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Abstract

With ever-increasing dataset sizes, subset selection techniques
are becoming increasingly important for a plethora of tasks. It
is often necessary to guide the subset selection to achieve cer-
tain desiderata, which includes focusing or targeting certain
data points, while avoiding others. Examples of such problems
include: i) rargeted learning, where the goal is to find subsets
with rare classes or rare attributes on which the model is un-
derperforming, and ii) guided summarization, where data (e.g.,
image collection, text, document or video) is summarized for
quicker human consumption with specific additional user in-
tent. Motivated by such applications, we present PRISM, a rich
class of PaRameterlzed Submodular information Measures.
Through novel functions and their parameterizations, PRISM
offers a variety of modeling capabilities that enable a trade-off
between desired qualities of a subset like diversity or represen-
tation and similarity/dissimilarity with a set of data points. We
demonstrate how PRISM can be applied to the two real-world
problems mentioned above, which require guided subset selec-
tion. In doing so, we show that PRISM interestingly generalizes
some past work, therein reinforcing its broad utility. Through
extensive experiments on diverse datasets, we demonstrate
the superiority of PRISM over the state-of-the-art in targeted
learning and in guided image-collection summarization.

1 Introduction

Recent times have seen explosive growth in data across sev-
eral modalities, including text, images, and videos. This has
given rise to the need for finding techniques for selecting
effective smaller data subsets with specific characteristics for
a variety of down-stream tasks. Often, we would like to guide
the data selection to either target or avoid a certain set of data
slices. One application is, what we call, targeted learning,
where the goal is to select data points similar to data slices
on which the model is currently performing poorly. These
slices are data points that either belong to rare classes or have
common rare attributes (e.g., color, background, efc.). An
example of such a scenario is shown in Fig. 1(a), where a
self-driving car model struggles in detecting “cars in a dark
background* because of a lack of such images in the training
set. The targeted learning problem is to augment the training
dataset with more of such rare images, with an aim to improve
model performance. Another example is detecting cancers
in biomedical imaging datasets, where the number of cancer-
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ous images are often a small fraction of the non-cancerous
images.
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Figure 1: Applications of guided subset selection. (a) Tar-
geted learning: improving a model’s performance on night
images (target), which are under-represented in the training
data. This is achieved by augmenting it with a subset match-
ing the target. (b) Guided summarization: finding a summary
similar to a query set or a summary dissimilar to a private set.

Another application comes from the summarization task,
where an image collection, a video, or a text document is
summarized for quicker human consumption by eliminating
redundancy, while preserving the main content. While a
number of applications require generic summarization (i.e.,
simply picking a representative and diverse subset of the mas-
sive dataset), it is often important to capture certain user intent
in summarization. We call this guided summarization. Ex-
amples of guided summarization include: (i) query-focused
summarization (Sharghi, Gong, and Shah 2016; Xiao et al.
2020), where a summary similar to a specific query is desired,



and (ii) privacy-preserving summarization, where a summary
dissimilar to a given private set of data points is desired (say,
for privacy issues). See Fig. 1(b) for a pictorial illustration.

1.1 Our Contributions

PRISM Framework: We define PRISM through different
instantiations and parameterizations of various submodular
information measures (Sec. 2). These allow for modeling a
spectrum of semantics required for guided subset selection,
like relevance to a query set, irrelevance to a private set, and
diversity among selected data points. We study the effect
of parameter trade-off among these different semantics and
present interesting insights.

PrISM for Targeted Learning: We present a novel
algorithm (Sec. 3.1, Algo. 1) to apply PRISM for targeted
learning, which aims to improve a model’s performance on
rare slices of data. Specifically, we show that submodular in-
formation measures are very effective in finding the examples
from the rare classes in a large unlabeled set (akin to finding
a needle in a haystack). On several image classification tasks,
PRISM obtains = 20-30% gain in accuracy of rare classes
(= 12% more than existing approaches) by just adding a few
additional labeled points from the rare classes. Furthermore,
we show that PRISM is 20x to 50x more label-efficient
compared to random sampling, and 2x to 4x more label-
efficient compared to existing approaches (see Sec. 4.1). We
also show that Algo. 1 generalizes some existing approaches
for data subset selection, reinforcing its utility (Sec. 3.3).
PRriIsM for Guided Summarization. We propose a learning
framework for guided summarization using PRISM (Sec. 3.2).
We show that PRISM offers a unified treatment to the
different flavors of guided summarization (query-focused
and privacy-preserving) and generalizes some existing
approaches to summarization, again reinforcing its utility.
We show that it outperforms other existing approaches on
a real-world image collections dataset (Sec. 4.2).

