP, LYS, TYR, and
a single HIS residue, both human thioredoxin (HTRX) and hu-
man muscle creatine kinase (HMCK) were simulated as well.
HTRX brought in another HIS residue to the dataset alongside



many more GLU and ASP. Two CYS residues in HTRX were
not  considered,  as  they  are  involved  in  a  disulfide  bridge.
HMCK only added one CYS residue to the dataset, but was in-
cluded as it is one of the largest proteins with an experimen-
tally identified amino acid  pKa at 381 residues (compared to
105 residues for HTRX and 129 for HEWL).  A Staphylococ-
cal nuclease mutant, V66K (SNase V66K), was included as it
contains a buried LYS66 residue that is deprotonated at neutral
pH. The  initial  structure  used  for  HTRX  was  PDB  ID
1ERT,56 with all water molecules removed and the rotamers la-
beled ‘A’ used when more than one was recorded. As it is un-
clear whether the 320-331 loop of HMCK is unstructured or
an  alpha  helix,  two  structures  were  used.  The  unstructured
case was based on the A chain of PDB ID 1U6R,57 mutated
back to the WT sequence with the substrate ADP, inhibitor (di-
aminomethyl-methyl-amino)-acetic  acid,  all  water,  nitrogen
trioxide, and magnesium ions removed. The alpha loop struc-
ture was the same except the 320-331 loop was replaced with
the 321-332 loop of the A-chain from PDB ID 3B6R.58 The
structure  used  for  SNase V66K was  PDB ID 2SNM69 with
thymidine-3’,5’-diphosphate,  water  molecules,  and  the  cal-
cium ion removed. All experimental reference pKa were drawn
from the  PKAD database.59 The  pKa values  used ultimately
come from Bartik et al.60 and Webb et al.61 for HEWL, from
Forman-Kay  et  al.62 and  Qin  et  al.63 for  HTRX,  Wang  et
al.64 for HMCK,  and Fitch et al. for SNase V66K.65 The  pKa

predictions from our simulations measure error and deviations
to the average of these datasets  for  each residue with more
than one reported value.  Titr-DMD pKa predictions were also
compared to  existing methods.  For  HTRX, values were ob-
tained from Harris et al.,28 an explicit solvent replica exchange
CpHMD method. Comparisons for HEWL were made based
on a truncated set of residues that was also assessed by the ex-
plicit solvent Vila-Viçosa et al.30 and Goh et al.25 replica ex-
change CpHMD methods, the implicit solvent implementation
of the Wallace et al.29 replica exchange CpHMD method, a CG
CpHMD  method  using  supra-atomic  beads  called
OPEP6,38 and the Monte-Carlo method FPTS.34 The dataset in-
cludes mostly asparatate and glutamate residues as well as one
histidine residue. Comparisons for the buried LYS66 of SNase
V66K were  made  with  the  Wallace  et  al.  implicit  solvent-
based  CpHMD29 and  FPTS.34 There  was  no  other  result  to
compare to for HMCK, but assessment of cysteine residues is
unusual.  Finally, for all the benchmark systems results were
also compared to the NULL model. The NULL model does not
involve any simulation but is used to calculate error with solu-
tion  pKa values assigned to each amino acid. In our case, we
assign amino acids the reference solution pKa values used by
Propka.  Beating  the  NULL model  is  important  for  any  pKa

prediction tool as failure to do so means that the tool does not
even qualitatively capture the pKa shifting effect of the protein
environment on residues.

The system used to assess pH-conformational coupling was
SNase V66K, a well characterized system (Figure 2D). Exper-
imental  information  about  protein conformational  dynamics,
including in the context of pH change, is difficult to obtain. As
discussed in the introduction, the study of SNase mutants is a
rare example with available experimental data on dynamics. A
combination of NMR, CD, and titration suggests that the pro-
tonation of LYS66 is concurrent with and may be coupled to
the unraveling of the first loop of the alpha helix on which it is
located.46,66–68 The  V66K mutant  was  selected  as  it  demon-
strates  an  extreme  pKa shift  of  10.5  down  to  6.4 –  which
alongside the conformational coupling is a real challenge for
any CpHMD method.

