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Shift-current response as a probe of quantum geometry and electron-electron interactions
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Moiré materials, and in particular twisted bilayer graphene (TBG), exhibit a range of fascinating phenomena
that emerge from the interplay of band topology and interactions. We show that the nonlinear second-order
photoresponse is an appealing probe of this rich interplay. A dominant part of the photoresponse is the shift
current, which is determined by the geometry of the electronic wave functions and carrier properties and thus
becomes strongly modified by electron-electron interactions. We analyze its dependence on the twist angle
and doping and investigate the role of interactions. In the absence of interactions, the response of the system
is dictated by two energy scales: (i) the mean energy of direct transitions between the hole and electron flat
bands and (ii) the gap between flat and dispersive bands. Including electron-electron interactions both enhances
the response at the noninteracting characteristic frequencies and produces new resonances. We attribute these
changes to the filling-dependent band renormalization in TBG. Our results highlight the connection between
nontrivial geometric properties of TBG and its optical response, as well as demonstrate how optical probes can

access the role of interactions in moiré materials.

DOLI: 10.1103/PhysRevResearch.4.013164

I. INTRODUCTION

Twisted bilayer graphene (TBG) is an exciting arena where
quantum geometry and enhanced electronic interactions play
both against and with each other. While the interactions are
boosted by the flatness of the electronic bands near charge
neutrality, geometric effects are amplified by the large size
of the moiré unit cell as the lattice constant sets the scale for
the Berry connection. This conjunction of interactions and ge-
ometry is responsible for a growing list of fascinating effects
[1-9] ranging from surprisingly strong superconductivity
[5-7] to symmetry-breaking electronic transitions (“cascade”)
[8,9] and anomalous Hall phases [3]. In this paper we focus on
the second-order photoresponse of TBG, in particular, on the
shift current. We contend that it is a unique probe that can
wield the enhanced geometric effects of the electronic wave
function to systematically probe the role of interactions in
TBG at a range of fillings and twist angles.
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By quantum geometry (QG) we refer to the structure of
the electronic Bloch wave functions. Many interesting signa-
tures of QG are revealed in transport properties and optical
responses of these systems [10-20], and especially in the
zero-magnetic field quantized anomalous linear Hall effect
in setups with time-reversal symmetry (TRS) [3,4,21]. The
effects of QG go well beyond linear response effects, and
can in fact manifest themselves in nonlinear optical responses
(NLORs) as shown recently [22—-37]. Furthermore, the NLOR
does not require broken TRS, but rather a nonzero Berry cur-
vature profile. These nonlinear effects can manifest in various
ways, such as nonlinear response to dc fields (induced by
Berry curvature dipole [22,26,27,33—-37]), second-harmonic
generation (SHG), bulk-photovoltaic effects such as shift cur-
rent (SC) [28,29,31,38], and circular photogalvanic effects
(CPGES) [24,39,40]. Recently, there has been a lot of empha-
sis on the nonlinear response to ac fields [23,24,40], which not
only serves as a probe of nontrivial topology but also heralds
the promise of more efficient and robust photovoltaic devices
[32].

The shift-current response [41-44] is a particularly inter-
esting part of the NLOR. In topological systems it could
generate a giant dc response from weak linearly polarized
electromagnetic fields, which makes it relevant for photo-
voltaic applications [28-32]. Furthermore, the shift-current
response is tied to the quantum geometric properties of the
system [11,12,15,45] and microscopically arises due to a
change in properties of the Bloch wave function upon ex-
citation between bands. Specifically, the magnitude of such
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FIG. 1. Interaction-induced modifications to band structure and shift-current response of twisted bilayer graphene. (a) Band structure of
the noninteracting (Non-int) model presented in Eq. (2), (b) band structure that includes Hartree corrections at different fillings v, (c) and
(d) contributions to the second-order conductivity ¢ (0, ®, —w) from flat-to-flat band transitions for the noninteracting case and for the
interacting case with Hartree corrections, and (e) and (f) contributions to the second-order conductivity o;.(0, w, —w) from flat-to-dispersive
band transitions for the noninteracting case and for the interacting case with Hartree corrections. These Hartree corrections flatten both the
flat and dispersive bands significantly as the filling is increased. This results in an enhanced second-order response and also gives rise to a
second peak in the flat-to-dispersive contribution. As a consequence of a velocity gauge, as explained in the text, there is an apparent o1 /w?

divergence as w — 0.

