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merical estimation of the energy transfer between the two
modes, we establish a novel pumping phenomenon that
persists in the nonadiabatic driving regime for a broad
region of the parameter space of the model.

We find that the photon pumping efficiency in the
weak-driving regime exhibits strong fluctuations. For
η ≤ ωi, with η the driving amplitude and ωi the low-
est frequency, the strong fluctuations emerge due to the
nonadiabatic driving conditions, before the pumping rate
saturates to the quantized value for sufficiently strong
drives η ≈ ηad, when adiabaticity is restored. These fluc-
tuations are stronger for rationally-related frequencies,
with the conversion efficiency of the order of 80% of the
quantized value for η ≈ 30%ω1, while in the same limit
irrationally-related frequencies have a vanishing conver-
sion efficiency. In the nonadiabatic limit and around
the topological boundary, we demonstrate that a finite
pumping phenomenon persists in the trivial phase, but is
less effective as we move further away from the boundary.
This energy pumping is characterized by a strong sensi-
tivity to the initial phase of the drive, although we can
always specify extended regions of the parameter space
with efficiency that exceeds 80% of the quantized value.

A finite energy pumping signals the delocalization of
the corresponding quasienergy states in the space of
photon-number in the cavity. To link the pumping prop-
erties of the model to the delocalization of the Flo-
quet states, we follow a statistical analysis of the Flo-
quet modes, closely related to electronic transport in the
context of Anderson localization28,29, applied here to a
frequency-space tight-binding model. This is achieved by
calculating the inverse participation ratio and extract its
scaling exponent with respect to the number of photon
states. Our findings corroborate the results of the photon
pumping efficiency, namely in the nonadiabatic regime
commensurate frequencies have larger delocalization ex-
ponents and a finite transport of states in the nontopo-
logical regime. Perhaps the most interesting finding is
that the Floquet eigenstates also display fractal behavior
for any finite η as the result of hybridization between the
localized and delocalized sectors, induced by the periodic
drive. Note that the behavior we explore here is the com-
plement of the non-chaotic frequenecy-locking behavior
in the same system investigated in Ref. 31.

In addition, we study whether the quantum coherence
properties of the initial state are preserved during the
frequency conversion process, by evaluating the phase
probability of the time-evolved state. During the adia-
batic pumping, quantum coherence is preserved and the
phase distribution is well-approximated by a Gaussian
curve, although the phase undergoes a diffusion process.
Surprisingly, in the ultra-weak-drive limit η ≪ ω, the
pumped photon state is described by a central Gaus-
sian peak, suggesting the existence of a state with a well
defined phase. As η is increased, additional secondary
peaks and phase fluctuations are generated and quantum
coherence is suppressed.

The structure of the paper is as follows. In Sec. II we

discuss the temporal topological models in the strong-
drive regime and evaluate the quantized energy pumping
for different model parameters. In Sec. III we calculate
the energy flow in the weak-drive regime and identify
regimes of efficient frequency conversion by exploring a
broad parameter space. Such an energy flow is under-
stood in terms of the delocalization of Floquet states,
presented in Sec. IV, while the coherence properties of
the pumped state are investigated in Sec. V. The experi-
mental implications of our work are discussed in Sec. VI.
Finally, our main conclusions are summarized in Sec. VII.

II. QUANTIZED ENERGY TRANSFER

The purpose of this section is to present the topologi-
cal properties of an externally driven spin, coupled to a
dynamical quantum mechanical cavity mode and discuss
the quantized conversion of energy in the topologically
nontrivial parameter regime. The quantum system is de-
scribed by a Hamiltonian of the form,

H(t) = ω1n̂− ηB̂ · σ̂ , (1)

where σ̂ = (σx, σy, σz) and B̂ = (B̂x, B̂y, B̂z), with

B̂x = Bd sin(ω2t + φ), B̂y = B0(â − â†)/2i and B̂z =
Bm − Bd cos(ω2t + φ) − B0(â + â†)/2. Here â denotes
the photon annihilation operator of the cavity mode with
frequency ω1 and amplitude B0, n̂ ≡ â†â is the photon
number operator, Bm represents a static field along the
z direction and Bd is the amplitude of the external peri-
odic field of frequency ω2 and phase φ. We also use ~ = 1
throughout.
A rough estimation of the single-spin coupling rate to

a cavity mode is given by η0 = ηB0 = gµB

√

µ0ωc/2~Vc,
where Vc is the cavity mode volume and ωc the cavity fre-
quency, further enhanced to ηs = η0

