Hard Superellipse Phases: Particle Shape Anisotropy & Curvature

Isaac Torres-Diaz,'* Rachel S. Hendley," Akhilesh Mishra, Alex J. Yeh, and Michael A. Bevan*
Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218

Abstract

We report computer simulations of two-dimensional convex hard superellipse particle
phases vs. particle shape parameters including aspect ratio, corner curvature, and sidewall
curvature. Shapes investigated include disks, ellipses, squares, rectangles, and rhombuses, as well
as, shapes with non-uniform curvature including rounded squares, rounded rectangles, and
rounded rhombuses. Using measures of orientational order, order parameters, and a novel stretched
bond orientational order parameter, we systematically identify particle shape properties that
determine liquid crystal and crystalline phases including their coarse boundaries and symmetry.
We observe phases including isotropic, nematic, tetratic, plastic crystals, square crystals, and
hexagonal crystals (including stretched variants). Our results catalog known benchmark shapes,
but include new shapes that also interpolate between known shapes. Our results indicate design
rules for particle shapes that determine two-dimensional liquid, liquid crystalline, and crystalline
microstructures that can be realized via particle assembly.

Introduction

Assembling anisotropic particles into microstructured materials is important for
understanding and designing particle based materials with complex emergent properties useful for
diverse applications.!* For example, different shaped particles can be assembled to mimic natural
periodic materials with novel multifunctional properties.> In reviews of anisotropic particles,'® a
broad variety of particle shapes are cataloged including natural and synthetic materials (e.g., clays,
viruses, metal, metal oxide, and polymer colloids, etc.) that are too expansive to review here.
Typical shapes often include platelets, rods, ellipsoids, superellipsoids, polyhedra, as well as
increasingly complex shapes that defy a single consistent taxonomy.! Such particles form layers
on solid and fluid interfaces, and often monolayers, which are useful for surface coatings with
complex optical, mechanical, electrical, acoustic, wetting, adhesive, and other properties. In such
cases, understanding the two-dimensional phase behavior of different anisotropic particle shapes
is important to designing and controlling assembled microstructures.

Two-dimensional hard particle phase behavior has received significant attention in theory
and simulations. For the simplest case of hard disks, the phase diagram has been shown to have
liquid, hexatic, and crystal phases, where the hexatic phase has quasi-long range six-fold bond
orientational order and short-range positional order.”!? Introducing anisotropy by stretching hard
disks into hard ellipses also produces liquid and crystalline phases, as well as, liquid crystalline
phases with two-fold orientational order referred to as a nematic phase.'>!'* Low aspect ratio hard
ellipses also have plastic crystal phases, which have positional order but not orientational order.!
Corners on hard squares'® and hard rectangles'”!'® produce tetratic phases intermediate to liquids
and crystals, which have quasi-long range four-fold orientational order and short-range positional
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order. Studies of hard squares continuously rounded to hard disks illustrate how different liquid
crystal and crystal microstructures vary as corner curvature changes.'”?° Many other two-
dimensional hard shapes have been studied (e.g., polygons,?! unique shapes®?) too numerous to
summarize here.

The cited modeling studies, and numerous experimental studies, have carefully
investigated hard two-dimensional shapes to identify phases, phase boundaries, transition order,
equations of state, etc. However, we are not aware of a systematic study of hard particle phase
behavior for both continuously varying aspect ratio and curvature. Anisotropic particle curvature
can lead to different liquid crystal phases such as nematic phases in hard ellipses,'? tetratic phases
in hard rectangles,!”*? and smectic phases in three dimensional spherocylinders.”* Unintended
curvature is often present in experiments due to particle fabrication limitations, which can produce
significant effects in experimentally observed phase behavior.?*® In addition, realistic colloidal
potentials generally include short-range soft repulsion and/or attraction, which can often be
considered as effective hard particles with perturbation theories.”” However, such realistic
interactions can vary at particle corners and edges (e.g., platelets,® quasi-2d rods®') in a manner
that could be treated as effective corner curvature. Many open questions remain about how particle
aspect ratio and curvature together determine phase behavior and order.

In this work, we systematically investigate hard superellipse phases and their coarse
boundaries using Monte Carlo (MC) simulations. The surface of a superellipse is represented by,

/[ |/ =1 (1)

where rx and ry, are the particle semi-axes, aspect ratio is 7,/rx, and n defines particle shape. As
shown in Fig. 1, superellipse shapes include disks (n=2, ry/rn=1), ellipses (n=2, r/r<1), squares
(n—o0, ry/ri=1), and rectangles (n—o0, r,/rx<1), which we use as benchmarks for validation and to
catalog superellipse phase behavior. Curvature of the superellipse surface is given by,
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which can be used to systematically quantify and define sidewall and corner curvature for each
shape (Fig. 1, e.g., to x = 3 and sidewalls have yx < 0.3). Superellipses include previously
unstudied shapes (e.g., rhombuses) and provide a well-defined way to continuously vary aspect
ratio and corner and sidewall curvature to investigate their combined effects on positional and
orientational order in different phases. We are unaware of a comprehensive summary of phases
for hard superellipses. Our study focuses on hard superellipse phases for the shapes in Fig. 1
(including more aspect ratios). We also develop novel stretched bond orientational order
parameters to quantify order in superellipse phases. Our goal is to understand how curvature and
aspect ratio together determine different types of phases, their approximate boundaries, and their
positional and orientational order. Our results are intended to provide a basis to understand and
design two dimensional microstructures of different shaped particles on solid and fluid interfaces
in numerous applications.
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Fig. 1. Superellipse shapes vs. aspect ratio r,/rx and the parameter n (Eq. (1)). The outline of each
shape is colored to depict the local curvature (Eq. (2)), where corner features can be considered to
correspond to yx = 3 and sidewalls have yrx < 0.3. Previously studied benchmark cases include: (1) disks
(=2, nrin=1),"12 (2) ellipses (n=2, r/n<1),"*1% (3) squares (n—w, r/rn=1),"® (4) rectangles (n—o,
rylrv<1),""'8 and (5) rounded squares (n=3-10, r,/r=1).1%20

