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Abstract 

A novel form of charge density analysis, that of isosurface curvature redistribution, is 

formulated and applied to the toy problem of carbonyl oxygen activation in 

formaldehyde.  The isosurface representation of the electron charge density allows 

us to incorporate the rigorous geometric constraints of closed surfaces towards the 

analysis and chemical interpretation of the charge density response to perturbations.  

Visual inspection of 2D isosurface motion resulting from applied external electric 

fields reveals how isosurface curvature flows within and between atoms, and that a 

molecule can be uniquely and completely partitioned into chemically significant 

regions of positive and negative curvature.  These concepts reveal that carbonyl 

oxygen activation proceeds primarily through curvature and charge redistribution 

within rather than between Bader atoms.  Using gradient bundle analysis—the 

partitioning of formaldehyde into infinitesimal volume elements bounded by QTAIM 

zero flux surfaces—the observations from visual isosurface inspection are verified.  

The results of the formaldehyde carbonyl analysis are then shown to be transferable 

to the substrate carbonyl in the ketosteroid isomerase enzyme, laying the groundwork 

for extending this approach to the problems of enzymatic catalysis.  
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1.  Introduction 

The Quantum Theory of Atoms in Molecules (QTAIM) attributes special significance to 

volumes bounded by zero flux surfaces (ZFS), that is, surfaces through which the flux of the 

gradient of the electron charge density, 𝜌(𝒓), is everywhere zero [1–3].  These volumes 

possess well defined energies and hence unambiguous energy-related properties.  While there 

are an infinite number of boundary conditions giving rise to such energetically unambiguous 

volumes [4–6], each imposes a different geometry on 𝜌(𝑟).  In the case of the ZFS of QTAIM, 

the geometry imposed is that intrinsic to the electron density gradient, ∇𝜌(𝑟), or its dual 

representation as a set of nested isosurfaces.  Keeping with the original vision for QTAIM as 

an exact chemical formalism rooted in the observable electron density [7], molecular properties 

should be seen as the consequential and quantifiable changes to this geometry due to chemical 

or physical perturbations.   

Here, using an important problem drawn from carbonyl chemistry [8], we show that much 

of our empirically tuned “chemical intuition” regarding this process derives from 

mathematically rigorous geometrical constraints limiting the response of 𝜌(𝑟).   

2.  Geometry of the electron density 

Electronic charge density is often represented with a set of simple closed isosurfaces that 

may, in turn, be pictured as contours in selected cut planes.  Such representations have proved 

useful as a way to depict a molecule’s response to chemical or physical perturbations.  It is 

seldom noted, however, that in addition to chemical factors limiting this response there are 

geometric principles that further constrain the allowed changes to these surfaces.   

The geometry of a surface in the neighborhood of a point is determined by its two principal 

curvatures at that point (𝜅! and 𝜅").  The surface’s total curvature is given either by its mean 

curvature (𝜅! + 𝜅" ) or its Gaussian curvature (𝜅!𝜅" ).  A point on a surface where both 

principal curvatures are positive is called an elliptic point, and near this point the surface is 

convex.  If both principal curvatures are negative, the surface is said to be parabolic and is 

locally concave.  Around a point where one principal curvature is negative and the other is 

positive the surface is saddle shaped and the point is called hyperbolic.  Finally, about a point 

where at least one principal curvature vanishes, the surface is topologically flat.   

Any closed 𝜌(𝑟) isosurface, may be decomposed into continuous regions in which every 
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point is either elliptic (convex), parabolic (concave) or hyperbolic (saddle).  The boundary 

between these regions occurs where one principal curvature vanishes and hence the Gaussian 

curvature is zero.  In each such region there is at least one 2D critical point (CP) where the 

Gaussian curvature achieves its extreme values.  We designate these as convex, saddle, and 

concave CPs; the respective 2D counterparts of the 3D nuclear, bond/ring and cage CPs of 

QTAIM.   

Generally, for nested isosurfaces where the field is smoothly varying, the convex, concave 

and saddle topological regions jointly create 3D regions.  The isosurfaces of convex regions 

stack to form what are called corners.  The locus of the convex CPs on corner isosurfaces lie 

along the gradient lines that intersect the isosurfaces where they are most curved; we call these 

corner lines, which are often coincident with QTAIM bond paths.   

Stacked hyperbolic regions give rise to 3D structures we call troughs.  The locus of CPs 

in these regions define trough lines.  These lines lie along the boundaries between two bound 

atoms and terminate at 3D bond CPs.   