√
Ns by utilizing an

ensemble of Ns noninteracting spins27. For a microwave
cavity mode with ωc = 10 GHz, a small Vc = 10−12 m3

gives η0 = 143 Hz or η = 0.32 GHz for Ns = 5 × 1012

spins. The single-spin cavity strength has been experi-
mentally measured using a X-band resonator to η0 = 0.38
Hz and η = 37.4 MHz for Vc = 2 × 10−10 m3 and
Ns = 7.8 × 1014 27, suggesting that the strong-drive re-
quirement for a quantized energy flow, η ≫ ωc, is exper-
imentally challenging.
The model of Eq. (1) is regarded as a one dimen-

sional semi-infinite tight-binding model, with n, the num-
ber of photons, being the lattice site. The quantized
transfer of energy for incommensurate frequencies oc-
curs in the near-adiabatic limit, when the frequencies
ωi are smaller than the instantaneous energy. Thus
when ηmin|Bc − B±| ≫ ωi, with B± = |Bm ± Bd| and
Bc = B0

√
n the effective amplitude of the electromag-

netic mode in a cavity on n photons. Additionally, the
system is in its topological regime when Bc ∈ [B−, B+].
When the spin is aligned with the instantaneous field,
and under the requirements specified above, the topolog-
ical effect emerges as an increase in the photon number
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FIG. 6. Inverse participation ratio exponent α2 as a function
of the driving amplitude η for ω1/ω2 = 2/3 and B0 = 1.
We use three different parameter combinations, two in the
topological regime Bm = 10 = Bd (red line) and Bm = 4 =
Bd (blue line), and one in the trivial regime Bm = 4, Bd = 10.
The inset depicts α2(η) for B0 = 1, Bm = 10 = Bd, and
ω1/ω2 = 2/3 (red line) or ω1/ω2 = 2/(

√
5− 1) (blue line).

sions, where each lattice dimension equals the number
of irrationally-related drive frequencies. When the two
frequencies have a rational ratio, ω1/ω2 = q/p with p, q
coprime integers, the two-dimensional lattice is compact-

ified into a cylinder of circumference
√

p2 + q223. Thus,
in the limit of p, q ≫ 1, one expects the pumping to be
insensitive to the details of the frequency ratio and ob-
tain its universal value which derives from the underlying
topology. In turn, the topological effect cannot apply at
weak drive. This is supported by the results summarized
in Fig. 4 (red line), where we plot n̄max in the nonadi-
abatic regime for Nph = 20, B0 = 1, Bm = Bd = 8,
and various frequency combinations. Here n̄max is de-
fined as the maximum value of n̄F in the nonadiabatic
regime, n̄max = max{n̄F (ηeff) : ηeff ∈ [0, 1]}. It becomes
apparent that as p, q increase, the nonadiabatic pumping
effect vanishes. The full fluctuating behavior of n̄F (ηeff)
is presented in Fig. 12.

Let us now focus on the conversion efficiency around
the topological transition, as illustrated in Fig. 4 (blue
line). We present n̄max as a function of Bm for B0 = 1,
Bd = 8, ω1/ω2 = 2/3, and a topological phase boundary
at Bm = 12.47. The overall picture suggested is that a
finite n̄F persists in the nontopological regime but with
intensity that vanishes as we go further away from the
topological boundary. The full fluctuating behavior of
n̄F (ηeff) is presented in Fig. 13.

To complete the description we must also examine the
sensitivity of n̄F to the initial phase of the external peri-
odic drive φ, due to dephasing of the time evolved state
|Ψ(t)〉. The main features are depicted in Fig. 5, where
we plot n̄F as a function of both η and φ and a choice
of B0 = 1, ω1/ω2 = 2/3, Nph = 100 and Bm = 20 = Bd.
We observe that although n̄F is highly sensitive with re-

spect to both η and φ, we can specify extended regions
of the parameter space with efficient pumping n̄F ≥ 0.8.
This sensitivity on φ is a remnant of an analogous φ-
dependence of n̄F in the adiabatic regime, where the
pumping effect is proportional to the integral of the Berry
curvature along a path selected by φ, further enhanced
here by the nonadiabatic driving conditions. The sensi-
tivity of n̄F on the initial conditions motivates studies on
the statistical behavior of the pumping effect for an en-
semble of random Hamiltonians. The distribution of the
energy pumping efficiency along with the Floquet level
statistics is explored in a subsequent publication 34.