Titr-DMD  settings. Benchmarking  simulations  differ
slightly between those done to estimate  pKa values and those
that  assess  pH-conformational  coupling.  The  pH-conforma-
tional coupling simulations were longer and hotter to achieve
the necessary  sampling.  DMD simulations  without  the  Titr-
feature were also run for the  pH-conformation coupling sys-
tem as a control – to make sure conformational changes are
pH dependent.  The  pKa estimating simulations were run for
2,000,000 DMD timesteps (roughly 100 ns,  defined empiri-
cally)  at  50  K  (note  that  temperature  in  DMD  is  defined
specifically, and does not directly correspond to the physical
temperature).39 A high  heat  exchange  of  10.0  was  used  for
thermal  stability  because  Titr-DMD  consists  of  many  short
DMD simulations – a more typical, low value has a destabiliz-
ing effect. As discussed with the description of the method, a
standard protonation contact distance of  3.5  Å was used, as
well as the standard protonation state reassessment frequency
of 200 steps. The solvent access cutoff was 75%, which is dis-
cussed in more detail in the Supporting Information. The pH-
conformation  coupling  simulations  were  run  for  a  longer
4,000,000 DMD timesteps (roughly 200 ns) with solvent ac-
cess cutoff values of 65% and 45% ultimately selected and a
temperature of 150K for increased mobility. The other settings
were the same as for  the  pKa prediction. The DMD control
simulations  without  the  Titr-feature  were  performed for  the
same time and temperature as the pH-conformational coupling
simulations.

A total of 45 Titr-DMD and 4 DMD simulations were per-
formed for benchmarking. Simulations were done for HEWL
at  pH 3,  5,  7,  and 9, for HTRX at  pH 3,  5,  and 7, and for
HMCK both with the unstructured and alpha helical 320-331
loop at pH 9. The pH values were selected to straddle the pKa

of residues with experimentally reported values. Simulations
were run for SNase at  pH 4.6, 5.7, and 7. These values are

Figure 2: Ribbon diagrams of protein test systems for Titr-
DMD benchmarking: HEWL (A), HTRX (B), HMCK (C), and
SNase mutant V66K (D). The residues whose pKa's are con-
sidered and compared to experiment are highlighted in yel-
low. In the case of the SNase mutant, this is the buried LYS66
residue. The alpha helical loop to which it belongs and that
unravels is shown in red.



much below,  slightly below, and above the experimental  pKa

of the LYS66 residue and its coupled dynamic behavior. All
are above the denaturing point of the protein. Three replicates
were performed for each system and pH. The four DMD simu-
lations were run for SNase to provide a point of comparison.
Two were run with LYS66 permanently deprotonated and two
with it permanently protonated.

Convergence of the Titr-DMD simulations was attained ac-
cording to a series of metrics. This is comprised chiefly of the
backbone RMSD and the corrected Titr-DMD energy (Figure
3). The RMSD was calculated with the initial structure as the
reference and with respect to the alpha carbon and amide ni-
trogen, carbon, and oxygen of each amino acid. All trajectories
come to oscillate around fixed values, indicating convergence
of the overall protein structures. Convergence for HMCK and

SNase V66K, systems  with just  one amino acid of  interest,
was tracked by additional metrics covered in the Supporting
Information: the average pKa and the average protonation state
of the titratable residue of interest.

Results and Discussion
Titr-DMD offers rapid sampling on limited resources. The

combination of DMD and Propka in an implicit solvent makes
it  a  fast  and affordable method.  We assessed the scaling of
Titr-DMD  through  1000  step  (5  protonation  assessments,
about 50 ps) simulations of HEWL, HTRX, and HMCK exe-
cuted with 1, 2, 4, 8, and 16 processors both with and without
the Titr-feature. All simulations were run on the same node se-
quentially during a single submission to reduce the impact of
the variability of other demands on the supercomputing clus-
ter. Simulations were performed on AMD Opteron 2380 (2.5

Figure 3: Convergence of Titr-DMD simulations tracked by (A) the backbone RMSD and (B) corrected DMD potential free en-
ergy. Note that by both metrics the results come to oscillate around fixed values by the end of the simulations, indicating conver-
gence for the overall protein structures. The average RMSDs across all trajectories are 1.77 ± 0.29 Å for HEWL, 1.20 ± 0.18 Å
for HTRX, 2.51 ± 0.48 Å for HMCK, and 3.67 ± 1.57 Å for SNase. The average energies across all trajectories are 140.18 ±
57.79 kcal/mol for HEWL, 174.93 ± 77.49 kcal/mol for HTRX, 393.52 ± 104.51 kcal/mol for HMCK, and 95.93 ± 29.94 kcal/mol
for SNase.



