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We investigate the photon pumping effect in a topological model consisting of a periodically driven
spin-1/2 coupled to a quantum cavity mode out of the adiabatic limit. In the strong-drive adiabatic
limit, a quantized frequency conversion of photons is expected as the temporal analog of the Hall
current. We numerically establish a novel photon pumping phenomenon in the experimentally
accessible nonadiabatic driving regime for a broad region of the parameter space. The photon
frequency conversion efficiency exhibits strong fluctuations and high efficiency that can reach up 80%
of the quantized value for commensurate frequency combinations. We link the pumping properties
to the delocalization of the corresponding Floquet states which display multifractal behavior as
the result of hybridization between localized and delocalized sectors. Finally we demonstrate that
the quantum coherence properties of the initial state are preserved during the frequency conversion

process in both the strong and ultra-weak-drive limit.

I. INTRODUCTION

The development of efficient frequency conversion
mechanisms is a process with various technological ap-
plications, relevant for quantum communications and
quantum computing'. Photonic channels in the IR-
band appear to be very attractive for the long-distance
transmission of a quantum state, providing low-loss
transmission? based on quantum-compatible storage and
repeater protocols® ®. On the other hand, the elementary
quantum processors and memories based on atoms®®,
spins in quantum dots”, or superconducting qubits'®, op-
erate in different frequency regions. Thus, the realization
of networks connecting disparate quantum systems''12
requires the development of quantum interfaces, capa-
ble of bridging the frequency gap'®'°. The bidirectional
transfer of quantum information relies on mechanisms
that shift a quantum state of light from its original fre-
quency band to a desired one, while preserving all other
quantum properties'®17.

Temporal analogs of topological models can provide a
new platform for the efficient transfer of photons from
one electromagnetic mode to another. In such systems,
novel types of topological order are realized by subjecting
a trivial quantum system to periodic driving'® 22, In par-
ticular, driving a spin-1/2 with two elliptically polarized
periodic waves of incommensurate frequencies generates
the dynamical analog of a 2D topological insulator, where
the Hall current corresponds to a quantized pumping of
energy between the two sources?>24. Recently, this topo-
logical frequency conversion effect has been experimen-
tally realized using a single-qubit IBM device?®. Anal-
ogously, a periodically driven magnetic particle coupled
to a cavity induces a quantized energy transfer from the
external field to the cavity mode?®. Such a quantized fre-
quency conversion occurs as long as the system is in the
near-adiabatic limit realized for sufficiently strong drives,
when the instantaneous energy gap is large compared to

the photon frequencies. Nevertheless, a rough estimation
of the single-spin coupling rate to a cavity mode?” sug-
gests that the strong-drive requirement for a quantized
energy flow is experimentally challenging.

In this work, we investigate the photon pumping ef-
fect in a topological model consisted of a periodically
driven spin-1/2 coupled to a quantum cavity mode out
of the adiabatic limit. The pumping properties of such a
non-equilibrium system are described as the delocaliza-
tion of the corresponding Floquet states in the synthetic
photon-number states along the direction of the drive fre-
quencies. To describe this phenomenon we employ a sta-
tistical analysis of the Floquet modes using the participa-
tion ratio approach, in analogy with electronic transport
in the context of Anderson localization®®2?. We thus
find echos of Anderson Localization in a dynamics prob-
lem. In addition, similarly to Thouless topological charge
pumping®’, the quantized energy transfer is not expected
to remain robust to nonadiabatic effects. Through a nu-

FIG. 1. Frequency conversion platform. A single spin (pur-
ple) is coupled to a cavity mode of frequency wi (red) and
driven by an external periodic magnetic field of frequency wo
(yellow).



merical estimation of the energy transfer between the two
modes, we establish a novel pumping phenomenon that
persists in the nonadiabatic driving regime for a broad
region of the parameter space of the model.

We find that the photon pumping efficiency in the
weak-driving regime exhibits strong fluctuations. For
n < w;, with 7 the driving amplitude and w; the low-
est frequency, the strong fluctuations emerge due to the
nonadiabatic driving conditions, before the pumping rate
saturates to the quantized value for sufficiently strong
drives 1) & 1,4, when adiabaticity is restored. These fluc-
tuations are stronger for rationally-related frequencies,
with the conversion efficiency of the order of 80% of the
quantized value for n &~ 30%w;, while in the same limit
irrationally-related frequencies have a vanishing conver-
sion efficiency. In the nonadiabatic limit and around
the topological boundary, we demonstrate that a finite
pumping phenomenon persists in the trivial phase, but is
less effective as we move further away from the boundary.
This energy pumping is characterized by a strong sensi-
tivity to the initial phase of the drive, although we can
always specify extended regions of the parameter space
with efficiency that exceeds 80% of the quantized value.