IV. FLOQUET LOCALIZATION

A finite energy pumping in a frequency-space tight-
binding model signals the delocalization of the corre-
sponding quasienergy states along the direction of the
drive frequencies, that now play the role of an effective
electric field. In this section we link the pumping prop-
erties of the quantum cavity-spin model to the delocal-
ization properties of its Floquet modes. In the case of a
simple periodic drive with frequency ω2, the time evolu-
tion of an arbitrary initial state has the form35

|Ψ(t)〉 =
∑

j

cje
−iεjt|uj(t)〉 , (4)

where εj are the quasienergies and cj are time-
independent coefficients. The Floquet states |uj(t)〉 diag-
onalize the single-period time evolution operator U(T ) =

T exp[−i
∫ T

0
H(t′)dt′], where T = 2π/ω2 is the period of

the drive.

Based on an expansion of the zero time Floquet states
in the photon basis |uj(0)〉 =

∑

n b
n
j |n〉, the generalized
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FIG. 7. Inverse participation ratio exponent α2 for B0 = 1,
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inverse participation ratio (IPR) is defined as36

Rq =
1

N

N−1
∑

j,n=0

|bnj |2q =
1

Nαq
, (5)

where N is both the number of the Floquet modes and
the number of photons in the cavity, while for conve-
nience we first focus on R2. If a Floquet state is delocal-
ized among many photon states, then each of them con-
tributes bnj ≈ 1/

√
N and R2 ≈ 1/N for N ≫ 1 (α2 = 1).

In the opposite limit, a localized Floquet state in the
photon lattice will give R2 = 1 (α2 = 0). For a given
set of parameters and driving amplitude η, we calculate
R2 for N ∈ [10, 200] and extract the exponent α2 by a
numerical fit.
In Fig. 6 we plot the exponent α2 for the model (1)

as a function of the driving amplitude η and examine its
behavior as the system transitions from the topological
to the trivial regime. In the topological class, Floquet
states are delocalized for any finite η with α2 exhibiting
strong fluctuations in the 0 ≤ η ≤ 0.2 regime around
α2 ≈ 0.8, before it asymptotically approaches α → 1 for
larger η. In the trivial class and for large η, α2 → αas with
αas < 1, indicating a hybridization between the localized
and delocalized sectors. The inset depicts the delocaliza-
tion of Floquet states in the topological regime B0 = 1
and Bm = 10 = Bd for commensurate ω1/ω2 = 2/3 (red

line) and incommensurate ω1/ω2 = 2/(
√
5−1) (blue line)

frequency combinations. As expected, in the nonadia-
batic regime commensurate frequencies have larger delo-
calization exponents, that is translated into large photon
pumping in the cavity. This is further supported by the
results summarized in Fig. 7 for B0 = 1, Bm = 10 = Bd,
η = 0.16 and various frequency combinations ω1. We
note that α2 is significantly enhanced for commensu-
rate frequency combinations, corroborating the results
of Sec. III.
Perhaps the most interesting finding is that in all cases

the scaling exponent of R2 reflects a hybridization be-
tween the localized and delocalized sectors, that is a sign
of Floquet multifractality. The presence of multifractal
states is associated with the critical spectral statistics
of a system exactly on the metal- insulator transition
point37 or the Anderson transition point38,39. To ana-
lyze the multifractal behavior of the Floquet eigenstates
of the driven quantum-cavity system, we examine the
generalized IPR of Eq. (5) as a function of the fractal
dimension q. For localized states it holds αq = 0, for
delocalized αq = q − 1, and any other combination sig-
nals multifractionality. The overall picture suggested by
Fig. 8, where we plot αq for three values of the drive
η = 0.01, 0.1, 0.5, is that multifractality of the Floquet
states is present for any η > 0 and Floquet states be-
come increasingly delocalized with increasing η. This
surprising result motivates further studies on the criti-
cality of the Floquet eigenstate statistics40 but is beyond
the scope of the present paper and we leave it for the
future.
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FIG. 8. Inverse participation ratio exponent αq as a func-
tion of the fractal dimension q for B0 = 1, Bm = 10 = Bd,
ω1/ω2 = 2/3 and three driving amplitudes η = 0.01, 0.1, and
0.5. The black dashed line denotes the expected α = q − 1
behavior for delocalized states.