Stacked concave regions we call depressions, which are associated with the 3D-structure 

of the charge density intrinsic to rings of bound atoms.  The locus of concave CPs gives rise 

to a depression line that terminate at ring CPs.   

As examples, Figure 1 shows the charge density contour diagrams in planes containing the 

internuclear axis for the series of dimers N2, BN and NaF, with trough and corner regions 

indicated.  Due to their axial symmetry, isosurfaces may be generated by revolving individual 

contour lines about the internuclear axis.  Note that in all cases the interatomic surface lies 

entirely within the trough region and bond paths are coincident with corner lines.  However, 

the corner lines endow the density with additional structure in the non-bonding region.  Even 

 

Figure 1.  The corner (cyan) and trough (green) regions of the N2, BN and NaF molecules superimposed 
on charge density contour diagrams.  Corner gradient paths are shown with light dashed black lines and 
the interatomic surface with heavy dashed black lines.  Note that the boundary between the trough and 
corner regions is coincident with a line along which isosurface Gaussian curvature vanishes, i.e., at 
inflection points along the contours.  
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so, there is a boundary of zero Gaussian curvature (ZGC) separating the troughs from the corner 

regions.  The shape of the troughs is distinctive and in some respects is indicative of the nature 

of the interaction between the bound atoms.  For example, total negative curvature along the 

trough line increases with ionicity, or more precisely, with increasing spherical character of the 

bound atoms.  

Changes to a molecule’s external potential will necessarily alter isosurface curvature.  

However, the extent of these alterations must be consistent with the requirement that the total 

Gaussian curvature of any simple closed surface is 4𝜋.  Thus, for example, perturbations that 

increase the saddle character of a surface must be offset by regions of increased convexity.  

As it is common to picture the charge density in a plane as a series of contours, it is useful to 

generalize to closed curves.  In this case, regardless of its shape, the integrated curvature 

around a closed contour line will be 2𝜋.  The total curvature along any segment of the curve 

can be determined by the angle of intersection of the tangent to the curve at the endpoints of 

the segment.   

In addition to the geometric constraints acting on individual isosurfaces and contours, the 

form of the charge density imposes constraints on the character of nested isosurfaces.  These 

effects are most obvious near a bond CP.  To briefly explain: To second order the shape of 

the charge density around a bond CP can be written as [1,9,10], 

 𝜌(𝑟) − 𝜌(𝑟#$%) =
1
2 /𝜌&&𝑧

" − 𝜌''𝑥" − 𝜌((𝑦"3. (1) 

 

Figure 2.  The isosurfaces near a bond CP.  The isosurface passing through the bond point will have the 
form of an elliptic cone, with the bond path coincident with its axis.  This cone is the asymptotic boundary 
separating the exterior isosurfaces (left) from those interior to the cone (right).  The exterior isosurfaces, 
being hyperbolic, characterize a charge density trough.  Typically, the trough line lies along the 
internuclear boundary.  The interior isosurfaces are convex and define a charge density corner, with the 
corner line coincident with the bond path.   
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Where the bond CP serves as the origin; 𝜌(𝑟#$%) is the value of the charge density at the 

bond CP; 𝑥, 𝑦 and 𝑧 are the eigenvectors of the Hessian of 𝜌(𝑟); and 𝜌'', 𝜌(( and 𝜌&& 

are the magnitudes of the corresponding eigenvalues, e.g., 𝜌'' = | )
!*(,)
)'!

|.  We take 𝑧 to be 

the direction parallel to the internuclear axis and hence 𝜌&& is the positive eigenvalue while 𝑥 

and 𝑦 are the directions of the negative eigenvalues.   

When 𝜌(𝑟) − 𝜌(𝑟#%) is positive, Equation 1 represents nested hyperboloids of two sheets.  

When it is negative, it is the equation for nested hyperboloids of one sheet.  And when 𝜌(𝑟) −

𝜌(𝑟#%) = 0 (the isosurface passing through the bond CP), it is the equation for a double elliptic 

cone to which the two sets of hyperboloids are asymptotic (see Figure 2).   

The cone passing through the bond CP is fully characterized by its two exterior angles 𝜃 

and 𝜙  (Figure 3), with tan	( 𝜃) = =
*""
*##
 and tan	( 𝜙) = =

*$$
*##
.  The curvatures of the 

isosurfaces exterior to the cone are mediated by these angles, a perturbation that decreases *""
*##
 

and/or *$$
*##
 will necessarily increase the curvature of these isosurfaces.  In a reciprocal way, 

there must be a corresponding increase to the interior angles of the cone that will necessitate a 

decrease in the curvature of the isosurface interior to the cone (see Figure 3).   
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The key points here are: 1) The charge density of any molecule may be partitioned into 

space filling corner, trough, and depression regions separated by ZGC boundaries. 2) Troughs, 

corners and depressions are chemically significant structures that are characterized by 

isosurface curvature; 3) The total Gaussian curvature of a simple closed isosurface is 4𝜋 and 

as an axiom the total curvature of a closed charge density contour is 2𝜋; and 4) The curvature 

of corner regions e.g., along a bond path, are reciprocally tied to the curvature of trough regions 

perpendicular to the bond path.   