A finite energy pumping signals the delocalization of
the corresponding quasienergy states in the space of
photon-number in the cavity. To link the pumping prop-
erties of the model to the delocalization of the Flo-
quet states, we follow a statistical analysis of the Flo-
quet modes, closely related to electronic transport in the
context of Anderson localization?®2?, applied here to a
frequency-space tight-binding model. This is achieved by
calculating the inverse participation ratio and extract its
scaling exponent with respect to the number of photon
states. Our findings corroborate the results of the photon
pumping efficiency, namely in the nonadiabatic regime
commensurate frequencies have larger delocalization ex-
ponents and a finite transport of states in the nontopo-
logical regime. Perhaps the most interesting finding is
that the Floquet eigenstates also display fractal behavior
for any finite 1 as the result of hybridization between the
localized and delocalized sectors, induced by the periodic
drive. Note that the behavior we explore here is the com-
plement of the non-chaotic frequenecy-locking behavior
in the same system investigated in Ref. 31.

In addition, we study whether the quantum coherence
properties of the initial state are preserved during the
frequency conversion process, by evaluating the phase
probability of the time-evolved state. During the adia-
batic pumping, quantum coherence is preserved and the
phase distribution is well-approximated by a Gaussian
curve, although the phase undergoes a diffusion process.
Surprisingly, in the ultra-weak-drive limit n < w, the
pumped photon state is described by a central Gaus-
sian peak, suggesting the existence of a state with a well
defined phase. As 7 is increased, additional secondary
peaks and phase fluctuations are generated and quantum
coherence is suppressed.

The structure of the paper is as follows. In Sec. II we

discuss the temporal topological models in the strong-
drive regime and evaluate the quantized energy pumping
for different model parameters. In Sec. III we calculate
the energy flow in the weak-drive regime and identify
regimes of efficient frequency conversion by exploring a
broad parameter space. Such an energy flow is under-
stood in terms of the delocalization of Floquet states,
presented in Sec. IV, while the coherence properties of
the pumped state are investigated in Sec. V. The experi-
mental implications of our work are discussed in Sec. VI.
Finally, our main conclusions are summarized in Sec. VII.

II. QUANTIZED ENERGY TRANSFER

The purpose of this section is to present the topologi-
cal properties of an externally driven spin, coupled to a
dynamical quantum mechanical cavity mode and discuss
the quantized conversion of energy in the topologically
nontrivial parameter regime. The quantum system is de-
scribed by a Hamiltonian of the form,

H(t)=win—nB- &, (1)

where 6 = (04,0y,0.) and B = (B,, B,, B.), with
B, = Bgsin(wat + ¢), B, = By(a — a')/2i and B, =
B, — Bycos(wat + ¢) — Bo(a + a')/2. Here a denotes
the photon annihilation operator of the cavity mode with
frequency w; and amplitude By, 7 = a'éa is the photon
number operator, B, represents a static field along the
z direction and By is the amplitude of the external peri-
odic field of frequency wsy and phase ¢. We also use h =1
throughout.

A rough estimation of the single-spin coupling rate to
a cavity mode is given by 19 = nBy = gup+/ towe/20VL,
where V. is the cavity mode volume and w, the cavity fre-
quency, further enhanced to 1, = 1n9yv/N; by utilizing an
ensemble of Ng noninteracting spins??. For a microwave
cavity mode with w. = 10 GHz, a small V, = 1072 m?
gives ng = 143 Hz or n = 0.32 GHz for N, = 5 x 102
spins. The single-spin cavity strength has been experi-
mentally measured using a X-band resonator to 1y = 0.38
Hz and n = 37.4 MHz for V, = 2 x 10719 m? and
N, = 7.8 x 10" 27 suggesting that the strong-drive re-
quirement for a quantized energy flow, n > w,, is exper-
imentally challenging.

The model of Eq. (1) is regarded as a one dimen-
sional semi-infinite tight-binding model, with n, the num-
ber of photons, being the lattice site. The quantized
transfer of energy for incommensurate frequencies oc-
curs in the near-adiabatic limit, when the frequencies
w; are smaller than the instantaneous energy. Thus
when nmin|B, — By| > w;, with BL = |B,, + By| and
B. = By+/n the effective amplitude of the electromag-
netic mode in a cavity on n photons. Additionally, the
system is in its topological regime when B. € [B_, B].
When the spin is aligned with the instantaneous field,
and under the requirements specified above, the topolog-
ical effect emerges as an increase in the photon number
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FIG. 2. a) Frequency conversion efficiency fir in the strong-
drive regime 1 = 2, between commensurate frequencies
wi/ws = 2/3, as a function of the amplitude of the exter-
nal drive By and the Zeeman field B,,. We choose N, = 1,
By =1, wg = 1, and ¢ = 0. b)-(c) Time evolution of
(n(t)) for B,, = 8 = By and b) incommensurate frequencies
w1 Jwe = (v/5—1)/2 with unity efficiency i = 1, and ¢) com-
mensurate frequencies wl/wg = 2/3 and efficiency np ~ 1. In
both cases, the number of photon in the cavity increases at
the quantized rate ng depicted with the black solid line from
the value N,, = 1 until it reaches the topological boundary
(Bm + Bd)Z/Bo = 256 illustrated with black dashed line at
approximately time t/T = (Bum + Ba)?/Bo — Npn = 255.

at the quantized rate

woC
ng =5, (2)

together with an energy transfer at the rate dE/dt =
wiwaC/2m with E = wy(n). We note that although the
system can be chosen initially to be in its topological
regime, since B, = Bgy/n (with n here a dynamical
quantity), we expect that at later times the condition
B. € [B_,B4] breaks down. Thus, an increase of the
photon number with a quantized rate can take place as
long as n € [B2 /By, B2 /By).