Methods

Computer Simulations

Computer simulations were implemented using a standard MC algorithm in the NVT
ensemble, similar to prior two-dimensional hard particle studies.!*!”*! We do not use the NPT
ensemble or compute pressure!'3*3* since we do not attempt to obtain equations of state. We
simulated two-dimensional systems of uniform superellipses defined by Eq. (1) with different
aspect ratios and shapes (Fig. 1). Simulations in a square simulation box with periodic boundary
conditions were used to obtain all area fractions by melting from the maximum packed
configuration for each shape (Ao crystal structure).*> Simulations were equilibrated for >10° steps
before quantifying orientational order and order parameters, which are averaged over ~10%
independent configurations.

Simulations were performed for N=700-1000 hard particles. For each shape, the number of
particles was increased from 700 until the pair correlation function spans >25 particle radii to
ensure a sufficient range for correlation functions. System sizes of N=~700-1000 were chosen based
on prior studies of system size dependent hard particle phase behavior for different shapes
contained within the superellipse shape class. MC simulations of hard ellipses with N>400 are
sufficient for obtaining accurate phase diagrams.!*!> MC simulations of rounded hard squares,
ranging from disks to squares, with N=400 capture phases and boundaries on the order of 0.017,
as validated by simulations of much larger system sizes for hard disks (N=1024%),!? hard squares
(N=1024%),>! and hard superdisks (N=6400).2° Likewise, MC simulations of hard rectangles!”!8
for N=10°-10* suggest larger system sizes are required to resolve phase boundaries on the order of
0.01 7. Exceptionally large system sizes of N=1024 particles have been used to resolve all aspects
of hexatic transitions of hard disks'? and tetratic transitions of hard squares.?! Based on this
precedent, N>700 is sufficient for our goals of resolving phases with approximate boundaries
without a detailed analysis of phase transitions. Finally, as will be shown in our results, our MC
simulations with N=700-1000 capture all phases and coarse boundaries for key hard particle
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benchmark shapes, including: hard disks,'? hard ellipses,'* hard squares,?' hard rectangles,!” and
hard rounded squares.?’ We revisit discussions of system size effects in the context of our findings.

Hard Superellipse Overlap

Overlap between superellipses is determined using three levels of approximation. The first
estimate is based on separation between centers of circles circumscribing each particle. No overlap
is guaranteed if the center-to-center distance is greater than the diameter of the circumscribed
circle. If this condition is not satisfied, a second estimate is based on circumscribing rectangles
around each superellipse particle and determining minimum distances between superellipses to x
and y planes of circumscribed rectangles (see Supporting Information (SI) Fig. S1) as,
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where |x| and |y| are vector components between particle centers, 7x, and r, are superellipse semi-
axes, Aj is the component of the relative rotation transformation matrix between the two
particles.*®*” Eq. (3) must be applied for both particles in a pair, and if one value of 4 or Ay, is
positive, it guarantees no overlaps. If the first two conditions are not satisfied, a final estimate
employs a refined mesh to evaluate the superellipse function f{x,y) = |x/r|" + |y/r|* — 1 for every
point on the second particle; f{x,y)>0 guarantees no-overlaps.

Bond Orientational Order

To measure the local symmetry of particles relative to neighbor particles, a novel stretched
local bond orientational order parameter is defined as,

Ny,

Zexp(z’nﬁjk)

k=1

Ny

Zcos(nﬁjk)+isin(n6fk) 4)

k=1

1
l//n,j Nb’j

b,j

where N»,; is the number of neighbors with bonds to particle j, and G is the angle between particle
centers relative to an arbitrary axis. To implement Eq. (4) for anisotropic particles, it is necessary
to identify neighbors and account for particle shape, which we briefly describe in the following.

First, we describe neighbor determination. Although four-fold (n=4) order is commonly
calculated for hard squares based on the four closest neighbors,'” and six-fold (n=6) order is
calculated for hard disks, rounded squares, and regular polyhedra based on all neighbors,”!
tessellation schemes have been suggested as a more robust approach to neighbor determination.
For anisotropic particles with different aspect ratios and curvatures, accurate identification of
neighbors in concentrated conditions requires tessellation based on surfaces (rather than particle
centers).>**® In our work, the tessellated space is calculated along the continuous path connecting
the locus of centers of circles tangent to the surface of different shaped particles (red lines Fig.
S2a,c, tessellated space for many particles Fig. S2b,d).