QG effects is sensitive to the change in average position of
Bloch wave functions within the unit cell [15]. Previous works
that studied the shift-current response in bilayer graphene
and transition-metal dichalcogenides (TMDs) [32,46—49] pre-
dicted a strong effect due to their nonzero Berry curvature
profile.

Quantum-geometry-induced processes become more dom-
inant in flat bands [16,50], where the large effective lattice
constant sets the scale for the Berry connection in the flat
bands. Recent pioneering studies considered twisted bilayer
graphene at the magic angle (MATBG) [51,52] and confirmed
the expectation of an unprecedented magnitude of the re-
sponse.

Our work expands on these initial investigations and pro-
vides a systematic study of the relationship of the shift-current
response to twist angle, filling factor, and encapsulation
environment. We identify the role of the band structure,
relevant quantum geometry tensor elements, and the sys-
tem’s symmetries in determining the shift-current response.
Particularly, we compute the shift-current response while
including electron-electron interactions and show that they
significantly enhance the response as compared with a non-
interacting model. Many recent works [53-62] have shown
that interactions can also drastically alter the noninteract-
ing band structure and associated wave-function profiles. As
we will show in this paper, these modifications significantly
affect the shift-current response studied in previous works
[51,52] that only considered a response of a noninteracting
TBG.

Inspired by recent experimental results [61,63], we con-
sider a specific class of electron-electron renormalizations of
the electron band structure that stem from inhomogeneous
charge distribution in the moiré unit cell (see Figs. 1(a) and
1(b) and Refs. [53,54,57]). We demonstrate that these interac-
tions can change both the magnitude and frequency response
of the second-order conductivity. We argue that these changes
arise from the interaction-induced band flattening and mod-
ifications of Bloch wave functions, specifically the quantum
geometric connection, that are closely related to the shift-
current photoresponse [12,15].

For simplicity, we perform our self-consistent calculations
using temperature 7 = 0 K, but we expect the observed
features to remain prominent up to liquid nitrogen temper-
atures, 7 ~ 77 K. This is because the characteristic energy
scale for flat-to-dispersive band transitions that produces new
resonances as well as the charge-inhomogeneity-driven band
flattening is above that energy scale. Also, since we are con-
cerned with this high-temperature regime, we do not consider
correlated effects that typically emerge at temperatures 7 <
15 K [1,5,8,64].

In addition to the shift current, quantum geometry can
also lead to other nonlinear optical responses such as in-
jection current [24,39,40], which arises from the change in
group velocity of carriers upon excitation between two bands.
However, for time-reversal-symmetric systems, such effects
vanish for linearly polarized light [12], and thus we ignore
these effects in this paper. Additionally, at frequencies much
smaller than the gap, there can be a semiclassical contribution
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to second-order conductivity arising from the Berry curvature
dipole [26,27,29,65]. In two-dimensional (2D) systems, this
contribution survives only if the largest symmetry is a single
mirror plane [27], which is not the case for TBG.

The paper is organized as follows. In Sec. II we present
a brief summary of our main results. In Sec. III we present
the model used in our simulations, the mean-field treat-
ment of Coulomb interactions, and the methods employed
to evaluate the shift-current response. We also compare dif-
ferent approaches used in the literature and comment on
their numerical amenability. In Sec. IV we proceed to study
the shift-current response in a noninteracting twisted bilayer
model and investigate the role of twist angle, sublattice offset,
and symmetry properties. Additionally, we analyze the con-
tribution arising from different types of band transitions, e.g.,
flat-to-flat (FF) and flat-to-dispersive (FD) bands. In Sec. V
we discuss how these results are modified by interactions.
Finally, we conclude by providing a summary of our analysis
and specific experimental predictions.