To address the frequency conversion in the weak-drive
or commensurate frequency case, where no quantiza-
tion should be expected, we numerically calculate3? the
expectation value of the photon number operator as
(n(t)y = (U () |n|T(t)), with |¥(¢)) the time-evolved state
[U(t)) = U(t)|Wo) and U(t) = T exp|—i [, H(t')dt'] the
time evolution operator®?. The Hamiltonian of Eq. (1)
assumes a quantized light-matter interaction with eigen-
states of the form |n,s), where n is the photon and s
the spin index. At time ¢ = 0, the system is prepared
such that the spin is in its ground state | ]), aligned
with the instantaneous magnetic field, and the photon
mode in a coherent state with mean number of photons
Non, o) = | N, 4). With this condition, (A(t)) is an in-
creasing function over some finite amount of time, while
the initial condition |¥o) = |N,, 1) leads to a decreasing
photon number (not considered here).

Teft

FIG. 3. Frequency conversion efficiency nnp as a function of
the effective drive amplitude 7. = 71/ Npn, for a cavity with
initially NV, = 20 photons, and a choice of By =1, B, =8 =
B4, ¢ = 0, and w1 /ws = (v/5 — 1)/2 (blue line) or w; /ws =
2/3 (red line). Due to the nonadiabatic effects, the efficiency
fluctuates before it converges to unity for sufficiently strong
drives 7.4 = 10. Fluctuations are stronger for commensurate
frequencies, with an efficient pumping effect 7 =~ 0.8 in the
deep nonadiabatic regime with 7.¢ as small as 3% X 7aq.

To evaluate the efficiency of the frequency conversion
we use the quantized photon increase rate ng of Eq. (2) as
a reference, and study the time-averaged photon number
expectation value,

ﬁ(tmax) =

2 [TaGor-N, @

nQ tmax

where we used (A(t = 0)) = N,,,. Further, we focus on the
quantity np = f(ty,), where t,, = TBJQr /Bo — Ny, and
T = 27 /ws the period of the drive. Under this choice,
we study the study the frequency conversion effect for
(A(t)) € [B2 /By, B3 /Bo). Thus, for unit efficiency np =
1, the number of photons in the cavity increases from the
value Ny, up to N, + Bf_/Bo, at the quantized rate ng,
a process that takes place within a ¢,,, amount of time.
The main features of the quantized frequency conver-
sion are depicted in Fig. 2, plotted in the strong-drive
regime = 2 and a choice of N, =1, By =1, wy =1
and ¢ = 0. Figs. 2-b) and ¢) suggest that in this limit, the
number of photons in the cavity increases at the quan-
tized rate ng, from the initial value V,, up to the up-
per topological boundary Bi /By at time t,,. Choosing
B,, = 8 = By, we find that incommensurate frequencies
wi/wa = (v/5—1)/2 exhibit unit efficiency np = 1, while
commensurate frequencies wy/wy = 2/3 can be as effi-
cient with np = 1. Finally, the colored surface of Fig. 2-
a) represents the conversion efficiency 7ip-dependence
on parameters B, and By for the commensurate case
w1 /wy = 2/3. White solid lines indicate the boundaries
of the topological regime. Simple inspection reveals that
there is a broad parameter range beyond the topological
regime for which np reaches and even exceeds the unit
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FIG. 4. Frequency conversion efficiency fimax around the topo-
logical transition (blue line), and approaching irrationally-
related frequencies (red line). In both cases we use Ny, = 20,
By = 1 and By = 8. The blue line depicts the conversion
efficiency as we vary B,, from the topological to the trivial
phase for wi/ws = 2/3 and a topological phase boundary at
B,, = 12.5. The red line depicts the conversion efficiency
for B,, = 8 and rationally-related frequencies of the form
w1 /wa = q/p, with increasing /p? + ¢2.

efficiency.

Below we demonstrate that within this parameter re-
gion and for the experimentally accessible weak-drive
limit, it is possible to transfer photons from the exter-
nal mode to the cavity mode, starting from the quantum
mechanical few-photon limit, with high efficiency that
can reach up to ngp = 0.8.

III. NONADIABATIC PUMPING

With this preparation, we turn to the main task of this
paper and calculate the frequency conversion efficiency in
the weak-drive regime, n < w;. In analogy with the quan-
tization of the charge transport upon a cyclic adiabatic
driving of a band insulating system, known as Thouless
topological pumping®?, the quantized energy transfer is
not expected to remain robust in the face of nonadia-
batic effects®3. In the adiabatic limit discussed in Sec. II-
B, the non-quantized pumping power for commensurate
frequencies is understood in terms of a partial sampling
of the Berry curvature, contrary to the incommensurate
case with a robust quantized pumping proportional to
C = 1. Thus, for an efficient pumping beyond the topo-
logical regime, it appears promising to tune the photon
frequencies to a rational ratio. At time ¢t = 0, the system
is in the state |¥g = | Ny, ).