Next, we consider particle symmetry in the calculation of stretched four-fold w4, and six-
fold s, bond orientational order parameters (Eq. (4), illustrative shapes in Fig. 2). As particles
become anisotropic, the usual bond orientational order does not capture structural transitions.
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Fig. 2. Neighbor identification and stretched bond orientational order. (left) (top) In the case of w4,
illustration for (a) squares (n=w, r,/r=1) and (b) rectangles (n=w, r,/r=0.2), around central particle (green)
and 4 neighbors (grey) by relative center position xix and yj (blue). (bottom) In the case of ws,, illustration
for (c) rounded squares (n=4, ry/rk=1) and (d) ellipses (n=2, r,/r=0.25) around central particle (red). (right)
Various particle configurations colored by local stretched bond orientation order parameters (Eq. (4)) for (e-
g) 4-fold order and (h-j) 6-fold order with shape parameters labelled on figures.

Since the interval of neighboring particle angles changes for ry/rx#1, we adapt the usual bond
orientational order parameter for anisotropic particles by defining 6« in Eq. (4) as,

6,=6,+6, )

where 6; is the angle between the main axis of the particle and the reference axis (Fig. 2), and 6*
is the neighbor angle in a stretched coordinate system given by,

cosOj =x, [r., sinb, =y, [r., T, :\/("jk/rx)2 +(yjk/ry)2 (6)

where the xjx and yjx are the relative components of the neighbor’s position with respect to the
principle axis of the particle of interest. Also, 7. is the center-to-center distance between the two
particles in the stretched coordinate system. Eq. (6) also yields 0 = tan™'[(yik/ry)/(xik/rx)].
Practically, the local bond orientational order for anisotropic particles (Eq. (4)) is determined via
a stretching transformation of nearest neighbor coordinates that effectively corresponds to a unity
aspect ratio about the central particle. The stretched local bond orientational order in Eq. (4) can
also be adapted to compute the stretched global bond orientational order as,

Nibgzk:exp(inﬁjk) Nibgzk:cos(nejk)+isin<n0jk) (7)

V.=

where Np is the total number of bonds in the system.
Correlation Functions & Order Parameters

Phases are determined from the long-range power-law decay of orientational order
correlation functions. For isotropic particles, the correlation function for bond orientational order
of order m is given as,”*!%?!

2, (r)= (., (), (r)) (8)
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and for anisotropic particles, a particle orientational correlation function of order m is given
by, 74142
2

G, (r)={cos[ m(6, (r)-0,)]) 9)

where 6 is the angle between particle pair centers relative to a fixed arbitrary axis. Both Eqgs. (8)
and (9) exhibit a long-range power-law decay as,

g, (r)~r’('", G, (r)~rK”' (10)

where fitting xm is used to develop criteria for the presence of phases with long-range order. For
example, |xm| < 0.25 has been used to identify the liquid-hexatic transition for hard disks’® and
isotropic-nematic transition for anisotropic particles.*'*? Likewise, |&m| < 0.5 has been used to
identify the liquid- tetratic transition for hard squares'®!® and rectangles.!’

Nematic and tetratic order parameters indicate how well particles are oriented along the
director or bidirector of a particle configuration. The nematic order parameter is calculated from
the second-order nematic tensor, *!

S, = <2nlnj — 51/> (11)

as the positive eigenvalues, S2. The nematic order parameter can alternatively and equivalently be
calculated by maximizing the average over each particles orientation relative to the nematic
director as, S>=max{cos[2(8-62)]), where 6 is the nematic director. The tetratic order parameter
is calculated from the unfolded fourth-order tetratic matrix, %7+

1
Tijkl = <4ninjnknl _5(51','51{1 + 5ik5jl + 5i15jk )> (12)

as the eigenvalues (0, -74, 0.5[74- (1652 + T4%)*], 0.5[T4+ (1652 + T4*)°]). The tetratic order
parameter can also be calculated by maximizing the average over each particles orientation relative
to the bidirector as, Ts=max({cos[4(8-6)]), where 6: is the bidirector angle. The smectic order
parameter is,**

o = max <cos(27zrg2 /d)(2cos 0, —1)> (13)
which measures particle positions relative to the nematic director, ¢, by maximizing S2,***> and

layering with period, d, obtained by maximizing o. Positions, rg2, are measured for each particle
along the nematic director.

Phase Determination

We briefly describe phase determination as captured concisely in Figs. S4-5, Tables S1-2.
Threshold values for the long range power law decay of orientational correlation functions, Km
(Eq. (10)) determine the presence of liquid crystal and crystal phase with m-fold order using the
inequalities in Table S1 and flow chart in Fig. S4 (illustrative examples in Fig. S3). However,
construction of orientational correlation functions requires significant statistics from temporal,
spatial, and ensemble sampling,'!"'? which make them less practical for determining phases for
combinations of small, non-uniform, and dynamic systems.*** Based on this consideration, we
also list how order parameters alone (Egs. (4), (11)-(13)) can be used to estimate phases with
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threshold inequalities (Table S2, Fig. S5) that yield boundaries in agreement with the results from
orientational correlation functions. These criteria for phase determination agree with prior
benchmark cases for hard disks,”'? hard ellipses,'>!> hard squares,'® rounded hard squares,'*** and
hard rectangles!”'® with similar system sizes. Based on this agreement, the order parameter based
criteria can be used in future studies (e.g., microscopy experiments) involving small, non-uniform,
and dynamic systems of hard superellipse particles.)