3.  The Geometry of Carbonyl Activation 

As an example application, we consider the geometry of 𝜌(𝑟) of a carbonyl group and its 

change due to various external potentials.  Carbonyl chemistry is a massive subject area [8] 

applicable to both natural [11] and human made systems [12–14].  Our particular interest is 

motivated in part by the ubiquity with which carbonyl activation is employed as a step in 

enzymatic pathways, e.g. carbonyl activation is done by peptidases and b-lactamases to 

facilitate the nucleophilic attack during the hydrolyses of the corresponding peptide and 

 

Figure 3.  The isosurface sufficiently close to the bond CP will be well approximated by a double cone 
fully described by the angles 𝜽 and 𝝓.  In any plane containing the bond path (the cone axis) the 
electron density contour lines will appear as represented on the right, where the orange contour lines are 
those of the hyperbolic trough region, the blue contour lines are those of the corner region, and the black 
contours are those of the double cone.  As the angle 𝜽 decreases (going from the top set of contours to 
the bottom set), along the trough line the contours become more curved, while along the corner line the 
contours become less curved.   
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antibiotic substrates, and ketosteroid isomerase (KSI) activates the carbonyl of the found 

steroid molecule to facilitate its isomerization.   

Carbonyl chemistry is most frequently rationalized in terms of substituent or field induced 

shifts of electron density from the carbonyl C to the O atom.  The C=O bond is pictured as 

polar covalent with a partial negative charge on the O atom and a partial positive charge on the 

C atom, which renders the two atoms prone to electrophilic and nucleophilic attack respectively.  

 

Figure 4.  Contours of 𝝆(𝒓) in formaldehyde on planes containing the C=O internuclear axis, parallel ∥ 
and perpendicular ⊥ to the molecular plane, with and without an applied uniform external electric field.  
Solid black contours are those for the system with no applied field.  Blue dashed contours are those 
resulting from a 100MV/cm pointing towards the carbon along the molecular axis.  Region c depicts a 
point of crossover between the contours with and without the external applied field.  Red and blue 
shading on perpendicular plane depicts 𝝅-bonding 𝒑-orbital lobes on the O and C atoms through the 
plane.  For contours close to the O nucleus, i.e., for 𝝆(𝒓) > 𝝆(𝒓𝒃𝒄𝒑), there is in increase in positive 
curvature in the 𝒑-orbital lobe regions, and a decrease in curvature in the 𝝈-bonding p-orbital lobe 
regions along the C=O axis.   
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Environments that enhance charge separation reduce the barrier to both reactions and are said 

to activate the carbonyl.   

KSI is one of many enzymes in which a carbonyl plays an active part.  It has been shown 

that an external electric field pointing from the O to the C atom along the relevant C=O bond 

path lowers an activation barrier to the catalytic reaction [15–19].  Consistent with the general 

mechanism of carbonyl activation, the field is presumed to enhance charge separation by 

pushing electron density from the C to the O atom.   

This observation provides an ideal starting point in our effort to apply geometric principles 

to a chemical process, specifically the activation of a carbonyl by an applied external electric 

field.  A formaldehyde molecule serves as an initial model for this process. 

Figure 4 depicts the response of the electron density contours of formaldehyde in the 

molecular plane and in the perpendicular mirror plane when subjected to a 100 MV/cm electric 

field applied parallel to the C=O internuclear axis.  Note that the field magnitude is motivated 

by the fields estimated to be produced by the protein macromolecules and act on the bound 

carbonyl within the KSI binding site [16].  From a chemical perspective these planes are 

particularly relevant as the C=O bond achieves its maximum s-overlap in the molecular plane 

and its maximum 𝜋-overlap in the perpendicular mirror plane.   