In Fig. 3 we plot the frequency conversion efficiency
np as a function of the effective drive amplitude n.g =
Ny/Non, for a cavity with initially N, = 20 photons in

the topological regime with By = 1 and B,, = 8 = By.
We examine both rational wi/ws = 2/3 (red line) and
irrational w /ws = (v/5 — 1)/2 frequency combinations
in a broad region of the driving amplitude including the
nonadiabatic (NA) 74 < w; (red shaded area), the inter-
mediate (IM) w; < g < 7. (blue shaded area), and the
adiabatic regime (AD) (gray shaded are) for 7. > 7.
Fig. 3 allows for two major observations. First, for both
frequency combinations, due to the nonadiabatic effects,
np strongly fluctuates before it converges to unity for suf-
ficiently strong drives 7,4 &~ 10. In addition, in the nona-
diabatic regime depicted in detail in the inset of Fig. 3,
fluctuations are stronger for rational frequencies, with ef-
ficient pumping effects of the order of np =~ 0.8 at 7. that
could be as small as 30%w;. For intermediate amplitudes
2 < Ner < 6, thus for neg ~ 20 — 60% X 1,4, there is still a
finite photon pumping 0.5 $ fip < 0.8, a behavior that is
independent of the frequency combination. To justify the
choice of the field amplitude B,, = 8 = By, we note for
the parameters summarized in Fig. 2-3, the frequency
conversion effect takes place within a sufficiently long
time interval ¢,,, = 1071, during which the cavity photon
number is increased by An = (fi(tw,)) — (7(0)) = 256
photons. In physical units, ¢, = 1 us for w; = 1 GHz,
while both B,, and By are in the mT regime.

In the nonadiabatic regime 74 < w;, irrational fre-
quencies display vanishing efficiency np = 0. Such a
striking contrast of the nonadiabatic pumping between
commensurate and incommensurate frequencies is un-
derstood as follows. The energy pumping in the adia-
batic regime is generated by engineering synthetic dimen-
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FIG. 5. The colored surface represents the conversion effi-
ciency np as a function of the initial phase of the external
periodic drive ¢ and the drive amplitude 7, with By = 1,
w1 /wa = 2/3, Npw = 100 and B,,, = 20 = Bg. We observe
that nr is highly sensitive with respect to both 7 and ¢.
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FIG. 6. Inverse participation ratio exponent s as a function
of the driving amplitude 7 for wi/w2 = 2/3 and By = 1.
We use three different parameter combinations, two in the
topological regime B, = 10 = By (red line) and B, = 4 =
By (blue line), and one in the trivial regime B, = 4, By = 10.
The inset depicts az(n) for By = 1, B, = 10 = Bg, and
w1 /we = 2/3 (red line) or w1 /w2 = 2/(v/5 — 1) (blue line).

sions, where each lattice dimension equals the number
of irrationally-related drive frequencies. When the two
frequencies have a rational ratio, wy/wy = ¢/p with p,q
coprime integers, the two-dimensional lattice is compact-
ified into a cylinder of circumference +/p? + ¢223. Thus,
in the limit of p,q > 1, one expects the pumping to be
insensitive to the details of the frequency ratio and ob-
tain its universal value which derives from the underlying
topology. In turn, the topological effect cannot apply at
weak drive. This is supported by the results summarized
in Fig. 4 (red line), where we plot 7, in the nonadi-
abatic regime for N,, = 20, By = 1, B,, = Bgq = 8,
and various frequency combinations. Here 7, is de-
fined as the maximum value of 7ip in the nonadiabatic
regime, Ty, = max{fip(ng) : N € [0,1]}. It becomes
apparent that as p, ¢ increase, the nonadiabatic pumping
effect vanishes. The full fluctuating behavior of 7 g (1.4)
is presented in Fig. 12.

Let us now focus on the conversion efficiency around
the topological transition, as illustrated in Fig. 4 (blue
line). We present 7., as a function of B, for By = 1,
By =8, wi/ws =2/3, and a topological phase boundary
at B,, = 12.47. The overall picture suggested is that a
finite np persists in the nontopological regime but with
intensity that vanishes as we go further away from the
topological boundary. The full fluctuating behavior of
fip (Neg) is presented in Fig. 13.

To complete the description we must also examine the
sensitivity of np to the initial phase of the external peri-
odic drive ¢, due to dephasing of the time evolved state
|W(t)). The main features are depicted in Fig. 5, where
we plot np as a function of both 1 and ¢ and a choice
of By =1, wy/we = 2/3, N, = 100 and B, = 20 = By.
We observe that although np is highly sensitive with re-

spect to both n and ¢, we can specify extended regions
of the parameter space with efficient pumping ng > 0.8.
This sensitivity on ¢ is a remnant of an analogous ¢-
dependence of np in the adiabatic regime, where the
pumping effect is proportional to the integral of the Berry
curvature along a path selected by ¢, further enhanced
here by the nonadiabatic driving conditions. The sensi-
tivity of ng on the initial conditions motivates studies on
the statistical behavior of the pumping effect for an en-
semble of random Hamiltonians. The distribution of the
energy pumping efficiency along with the Floquet level
statistics is explored in a subsequent publication 34.