Results & Discussion

We systematically investigate hard superellipse phases for the shapes depicted in Fig. 1,
including a total of 40 shapes and the specified benchmark cases. As will be shown, our results
agree with benchmarks, which provides a foundation to explore how different combinations of
aspect ratio and roundedness of corners together determine phases of more diverse shapes (while
being anchored to well-established limiting cases). We note that we don’t aim to resolve phase
boundaries or coexistence regions to high resolution for any single shape; but rather, our goal is to
comprehensively map phases and microstructure for a single hard shape class to understand
systematic variations in aspect ratio and rounded corners. We leave for future studies resolving
phase boundaries, coexistence, transition order, equations of state, etc. for single particle shapes
where such details are of particular interest.

In the following, for values of the shape parameter, n (Fig. 1), we report: (1) for a single
aspect ratio of ry/rx = 0.2, detailed plots of order parameters and orientational correlation function
decay values vs. area fraction (77), and (2) a phase diagram in the ranges of ry/rx=0.2-1 and 7=
0.4-7max. Particle shape is defined in terms of anisotropy via aspect ratio (7y/rx) and corner and
sidewall curvature (Eq. (2), Fig. 1) via the superellipse parameter (n). For n=2, superellipses
reduce to ellipses including isotropic disks. For 1<n<2, intermediate values between the rhombus
(n=1) and the ellipse (n=2) yields shapes with curved sidewalls joining at corners with curvature
— o as n — 1. For n >2, sidewalls become flatter and corner curvature increases — o as 7 — .
Results are organized for increasing # including: rhombuses (n=1), rounded rhombuses (n=1.4),
ellipses (n=2), rounded rectangles (n=4), and rectangles (n=w).

Rhombuses (n=1)

Superellipses with n=1 correspond to thombuses including squares for r,/r=1. Focusing
first on the highest aspect ratio investigated (r,/=0.2, Fig. 3), the long-range power-law decay of
orientational order (x2, x4, k) shows an isotropic-nematic transition near 7~0.45 and a nematic-
crystal transition near 77=0.78. These transition concentrations show good correspondence to those
determined from nematic and tetratic order parameters (S2, 74). The crystal has long-range 4-fold
orientational order (xz) and stretched 4-fold bond orientational order (i3). Experiments on 2D
assembly of rhombus micro- and nano- particles with rounded corners,” and possibly concave
sidewalls,?® have rhombic crystal structures matching the configuration described by the stretched
four-fold symmetry (7). Such experiments involve different interactions due to spherical
depletants and surface ligands, but show correspondence to our results for similar shapes.

An interesting aspect of the anisotropic rhombus behavior is that stretched 4-fold bond
orientational order emerges continuously in the nematic phase for 7>0.6 and approaches ;3 =0.5
at concentrations just below crystallization (before xs>0.99). The tetratic and nematic order
parameters approach unity in the same concentration range, although S>> T4 at all concentrations.
All of this together indicates the emergence of simultaneous long-range 2-fold and 4-fold
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Fig 3. For rhombuses (superellipses with n=1), (a) and for r,/rx=0.2, as a function of area fraction (7),
(fop) nematic, Sz, tetratic, T4, and smectic, o, order parameters, (middle) symmetry via stretched four-fold
(y3) and six-fold (y¢) parameters, and (bottom) orientational order correlation function decay values (xz,
ka4, k8). Phases indicated as: (1) isotropic, (N) nematic, and (X) crystal, with symmetry indicated as (4F) four-
fold. (b) Phase diagram vs. ry/rx and 7 with phases (from Fig. S6) indicated as: (O) isotropic, (A) nematic,
(@) tetratic, or (@) crystal, with symmetry indicated as () four-fold. Panels show characteristic
configurations at (left) indicated particle concentrations, and (right) red arrows.

orientational order along with significant 4-fold bond orientational order — all at concentrations
just below where crystallization occurs. This may suggest the possibility of a tetratic phase for
more anisotropic rhombuses in larger systems sizes, similar to nearly isotropic rhombuses.

We now investigate how phases depend on rhombus aspect ratio including the hard square
limit (ry/rx=1). The complete concentration dependent order parameters, bond orientational orders,
and orientational correlation decay values for 7,/r=0.25-1 are reported in Fig. S6, and the resulting
phases vs. r/ry and 7 is summarized in Fig. 3. Several clear trends are observed. The crystal has
4-fold order in all cases, and intermediate to liquid and crystal phases, aspect ratios from
ry/r=0.57-1 have a tetratic phase whereas aspect ratios from r,/rx =0.2-0.57 have a nematic phase.
At ry/r=0.57, there does not appear to be a liquid crystal phase. For r/rn=1, our findings are in
agreement with prior literature for hard squares'®2!** within the limits of resolution of our data.
Experiments on squares involve some rounding of corners,>*?%3° which has been shown to produce
plastic crystals rather than tetratic phases.'®! This motivates understanding how rounded sidewalls
(n<2) and corners (n>2) influence anisotropic particle phases in the following sections.