1.2 Related Work

Submodularity and Submodular Information Measures:
Submodularity (Fujishige 2005) is a rich yet tractable sub-
field of non-linear combinatorial optimization (Krause and
Golovin 2014).We provide novel formulations of the recently
introduced class of submodular information measures (Gupta
and Levin 2020; Iyer et al. 2021) for guided data subset
selection.

Data Subset Selection, Coresets, and Active Learning: A
number of papers have studied data subset selection in dif-
ferent applications and settings. Several recent papers have
studied data subset selection for speeding up training. These
include approaches involving submodularity (Wei, Iyer, and
Bilmes 2015; Kaushal et al. 2019a), gradient coresets (Mirza-
soleiman, Bilmes, and Leskovec 2020; Killamsetty et al.
2021) and bi-level based coresets (Killamsetty et al. 2020).
Another application is active learning, where the goal is to
select and label a subset of unlabeled data points to improve
model performance (Settles 2009). Several recent approaches
which combine notions of diversity and uncertainty have
become popular (Wei, lyer, and Bilmes 2015; Sener and
Savarese 2018; Ash et al. 2020). One such state-of-the-art ap-
proach is BADGE (Ash et al. 2020), which samples points that

have diverse hypothesized gradients. Most of these paradigms
have been studied in the setting of generic data subset selec-
tion, and are ineffective when it comes to guided subsets.
Some recent works like GRAD-MATCH (Killamsetty et al.
2021) and GLISTER (Killamsetty et al. 2020) select subsets
based on a held out validation set, which can be a rare slice
of data. Similarly, (Kirchhoff and Bilmes 2014) compute a
targeted subset of training data in the spirit of transductive
learning for machine translation.

Summarization: A number of instances of summarization
have been studied in the past, including image collection
summarization (Celis and Keswani 2020; Ozkose et al. 2019;
Singh, Virmani, and Subramanyam 2019; Tschiatschek et al.
2014), text/document summarization (Lin and Bilmes 2012;
Chali, Tanvee, and Nayeem 2017; Yao, Wan, and Xiao 2017),
and video summarization (Kaushal et al. 2019¢,b; Gygli,
Grabner, and Gool 2015; Ji et al. 2019). While most of these
works have focused on generic summarization, some have
also studied query-focused video summarization (Sharghi,
Gong, and Shah 2016; Sharghi, Laurel, and Gong 2017; Va-
sudevan et al. 2017; Xiao et al. 2020; Jiang and Han 2019),
and query-focused document summarization (Lin and Bilmes
2011; Li, Li, and Li 2012). To the best of our knowledge,
PRISM is the first attempt to offer a unified treatment to the
different flavors of summarization.

2 The PRISM Framework
2.1 Preliminaries

Submodular functions: Let V = {1, 2,3, ..., n} denote the
ground-set and f denote a set function f : 2V — R. The func-
tion f is submodular if it satisfies the diminishing marginal
returns property; namely f(j|X) > f(j|)),vX C Y C
V,7 € Y (Fujishige 2005). Submodularity (along with mono-
tonicity) ensures that a greedy algorithm achieves a1 — 1/e
approximation when f is maximized (Nemhauser, Wolsey,
and Fisher 1978).

Submodular Conditional Gain (CG): Given sets A, P C
V, the CG, f(.A|P), is the gain in function value by adding .A
to P. Thus f(A|P) = f(AUP)— f(P). Intuitively, f(.A|P)
measures how different A is from P, where P is the condi-
tioning set or the private set.

Submodular Mutual Information (MI): Given sets
A, Q C V, the MI (Gupta and Levin 2020; Iyer et al. 2021) is
defined as I¢(A; Q) = f(A)+ f(Q)— f(AU Q). Intuitively,
this measures the similarity between Q and .A where Q is the
query set.