IV. FLOQUET LOCALIZATION

A finite energy pumping in a frequency-space tight-
binding model signals the delocalization of the corre-
sponding quasienergy states along the direction of the
drive frequencies, that now play the role of an effective
electric field. In this section we link the pumping prop-
erties of the quantum cavity-spin model to the delocal-
ization properties of its Floquet modes. In the case of a
simple periodic drive with frequency ws, the time evolu-
tion of an arbitrary initial state has the form?®

W) = 3 e (1), (@

where e; are the quasienergies and c; are time-
independent coefficients. The Floquet states |u;(t)) diag-
onalize the single-period time evolution operator U(T) =
T exp[—i fOTH(t’)dt’]7 where T' = 27 /wy is the period of
the drive.

Based on an expansion of the zero time Floquet states
in the photon basis |u;(0)) = >, b%[n), the generalized

FIG. 7. Inverse participation ratio exponent as for By = 1,
By, = 10 = B4, n = 0.16, w2 = 1 and various frequency
combinations wi. We note that s is maximized for commen-
surate frequencies.



inverse participation ratio (IPR) is defined as®°

1 = 1
Re= > e = Yoo (5)

Jsn=0

where N is both the number of the Floquet modes and
the number of photons in the cavity, while for conve-
nience we first focus on Rs. If a Floquet state is delocal-
ized among many photon states, then each of them con-
tributes b7 ~ 1/V/N and Ry ~ 1/N for N > 1 (ag = 1).
In the opposite limit, a localized Floquet state in the
photon lattice will give Ry = 1 (ag = 0). For a given
set of parameters and driving amplitude 7, we calculate
Ro for N € [10,200] and extract the exponent ay by a
numerical fit.

In Fig. 6 we plot the exponent ay for the model (1)
as a function of the driving amplitude n and examine its
behavior as the system transitions from the topological
to the trivial regime. In the topological class, Floquet
states are delocalized for any finite n with ay exhibiting
strong fluctuations in the 0 < 1 < 0.2 regime around
g =~ 0.8, before it asymptotically approaches o« — 1 for
larger n7. In the trivial class and for large n, as — s with
a,s < 1, indicating a hybridization between the localized
and delocalized sectors. The inset depicts the delocaliza-
tion of Floquet states in the topological regime By = 1
and B;, = 10 = By for commensurate wy /ws = 2/3 (red
line) and incommensurate w /ws = 2/(v/5—1) (blue line)
frequency combinations. As expected, in the nonadia-
batic regime commensurate frequencies have larger delo-
calization exponents, that is translated into large photon
pumping in the cavity. This is further supported by the
results summarized in Fig. 7 for By = 1, B,, = 10 = By,
n = 0.16 and various frequency combinations w;. We
note that «s is significantly enhanced for commensu-
rate frequency combinations, corroborating the results
of Sec. III.

Perhaps the most interesting finding is that in all cases
the scaling exponent of Ry reflects a hybridization be-
tween the localized and delocalized sectors, that is a sign
of Floquet multifractality. The presence of multifractal
states is associated with the critical spectral statistics
of a system exactly on the metal- insulator transition
point3” or the Anderson transition point®®3°. To ana-
lyze the multifractal behavior of the Floquet eigenstates
of the driven quantum-cavity system, we examine the
generalized IPR of Eq. (5) as a function of the fractal
dimension ¢. For localized states it holds ay = 0, for
delocalized oy = g — 1, and any other combination sig-
nals multifractionality. The overall picture suggested by
Fig. 8, where we plot o, for three values of the drive
n = 0.01,0.1,0.5, is that multifractality of the Floquet
states is present for any 1 > 0 and Floquet states be-
come increasingly delocalized with increasing 7. This
surprising result motivates further studies on the criti-
cality of the Floquet eigenstate statistics*’ but is beyond
the scope of the present paper and we leave it for the
future.

FIG. 8. Inverse participation ratio exponent a, as a func-
tion of the fractal dimension ¢ for By = 1, By, = 10 = By,
w1 /we = 2/3 and three driving amplitudes n = 0.01,0.1, and
0.5. The black dashed line denotes the expected o = g — 1
behavior for delocalized states.

V. QUANTUM COHERENCE

In this section we study the coherent properties of
the pumped time-evolved photon state |¥(¢)) to examine
whether the phase coherence of the initial state is pre-
served during the frequency conversion process, a neces-
sary condition for a quantum information transfer!?. In
the context of quantum optics, a number of probability
distributions can be employed to investigate the prop-
erties of quantum states. Here we focus on the Pegg-
Barnett phase probability distribution based on a con-
struction of a Hermitian phase operator to study whether
outgoing states have a well defined phase*'. We intro-
duce a complete set of orthonormal phase states!