Rounded Rhombuses (n=1.4)

Superellipses with n=1.4 correspond to rounded rhombuses, where the sidewalls are curved
rather than the corners (i.e., nonzero convex sidewall curvature, infinite corner curvature). Starting
with the highest aspect ratio (7,/r=0.2) rounded rhombus, results show isotropic, nematic, and
crystal phases not unlike the regular rhombus of the same aspect ratio. Although significant long
range 4-fold orientational order emerges within the nematic phase, it is always less than long range
2-fold orientational order. In contrast to regular rhombuses, both stretched 4-fold and 6-fold bond
orientational order emerge within the nematic and are of comparable magnitudes, although 6-fold
bond orientational order is greater at concentrations just below the crystal phase. The crystal also
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Fig. 4 For rounded rhombuses (superellipses with n=1.4), (a) and for r/rk=0.2, as a function of area
fraction (7), (fop) nematic, Sz, tetratic, T4 and smectic, o, order parameters, (middle) symmetry via
stretched four-fold (;) and six-fold (y§) parameters, and (bottom) orientational order correlation function
decay values (x2, k1, xs). Phases indicated as: (l) isotropic, (N) nematic, or (X) crystal, with symmetry
indicated as (6F) six-fold. (b) Phase diagram vs. ry/rx and 5 with phases (from Fig. S7) indicated as: (O)
isotropic, (A) nematic, (<) plastic crystal, or (®) crystal, with symmetry indicated as (M) six-fold. Panels
show characteristic configurations at (left) indicated particle concentrations, and (right) red arrows.

has stretched long range 6-fold orientational and bond orientational order.

The results for all rounded rhombus aspect ratios considered in the analysis are in the
supplementary information (Fig. 4, details for other /rx in Fig. S7). When crystals of rounded
rhombuses with relatively small anisotropy (r/rx > 0.7) melt, 6-fold bond orientational order
remains high while all order parameters for particle orientational order vanish (i.e., S2, T4, o),
indicating a plastic crystal phase. In contrast, for increasingly anisotropic rounded rhombuses (7/rx
< 0.5), a nematic phase is observed with both stretched 4-fold and 6-fold bond orientational order
at concentrations just below the crystal boundary. Intermediate aspect ratio rounded rhombuses
have neither plastic nor nematic phases intermediate to liquid and crystal phases.

The rounded rhombus results (Fig. 4) show several trends due to the effects of curved
sidewalls compared to the flat sidewalls of regular rhombuses (Fig. 3). Although the most
anisotropic rhombus and rounded rhombus share the same phases with a shift to higher
concentration and narrower ranges, the rounded rhombuses show 6-fold order in the nematic and
crystal phases in contrast to the 4-fold order in the nematic and crystal phases for regular
rhombuses. With decreasing anisotropy, 6-fold ordered crystals are observed for all rounded
rhombuses while 4-fold crystals are observed for all regular rhombuses. A clear difference due to
the sidewall curvature of the rounded and regular rhombuses for less anisotropic particles is the
presence of a plastic crystals instead of a tetratic phase intermediate to liquid and crystal phases.
Experiments on attractive squares®* and nearly isotropic rhombuses® with rounded corners both
have plastic crystal phases similar to rhombuses with rounded sidewalls, but have crystal with the
same symmetry as regular rhombuses.
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Fig. 5. For ellipses (superellipses with n=2), (a) and for r,/rx=0.2, as a function of area fraction (), (fop)
nematic, Sq, tetratic, T4, and smectic, o, order parameters, (middle) symmetry via stretched four-fold (i3)
and six-fold (y¢§) parameters, and (botto m) orientational order correlation function decay values (xz, 1, xs).
Phases indicated as: (l) isotropic, (N) nematic, or (X) crystal. (b) Phase diagram vs. r//rx and » with phases
(from Fig. S8) indicated as: (O) isotropic, (A) nematic, () plastic crystal, or (®) crystal, with symmetry

indicated as (™) six-fold. Hexatic phase (3) from large system size literature results.'!? Panels show
characteristic configurations at (left) indicated particle concentrations, and (right) red arrows.

Ellipses (n=2)
13-15

Hard ellipses (n=2) have been widely studied as a function of aspect ratio > including the
important limiting case of hard disks.”!? The phase boundaries, transition order, equations of state,
and mechanisms for transitions of hard disks have been determined to high precision using a
number of simulation methods and exceptionally large system sizes.!!'*> Compared to all other
superellipse shapes, the ellipse has finite continuous curvature around its perimeter without sharp
corners or flat sidewalls. As such, hard disk and hard ellipse results provide an important
benchmark for the other shapes investigated in this work.