Submodular Conditional Mutual Information (CMI):
CMI is defined using CG and Ml as I(A; Q|P) = f(AU
P)+ f(QUP) — f(AU QU P) — f(P). Intuitively, CMI
jointly models the mutual similarity between A and Q and
their collective dissimilarity from P.

Properties: CG, MI, and CMI are non-negative and mono-
tone in one argument with the other fixed (Gupta and Levin
2020; Iyer et al. 2021). CMI and MI are not necessarily sub-
modular in one argument (with the others fixed) (Iyer et al.
2021). However, several of the instantiations we define below
turn out to be submodular. With this background, we present
our unique and novel formulations, leading to PRISM.



2.2 Guidance from an Auxiliary Set

We formulate the above submodular information measures
to handle the case when the guidance can come from an
auxiliary set V' different from the ground set V — a require-
ment common in several guided subset selection tasks. Let
Q = VU V'. We define a set function f : 22 — R. Although
f is defined on (2, the discrete optimization problem will only
be defined on subsets A C V. To find an optimal subset (i)
given a query set Q C ', we can define go(A) = I;(A; Q),
A C V and maximize the same; (ii) given a private set
P C V', we can define hp(A) = f(A|P), A C V, as the

function to be maximized.

2.3 Restricted Submodularity to Enable a Richer
Class of MI and CG Functions

While submodular functions are expressive, many natural
choices are not submodular everywhere. We do not need
f to be submodular everywhere on {2, since the sets we
are optimizing on, are subsets of V. Instead of requir-
ing the submodular inequality to hold for all pairs of sets
(X,Y) € 2 x 2%, we can consider only subsets of this
power set glvoting on ¥V C (1. In particular, define a sub-
set C C 2. Then restricted submodularity on C satisfies
FX)+f) > f(XUY)+ f(XANY),¥(X, V) €C.In-
stances of restricted submodularity in the form of intersecting
and crossing submodular functions have been considered in
the past (Fujishige 2005). We consider the following form of
restricted submodularity. Given sets }V and )’ as above, define
C(V, V") C 29 to be such that the sets (X', )) € C(V, V') sat-
isfy either of the following conditions: i) ¥ C Vor X C V'
and Y is any set, orii) X isanysetand Y C VorY C V'. We
call the MI of a restricted submodular function as General-
ized Mutual Information function (GMI). We use this notion
of GMI to define Concave Over Modular (COM). The GMI
function is non-negative and monotone (see Appendix B.1).

2.4 Instantiations & Parameterizations in PRISM

In this section, we discuss the expressions for different in-
stantiations of the above measures using different functions.
We refer to them as *MI or *CG or *CMI where * is the
submodular function using which the respective MI, CG or
CMI measure is instantiated. While different submodular
functions naturally model different characteristics such as
representation, coverage, etc. (Kaushal et al. 2019¢,b), the
instantiations presented here additionally model similarity
and dissimilarity to query and private sets respectively. These
instantiations have parameters A, 7 and/or v, that govern the
interplay among different characteristics. In several instantia-
tions, we invoke a similarity matrix S where S;; measures the
similarity between elements 7 and j of sets that will be cor-
respondingly specified. The rich class of functions in PRISM
thus helps model a broad spectrum of semantics. The math-
ematical expressions for each function are summarized in
Tab. 1. Below, we provide further notations and intuitions for
using these functions.

Log Determinant (LogDet): Let S4 o be the cross-
similarity matrix between the items in sets A and Q. We
construct a similarity matrix S7* (on a base matrix .S) in
such a way that the cross-similarity between A and Q is

multiplied by 7 (i.e., S}’ = 15.4,0) to control the trade-off
between query-relevance and diversity. Similarly, the cross-
similarity between A and P by v (i.e., S;"l’:fp = vSsp)to
control the strictness of privacy constraints. Higher values of
v ensure stricter privacy constraints, such as in the context of
privacy-preserving summarization, by tightening the extent of
dissimilarity of the subset from the private set. Given the stan-
dard form of LogDet as f(A) = logdet(S";"), we provide
the PRISM expressions in Tab. 1. For simplicity of notation,
CMI is presented with v = 17 = 1. We defer the derivation
and the general expression for CMI to the Appendix C.1.