II. SUMMARY OF RESULTS

We study the role of twist angle, doping, encapsulation
environment, and electron-electron interactions in the shift-
current response in twisted bilayer graphene. We find that in
the absence of interactions, or equivalently at twist angles
where the noninteracting band structure accurately captures
electronic properties, the photoresponse has a universal form.
This form is controlled by a moiré length scale and character-
istic energies associated with flat-to-flat and flat-to-dispersive
band transitions. The overall contribution of these two—flat-
to-flat and flat-to-dispersive—processes to the shift current
also depends on the sublattice offset, which can be tuned
by varying the encapsulation environment. A finite sublattice
offset leads to a gap opening between flat bands which can be
controlled by the relative alignment between the graphene and
hexagonal boron nitride (hBN) layer. Specifically, we find that
the sublattice offset does not drastically affect the gap between
the flat and dispersive bands, unlike the gap between the flat
bands. Therefore the sublattice offset allows one to control the
relative importance of both types of transitions in shaping the
photoresponse.

Most importantly, we find that electron-electron inter-
actions significantly change the shift-current response as
compared with a noninteracting system [see Figs. 1(c)-1(f)].
The role of interactions in the photoresponse becomes more
pronounced as the twist angle is brought closer to the magic
angle, leading, within the extent of approximations used for
the modeling of interactions, to a sharp increase in mag-
nitude and narrowing of corresponding frequency window
where resonances in shift current were expected on the ba-
sis of the noninteracting model. The key contribution of
electron-electron interactions to the shift current is in altering
the photoresponse corresponding to transitions between flat
and dispersive bands. We attribute these features to electron-
electron-interaction-driven changes to the band dispersion,
the nature of Bloch wave functions, and thus the resulting
quantum geometry.

Our results demonstrate that frequency range and magni-
tude can be tuned significantly by varying the twist angle and

the substrate properties. Specifically, we observe a second-
order conductivity of the order of 1000 wAnm V=2 in the
frequency range of 10-100 meV. This is in agreement with
previous results of Refs. [51] and [46] for TBG and gapped bi-
layer graphene, respectively. We note, however, that Ref. [51]
studies the frequency response in the range 1-10 meV and
Ref. [46] considers a frequency of 100 meV. Finally, our
work shows how the photoresponse can serve as a probe
of electron-electron interactions in TBG, pointing towards a
possible experimental direction for the TBG field.

III. MODEL AND METHODS

A. TBG single-particle Hamiltonian

The single-particle energy spectrum of twisted bilayer
graphene near the magic angle can be described with the help
of a continuum model [66-69]. Here, we follow the notation
and model considered in Ref. [66], which gives a Hamilto-
nian:

o= Y [drvEnm. )
=({.0) 7%
T
fico — (Ha() U;(I‘)) )
Qun Hi>r)) @

where Q2 represents the moiré unit cell, H, ; represents the
intralayer Hamiltonian of layer [ = 1, 2, and U, (r) encodes
the moiré interlayer hopping. The Hamiltonian is written in
the basis of (A, B1, Az, By) sites of the two layers, and we
use the shorthand notation y = {¢(= £1), o (= £1)} for the
valley and spin degrees of freedom, respectively. In the rest of
this paper, we refer to this Hamiltonian as the “noninteracting
model.”

The intralayer part of the Hamiltonian H, ; is given by the
two-dimensional Dirac equation expanded about the Ké point
of the original graphene layer,

Hy = —h[RE6/2)(k — K)] - (Cor.0) + Aoz, ()

where k is a momentum in the Brillouin zone (BZ) of the orig-
inal graphene layers, R(+6/2) is the 2 x 2 two-dimensional
matrix accounting for the rotation of layer / = 1(2) by an
angle £6/2 about the z axis with respect to the initial AA
stacked bilayer. We set /iv/a = 2.1354 eV as the kinetic en-
ergy scale for the Hamiltonians, Hg; with a = 0.246 nm being
the original graphene’s lattice constant. We also introduce a
layer-dependent sublattice offset term, A;o;, that leads to a
gap opening at the Dirac points and breaking of inversion
symmetry.