0,708 0,766 0.830 0,898

Detailed concentration dependent order parameters, long-range orientational order, and
bond orientational order are shown for ellipses with 7,/r»=0.2 as well as phases for ellipses with
ry/r=0.2-1 (Fig. 5, details for other r,/rx in Fig. S8). As expected, for more anisotropic ellipses
(ry/rx <0.4), long-range orientational order indicates transitions from isotropic to nematic to crystal
phases at concentrations in agreement with prior studies.!*!> Likewise, for more isotropic ellipses
(r/rx>0.67), a plastic crystal phase is observed intermediate to isotropic and crystal phases without
observation of a nematic phase. The plastic crystal has long-range 6-fold orientational and bond
orientational order but no significant preferential alignment of particles along a director. For a
narrow range of aspect ratios (0.4 < ry/rx < 0.67), isotropic and crystal phases are not separated by
an intermediate phase, as expected.!*!* Signatures of both nematic ordering and plastic
crystallinity are observed in this range, but are below critical thresholds, and are likely a system
size effect.*! We also note here that we do not resolve the hexatic phase and its boundaries based
on its strong system size dependence, although we mark its expected location (Fig. 5),!"!2 which
indeed is found between the liquid and crystal phases for our hard disk results.

When comparing ellipses to other shapes with corners investigated thus far, several
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contrasting behaviors are observed. The most anisotropic ellipses show the same isotropic,
nematic, and crystal phases as thombuses and rounded rhombus particles with phase boundaries
shifted to a narrower range at higher concentrations as sidewall curvature increases and corner
curvature decreases. In addition, there is no observation of either stretched 4-fold or 6-fold bond
orientational order in the ellipse nematic phases at concentrations just below crystallization. The
least anisotropic ellipses have a plastic crystal phase similar to rounded rhombuses, but neither
display the tetratic phase observed for nearly isotropic rhombuses (and squares); finite curvature
in either sidewalls or corners seems to suppress tetratic order. The plastic crystal concentration
range appears expanded for ellipses compared to rounded rhombuses presumable as the result of
more moderate curvature and absence of sidewalls or corners. The crystal phase has 6-fold order
similar to rounded rhombuses (#=1.4) but different from the 4-fold order for rhombuses (n=1), so
clearly corners influence crystalline packing and the presence of plastic crystal phases.

Rounded Rectangles (n=4)

Superellipses with n=4 correspond to rounded rectangles, where the corners are curved
rather than the sidewalls (i.e., zero sidewall curvature, finite corner curvature). This contrasts
rounded rhombuses where (n=1.4) where the corners are sharp and the sidewalls are curved. Again,
considering the highest aspect ratio (7,/7=0.2) case first for n=4 (Fig. 6), it has isotropic, nematic,
and crystal phases. Similar to rhombuses with the same aspect ratio (n=1, Fig. 3), the n=4 crystal
has 4-fold symmetry at low densities and also displays continuous emergence of stretched 4-fold
bond orientational order in the nematic phase prior to the onset of crystallization. The highest
density crystal has 6-fold order since we start all simulations from the Ao configuration, which has
been shown as the highest density crystal for n=4 superellipses with 7,/r»=1 (i.e., superdisks).*®
The concentration range for each phase is much narrower and occurs at higher concentrations for

‘}ﬂ hey
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Fig. 6. For rounded rectangles (superellipses with n=4), (a) and for r/n=0.2, as a function of area
fraction (7), (fop) nematic, Sz, tetratic, T4, and smectic, o, order parameters, (middle) symmetry via
stretched four-fold (i;) and six-fold (y§) parameters, and (boffom) orientational order correlation function
decay values (x2, x4, xs). Phases indicated as: (I) isotropic, (N) nematic, or (X) crystal, with symmetry
indicated as (4F) four-fold. (b) Phase diagram vs. ry/rx and 5 with phases (from Fig. S9) indicated as: (O)
isotropic, (A) nematic, (¢ ) plastic crystal, or (@) crystal, with symmetry indicated as (i) four-fold or ()
six-fold. Panels show configurations at (left) indicated particle concentrations, and (right) red arrows.
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n=4 vs. n=1, so rounded rectangles have clear quantitative differences compared to rhombuses.

Another important shape within rounded rectangles (n=4) is rounded squares. The limit of
rounded squares have been the subject of significant prior investigation'®!° and provides another
important benchmark. For both superdisks®® and similar models for rounded corners with constant
curvature,' the phase types and boundaries agree within the precision of our results (e.g.,
compared to n=4 in Ref.?’ and {=0.67 case in Ref.!®). Practically, the rounded hard squares in this
work show a plastic crystal phase intermediate to an isotropic phase and a crystal phase. The crystal
phase has long range 4-fold orientational order and relatively high 6-fold and 4-fold bond
orientational order. The crystal phase is consistent with the rhombic crystal phase carefully
characterized in Ref.!” (as a result, we do not make further effort to characterize the crystal phase
in this work, but refer readers to this prior study). Once again, the highest density state is the Ao
configuration for n=4 superdisks.*> Quasi two-dimensional experiments with rounded square
platelets®* and rounded cubes,?®?” each with different corner curvatures, but approximately in the
vicinity of n=4, also show primarily rhombic lattices, which correlates with our findings. However,
each of these experiments also involve varying degrees of depletion attraction and soft electrostatic
repulsion, which in some case is also observed to result in square lattices.