Facility Location (FL): We introduce two variants of
the MI functions for the FL function which is defined as:
f(A) =", cqmax;c 4 S;j. The first variant is defined over
Vv (FLVMI) (Iyeretal. 2021) in Tab. 1(a). We derive another
variant defined over @ (FLQMI) which considers only
cross-similarities between data points and the target. This MI
expression has interesting characteristics different from those
of FLVML. In particular, whereas FLVMI gets saturated (i.e.,
once the query is satisfied, there is no gain in picking another
query-relevant data point), FLQMI just models the pairwise
similarities of target to data points and vice versa. Moreover,
FLQMI only requires a Q x V kernel, which makes it very
efficient to optimize. We provide the expressions in Tab. 1
and defer the derivations to Appendix C.2. We multiply the
similarity kernel S used in MI and CG expressions of FL by
n and v as done in the case of LogDet.

Concave Over Modular (COM): The notion of GMI
functions (Sec. 2.3) allows us to characterize a rich
class of concave over modular functions as GMI
functions. Define a set function fn(A) as: fo(A) =

1 sy max(Y(3 c gy Sis), (VR e amyr Sig))
+ Zievmax( (EjeAnw Siz)s ?!{J(\/_E;,-eAmvSij))v

where 1 is a concave function and fy(A) is restricted
submodular. We state the expression for its GMI function in
Tab. 1(a) and provide the derivation in Appendix B.2.

Graph Cut (GC): The GC function is defined as f(A) =
Y>> Sij—A Y. S;;. The parameter A captures the trade-
icA,jeVv i,jEA
off between diversity and representativeness. The PRISM
expressions of GC are presented in Tab. 1. Note that the CMI
expression for GC is not useful as it does not involve the
private set and is exactly the same as the MI version (proof
in Appendix C.3). Like in the LogDet case, we introduce an
additional parameter v in GCCG to control the strictness of
privacy constraints. Again, this is easily modeled in the GC
objective by multiplying the cross-similarity between data
points and the private instances by v.

Computational Complexity: In terms of compute complex-
ity, GCMI and FLQMI are linear in |V| (since Q is typically
small). However, FLVMI and LOGDETMI are quadratic in the
size of the unlabeled set due to requiring the kernel. Hence,
for massive datasets, GCMI and FLQMI are preferable (more
details in Appendix D). We also discuss (in Appendix D) a
partitioning based approach where we divide the datasets into
smaller partitions and run the V x V kernel based functions
(FLVMI and LOGDETMI) on the individual partitions, thereby
making them more scalable.



Table 1: Instantiations of PRISM. Note that the functions formulate similarity with query set ) and dissimilarity with private set

P which are the building blocks for targeted data subset selection.

(a) Instantiations of MI functions
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Figure 2: Behavior of different functions in PRISM and effect
of parameters. All plots share the legend.

2.5 Modeling Semantics of PRISM

To empirically verify the intuitive understanding of the ex-
pressions, we maximize the different functions in PRISM
individually on a synthetically created dataset with differ-
ent parameters, and study the characteristics of the subsets
qualitatively and quantitatively. For evaluation, we define
query-coverage to be the fraction of queries covered by the
subset, query-relevance to be the fraction of the subset per-
taining to the queries, diversity to be the measure of how
diverse are the points within the selected subset, and privacy-
irrelevance to be the fraction of the subset not matching the
private set. We present representative results in Fig. 2 and
defer detailed results to Appendix E. For MI functions, we
verify that increasing 7 tends to increase query-relevance
while reducing query-coverage and diversity (top-left, Fig. 2).
Also, while GCMI lies at one end of the spectrum favoring
query-relevance, FLVMI lies at the other end favoring diver-
sity and query coverage. FLQMI, LOGDETMI and COM lie
somewhere in between (top-right, Fig. 2). As expected, in-
creasing v increases privacy-irrelevance for CG functions. We
also observe that LOGDETCG outperforms FLCG and GCCG
both in terms of diversity and privacy-irrelevance (bottom-
left, Fig. 2). For CMI functions, we see that FLCMI tends
to favor query-coverage and diversity in contrast to query-
relevance and privacy-irrelevance, while LOGDETCMI favors
query-relevance and privacy-irrelevance over query-coverage