Not surprisingly, the contours shift as one would expect in low electron density regions 

where 𝜌(𝑟) is better approximated as a uniform electron gas.  For example, on either end of 

the molecule the contours are displaced in the direction opposite to the applied field, with 

isosurfaces moving inwards toward the C nucleus and outwards from the O nucleus.  However, 

 

Figure 5.  The dashed red lines give the tangents to the bold contour at the terminal ends of the molecule 
and at the ZGC points marking the boundaries between the trough and corner regions of the CO molecule.  
Thus, the total curvature on specified contour in the corner region on the O atom is given by twice the 
angle 𝜶, the total positive curvature on the C atom is given by twice the angle 𝜷, and the total negative 
curvature on this contour is given by twice the angle 𝜸.   
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counter to our initial expectations, we see little evidence of field induced charge transfer 

between atoms, with the C=O bond CP and interatomic surface unperturbed by the field.  

Additionally, the change in the electron counts on the O and C atoms, 0.07 and 0.03 electrons 

respectively, is slight compared to charge redistribution within the O and C atoms (see 

discussion below and Table 1).   

The charge rearrangement within atoms is apparent in the field’s affects on the electron 

density contours.  Particularly evident are the changes in the characteristic angles and the 

associated contours about this C=O bond CP (region b), where the applied field reduces both 

𝜃  and 𝜙 .  Accordingly, the contours intersecting the bond path become less positively 

curved, while those intersecting the interatomic surface become more negatively curved.  This 

increased negative curvature of the trough contours due to the applied field necessitates a 

corresponding increase to the curvature in the corner regions.  

We can assess the magnitude of these offsetting effects by following a segment of a C=O 

bond CP exterior contour lying in the mirror plane perpendicular to the molecular plane.  The 

segment of interest lies between the convex CP on the C end of the molecule, its “origin,” and 

the convex CP on the molecule’s O end, its “terminus.”  Initially, the field contours sit inside 

the no-field contours but at its terminus the field contours are situated outside the no-field 

contours.  At some point along their paths the field and no-field contours cross.  We find that 

this crossing point occurs either on or very close to the ZGC boundary separating the O corner 

region form the trough region (e.g., in region c).  Whether the ZGC boundary acts as a kind 

of “hinge” around which contour curvature “swings” from an applied field is a subject we are 

investigating.  Regardless, crossing at this point makes assessing the change to total curvature 

in the convex region of the O atom undemanding.   

As shown in Figure 5, the total curvature of a contour in this region is given by twice the 

angle 𝛼 made by the intersection of the tangent to the contour at the ZGC point with a vector 

in the contour plane and perpendicular to the internuclear axis.  Clearly, the crossing of the 

field contour from inside to outside (Figure 4, region c) increases this angle and hence the total 

curvature of the convex O region.   

Our calculations reveal that all of the external field-no-field contour pairs cross from inside 

to outside at or near the ZGC boundary separating the convex O and trough regions.  

Therefore, the field increases the total curvature of the external contours in the corner regions 

of the O atom, which is offset by increased negative curvature in the trough region.   

Turn now to the contours in the same plane but internal to the C=O bond CP.  As 
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mentioned, the field reduces the curvature of these contours where they intersect the bond path, 

hence there must be compensating changes at other points along the contour.  Inspection of 

Figure 4 reveals that around the O atom, the compensating curvature is localized to the region 

occupied by 𝑝-orbitals participating in 𝜋-bonding.   

The contours around the C atom behave quite differently.  Beginning with the response 

in the mirror plane perpendicular to the molecular plane, the field reduces convexity and 

increases negative curvature throughout the region occupied by the C 𝑝 𝜋-orbitals.  There 

appears to be a small compensating increase from field induced positive curvature along the 

corner line extending from the C nucleus to infinity.  However, the bulk of the offsetting 

positive curvature comes from the field induced convexity on the O atom.   

The field induced changes to the contours in the molecular plane are complicated by the 

fact that there are a greater number of troughs and corners over which to distribute 

compensating effects.  Even so, the field increases at least one of the characteristic angles of 

the C–H bond CP and thus in this plane increases the contour curvature along the C–H bond 

path and flattens the contours of the corresponding trough, while having a smaller but opposite 

effect on the C=O trough.   

Beyond these attendant local changes to the electron density, we note similarity between 

 

Figure 6.  Contours of 𝝆(𝒓) in the molecular plane of formaldehyde with and without a 100MV/cm 
uniform electric field applied along the C=O internuclear axis, pointing from O to C.  The C–H and C=O 
bond saddle points (top and bottom right resp.) are shown in more detail with bold lines designating the 
interatomic surface and the lighter line the internuclear axis (bond path).  The unperturbed charge 
density with black contours and the field induced density with dashed blue contours.   
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the long-range inductive effect and the field induced responses to the contour curvatures around 

the C–H and C=O bond CPs (Figure 6).   