Between the highest and lowest aspect ratio rounded rectangles, the n=4 superellipse has
interesting behavior at intermediate aspect ratios (Fig. 6, details for other r,/rx in Fig. S9). As with
rounded rhombuses and ellipses, the rounded rectangles have plastic phases for less anisotropic
particles (ry/rx = 0.8) and nematic phases for more anisotropic particles (7,/rx < 0.8). Both nematic
and plastic phases are observed in the vicinity of 7/rx & 0.8, which contrasts all other shapes in
this work with more rounded corners and sidewalls (but not rectangles with sharper corners in Fig.
7). Also, in contrast to other shapes in this study, the nematic and plastic phase concentration
ranges are the narrowest for rounded rectangles, although the reason for this is not obvious.
Another observation is that flatter sidewalls on rounded rectangles produce nematic phases in less
anisotropic aspect ratios than ellipses and rounded rhombuses.

All aspect ratios investigated display similar behavior in the crystal phase in terms of
having both high 6-fold and 4-fold bond orientational order. For low density crystals, there is a
trend of more 6-fold bond orientational order for crystals of more isotropic aspect ratio particles
that transitions into more 4-fold bond orientational order for crystals of more anisotropic aspect
ratio particles. These results suggest the flat sidewalls of anisotropic rounded rectangle (n=4)
particles promotes stretched four-fold symmetry, perhaps similar to anisotropic regular rhombus
(n=1) particles. And once again, all of the highest density crystals have 6-fold order since we start
all simulations from the Ao configuration.*®

Rectangle (n — )

For superellipses with n tending towards infinity, the shape is a rectangle or square where
sidewalls have zero curvature and corners have infinite curvature (Fig. 7, details for other r/rx in
Fig. S10). This shape class has received significant attention for the limiting case of squares!'®!%?!
and different aspect ratio rectangles treated at varying levels of approximation.!”!® Again,
considering the highest aspect ratio (7,/7x:=0.2) case first for n — oo (Fig. 7), it displays isotropic,
nematic, and crystal phases. The crystal phase had four-fold order similar to rhombuses and
rounded rectangles. The onset of nematic order occurs at lower concentrations than rounded
rectangles of the same aspect ratio, although the concentration is higher than the rest of the shapes
investigated in this work. Also similar to all other shapes in this work, except the ellipse, 4-fold
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Fig. 7. For rectangles (superellipses with n=wx), (a) and for ry/rx=0.2, as a function of area fraction (7),
(fop) nematic, Sq, tetratic, T4, and smectic, o, order parameters, (middle) symmetry via stretched four-fold
(¥3) and six-fold (y¢) parameters, and (bottom) orientational order correlation function decay values (xz,
k4, xs). Phases indicated as: (l) isotropic, (N) nematic, or (X) crystal, with symmetry indicated as (4F) four-
fold. (b) Phase diagram vs. ry/rx and 1 with phases (from Fig. $12) indicated as: (O) isotropic, (A) nematic,
(@) tetratic, or (@) crystal, with symmetry indicated as () four-fold. Panels show characteristic
configurations at (left) indicated particle concentrations, and (right) red arrows.

bond orientational order emerges continuously in the nematic phase up to the onset of
crystallization of a crystal phase of the same symmetry.

The highest aspect ratio case does not show a tetratic phase (7,/r=0.2, Fig. 7), but all other
lower aspect ratio hard rectangles and squares do show a tetratic phase (Fig. S10). The occurrence
of the tetratic phase in hard squares is known,'®?! and our results (Fig. S10a) agree with the
expected lower concentration (77=0.7) for the onset of the tetratic phase, although the range is
known to depend strongly on system size.!”! For intermediate aspect ratios (7y/7=0.25-0.8), we
observe isotropic, tetratic, nematic, and crystal phases in this order. The nematic phases in these
cases also have a high tetratic order parameter and four fold order. This trend smoothly varies
between the limits of no nematic phase for squares, and no tetratic phase for r,/r=0.2 rectangles.
Rectangles formed by square dimers (i.e., 7,/r=0.5) have also shown a tetratic phase at the same
concentration as this work (7720.7, within the limits of uncertainty due to system size effects).!’
An approximate theory has also shown qualitatively similar results to ours in Fig. 7 for isotropic-
tetratic-nematic transitions for aspect ratios in the range r,/7=0.25-0.8 and only a nematic phase
for higher aspect ratios (7,/7:<0.25).'3% The trend of isotropic-tetratic-nematic transitions appears
unique to rectangles with sharp corners as it is not observed in rounded rectangles. We are not
aware of experiments on rectangular particles with sharp corners, including quasi-2D cylindrical
particles with rectangular cross-sections.

Overview of Hard Superellipse Phases

The results for discrete values of the superellipse parameter, n in Eq. (1), show how
systematically varying sidewall and corner curvature determine phase boundaries vs. concentration
and aspect ratio (Figs. 3-7). The complete hard superellipse phase diagram can be summarized as
a function of particle aspect ratio (r/rx), shape parameter (n), and particle concentration (7) (Fig.
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Fig. 8. Phase diagram for hard superellipses as a function of the aspect ratio (ry/rx), particle shape
parameter (n), and area fraction (7). Phases indicated as: (O) isotropic, (A) nematic, (B) tetratic, (<)
plastic crystal, or (@) crystal, with symmetry indicated as (") four-fold or (i) six-fold. Hexatic phase (C‘)
from large system size literature results.' 112

8). Given the results in Figs. 3-7 show concentration dependent phases vs. aspect ratio for fixed
shapes (n), we also show in Fig. 8 alternative cross-sections of concentration dependent phases vs.
shape (n) for fixed aspect ratio. In the following, we discuss general features and trends in the
shape dependent phases (without exhaustively cataloging details).