V. QUANTUM COHERENCE

In this section we study the coherent properties of
the pumped time-evolved photon state |Ψ(t)〉 to examine
whether the phase coherence of the initial state is pre-
served during the frequency conversion process, a neces-
sary condition for a quantum information transfer12. In
the context of quantum optics, a number of probability
distributions can be employed to investigate the prop-
erties of quantum states. Here we focus on the Pegg-
Barnett phase probability distribution based on a con-
struction of a Hermitian phase operator to study whether
outgoing states have a well defined phase41. We intro-
duce a complete set of orthonormal phase states41

|θm〉 = 1

N

∑

n,s

einθm |n, s〉 , (6)

where θm = 2πm/N , m = 0, · · · , N − 1, |n, s〉 are eigen-
states of the coupled photon-spin system and N is the
total number of photon states. The phase probability
distribution P (θ) = |〈θ|Ψ〉|2 contains important infor-
mation on the phase properties of a general state |Ψ〉.
Here we initially prepare the system at a coherent pho-
ton state Nph and the spin aligned with the magnetic
field, |Ψ0〉 = |Nph, ↓〉 and let it evolve under the driven
spin-cavity Hamiltonian H(t) of Eq. (1).

The quantum coherence properties of the pumped pho-
ton state |Ψ(t)〉 in the adiabatic limit are summarized in
Fig. 9, for parameters in the topological phase B0 = 1,
Bm = 8 = Bd, ω2 = 1, commensurate frequencies
ω1/ω2 = 2/3, and strong drive η = 10/

√

Nph. Panel
a) depicts the time evolution of the Pegg-Barnett phase
distribution P (θ) for Nph = 20. As expected quantum co-
herence is maintained and P (θ) is described by a Gaus-
sian peak at all times [see Fig. 9-b) and c)], although
the standard deviation σθ of the distribution increases
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FIG. 11. Time evolution of the mean amplitude 〈â(t)〉/〈n̂(t)〉
(upper panel) and 〈eiΦ̂θ (t)〉 (lower panel) for η = 10/

√
Nph,

B0 = 1, Bm = 8 = Bd, ω1/ω2 = 2/3, and Nph = 20. The
rate of the amplitude decay is Γn = 0.011 for the former
and Γθ = 0.0023 for the later. We note that on top of the
exponential behavior, 〈â(t)〉/〈n̂(t)〉 oscillates at a frequency
ω1 = 2/3.

distribution P (θ) for Nph = 20. P (θ) is still described by
a central Gaussian peak [see Fig. 9 b) and c)], although
additional peaks develop due to the nonadiabatic driving
conditions. Thus, the standard deviation σθ, plotted in
Fig. 10-e), increases/decreases over time due to the ap-
pearance/disappearance of secondary peaks. For all cases
plotted, the photon number in the cavity increases over
time with frequency conversion efficiency n̄F ≈ 0.8. As
we further increase η additional phase fluctuations are
generated and phase coherence is suppressed. A sum-
mary of this behavior is depicted in Fig. 14 of the Ap-
pendix, where we also illustrate how phase coherence is
restored as the system approaches the strong-drive adia-
batic limit.
In summary, the frequency conversion in the adiabatic

limit preserves the quantum coherence properties of the
initial state, although the state is characterized by a dif-
fusion coefficient. For nonadiabatic driving conditions
and ultra-low drive, P (θ) is still described by a central
Gaussian peak, suggesting that the pumped quantum
state has a well defined phase. As we further increase
the driving amplitude, additional secondary peaks and
phase fluctuations are generated and quantum coherence
is suppressed.

VI. EXPERIMENTAL IMPLICATIONS

Here we discuss whether the nonadiabatic frequency
conversion discussed in the previous section is experimen-
tally feasible. To give an estimate in physical units under
the choice of parameters summarized in Fig. 3, thus for
B0 = 1 and Bd = 8 = Bm, we first note that the adia-
batic requirement holds as long as η ≥ ~ω1ηad/

√

Nph ≈

10~ω1/
√

Nph. Therefore, in the few-photon limit, start-
ing with a state of Nph = 20 coherent photons, the adi-
abatic requirement is met for a spin-photon coupling of
the order of η/hω1 = 0.18 at Bd = Bm = 100 mT, and
grows to η/hω1 = 0.8 in the fully quantum limit with
Nph = 1 and Bd = Bm = 450 mT. In the opposite many-
photons limit, starting with a cavity of Nph = 200 pho-
tons, the adiabatic limit corresponds to η/hω1 = 0.06
at 32 mT, and for Nph = 400 we find η/hω1 = 0.04
at 23 mT. On the contrary, a nonadiabatic pumping is
possible for even smaller values of the spin-photon cou-
pling of approximately η = 0.3~ω1/

√

Nph. This trans-

lates to η/hω1 = 5.3 × 10−3 for Nph = 20 at 3 mT, and
η/hω1 = 2.4× 10−2 for Nph = 1 at 14 mT.