)= L3 o

where 0,,, = 27m/N, m =0,--- /N — 1, |n, s) are eigen-
states of the coupled photon-spin system and N is the
total number of photon states. The phase probability
distribution P(0) = |(f|¥)|? contains important infor-
mation on the phase properties of a general state |U).
Here we initially prepare the system at a coherent pho-
ton state N,, and the spin aligned with the magnetic
field, |¥o) = [N, ) and let it evolve under the driven
spin-cavity Hamiltonian H(t) of Eq. (1).

The quantum coherence properties of the pumped pho-
ton state |U(¢)) in the adiabatic limit are summarized in
Fig. 9, for parameters in the topological phase By = 1,
B,, = 8 = By, wy = 1, commensurate frequencies
wi/wy = 2/3, and strong drive n = 10/4/N,,. Panel
a) depicts the time evolution of the Pegg-Barnett phase
distribution P(#) for N, = 20. As expected quantum co-
herence is maintained and P(6) is described by a Gaus-
sian peak at all times [see Fig. 9-b) and c)], although
the standard deviation oy of the distribution increases

n,s), (6)
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FIG. 9. Quantum coherence properties of the pumped photon
state in the adiabatic limit n = 10//Nyn. a) Time evolution
of the phase distribution P(6) for Bo = 1, Bm = 8 = By
(topological phase), wi/w2 = 2/3, and Ny, = 20. P(6) fol-
lows a Gaussian distribution with a standard deviation oy
an increasing function over time. b), ¢) Snapshots of the
phase distribution P(6) at several time incidents between
t = 0 and t = 100. d) Time evolution of (n(t)) with
fir = 1. e) Time evolution of oy, well approximated by

o9(t) = (co+crt/T)//(n(t)), with co = 0.65 and ¢; = 0.068.

over time [see Fig. 9-e)]. The photon number (n(t)) in-
creases over time at the quantized rate ng [see Fig. 9-
d)]. The standard deviation oy is well approximated by
og(t) = (co+c1t/T)/+/(n(t)) with ¢ = 0.65, ¢; = 0.068,
and T = 27 /wo.

The broadening of the Gaussian curve suggests that
the phase of the pumped state undergoes a diffusion pro-
cess, evident in the time evolution of both the mean
amplitude (a(t)) and (e'®¢(t)). Here a is the photon
annihilation operator and &g = > Oml|0m) (0] is the
phase operator. In Fig. 11 we present (a(t))/(n(t)) (up-
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FIG. 10. Quantum coherence properties of the pumped pho-
ton state in the nonadiabatic limit n = 0.3/4/Npn. a) Time
evolution of the phase distribution P(#) for By = 1, B, =
8 = By (topological phase), w1 /we = 2/3, and N,, = 20. b),
¢) Snapshots of the phase distribution P(#) at several time
incidents between ¢ = 0 and ¢t = 100. d) Time evolution of
(n(t)) with ir ~ 0.8. e) Time evolution of oy of the central
Gaussiann peak.

per panel) and extract the rate of amplitude decay as
T, = 1.7 x 1073, a direct measure of the phase diffusion
rate*?. The lower panel depicts |(e?®?(t))| = e~ 3% ~
e Te! with Ty = ¢2/2T = 3.66 x 10~*. Thus, the outgo-
ing pumped state is described by a diffusion coefficient
Ty =~ 3.66 x 107* x w;, a quantity that is equivalent
to a single-mode laser linewidth. Typically, narrow-band
sources are preferable for quantum information applica-
tions as they provide access to atomic transitions.

The quantum coherence properties of the pumped pho-
ton state |¥(t)) in the nonadiabatic limit are summa-
rized in Fig. 10, for parameters in the topological phase
By = 1, B, = 8 = By, commensurate frequencies
w1 /way = 2/3, and ultra-weak drive n = 0.3/4/N,,. Panel
a) depicts the time evolution of the Pegg-Barnett phase
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FIG. 11. Time evolution of the mean amplitude (a(t))/(n(t))
(upper panel) and (¢"®?(t)) (lower panel) for n = 10/v/Non,
Bo =1, By, = 8 = By, wi/w> = 2/3, and N,, = 20. The
rate of the amplitude decay is I', = 0.011 for the former
and 'y = 0.0023 for the later. We note that on top of the

exponential behavior, (a(t))/(n(t)) oscillates at a frequency
w1 = 2/3‘

distribution P(6) for N,, = 20. P(0) is still described by
a central Gaussian peak [see Fig. 9 b) and c)], although
additional peaks develop due to the nonadiabatic driving
conditions. Thus, the standard deviation oy, plotted in
Fig. 10-e), increases/decreases over time due to the ap-
pearance/disappearance of secondary peaks. For all cases
plotted, the photon number in the cavity increases over
time with frequency conversion efficiency np ~ 0.8. As
we further increase n additional phase fluctuations are
generated and phase coherence is suppressed. A sum-
mary of this behavior is depicted in Fig. 14 of the Ap-
pendix, where we also illustrate how phase coherence is
restored as the system approaches the strong-drive adia-
batic limit.