Of course, the inductive effect deals with changes to the electron density in one part of a 

molecule due to electron donating or withdrawing groups in another part.  Induction is 

pictured as propagating through 𝜎 bonds linking one region of a molecule to another.   

In this context, consider how the effects of an applied field propagate through neighboring 

bonds of formaldehyde.  The increased characteristic angle(s) of the C–H bond CP requires 

that the curvature of the contours interior to the double cone defining this bond also increase.  

These contours, though interior to the C–H cone are exterior to the C=O cone.  This fact 

geometrically links the effects of the field at the C–H and C=O bond CPs.  Specifically, the 

field causes the curvature of the contours intersecting the C=O bond path to decrease; which 

makes its external contours along the trough line more negatively curved; the increased 

negative curvature to these contours must now be offset with more positive curvature elsewhere 

along the contour; which is realized by increasing the contour curvature along the corner 

delineating the C–H bond path.  We designate this type of behavior as out-of-phase 

coupling—with the obvious implication that in-phase coupling occurs when the characteristic 

angles on neighboring bond CPs change in the same direction.   

Whether a perturbation induces in-phase or out-of-phase coupling appears to be solely 

determined by the relative values of the electron density at neighboring critical points.  When 

these values are equivalent, as for example along the C backbone of an alkane, neighboring 

critical points will couple in-phase, otherwise, neighboring bonds will couple out-of-phase.  

We hypothesize (supported by preliminary calculations) that the magnitude of the out-of-phase 

response will scale with the difference in the value of the charge density at the neighboring 

bond CPs.  Regardless, as this coupling effect propagates from neighbor to neighbor, it is 

possible to alter the field induced response around a particular bond by altering 𝜌(𝑟$%) of a 

distant bond, which could be achieved with substituents—adding electron donating or 

withdrawing groups—or simply by altering bond lengths via steric effects.   

Returning to the broader question regarding the overall changes to the isosurfaces from 

the applied field:  In the planes examined, the cumulative effect of the field is to increase total 

Gaussian curvature on the O-atom at the expense of the C atom.  The resulting curvature-

polarization produces a deeper trough separating the O and C atoms through increased 

convexity in the region coincident with O 𝑝 𝜋-orbitals that is offset by a contraction of the 

corresponding region on the C atom.  The hyperbolic points on the isosurfaces defining the 
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C–H trough become less negatively curved.   

These observations, drawn from an inspection of the contours in just two planes, are 

suggestive of more spherical C and O atoms  resulting from a field induced reduction to the 

C=O bond 𝜋 character.  Fortunately, we may move beyond simply “suggestive” to a more 

definitive statement of the field’s effects by using gradient bundle analysis (GBA) to calculate 

the global curvature distribution and its field induced change [20–24].   

GBA is a natural extension of QTAIM.  As Bader commented [7], “further study of the 

gradient vector field of the electron density leads to a complete theory of structure and 

structural stability.” In accordance with this comment, GBA provides the tools to holistically 

analyze ∇𝜌(𝑟).   

Just as QTAIM defines a nonarbitrary partitioning of a molecule into Bader atoms bounded 

by ZFSs, GBA further partitions Bader atoms into gradient bundles (GBs) bounded by ZFSs.  

Where Bader atoms impose a global geometry on a molecule and allow one to unambiguously 

determine the energy related properties of its atoms, GBs impose a local geometry which allows 

one to determine the continuous distribution of these properties within an atom.   

By way of illustration Figure 7, depicts a gradient field that originates at the O-atom and 

sweeps out an area that covers the O side of the C=O trough of formaldehyde.  In this 2D 

simplification, at the O nucleus, where all gradient paths are radial, an individual gradient path 

can be specified by a single angle, say 𝜃.  The field is constructed so that the angular distance 

between neighboring gradient paths is held constant at some value 𝑑𝜃.   

 

Figure 7.  Contours of 𝝆(𝒓)  in the molecular plane of formaldehyde with a set of gradient paths 
originating at the O nuclear CP at bottom-left.  Moving down a pair of neighboring paths in the corner 
(cyan) region sweeps out an increasingly wider area, while in a trough region (green), neighboring paths 
sweep out an increasingly narrow area.   
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The area bounded by neighboring paths is a GB.  Its boundary is a ZFS, hence its energy 

and energy-related properties are well-defined.  However, these properties are defined only 

as the integral over the entire GB.  As the angle 𝑑𝜃 approaches zero, a GB’s properties 

become functions of the single variable 𝜃.   