The moiré interlayer potential U, (r) in Eq. (2) can be
approximated as

/ ' —i2C )3
u u u ue icGM.
U;(I‘) = (M/ M) + <u/ei2ﬂ{/3 u )el{ v

u u/ei2n{/3 i (GM G,

+ (u/eﬂnm " 4 CTHGIT, (€]
where we take ' = 90 meV and u = 0.4’ for twist angles
near the magic angle. We justify our choice of parameters in
the next section. To diagonalize the Hamiltonian equation (2)
in k space, we can account for this interlayer potential by
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introducing a coupling between Bloch wave Ansdtze at mo-
mentum k and k 4+ G. Here, G = n;GY + n,GY is a linear
combination of moiré reciprocal vectors G}/ and G5, where
n; and ny are integers, and G = |G}!| = |G)!| sets the char-
acteristic momentum scale of the problem. These reciprocal
lattice vectors are given by Gf-"’ = R(—6/2)G; — R(8/2)G;,
with G| = (27 /a)(1, —1/+/3) and G, = (27 /a)(0,2/+/3)
being the reciprocal lattice vectors of a graphene monolayer.

B. Mean-field interacting Hamiltonian

We consider electron-electron interactions given by the
Coulomb term

H, = % / d*rd?r'Sp(r)Vs(r — r')8p(r), 3)
Q
Sp(r) = Z ¥ ()Y, (1) — pen(r), (6)
y={¢,0}

where §p(r) is the density relative to that at charge neutral-
ity, pcn(r), and V.(r — r’) is the Coulomb potential with a
Fourier transform, V.(q) = 2me?/eq. The dielectric constant
¢ depends on the substrate and is treated as a free parameter
(reasons to be made clear below). We approximate the above
interaction term using a self-consistent Hartree approximation
H. ~ Hpy, where

o= Y [ drvaow)ww,m @)
=({.0) 7%
with the Hartree potential
Vi (r) = / Ve =) Y (W@, (). (8)
Q
Y

In the above expression, (---)y denotes a summation over
occupied states measured from the charge neutrality point
(CNP; v = 0) [53]. When doping is increased with respect
to the charge neutrality point, there is a preferential buildup
of charge at AA sites in real space [53], corresponding to
electronic states near the «, ¥’ points of the mini Brillouin
zone. The nonuniform spatial charge distribution generates an
electrostatic potential that prefers an even redistribution of the
electron density. In contrast, the real-space charge distribution
corresponding to electronic states near the y point is more
uniform in the unit cell. The effect of the electrostatic Hartree
potential and the associated charge redistribution thus leads to
an increase in the energy of the electronic states near the «,
«" and p points compared with the energy of states near the y
point [53,54,57,70,71].

The effect of the Hartree potential becomes increasingly
pronounced as a function of decreasing twist angle, especially
near the magic angle, where the noninteracting bandwidth
is minimal. There is an increasing tendency towards band
inversion near the y point [54,55], a feature that has not been
observed in experiments to date [61]. However, it is important
to note that other mechanisms, for example, strain or a Fock
term, can act against this tendency towards band inversion by
increasing the overall bandwidth (both strain and Fock) or
by contributing an opposing correction to the self-energy as
compared with the Hartree term (Eq. (8); Fock only). In our
analysis we focus only on the Hartree correction for a wide

range of 6 and caution that results in the vicinity of the magic
angle, 0.96° < 6 < 1.04° in our parametrization, would likely
be modified by other interaction effects. More specifically, in
this range, we anticipate that the Hartree term would produce
extreme band inversions not seen experimentally, which are
most likely counteracted by another mechanism.