In summary, the frequency conversion in the adiabatic
limit preserves the quantum coherence properties of the
initial state, although the state is characterized by a dif-
fusion coeflicient. For nonadiabatic driving conditions
and ultra-low drive, P(#) is still described by a central
Gaussian peak, suggesting that the pumped quantum
state has a well defined phase. As we further increase
the driving amplitude, additional secondary peaks and
phase fluctuations are generated and quantum coherence
is suppressed.

VI. EXPERIMENTAL IMPLICATIONS

Here we discuss whether the nonadiabatic frequency
conversion discussed in the previous section is experimen-
tally feasible. To give an estimate in physical units under
the choice of parameters summarized in Fig. 3, thus for
By =1 and By = 8 = B,,, we first note that the adia-
batic requirement holds as long as n > hwin,a/+/Npw =

10hw1/+/ Ny Therefore, in the few-photon limit, start-
ing with a state of IV, = 20 coherent photons, the adi-
abatic requirement is met for a spin-photon coupling of
the order of n/hw; = 0.18 at By = B,, = 100 mT, and
grows to n/hw; = 0.8 in the fully quantum limit with
Ny, =1 and By = B,;, = 450 mT. In the opposite many-
photons limit, starting with a cavity of IV,, = 200 pho-
tons, the adiabatic limit corresponds to n/hw; = 0.06
at 32 mT, and for N,, = 400 we find n/hw; = 0.04
at 23 mT. On the contrary, a nonadiabatic pumping is
possible for even smaller values of the spin-photon cou-
pling of approximately 7 = 0.3uw1/+/N,,. This trans-
lates to n/hw; = 5.3 x 1073 for N, = 20 at 3 mT, and
n/hwy = 2.4 x 1072 for N, = 1 at 14 mT.

The direct interaction of a single spin with the cavity
magnetic field is exceedingly small, with 1g/hw; = 1079,
A generalization is to consider of an ensemble of N, iden-
tical two-level systems resonantly interacting with a sin-
gle electromagnetic field, a model analyzed by Tavis and
Cummings*®. In the scope of this model, the collective
spin-photon coupling is 7 = /N1, where 79 is the cou-
pling strength of each individual spin, a scaling that has
been experimentally verified, while a similar /N, be-
havior prevails also for the magnon-photon coupling in
magnetically interacting systems**8. The coupling of
large electron spin ensembles to microwave cavity pho-
tons has been experimentally found to be of the order of
n/hwy =5 x 107* (w; = 9.7 GHz) for a large ensemble
of N, = 10'6 spins in a 3D microwave cavity?”, and of
the order of n/hw; = 4 x 1073 for Ny = 10*2 spins in a
superconducting cavity*>* (w; = 2.87 GHz at 40 mK).

Several approaches have been explored in order to
enhance the spin-photon coupling. Recently, it has
been demonstrated that by reducing the cavity effec-
tive volume at superconducting nanoconstrictions, the
microwave magnetic field is enhanced and results strong
spin-photon couplings of the order of 7/hw = 1.4 x 1073
for Ny = 10® spins in a microwave cavity with an average
of 5x 10° thermal photons®! (w; = 1.4 GHz at 44 mK). A
different approach is to consider a number of exchange-
coupled spins, where the coupling strength is reported to
be at least one order of magnitude larger as compared to
noninteracting spins, i.e. 7/hw; = 7.6x1072 4 (w; = 5.6
GHz at 50 mK). In these systems, microwave cavity pho-
tons interact coherently with the collective spin excita-
tions in ferromagnetic crystals*®, such as the ferromag-
netic insulator yttrium iron garnet (YIG). A strong cou-
pling is achieved when the cavity and the magnetostatic
mode are on resonance, leading to n/hw; ~ 3 x 1073 45
(w1 = 10.6 GHz at 10 mK). The resonance condition jus-
tifies the single photon mode assumption in the model of
Eq. 1, as higher-energy modes are off-resonant and can
be neglected. This is further supported by the results
of Ref. 26 in a classical multi-mode cavity, where the
authors demonstrated that the energies of higher-energy
modes, effectively suppressed by tuning their dissipation
rates, decay fast to zero. In view of the increasing in-
terest on the coherent interaction between magnons and



microwave or optical photons, we believe our work could
serve as a basis for studies on photon frequency conver-
sion in a system of Ny interacting spins, also motivated
by recent results on the enhancement of frequency con-
version in a system of two interacting spins®?.

Nevertheless, in the above studies the spin-phonon cou-
pling has been explored away from the quantum single-
spin to single-photon limit. A promising platform for the
realization of the Tavis-Cummings model is the use of
two-state atoms coupled to a resonant cavity mode with
a large reported single-qubit to single-photon coupling of
the order of ng/hw; = 1.3 x 1072 33w, = 6.7 GHz at
20 mK). The coupling of single electron spins in silicon
quantum dots to single microwave photons has been re-
ported to be of the order of 1g/hw; =2 —7 x 1073, with
an average thermal photon number in the resonator well
below 1°475¢ (w; = 7.7 GHz at 10 — 30 mK). Finally,
at room temperature, the magnon to microwave photon
coupling is of the order of n/hw; = 1.4 — 3.3 x 1073
4647 (; = 7.9 GHz), while the spin-photon coupling in
a molecular crystal is n/hw; = 1.2 x 1072 57 (w; = 1.45
GHz). From the above considerations it becomes ap-
parent that the predicted frequency conversion effect in
the nonadiabatic limit is experimentally feasible using a
large ensemble of spins and is within experimental reach
for the quantum few-photon limit.