It has been demonstrated that the area of a gradient bundle is determined only by the 

curvature of the contours it intersects [25].  Conceptually this makes sense for as we proceed 

along neighboring gradient paths, they diverge in regions where the contour curvatures are 

positive (corners) and converge where the contour curvatures are negative (troughs).  Hence, 

gradient bundle area serves as a measure of total contour curvature along gradient paths.   

The extension to 3D is straightforward.  We construct a gradient field consisting of a 

conceptually infinite number of gradient paths (in practice more than 20,000) uniformly 

distributed around each nuclear CP.  Each of these paths may be specified by a pair of angular 

spherical coordinates (𝜃, 𝜙) that give the direction of the gradient near the nucleus, where all 

gradient paths are radial.  At some distance from the nucleus these paths are no longer radial 

and in fact may be space curves characterized by both curvature and torsion.  A differential 

gradient bundle is now defined as an infinitesimal differential volume element with, in the 

simplest case, a triangular cross section and edges defined by three gradient paths.  By 

integrating some 3D geometric or field variable within a differential gradient bundle, say 𝜌(𝑟), 

one gets a 2D “condensed” function 𝒫(𝜃, 𝜙) that depends only on 𝜃 and 𝜙, the variation 

along the gradient having been integrated out.  With condensed properties depending only on 

𝜃 and 𝜙, it is convenient to represent their values as contours mapped onto a sphere.   

Condensed properties have units of the input property per steradian (𝑠𝑟) or square radian.  

Thus 𝒫(𝜃, 𝜙) has atomic units of 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠/𝑠𝑟; condensed energy, ℰ(𝜃, 𝜙), of 𝐸./𝑠𝑟; and 

condensed volume, 𝒱(𝜃, 𝜙), units of 𝑎/0/𝑠𝑟.  Integrating a condensed property over all 𝜃 

and 𝜙 recovers the corresponding Bader atom property, e.g., integrating 𝒫(𝜃, 𝜙), ℰ(𝜃, 𝜙), 

and 𝒱(𝜃, 𝜙) recovers the Bader atom’s electronic population, energy and volume respectively.   

The condensed volume is descriptive of the charge density’s intrinsic geometry, as can be 

seen from the behavior of the gradient paths depicted in Figure 7.  The paths bounding a GB 

diverge as they pass through regions of convexity, hence increasing GB volume.  When 

passing through concave regions the opposite is true, with neighboring gradient paths 

converging and reducing gradient bundle volume.  When passing through saddle regions GBs 

expand in one direction and contract in the perpendicular direction.  GB volume is determined 

only by the Gaussian curvature of the contours contained in the gradient bundle [25].  Hence, 
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𝒱(𝜃, 𝜙) serves as a measure of total isosurface curvature along gradient paths and is solely 

determined by local geometry.   

As a means of clarifying this issue, the condensed volume for the O atom of formaldehyde 

is represented in Figure 8, with the integrated condensed volume mapped onto a sphere and 

depicted in the lower left of the figure.   

Just as QTAIM analysis gives special consideration to the CPs of 𝜌(𝑟) as representative 

of electron density topology, GBA takes particular notice of extremal points of 𝒱(𝜃, 𝜙).  In 

this way the complexity of ∇𝜌(𝑟) and its geometry can be rationalized in terms of the behavior 

of a few special GBs about every atom of a molecule.  Accordingly, also shown in Figure 8 

and designated with red circles are four 𝒱(𝜃, 𝜙)  extremal points, two maxima and two 

minima.   

The gradient bundles corresponding to these extremal regions are shown on the right of 

Figure 8.  Note that the maxima gradient bundles lie for the most part along corners while 

minima intersect isosurfaces near point of ZGC.  Still, the gradient bundle containing the C=O 

bond path diverges umbrella-like near the interatomic surface and takes in volume from the 

C=O trough region.  The other maximum lies along what is essentially the O lone pair region.  

The in-plane 𝒱(𝜃, 𝜙) minimum is noteworthy as it appears to nearly coincide with the ZGC 

boundary separating the C=O trough from the O corner regions (see Figure 4a).   

As already demonstrated, an activating electric field alters isosurface curvature and hence 

 

Figure 8.  The condensed volume of the O atom of formaldehyde (left) shown with representative gradient 
bundles (right).   
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the distribution of condensed volume.  These global effects are represented in Figure 9 where 

once again the resulting condensed volume of formaldehyde is shown (NEF; left) alongside its 

field-induced condensed volume (EEF; center) and on the right the condensed volume 

difference function, Δ𝒱112 = 𝒱112 − 𝒱312 .  Positive values (red) indicate an increase in 

gradient bundle volume, which is partially realized by a decrease in the volume of other GBs 

(blue).  