(b) Instantiations of CG and CMI functions

CG f(A[P)
FLCG Sij— Si;,0
igvmax{glea} 17— Max Si5, 0)
LOGDETCG | logdet(S4 — >S4, pS5'S% p)
Geea flA)—2x > Sy
icd.jeP
CMI I;(4; QIP)
FLCMI i Sij, Si;) — Si;,0
:_EEvmaX(mm(rana} 17, Max 53;) — max 5i;,0)

de:(I—S.;,lSp:QSélsg’Q)

LOGDETCMI log — -
det(I-57,p54uP.Q5g Shup.@)

and diversity (bottom-right, Fig. 2).
3 PRISM for Guided Subset Selection

In this section, we discuss the use of PRISM for guided data
subset selection and illustrate its utility for targeted learning
and guided summarization.

3.1 Targeted Learning

We first apply PRISM to targeted learning, where the goal
is to improve a model’s accuracy on some target classes at a
given additional labeling cost and without compromising on
the overall accuracy (see Fig. 1(a)). Let £ be an initial train-
ing set of labeled instances, 7 be the target set of examples
on which the user desires good performance, P be the private
set of examples that the user wants to avoid, and U be a large
unlabeled dataset. We maximize a CMI function I ;(A; T|P)

towards computing an optimal subset A C U of size k sim-
ilar to T and dissimilar to P. Note that when P = (), CcMI
is equivalent to MI. We then augment £ with labeled A and
re-train the model. Through the aforementioned (Sec. 2), the
diverse class of MI functions in PRISM offers a natural and
effective approach for targeted subset selection by using the
query set Q as the target set 7. The approach is outlined in
Algo. 1. Similar to (Ash et al. 2020; Killamsetty et al. 2020,
2021; Mirzasoleiman, Bilmes, and Leskovec 2020), we use
last-layer gradients of the model to represent the data points
and use them to compute the similarity kernel S. Specifically,
we define pairwise similarities S;; = (VoLi(6), Vo L;(0)),
where L£;(0) = L(x;,yi, #) is the loss on the ith data point
and @ denotes model parameters. Note that the target need not
correspond to class(es) but could be any attribute of data that
the user is interested in. For instance, the target could be min-
ing images with people at night (here night is an attribute).

3.2 Guided Summarization

Next, we apply PRISM for guided summarization. In this
task, we are given a set V of data points (images, sentences
of a document, or frames/shots of a video), and the goal is to
find a summary .4 C V with certain desired characteristics.
In query-focused summarization, we find a summary that
is semantically similar to the query set, while in privacy-
preserving summarization, the obtained summary should not
contain data points that are similar to the private set.



Algorithm 1: Application of PRISM for Targeted Learning

Require: £&: initial labeled set, U: large unlabeled set, 7: a
target subset/slice, P: a set to be avoided, k: selection
budget, L: loss function

1: Train model with loss £ on labeled set £ to obtain model
parameters 8¢ {Obtain initial accuracy}

2: Compute the gradients {V.L(z;,y;),7 € U} (using hy-
pothesized labels) and {Vg. L(zi,v;),7 € T} {Obtain
vectors for computing kernel in Step 3}

3: Compute the similarity kernels S and define a CMI func-
tion I7(.A; T|P) {Instantiate Functions}

4: A + maxAgu,MEk(If(A; T|P) {Obtain the subset
optimally matching the target}

5: Obtain the labels of the elements in A as L(.A) {Procure
labels on the selected subset}

6: Train a model on the combined labeled set £ U L(A)
{Augment training data}

PRriSM’s Unified Framework for Guided Summarization:
Given sets @ and P, and a submodular function f, consider
the following master optimization problem involving CMI:
max 4. 4)<k I (A; Q|P). We discuss how the different fla-
vors of summarization can be seen as special cases of this
master optimization problem. Setting Q < V and P « 0
yields generic summarization. Similarly, setting Q + Q and
P <+ 0 yields query-focused summarization with a query-set
Q. Setting Q < V and P + P gives privacy-preserving
summarization. This framework allows us to address yet
another flavor: joint query-focused and privacy preserving
summarization where we set Q + Q and P + P.