VII. DISCUSSION

In this work, we consider the transfer of energy in a
periodically driven spin-1/2 coupled to a quantum cavity
mode out of the adiabatic limit. We establish a novel
pumping phenomenon that persists in the weak-drive
regime and examine its efficiency for a broad range of
the parameter space. We demonstrate that the frequency
conversion efficiency exhibits strong fluctuations due to
the nonadiabatic effects before it saturates to unity for
sufficiently strong drives, 7, ~ 10w;. It is more efficient
for rationally-related frequencies and can reach up to 80%
of the quantized value for n = 0.3w;. Emphasis is put on
the magnitude of the pumping effect in the nontopolog-
ical phase of the model. A finite frequency conversion
efficiency persists in the trivial phase, but is less effective
as we move further away from the topological boundary.

A finite-energy pumping signals the delocalization of
the corresponding Floquet states, which are found to dis-
play a multifractal behavior, due to the hybridization
between localized and delocalized sectors. The presence
of multifractal states, associated with critical spectral
statistics, motivates future studies on the criticality of
the Floquet eigenstate statistics. Finally, we show that
in the adiabatic limit, during the frequency conversion
process, the quantum coherent properties of the initial
state are preserved, but the phase undergoes a diffusion
process. For ultra-low drive, the pumped quantum state
has still a well defined phase but as we further increase
the driving amplitude, additional secondary peaks and
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FIG. 12. Frequency conversion efficiency nr as a function of
the effective drive amplitude 7.s = 7/ Ny, for a cavity with
initially Nyn = 20 photons in the topological class By = 1,
and B,, = 8 = By. Four different commensurate frequency
combinations are presented of the form w1 /w2 = ¢q/p, with in-
creasing \/p? + ¢2. When ¢,p > 1, the nonadiabatic photon
pumping vanishes.

phase fluctuations are generated and quantum coherence
is suppressed.

Experimental systems are subject to dissipation mech-
anisms that need to be incorporated for the construction
of a realistic model (although we don’t expect a quali-
tative change of our results). In the adiabatic driving
limit and within a Markov-Lindblad framework, the in-
clusion of external noise and dissipation stabilizes the
conversion effect as the system approaches a steady state
with a quantized number of emitted photons per driv-
ing period?S. In the nonadiabatic limit, it was recently
demonstrated that the introduction of a non-Hermitian
tailored time-periodic dissipation restores the topological
transport quantization of Thouless pumps in plasmonic
waveguide arrays, emphasizing the uniqueness of Floquet

topological systems®®.
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FIG. 13. Frequency conversion efficiency nr as a function of
the effective drive amplitude 7.s = 17/ Npn, for a cavity with
initially N,, = 20 photons, By = 1, Bq = 8, and w1 /ws =
2/3. Four different Zeeman fields are presented, two in the
topological phase, B,, = 10,12 and two in the trivial phase
B,, = 14,16. The topological phase boundary is at B,, =
12.47.

Appendix A: Appendix

In this Appendix we provide further details on the fre-
quency conversion effect. In Fig. 12 we plot the depen-
dence of the frequency conversion efficiency np on 7.y, for

10

a cavity with initially N,, = 20 photons in the topological
class By = 1, B,, = 8 = By, and four different commen-
surate frequency combinations of the form w /wy = q/p.
We note that as ¢,p > 1, the nonadiabatic pumping ef-
fect vanishes, and the overall behavior resembles the one
for irrationally-related frequencies.

Moreover, we are interested in exploring whether the
pumping effects persists for parameters outside the topo-
logical regime. We therefore plot iy as a function of 7.
for a cavity with initially N,, = 20 photons, By = 1,
By =8 and wy /wy = 2/3 and four different values of the
Zeeman field amplitude. The topological phase boundary
is at B,, = 12.5. Although the pumping effects persists
in the trivial phase of the model, the intensity diminishes
as we go further away from the boundary.

Finally, for completeness we present the phase distri-
bution P(#) calculated in Sec. V for parameters ranging
between the ultra-weak-drive up to the strong-drive limit.
In Fig. 14 we present P(6) for seven values of i, By = 1,
B,, =8, B4 =38, N,, = 20, and w;/wy = 2/3. Phase co-
herence is preserved in the ultra-weak limit n < w;, and
P(0) is described by a central Gaussian peak. As 7 is
increased, additional secondary peaks and phase fluctu-
ations are generated and the pumped states is no longer
characterized by a well defined phase. Phase coherence is
restored in the strong-drive adiabatic limit, where P(0)
is a Gaussian curve at all times.
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