GHz) cores on Hoffman2 at UCLA IDRE. This process was
replicated five times, with the average of these results taken
(Figure 4). Titr-DMD scales roughly linearly with the number
of residues, and scales favorably out to four processors, with
additional resources giving diminished returns. The Titr-fea-
ture  does  modestly  increase  the  computational  expense  of
DMD simulations, with the increase in relative runtime over
base DMD growing some with the number of processors used.
The increase largely derives from the need to initialize many
short DMD simulations. However, Titr-DMD still runs quite
well on limited resources; the CPU time for the four processor
tests scales up to 500-1300 CPU hours (or 3-5.5 CPU hours
per residue) to reach a 1 ms simulation.

With a couple exceptions, our Titr-DMD method success-
fully  recapitulated the  experimental  pKa of  the  test  system
residues  with  reasonable  error.  We  calculated  the  average
RMSE between the predicted and experimental values both by
type of amino acid and by protein test system (Tables 1-4).
The pKa can be calculated two ways from Titr-DMD, therefore
we calculated two average RMSE for each case. Propka-aver-
aged pKa is simply the average of the Propka predicted values
from each timestep. The DMD-averaged pKa for a residue is
the natural logarithm of the fraction of timesteps in which the
residue is protonated. That fraction is analogous to the Ka: the
relative concentration of the protonated form of the residue.
For  solvent  exposed  residues  (those  that  can  freely  change
protonation state just based on their instantaneous pKa) the two
pKa predictions should converge to the same values with ap-
propriate sampling. The results show that indeed the pKa are in
good agreement  between  the two methods  for  each  system,
with the notable exception of SNase V66K LYS66 – a deeply
buried residue. The overall maximum absolute error, mean av-
erage error, and root mean square error across the full dataset

(excluding  an outlier HMCK CYS283, discussed later) were
3.25, 0.77, and 1.03 for the DMD-averaged  pKa’s  and 2.43,
0.81,  and  1.05  for  the  Propka-averaged  pKa’s  respectively,
which  is  decent  agreement  with  experiment  for  a  CpHMD
method.

Titr-DMD predictions of  pKa values  are  competitive  with
other CpHMD methods. Across  nearly all of the benchmark
systems, Titr-DMD  outperforms the NULL model.  The RM-
SEs by protein are lower at 0.82-0.83 versus 1.58 for HTRX
and 1.19 versus 1.31 for HEWL. The absolute error for SNase
V66K LYS66 is 0-1.5 versus 4.1 for the NULL model. HMCK
is the one exception, as Propka predicts the  pKa of the single
CYS283 residue poorly: 5.7 in absolute error from the experi-
mental value versus 3.4. There was no DMD-averaged value
for the residue as the Propka predicted pKa’s were too high and
so the residue was rarely deprotonated in our simulations (all
conducted at pH well below 11). Titr-DMD matches or outper-
forms more  expensive  CpHMD  methods  with  HTRX  and
SNase V66K. For HTRX, Titr-DMD reports a smaller RMSE
of 0.82-0.83 versus 0.95 for the Harris method, while the abso-
lute error in the SNase V66K LYS66 pKa is 0-1.5 compared to
the 1.1 of the Wallace method. Titr-DMD performs worse than
more expensive CpHMD methods with HEWL, but is compa-
rable to another CG method. Its RMSE for a truncated dataset
(comprised  mostly of  ASP and GLU residues)  is  1.45-1.46,
above the 0.82-0.89 of the more expensive Wallace, Goh, and
Vila-Viçosa methods, but close to the 1.32 of the CG OPEP6.