Parameter Learning in PRISM for Guided Summariza-
tion: As discussed in Sec. 2, different instantiations of
PRISM along with their parameters offer a wide spectrum
of modeling characteristics. Hence, when used individually,
each imparts certain characteristics to the summaries. For
summarization, we thus propose learning a mixture model su-
pervised by summaries generated by humans. We learn a mix-
ture of PRISM functions (Lin and Bilmes 2012; Kaushal et al.
2019c,b; Tschiatschek et al. 2014) where the weights and the
internal parameters A, v, iy of the functions are jointly learned.
We denote our parameter vector by © = (w,n, A\, v), and
our PRISM mixture model by F(0) = 3", w; fi(A,v,n,v),
with each f; being either one of the functions in PRISM or
one of pure diversity and representation functions such as
Disparity-Sum and FL. Then, given N training examples,
(V) Y(m))N_ - we apply gradient descent to learn the
parameters © by optimizing the following large-margin

formulation: min SN £.(0) + 3||8]% where £,,(©)

is the generaliz?ed hinge loss associated with training exam-
. _ (n) _
ple n: Ln(©) = | max (F(,2,0) +(Y)
F(Y™, 2™ ©). Here, Y™ is a human summary for
the n** ground set V(™ (video, image collection, or text
document), with corresponding features (™). The specific
objective functions and gradient computations in case of
query-focused, privacy-preserving, and joint query-focused
and privacy-preserving summarizations are presented

in Appendix F. For generic summarization, we add the
standard submodular functions modeling representation,
diversity, coverage, efc. in the mixture. For query-focused
summarization and privacy-preserving summarization,
we instead use the MI and CG versions of the functions
respectively as defined above'. Once the parameters are
learned, we instantiate the mixture model with the parameters
and maximize it to get the desired summaries.

3.3 Connections to Past Work

PRISM generalizes past work in both targeted learning and
guided summarization. We summarize the connections below;
for more details, see Appendix G.

Targeted Learning: A number of approaches like GLIS-
TER (Killamsetty et al. 2020) and GRAD-MATCH (Killam-
setty et al. 2021) can be considered with a validation set, and
hence used in the targeted setting. Similarly, CRAIG (Mirza-
soleiman, Bilmes, and Leskovec 2020) can be extended to
consider a validation set. In Appendix G.1, we show that
Algo. 1 in fact generalizes CRAIG (using FLQMI), GLISTER
(using COM), and GRAD-MATCH (using GCMI + Diversity).
Guided Summarization: A number of past works for
summarization have inadvertently used instances of PRISM.
The query-DPP considered in (Sharghi, Gong, and Shah
2016; Sharghi, Laurel, and Gong 2017) is a special case of
LOGDETMI. Similarly, the graph-cut based query-relevance
term in (Vasudevan et al. 2017; Lin 2012), and in (Li,
Li, and Li 2012) is actually GCMI. Furthermore, the joint
diversity and query-relevance term in (Lin and Bilmes 2011)
is an instance of COM (with the square-root as the concave
function, see Appendix G.2).

4 Experiments and Results
4.1 Targeted Learning

In this section, we demonstrate the effectiveness of PRISM
for targeted learning on the CIFAR-10 (Krizhevsky, Hinton
et al. 2009), MNIST (LeCun et al. 1998), SVHN (Netzer et al.
2011), and P-MNIST (Pneumonia-MNIST) (Yang, Shi, and
Ni 2021; Kermany et al. 2018) image classification datasets.
Custom dataset: To simulate a real-world setting, we ran-
domly select some target classes and split the train set into
labeled, target, and an unlabeled set such that (i) the la-
beled set has class imbalance and poorly represents the tar-
get classes, (ii) the target set has a small number of data
points from the target classes, and (iii) the unlabeled set is
a large set whose labels we do not use (resembling a large
pool of unlabeled data in real-world scenarios). For CMI
functions, we additionally use a private set, which has a
small number of data points from the non-target classes. The
performance is measured on the standard test set from the
respective datasets. Let the set C consist of data points from
the target classes and the set D consist of data points from
the non-target classes. We create an initial labeled set £, such
that |Dg| = p|Cg| and an unlabeled set which follows the
same distribution |Dy| = p|Cy|, where p is the imbalance
ratio. We use p = 20 and |7| = 10 (total number of sam-
ples from target classes) for all experiments. For CIFAR-10,