The band structure is obtained by employing a fitting pro-
cedure introduced in Ref. [61] and summarized in Appendix
A of the Supplemental Material [72]. This approximate fit-
ting protocol relies on matching microscopic parameters of
the Hamiltonian such that the theoretical energy spectrum of
the system reproduces experimental scanning tunneling mi-
croscopy (STM) results sufficiently far away from the magic
angle where no correlated effects are present. As explained
in the Supplemental Material [72] and Ref. [61], for general
agreement with the experimental results, it is necessary to
use a dielectric constant & larger than that set by the sub-
strate. Similar procedures were employed in earlier studies
[53,55,73], and their origins theoretically can be justified
by arguing that dispersive bands renormalize the dielectric
constant for the Coulomb interaction projected to the flat
bands. The final renormalized band structures at fixed angle
of & = 0.8° are shown as a function of filling v per moiré
unit cell in Fig. 1(b). The most notable manifestation of the
Hartree-induced effects is the band flattening around the y
and pu points beyond a certain filling.

We note that the contribution of band-flattening effects to
TBG properties was studied in recent works [74-76]. Qual-
itatively, the role of band flattening was either to enhance
the density of states at the Fermi level or to decrease overall
bandwidth, and as a result, the corresponding twist angle
range, over which correlated effects were expected, increased.
We stress, however, that no other papers that studied NLORs
in TBG [51,52] have considered the role that interactions can
play in the photoresponse.

Before proceeding with the discussion of the shift cur-
rents in TBG, we pause to clarify key assumptions of our
modeling. Firstly, we intentionally do not include the effects
associated with the “cascade” transitions at integer fillings
near the magic angle [8,9] and the correlated effects such
as superconductivity [5] or insulating states [1]. Physically,
this approximation is motivated by the fact that optical NLOR
experiments are typically performed at temperatures [23] ex-
ceeding the characteristic temperatures (7 < 15 K) associated
with these phenomena [1,5,8,64]. In principle, however, these
effects could provide interesting constraints on and signatures
in the photoresponse. We expect Hartree corrections to per-
sist to higher temperatures as they are a reflection of charge
inhomogeneity of the system. Secondly, we also neglect the
possibility of varying interlayer hopping parameters (u, u') in
Eq. (4). We argue that this approximation is justified since our
choice of ' = 90 meV is comparable to typical literature val-
ues and the ratio of n = u/u = 0.4 is not too far from values
quoted in the literature that are typically in the range n = 0.3—
0.7. Most crucially, however, even if n were to be varied with
the twist angle, the location of the van Hove singularity would
remain fixed near filling of £1.9 (or not drastically different
energies; see also Ref. [77]) until very high 5 values of 0.8.
Such values are typically not used in modeling. As such we
expect that although quantitative changes (such as precise
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frequency locations of peaks) can vary, overall behavior of
the system, in particular, its charge density profile, will remain
qualitatively similar.

C. Shift current

The shift current is a second-order dc response to an elec-
tromagnetic field arising from interband optical excitations
[41]. In time-reversal-symmetric systems, the shift current
depends on the linearly polarized component of light, and its
origins can be traced back to the real-space shift experienced
by the Bloch wave packet upon excitation from one band to
another. If the light is circularly polarized, then band transi-
tions can also lead to an additional second-order dc response,
known as injection current, which arises due to the change
in carrier velocities upon excitation [43]. However, for a lin-
early polarized light, this kind of injection current response
vanishes in a two-dimensional system if the time-reversal
symmetry is preserved in the system. The shift current is
sensitive to the intraband and interband Berry connection of
the bands involved in the transition process [43] and hence
offers a possibility to detect and harness the nontrivial band
topology of Bloch bands in photovoltaic processes.