The performance of Titr-DMD arises from its ability to ac-
curately predict many large  pKa shifts. Our method generally
does well with ASP and GLU residues that report pKa’s shifted
to more basic values, but struggles to provide accurate  pKa’s
for those shifted to very acidic values (around 2.0 or below).
Titr-DMD  outperforms  the  more  expensive  method  with

Figure 4: Computational resource scaling benchmark of Titr-DMD, plotted by (A) the number of processors and (B) the number
of residues. Note the linear scaling with number of residues and that good performance is reached with four processors. (C) The
percent increase of time for Titr-DMD over unmodified DMD. Note that the increase is relatively small and only becomes signifi-
cant with many processors as the time DMD takes shortens.



Table 1: Experimental and calculated pKa values of HTRX. *Proximity of these residues meant that the exact experi-
mental value in the Qin et al. study was unclear. **A series of possible pKa were found for this residue in the Forman-
Kay et al. study, the value of 9.0 was selected due to its consistency with the Qin et al. result. Experimental data from
ref 63 (Qin) and ref 62 (Forman-Kay). Other calculated data from aref 28.

Table 2: Experimental and calculated pKa values of HEWL. *Maximum absolute error, mean average error, and root mean
square error were also calculated for a truncated set of ASP, GLU, and HIS residues so that Titr-DMD could be compared to
referenced methods that only report those. Experimental data from ref 60 (Bartik) and ref 61 (Webb). Other calculated data
from aref 29, bref 25, cref 30, dref 38, and eref 34.

Table  3:  Experimental  and  calculated  pKa for
CYS283 in HMCK. Experimental data from ref 64.

Table 4: Experimental and calculate pKa for LYS66 in SNase V66K. Ex-
perimental data from ref 65. Other calculated data from aref 29 and bref
34.



HTRX largely through its more accurate prediction of the pKa

of ASP26, shifted  according to experiment  to  the very basic
9.5.  Conversely,  the  poorer  performance  of  Titr-DMD with
HEWL is due to the large number of ASP residues shifted to
highly acidic values in that system. Titr-DMD struggles to pre-
dict the large  pKa shift of the cysteine residue in HMCK, the
one case where it fails to beat the NULL model. However, as
this was the one CYS residue considered in the test set, Titr-
DMD  may  do  better  with  other  examples.  Titr-DMD  does
quite well predicting the shifts of LYS and TYR residues, in-
cluding the buried and highly shifted LYS66 of the SNase sys-
tem.  The  Propka-averaged  and  DMD-averaged  values  give
qualitative agreement with experiment, but the latter is quanti-
tatively  more  accurate.  Conformational  sampling  frequents
solvent inaccessible states for this residue, with the result of
LYS66 spending more time deprotonated than the Propka pKa

would suggest and correcting it toward the experimental value.
Furthermore,  for  LYS66,  both our  CpHMD method and the
Wallace  et al. method outperform FPTS, which doesn’t per-
form extensive backbone dynamics and does worse than the
NULL model. This demonstrates how important pH dependent
conformational dynamics are for particular residues and pro-
teins.

Titr-DMD holds promise for the study of the effect of solu-
tion pH on protein structure. Simulations of SNase V66K are
qualitatively consistent with rare, experimentally studied dy-
namics. With the Titr-feature, we observe partial unraveling of
the first turn of the alpha helix on which K66 is localized on
(residues 65-69), which is not apparent in DMD without titra-
tion (Table  5). Unraveling is only observed in 0.002-0.015%
of structures in base DMD, while Titr-DMD simulations show
it occurs in 3-8% of structures. We define an unraveled state as
one where the ALA69-LYS66 and ASN68-MET65 hydrogen
bonds are broken or breaking and the backbone RMSD of the
loop  is large relative to that of the full protein, indicative of
significant,  localized structural change (Figure 5). The crite-
rion is

SRMSD RMSDT /RMSDL

((R1−RHB)+(R2−RHB))/SHB

≤2 (10)

where  RMSDT is for the total  protein and  RMSDL is  for the
loop (residues 65-69), R1 and R2 are the backbone amide H to
carbonyl  O  distances  in  Å of  ALA69-LYS66  and  ASN68-
MET65 respectively, SRMSD is 2, RHB is 2.5 Å (for a long hydro-
gen bond length), and SHB is 2 Å. We only consider structures
where the ALA69-LYS66 and ASN68-MET65 backbone hy-
drogen bond distances are both at least 3 Å. While unraveling
according to our criterion occurs in 3-8% of all states at the
appropriate  pH,  it is  not typically  sustained  for  longer  than

about 1 ns at any one time. We surmise that our simulations do
not have enough sampling  to capture sustained loop unravel-
ing, but do show the rare events that could lead to it.