The direct interaction of a single spin with the cavity
magnetic field is exceedingly small, with η0/hω1 = 10−9.
A generalization is to consider of an ensemble of Ns iden-
tical two-level systems resonantly interacting with a sin-
gle electromagnetic field, a model analyzed by Tavis and
Cummings43. In the scope of this model, the collective
spin-photon coupling is η =

√
Nsη0, where η0 is the cou-

pling strength of each individual spin, a scaling that has
been experimentally verified, while a similar

√
Ns be-

havior prevails also for the magnon-photon coupling in
magnetically interacting systems44–48. The coupling of
large electron spin ensembles to microwave cavity pho-
tons has been experimentally found to be of the order of
η/hω1 = 5 × 10−4 (ω1 = 9.7 GHz) for a large ensemble
of Ns = 1016 spins in a 3D microwave cavity27, and of
the order of η/hω1 = 4 × 10−3 for Ns = 1012 spins in a
superconducting cavity49,50 (ω1 = 2.87 GHz at 40 mK).

Several approaches have been explored in order to
enhance the spin-photon coupling. Recently, it has
been demonstrated that by reducing the cavity effec-
tive volume at superconducting nanoconstrictions, the
microwave magnetic field is enhanced and results strong
spin-photon couplings of the order of η/hω = 1.4× 10−3

for Ns = 108 spins in a microwave cavity with an average
of 5×105 thermal photons51 (ω1 = 1.4 GHz at 44 mK). A
different approach is to consider a number of exchange-
coupled spins, where the coupling strength is reported to
be at least one order of magnitude larger as compared to
noninteracting spins, i.e. η/hω1 = 7.6×10−2 44 (ω1 = 5.6
GHz at 50 mK). In these systems, microwave cavity pho-
tons interact coherently with the collective spin excita-
tions in ferromagnetic crystals48, such as the ferromag-
netic insulator yttrium iron garnet (YIG). A strong cou-
pling is achieved when the cavity and the magnetostatic
mode are on resonance, leading to η/hω1 ≈ 3 × 10−3 45

(ω1 = 10.6 GHz at 10 mK). The resonance condition jus-
tifies the single photon mode assumption in the model of
Eq. 1, as higher-energy modes are off-resonant and can
be neglected. This is further supported by the results
of Ref. 26 in a classical multi-mode cavity, where the
authors demonstrated that the energies of higher-energy
modes, effectively suppressed by tuning their dissipation
rates, decay fast to zero. In view of the increasing in-
terest on the coherent interaction between magnons and
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microwave or optical photons, we believe our work could
serve as a basis for studies on photon frequency conver-
sion in a system of Ns interacting spins, also motivated
by recent results on the enhancement of frequency con-
version in a system of two interacting spins52.
Nevertheless, in the above studies the spin-phonon cou-

pling has been explored away from the quantum single-
spin to single-photon limit. A promising platform for the
realization of the Tavis-Cummings model is the use of
two-state atoms coupled to a resonant cavity mode with
a large reported single-qubit to single-photon coupling of
the order of η0/hω1 = 1.3 × 10−2 53ω1 = 6.7 GHz at
20 mK). The coupling of single electron spins in silicon
quantum dots to single microwave photons has been re-
ported to be of the order of η0/hω1 = 2− 7× 10−3, with
an average thermal photon number in the resonator well
below 154–56 (ω1 = 7.7 GHz at 10 − 30 mK). Finally,
at room temperature, the magnon to microwave photon
coupling is of the order of η/hω1 = 1.4 − 3.3 × 10−3

46,47 (ω1 = 7.9 GHz), while the spin-photon coupling in
a molecular crystal is η/hω1 = 1.2 × 10−3 57 (ω1 = 1.45
GHz). From the above considerations it becomes ap-
parent that the predicted frequency conversion effect in
the nonadiabatic limit is experimentally feasible using a
large ensemble of spins and is within experimental reach
for the quantum few-photon limit.