"For the query-focused and the privacy-preserving case, CMI
degenerates to MI and CG, respectively.
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Figure 3: Targeted learning with PRISM on SVHN, MNIST, P-MNIST (Pneumonia-MNIST) and CIFAR-10. Plots (a-d) compare
average gain in accuracy on targeted classes. Plots (e-f) compare the number of data points selected from the targeted classes.
Plots (g-h) show an ablation study to compare the performance of MI and CMI functions. Plot (i) shows the overall gain in
accuracy on P-MNIST. The MI and CMI functions (specifically FLQMI and FLVMI) obtain larger gains in targeted (plots a-d)
and overall accuracy (plot i) than other baselines by selecting larger and more diverse examples from targeted classes (plots e-f).

MNIST and SVHN, we randomly select 2 classes as targets, the subset, and the second is GLISTER for targeted subset
while for the binary classification task in P-MNIST, we select selection (GLISTER-TSS), where the target set is used in
the pneumonia class as the target. For MNIST and SVHN, the bi-level optimization. We also compare against GRAD-
|Ce| + |Dg| = 1620, [Ci| + |Du| = 24.3K. For CIFAR-10, MATCH (Killamsetty et al. 2021), which mines for a subset
|Ce| + |Dg| = 8400, |Cy| + |Dy| = 24.3K. For P-MNIST, such that the weighted difference in the gradients with the
|Ce| + |Dg| = 105, |Cy| + |Dy| = 1100. These data splits target set is minimized. Lastly, we also include vanilla FL and
were chosen to simulate low accuracy on target classes and random sampling as baselines. For all datasets except MNIST,
at the same time to maintain the imbalance ratio in labeled we train a ResNet-18 model (He et al. 2016). For MNIST, we
and unlabeled datasets. train a LeNet model (LeCun et al. 1989). We use the cross-
Baselines and Implementation details: We compare use of entropy loss and the SGD optimizer until training accuracy
MI and CMI functions in Algo. 1 with other existing ap- exceeds 99%. After augmenting the train set with the labeled
proaches. Specifically, for MI functions we use LOGDETMI, version of the selected subset and re-training the model, we
GcwMi, FLvMI and, FLQMIL As baselines, we consider ac- report the average gain in accuracy for the target classes and
quisition functions from the active learning literature; viz., the overall gain in accuracy across all classes. The numbers
entropy sampling (ENTROPY), BADGE (Ash et al. 2020), and reported are averaged over 10 runs of randomly picking any
GLISTER-ACTIVE (Killamsetty et al. 2020). We run the ac- two classes for the target. We run Algo. 1 for different bud-
tive learning baselines only for one iteration to be consistent gets and also study the effect of budget on the performance.
with our targeted learning setting (i.e., we select from the un- We set the internal parameters to default values of 1. All
labeled set only once). Since these active learning baselines experiments were run on an NVIDIA RTX 2080Ti GPU.

do not explicitly have information of the target set, to fur-

ther strengthen the comparison, we also compare against two Results: We report the effect of budget on the average gain
variants that are target-aware. The first is ‘targeted entropy in accuracy of the target classes in Fig. 3(a-d). On all datasets,
sampling’ (ENTROPY-TSS), where a product of the uncer- MI functions yield the best improvement in terms of accuracy

tainty and the similarity with the target is used to identify on the target classes, viz., = 20-30% gain over the model’s
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Figure 4: Guided summarization results on a real-world image collections dataset: because of the joint learning of the parameters,
the proposed model (PRISM-MIX) outperforms others in all flavors of summarization.