The field’s effects are subtle but noticeable, with small shifts in the locations of the 

𝒱(𝜃, 𝜙) CPs.  The condensed volume difference map brings these differences into stark relief.  

Most dramatic is the increase in corner character and the corresponding expansion of GB 

volume in the O lone pair regions.  The increased curvature in this region is achieved through 

an increase in negative Gaussian curvature in the trough regions.  (Recall that GBs passing 

through regions of more negative curvature contract more rapidly and hence lose volume.)  

A more detailed and quantitative analysis of field induced curvature redistribution is 

afforded by considering the distribution of 𝒱(𝜃, 𝜙) between formaldehyde’s bonding and 

non-bonding regions (bond bundles and lone pair bundles) identifiable using GBA [25].  

Table 1 lists the total regional volumes and electron counts of formaldehyde partitioned into 

  

Figure 9.  The GB condensed volume of formaldehyde in the no field situation (left), due to an applied 
field (center), and their difference (right).  Red shading indicates GBs where the field has increased 
volume by inducing more corner character, while blue shading indicates a loss of GB volume. 
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Bader atoms, and again with Bader atoms partitioned and organized into bond and lone pair 

regions.  The bonding regions are further distinguished by the contributions to the bond from 

each of the bound atoms, i.e., bond wedges. 

Beginning with the atomic basins. The field induces curvature polarization that increases 

the volume (curvature) of the O atom by 4.7%, but not by depleting the C atom but rather the 

H atoms.  This curvature polarization is weakly reflected in the electron counts by a small 

charge transfer from the H-atoms to the O and C atoms.  These effects are consistent with the 

observed field induced expansion and contraction of low-density contours at the ends of the 

molecule in Figure 4.   

Moving on to a rigorous analysis of the curvature polarization within atoms. There is an 

increase to the volume of the O lone pairs that is offset by depletion in the C–H and C=O bonds.  

A substantive part of this depletion comes from the C atom’s contribution to the C=O bond 

(volume decrease of 14.3%) and a corresponding loss of 0.11 electrons.  At the same time, 

there is an increase to the volume of the C-H bond from the C bond wedge.  

Putting these observations into more familiar chemical terms.  These changes are 

consistent with a loss of C atom 𝜋-bonding character, which is offset by an increase in s 

character directed principally toward the H atoms.  

Altogether, the tabulated values, especially regional volumes, paint a concise and 

chemically relevant picture of formaldehyde’s response to an electric field.  From these 

results we conclude that a primary indicator of carbonyl activation is field induced curvature 

 
Table 1.  Changes to regional volumes, 𝑽, and electron counts, 𝝆, in formaldehyde due to an applied 
external electric field of 100 MV/cm pointing from the O nuclear position to the C.  Atomic basins (top) 
and bond and lone pair regions (bottom) are truncated at the 𝝆 = 𝟎. 𝟎𝟎𝟏 isosurface.  Complete gradient 
bundle integration tables are available in the SI.   

Region 
V [au] 𝜌 [e] 

NEF EEF ∆EEF %∆EEF NEF EEF ∆EEF %∆EEF 
O atomic basin 133.0 139.3 6.2 4.7 8.92 8.99 0.07 0.8 
C atomic basin 68.2 68.6 0.5 0.7 5.06 5.09 0.03 0.5 
H (x2) 50.3 46.3 -4.0 -7.9 0.94 0.90 -0.05 -5.0 
Total 301.8 300.5 -1.2 -0.4 15.86 15.87 0.003 0.021 
C – H bond bundle (x2) 78.2 75.4 -2.9 -3.7 2.82 2.84 0.02 0.8 
   ↳ C bond wedge 28.0 29.1 1.1 4.0 1.88 1.95 0.07 3.7 
   ↳ H bond wedge 50.3 46.3 -4.0 -7.9 0.94 0.90 -0.05 -5.0 
C = O bond bundle 34.7 32.6 -2.1 -5.9 3.55 3.40 -0.14 -4.1 
   ↳ C bond wedge 12.2 10.5 -1.7 -14.3 1.31 1.20 -0.11 -8.7 
   ↳ O bond wedge 22.4 22.1 -0.3 -1.4 2.24 2.21 -0.03 -1.3 
O lone pair bundle (x2) 55.3 58.6 3.3 5.9 3.34 3.39 0.05 1.5 
Total 301.8 300.5 -1.2 -0.4 15.86 15.87 0.004 0.022 
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polarization, distinguished by increased negative curvature of the trough delineating the C=O 

bond and particularly so in the molecular plane.  This increased curvature is offset—as 

required by geometric principles—by an increase in corner character centered on the O lone 

pair regions.   