VII. DISCUSSION

In this work, we consider the transfer of energy in a
periodically driven spin-1/2 coupled to a quantum cavity
mode out of the adiabatic limit. We establish a novel
pumping phenomenon that persists in the weak-drive
regime and examine its efficiency for a broad range of
the parameter space. We demonstrate that the frequency
conversion efficiency exhibits strong fluctuations due to
the nonadiabatic effects before it saturates to unity for
sufficiently strong drives, ηad ≈ 10ωi. It is more efficient
for rationally-related frequencies and can reach up to 80%
of the quantized value for η = 0.3ωi. Emphasis is put on
the magnitude of the pumping effect in the nontopolog-
ical phase of the model. A finite frequency conversion
efficiency persists in the trivial phase, but is less effective
as we move further away from the topological boundary.
A finite-energy pumping signals the delocalization of

the corresponding Floquet states, which are found to dis-
play a multifractal behavior, due to the hybridization
between localized and delocalized sectors. The presence
of multifractal states, associated with critical spectral
statistics, motivates future studies on the criticality of
the Floquet eigenstate statistics. Finally, we show that
in the adiabatic limit, during the frequency conversion
process, the quantum coherent properties of the initial
state are preserved, but the phase undergoes a diffusion
process. For ultra-low drive, the pumped quantum state
has still a well defined phase but as we further increase
the driving amplitude, additional secondary peaks and
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FIG. 12. Frequency conversion efficiency n̄F as a function of
the effective drive amplitude ηeff = η

√
Nph, for a cavity with

initially Nph = 20 photons in the topological class B0 = 1,
and Bm = 8 = Bd. Four different commensurate frequency
combinations are presented of the form ω1/ω2 = q/p, with in-

creasing
√

p2 + q2. When q, p ≫ 1, the nonadiabatic photon
pumping vanishes.

phase fluctuations are generated and quantum coherence
is suppressed.
Experimental systems are subject to dissipation mech-

anisms that need to be incorporated for the construction
of a realistic model (although we don’t expect a quali-
tative change of our results). In the adiabatic driving
limit and within a Markov-Lindblad framework, the in-
clusion of external noise and dissipation stabilizes the
conversion effect as the system approaches a steady state
with a quantized number of emitted photons per driv-
ing period26. In the nonadiabatic limit, it was recently
demonstrated that the introduction of a non-Hermitian
tailored time-periodic dissipation restores the topological
transport quantization of Thouless pumps in plasmonic
waveguide arrays, emphasizing the uniqueness of Floquet
topological systems58.
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FIG. 13. Frequency conversion efficiency n̄F as a function of
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√
Nph, for a cavity with

initially Nph = 20 photons, B0 = 1, Bd = 8, and ω1/ω2 =
2/3. Four different Zeeman fields are presented, two in the
topological phase, Bm = 10, 12 and two in the trivial phase
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Appendix A: Appendix

In this Appendix we provide further details on the fre-
quency conversion effect. In Fig. 12 we plot the depen-
dence of the frequency conversion efficiency n̄F on ηeff, for

a cavity with initiallyNph = 20 photons in the topological
class B0 = 1, Bm = 8 = Bd, and four different commen-
surate frequency combinations of the form ω1/ω2 = q/p.
We note that as q, p ≫ 1, the nonadiabatic pumping ef-
fect vanishes, and the overall behavior resembles the one
for irrationally-related frequencies.

Moreover, we are interested in exploring whether the
pumping effects persists for parameters outside the topo-
logical regime. We therefore plot n̄F as a function of ηeff

for a cavity with initially Nph = 20 photons, B0 = 1,
Bd = 8 and ω1/ω2 = 2/3 and four different values of the
Zeeman field amplitude. The topological phase boundary
is at Bm = 12.5. Although the pumping effects persists
in the trivial phase of the model, the intensity diminishes
as we go further away from the boundary.

Finally, for completeness we present the phase distri-
bution P (θ) calculated in Sec. V for parameters ranging
between the ultra-weak-drive up to the strong-drive limit.
In Fig. 14 we present P (θ) for seven values of η, B0 = 1,
Bm = 8, Bd = 8, Nph = 20, and ω1/ω2 = 2/3. Phase co-
herence is preserved in the ultra-weak limit η ≪ ωi, and
P (θ) is described by a central Gaussian peak. As η is
increased, additional secondary peaks and phase fluctu-
ations are generated and the pumped states is no longer
characterized by a well defined phase. Phase coherence is
restored in the strong-drive adiabatic limit, where P (θ)
is a Gaussian curve at all times.

1 N. Lauk, N. Sinclair, S. Barzanjeh, J. P. Covey,
M. Saffman, M. Spiropulu, and C. Simon, Quantum Sci-
ence and Technology 5, 020501 (2020).

2 J. L. O’Brien, A. Furusawa, and J. Vučković, Nature Pho-
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