performance before re-training with the added targeted subset.
While this gain is = 12% higher than that of other methods,
this also simultaneously improves the overall accuracy by =
2-10% over other methods. Owing to their richer modeling,
the MI functions consistently outperform all baselines across
all budgets. This is also evident by the fact that MI func-
tions select the most number of data points from the targeted
classes (see Fig. 3(e-f)). Further, recall the discussion on the
behavior of different MI functions in Section 2. As expected,
FLVMI, FLQMI and LOGDETMI functions that model both
query-relevance and diversity, perform better than a) func-
tions which tend to prefer relevance (viz., GCMI, ENTROPY-
TsS) and b) functions which tend to prefer diversity/repre-
sentation (viz., BADGE and FL). Also, we observe that as the
budget is increased, the MI functions outperform other meth-
ods by greater margins on the target class accuracy (Fig. 3).
We run targeted learning for higher budgets on all datasets,
and we observe that the MI functions achieve 20x to 50x
labeling efficiency in obtaining the same accuracy on rare
classes when compared to random and 2x to 4x compared
to the best performing baseline (see Appendix H for more de-
tails). Additionally, we perform an ablation study to compare
the performance of MI functions with the CMI functions and
observe that they are at par with each other (see Fig. 3(g-i)).
Finally, we do a pairwise t-test to compare the performance
of all methods and observe that the MI functions (particularly
FLVMI and FLQMI) statistically significantly outperform all
baselines (see Appendix H). From a computational perspec-
tive, FLQMI and GCMI are the fastest in terms of running
time and scalability and hence FLQMI is the preferred MI
function given its scalability and consistent performance.

4.2

Dataset and Implementation Details: We use the image-
collections dataset of (Tschiatschek et al. 2014). The dataset
has 14 image collections with 100 images each and provides
50-250 human summaries per collection. We extend it by
acquiring dense noun concept annotations (objects and
scenes) for every image by pseudo-labelling using pre-trained
off-the-shelf networks (Yolov3 pre-trained on Openlmagesv6
and ResNet50 pre-trained on Place365) followed by human
correction. We designed query and private sets in a spirit
similar to (Sharghi, Laurel, and Gong 2017) and acquired
query-focused, privacy-preserving, and joint query-focused

Guided Summarization

and privacy-preserving human summaries for every image
collection. To instantiate the mixture model components,
we extract concepts from images using the aforementioned
pre-trained off-the-shelf networks and represent them, as well
as the concept queries, by a |C|-dimensional vector, where C
is the universe of concepts. Our mixture model (PRISM-MIX)
has four components which are the appropriate instantiations
(MI/CG/CMI) of functions - GC, LogDet, FL. and COM. The
mixture weights as well as the internal parameters (A, v, 7)
are learned using the frain set. Following (Tschiatschek
et al. 2014), we perform leave-one-out cross validation and
report average V-ROUGE across 14 runs. We also normalize
V-ROUGE s.t. the human average is 1 and the random
average is 0. We provide further details of the dataset and
implementation in Appendix L

Results: We present the guided summarization results
in Fig. 4. As discussed in Section 3.3, the individual
components of our mixture model have been used as models
in previous works on document and video summarization.
Hence, we compare the performance of PRISM-MIX against
the performance of the individual components as our base-
lines. Also, to confirm the positive effect of jointly learning
the parameters of PRISM along with the mixture weights, we
compare PRISM-MIX against a mixture model (MIXTURE)
of exactly the same components, but with only the model
weights w being learned. Other internal parameters (A, 7, /)
are set to fixed values of 1. We observe that PRISM-MIX
outperforms other techniques, including MIXTURE on all
flavors of summarization (see Fig. 4). This is expected, as
the joint learning of parameters offered by PRISM (Sec. 3.2)
enables producing summaries that can better imitate the
complexities of the ground-truth summaries.

5 Conclusion

We presented PRISM, a rich class of functions for guided
subset selection. PRISM allows to model a broad spectrum of
semantics across query-relevance, diversity, query-coverage
and privacy-irrelevance. We demonstrated its effectiveness
in targeted learning as well as in guided summarization. We
showed that PRISM has interesting connections to several
past work, further reinforcing its utility. Through several
experiments on targeted learning and guided summarization
for diverse datasets, we empirically verified the superiority
of PRISM over existing methods.
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