The shift-current response is determined by a rank-three

tensor, oy, which satisfies

Jr=208,(0, w, —0)E% (w)E% (—w), 9)

o

where J* is the pth component of the current density, £(t) =
E(w)e' + E(—w)e ™ is the electric field, and Greek indices
denote spatial components, o = {x,y}. The second-order
conductivity tensor element, o/ (0, w, —w), is given by
(see Appendix B of the Supplemental Material [72] and
Ref. [78])

7-[63 o 2 o
(0, w, —w) = - mz / d*K frun| AL, | 7SE48 (0 — En),

(10)
where ¢, = €, — &, is the energy difference between the two
states that participate in the optical transition and f,,, = f, —
fu 1s the difference in occupancy of their energy levels. The
above expression features two geometric terms: a shift vec-
tor Sk = Ar — Al — 0, (ArgA% ) and the interband Berry
connection A,,, = —i{u,|Vk|u,) for Bloch wave functions
|uy) and |u,,). This interband Berry connection enters into
the shift-vector expression as the electromagnetic (EM) field
couples through the dipole matrix and carries no other direct
physical interpretation, while the shift vector represents the
shift experienced by the Bloch wave packet upon excitation
from the mth to the nth band [42,44,78]. We denote the in-
tegrand of the above expression as R%* = |A% |2S/%, and
provided that the Hamiltonian has a linear dependence on
momentum, it can also be expressed as

1 [he Al
Ry" = Tlm[—a —
Eup Eab

1 e h* he h* hh he
+TIm|:Z < ba"*ad”*db __ "“ba"’db ud>j|’ an

& & &
ab da,b ad db

where hS, = (a|Vi H|b) and AY, = hi, — hj,. The above ex-
pression for the shift current is equivalent to the sum rule

commonly used to calculate the shift vector [78]. We stress
that if the time-reversal symmetry is broken intrinsically or
by application of circularly polarized light, there can be an
additional contribution to the current density which is lin-
ear in scattering time and is known as the injection current
[24,39,40,43].

In the literature there are several methods to calculate
second-order NLOR conductivity [32,43,79,80]. In fact, in
some previous works, Eq. (10) is often presented in a slightly
different form without any explicit reference to the shift vec-
tor. For example, one of the most common expressions [52,80]
is of the form

3

&
[
Tap = R w?
hehe
x Re( Z /de .OJrnl Im an e >’
Q=tw.mn.l (Emn —1 )(Enl + —1 )
(12)

which we show in Appendix B of the Supplemental Material
[72] is equivalent to Eq. (10) except for the injection current
term which arises for m = n in the above summation. This
injection current term vanishes if o« = 8 or if the TRS is
preserved. We also note an apparent discrepancy between
the two expressions. The above expression incorporates three
states involved in the transition process, while the expression
of Eq. (10) features only two. This is resolved by realizing that
one of the states in the above expression comes from a virtual
transition and is accounted for explicitly in the summation as
shown in Eq. (11). Also, we caution that this expression is
derived by employing the velocity gauge. This gauge is more
suitable for calculating optical responses when the matrix
elements of Vi H are known, which is the case here. However,
it is also well known that it suffers from some apparent diver-
gences, 1 /a)2 in the limit @ — 0, and hence cannot predict
the response at w <K &, [79].

The above shift-vector expression of Eq. (10) can be calcu-
lated directly from the Berry connection matrix. In practice,
however, the direct numerical approach is plagued by gauge
fixing issues and hence is not reliable. We instead consider
the approach used in Refs. [32,79] to calculate the shift
vector using the sum rule described in Eq. (11), which, as
explained above, is equivalent to the three-velocity expression
in Ref. [79]. This approach is more amenable for numerical
simulations and also puts the different expressions considered
above on an equal footing. We provide a detailed derivation
of the shift-current conductivity in Appendix B of the Sup-
plemental Material [72] and elucidate the connection between
different expressions encountered in the literature.