Protonation  and  deprotonation  of  LYS66  is  coupled  with
loop unraveling according to Titr-DMD.  At  pH 5.7, the per-
centage  of  unraveled  states  is  significantly  higher  around
LYS66 protonation state changes than the total simulation av-
erage (Table 6). Moreover, few events at pH 5.7 occur without
contemporaneous unraveling. The coupling we observe in our
simulations is thus consistent with the experimental hypothe-
sis.46

Titr-DMD dynamics can predict the  pH at which loop un-
raveling occurs. The Propka-averaged pKa value of LYS66 is
uniformly higher than the experimental 6.4, at an average of 7-
8, but still shows a qualitatively correct large drop from the so-
lution value of 10.5. However, as discussed before, the DMD-
averaged pKa is generally lower and close to the experimental
value, representing the frequent solvent inaccessibility of the
residue.  The values in Table 4 are averages across the 45%
cutoff and 65% cutoff simulations; their individual DMD-av-
eraged  pKa are both close to the experimental result at 5.79
and 7.04 respectively. At these two cutoffs, unraveling is gen-
erally most common in the pH 5.7 simulations and nearly all
protonation  state  changes  occur  alongside  some unraveling.
Titr-DMD can qualitatively model coupling between  pH and
protein  structure,  and  when  well  calibrated  can  do  so  with
more quantitative accuracy.

Conclusions
In this paper we demonstrate Titr-DMD as an effective new

method to study pH-coupled protein dynamics. The challenges
that face any CpHMD method are appropriate conformational
and protonation state sampling, accuracy of protonation state
changes, and whether the generated conformational ensemble
is physically meaningful. Titr-DMD offers great sampling on
just a few processors through atomic collision event calcula-
tions,  implicit  solvation,  and  semi-empirical  pKa prediction
with Propka. Our method obtains reasonably accurate pKa pre-

Table 5: Frequency of SNase mutant V66K alpha helical loop
65-69 unraveling over the course of Titr-DMD (upper) and
DMD (lower)  simulations. Note  that the frequency is much
higher in the Titr-DMD simulations.  The highest  frequency
that occurs a bit below the experimental pKa of LYS66 (6.4) is
when the solvent access cutoff is 45%.

Figure  5: (A) Criterion for an unraveled 65-69 loop struc-
ture in our SNase simulations. This compares the RMSD of
the loop (RMSDL) to the RMSD of the full protein (RMSDT)
and compares the distances of important hydrogen bonding
contacts (R1, R2) to standard values (RHB) to determine struc-
tures where the conformation of the loop varies significantly
from the original structure. We give the values of the other
variables in the main text. (B) Example of a SNase confor-
mation with an unraveled 65-69 loop by our criterion (light
blue) overlaid on a structure where it is not unraveled (tan).
LYS66 is colored yellow here.



dictions for its computational expense. Titr-DMD was success-
fully benchmarked on the partial unraveling of SNase mutant
V66K: one of the few experimentally studied pH coupled con-
formational  changes.  Titr-DMD  generates  a  conformational
ensemble consistent with experiment, and this ensemble even
reflects  the  experimental  pH value  of  the  conformational
change. Our method is also modular to further improve sam-
pling and accurate assignment of protonation states. Titr-DMD
stands as a promising method to address questions of  pH dy-
namics in industrial catalysis and medicine.
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Table 6: Frequency of unraveling of the SNase mutant 65-69
loop around LYS66 protonation and deprotonation events.
‘Near event’ refers to the percentage of structures within 25
timesteps (before and after) of an event that are unraveled.
This value is roughly on par with the total simulation aver-
age except at pH 5.7, particularly during the simulation with
a 45% solvent access cutoff. ‘By event’ refers to the percent
of events that have at least one unraveled structure within 25
timesteps. Again, note that the pH 5.7 simulations show high
coupling where protonation state changes nearly always oc-
cur alongside some contemporaneous unraveling.
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