We first consider global trends in the data. Although particle shape (n) is not a linear axis
in the cross-sectional views (category plots on Fig. 8 right), there is a degree of symmetry in
several trends observed relative to the hard disk/ellipse case. Either decreasing sidewall curvature
(n<2) or increasing corner curvature (n>2) produces crystals with 4-fold order, whereas shapes
with n — 2 yield crystals with 6-fold order. This leads to another effect already noted where
stretched 4-fold bond orientational order continuously emerges within nematic phases prior to
crystallization of 4-fold ordered crystals. In contrast, stretched 6-fold bond orientational order does
not emerge in nematic phases for n=2 shapes, but rather abruptly increases with the onset of
crystallization of 6-fold ordered crystals (as noted before, we do not attempt to resolve the hexatic
phase and its boundaries based its known strong system size dependence!!"!?). Anisotropic particle
sidewall and corner curvature appear to have a significant role in the structure of increasingly
concentrated nematic phases leading to crystals with different symmetry. These findings are also
consistent in the limit of isotropic particles, where squares have tetratic phases prior to forming
square crystals and disks have hexatic phases before forming hexagonal crystals®® (and all regular
polygons with >5 sides go through a hexatic phase?!).

Beyond the symmetry encountered within phases for different shapes, we also observe
several trends for how shape influences types of phases and their concentration ranges. For
example, nematic ordering is facilitated compared to a disordered liquid by sharp corners, flat
sidewalls, and aspect ratio r,/rx < 0.5, which is seen in the largest concentration ranges for the most
anisotropic rhombuses and rectangles. Rectangles over a limited aspect ratio range (0.25 < ry/rx <
0.8) also show a sort of biaxial nematic phase intermediate to tetratic and crystal phases, which is
not observed for other shapes. In contrast to nematic phases, plastic crystal phases are facilitated
for particle shapes with a combination of more rounded corners and sides (1.4 < n <4) and lower
aspect ratios (7,/rx > 0.67). Tetratic phases are facilitated by sharp corners (n = 1, ©) in combination
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with low aspect ratios (r,/rx > 0.57), although concentration ranges for tetratic phases are expected
to strongly depend on system size (shown for squares!®?!).

Finally, we note phases we do not observe in our study. We do not resolve a hexatic phase
based on the small system sizes and limited resolution of phase boundaries in our work; this is
unsurprising given the exceptionally large system sizes required to quantify the hexatic phase
boundaries and transitions to liquid and solid phases.'!"'> We also do not observe a smectic phase
for any shape, although they are known to form in non-equilibrium steady state quasi-2D vibrated
granular systems (rice grains!) and cylindrical colloids (with rectangular cross sections) with
induced dipolar potentials in AC electric fields.’* This is consistent with other two-dimensional
simulations of rods and rectangles that do not find smectic phases*’ (in contrast to three-
dimensional systems of similar particle shapes??). Finally, we observed solid phases with either
stretched 4-fold or 6-fold order, but did not observe (or investigate in detail the possibility of)
previously reported solid phase variants for isotropic rounded squares!®?%* and cubes with
depletion attraction and soft electrostatic repulsion.?+2627

Conclusions

Our simulation results show how systematically varying particle sidewall and corner
curvature together with particle aspect ratio produce different liquid crystal and crystal phases to
provide design rules for two-dimensional particle assembly. Specifically, we investigated hard
superellipse phases as a function of particle aspect ratio (r,/rx), sidewall and corner curvature via
the superellipse parameter (7), and area fraction (7). Specific shapes investigated include disks,
ellipses, squares, and rectangles, as well as, rounded squares, rounded rectangles, rounded
rhombuses, and rhombuses. Using established methods to determine orientational order and
several order parameters, as well as a novel stretched bond orientational order parameter, we show
how phases, symmetry, and boundaries change systematically as a function of particle shape. We
observe phases including isotropic, nematic, tetratic, plastic crystals, square crystals, and
hexagonal crystals (including stretched variants).

Our results yield a number of new findings for how systematically varying particle shape
influences the types of phases and their symmetry, the area fractions over which they are observed,
and the emergence of bond orientational order within liquid crystal phases prior to crystallization.
Our results also agree with benchmark shapes including hard disks, ellipses, squares, rounded
squares, and rectangles. Many details of how shape parameters influence phases are cataloged
within our results and discussion, but we summarize several global findings here in conclusion.
Either flattening sidewalls or introducing increasingly sharp corners relative to the continuous
curvature of the disk/ellipse case produces 4-fold order in crystal phases and within concentrated
nematic phases. Nematic phases are present, and occur over greater concentration ranges, for
particle shapes with flatter sidewalls, sharper corners, and increasing anisotropy above a threshold.
In contrast, plastic phases are most likely for nearly isotropic particles with continuously varying
curvature. Tetratic phases occur for a narrow range of conditions with flat sidewalls, sharp corners,
and relatively low aspect ratios below a threshold. By demonstrating how particle sidewall and
corner curvature together with anisotropy determine the existence and concentration range of
phases, our findings provide broad understanding of how particle shape controls the presence of
phases in two-dimensional particulate systems and enables the design of particle based
microstructured materials.
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