 We now turn to a GBA of the carbonyl of KSI – an enzyme where the intramolecular 

electric field is known to activate the bound carbonyl.  While a more complete gradient bundle 

analysis of KSI is available (cite to be added), here we focus exclusively on the carbonyl O 

atom.  Enzyme efficiency in general and KSI specifically results from the perfect positioning 

of residues in and around the active site [26] (Figure 10).  For KSI, notable are the Tyr16 and 

Asp103 residues forming hydrogen bonds with the substrate carbonyl O atom.  Conventional 

wisdom attributes carbonyl activation through hydrogen bonding to a density shift from the O 

  

Figure 10.  The condensed volume about the carbonyl oxygen atom in KSI, mapped onto a sphere 
centered at the oxygen nuclear critical point.  Contours on the sphere indicate low (blue) to high (white) 
values of condensed mean curvature (bottom-left).  The active site of KSI is depicted at top with the plane 
and gradient paths of interested indicated.  The middle row consists of two different angles of the active 
site with contours of 𝝆(𝒓) on the indicated plane along with two gradient paths: one leaving the sphere at 
a minimum and terminating at a ring critical point (green), and the other at a maximum and terminating 
at an O–H bond critical point (red).  At bottom-right is a zoomed image of the sphere and the gradient 
paths.   
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to the H atom, which we do not observe.  However, there are changes to isosurface curvature 

consistent with those associated with the field induced activation of formaldehyde.  Most 

pronounced is the deepening of the 𝒱(𝜃, 𝜙) minimum indicative of greater trough character 

along the boundary separating the maxima of C=O bond path and the O–H bond with Tyr16 

(the lone pair maximum of formaldehyde).  This increased trough character is made possible 

by more corner character along the O–H bond path.  However, as a similar change in 

trough/corner character is not observed to result from the hydrogen bond with Asp103, it is not 

the hydrogen bond per se that is responsible for these significant curvature changes.  Rather, 

the hydrogen bond between the carbonyl O and Tyr16 is part of a hexagonal ring that must be 

accompanied by a depression line and a concave region above and below the ring.  GBs 

passing through depressions are necessarily low volume, thus allowing for greater corner 

character between the carbonyl O and Tyr16.  The net result is a deepening of the C=O trough 

and yielding this interaction more spherical.   

Thus, we have a consistent picture for the mechanism of carbonyl activation as resulting 

from interactions that increase corner character on the side of the O atom opposite the C=O 

bond CP, which is compensated through increased negative curvature in the C=O trough.   

4.  Summary 

One of the challenges facing chemistry is the integration of first principles calculations 

with molecular design and synthesis.  This task is complicated by the fact that much of 

synthesis’ mechanistic foundation derives from early 20th century heuristic concepts predating 

quantum mechanics [27–29].  Perhaps the most fundamental of these are those dealing with 

electron mobility, which is often represented with the curvy arrow formalism introduced in 

1922 by Kermack and Robinson [29].  For nearly a century, the supposed mechanisms 

governing electron redistribution and related phenomena have been empirically tuned to 

account for an ever-greater number of chemical reactions.  And now, taken together, these 

mechanisms comprise a predictive formalism that is incredibly useful when designing synthetic 

strategies.  However, at best they have obscure quantum mechanical connections [30].  In 

the absence of such connections, first principles methods provide synthetic chemists with 

limited intuitive advantages.   

Here we have begun the process of reframing the traditional view of carbonyl activation, 

thought to result from enhanced charge separation, in the quantum mechanically and 
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mathematically rigorous terms of charge density differential geometry.  Specifically, rather 

than dramatic shifts of electron density, activation results from subtle variations of ∇𝜌(𝑟) that 

can be quantified by the changes to isosurface curvature along gradient paths.  An attractive 

facet of this new perspective is that allowed changes to isosurface curvature are constrained by 

rigorous mathematical principles.  If these findings can be shown to apply to a broader range 

of chemical reactions, then much of our hard-won mechanistic understanding of chemical 

reactions will receive a 21st century update. 

Computational methods 

All DFT calculations were performed with the Amsterdam Modeling Suite [31–33] ab initio 

software using the Perdew-Burke-Ernzerhof (PBE) functional [34] and a triple-zeta with 

polarization (TZP) all-electron basis set.  Analysis was performed within the Tecplot 360 

visualization package [35] using the Gradient Bundle Decomposition software of the in house 

Bondalyzer package by the Molecular Theory Group at Colorado School of Mines.  
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