D. Symmetry constraints on second-order conductivity

It is well known that second-order optical processes are
observed only in noncentrosymmetric materials [44,81]. The
number of nonvanishing and independent elements of the
second-order conductivity tensor can be deduced directly
from the symmetry groups of the crystal via a simple applica-
tion of group theory. The continuum TBG model considered
here has D3 symmetry generated by a C3; and C,, when the
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FIG. 2. Band structure and shift-current response of twisted bilayer graphene near the magic angle. (a) Band structure of noninteracting
twisted bilayer graphene for a twist angle 6 = 0.8° and a sublattice offset A =5 meV on both layers. Here, FF and FD denote flat-to-flat
and flat-to-dispersive band transitions, respectively. (b) FF contribution to second-order conductivity as a function of frequency shown in units
of average gap between two flat bands. The behavior of this average gap with twist angle 6 is shown in the inset. Note that the van Hove
singularity in our model occurs near v ~ £1.9 and thus the peak value of o,,, is significantly larger for fillings close to this value. (c) FD
contribution to shift-current conductivity scaled by s%d /Ly (see main text for justification) as a function of frequency in units of the band gap
between flat and dispersive bands denoted by &¢,4. Dependence of this energy gap & ra and the moiré-length-dependent parameter 8]% a/Lv 18
shown in the insets. Here the same filling to color assignment is made as in Fig. 1. (d) and (e) The top row shows the conductivity at different
fillings, and the bottom row shows the k-space profile of the integrand ), . fuRy8(w — &,,) contributing to the second-order conductivity
at the frequency corresponding to the dashed line for flat-to-flat and flat-to-dispersive transitions shown in the top row, respectively.

sublattice offset term is the same on both layers. However,
when A| # A, # 0, the symmetry group reduces to Cs;. As a
result of these symmetry properties, as derived in Appendix C
of the Supplemental Material [72], we expect the conductivity
tensor to satisfy

Y — gV — ) — ¥

O3y = =05, = 03, = 0y, # 0,

x ¥ =Y =Y =

Oy = =0y, =05, =03, =0 (13)

when A; = A, # 0. On the other hand, for A # A,, we have

Y — _g¥ =g =g
Osx Uyy UX}’ ny ?é 0’
X __ X y y
Oy = =0y =05, = 0y, # 0. (14)

Indeed these group-theory-based conclusions can be explicitly
checked through evaluation of Eq. (10). When A} = A, =0
inversion symmetry is unbroken and the conductivity tensor
vanishes.

IV. SHIFT CURRENT IN THE NONINTERACTING CASE

In this section, we investigate how this shift current
changes with different parameters of the system, for now in
the absence of electron-electron interaction. We identify two
different contributions to the photocurrent in the presence of
linearly polarized light: (i) those originating from transitions
from a flat band to another flat band, which is referred to as
the FF contribution, and (ii) those arising due to transitions
between a flat band and a dispersive band, which is referred
to as the FD contribution. Both are schematically depicted in

Fig. 2(a), where we have explicitly summed up the contribu-
tion from two valleys.

The frequency dependence of the second-order conduc-
tivity is dictated by the integrand Zm’n SRl §(@ — &n).
For the cases of flat-to-flat transitions, as expected, the peak
frequency is close to the average gap between two flat bands
as shown in Fig. 2(b), and the obtained second-order conduc-
tivity looks almost identical for all twist angles away from the
magic angle. This result is to be expected as the TBG con-
tinuum model (near the magic angle) for various 6 produces
qualitatively similar band structures (and wave functions) up
to an overall scale factor. Furthermore, the peak of the re-
sponse in Fig. 2(b) occurs near v & 2, which corresponds to
the filling associated with the van Hove singularity location
v & 1.9 for our continuum model parameters (cf. Supplemen-
tal Material Fig. S1 for a chemical level assignment for each
filling). As the (u, u') parameters of Eq. (2) are kept constant
for all 6, this location of the van Hove singularity will remain
at the same filling, further demonstrating the similarity of the
response for a wide range of angles.

In addition to being sensitive to the energy gap between
flat bands, the overall behavior of second-order conduc-
tivity also depends on the k-space profile of the quantity
Y SRl 8(@w — &), Which we refer to as the shift-
vector integrand. An important point to notice is that the
profile of the shift-vector integrand, R.*, in momentum
space peaks around the p points and has equal regions of
positive and negative values as shown in the middle panel
of Fig. 2(d). However, the integral in Eq. (10) also has a
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FIG. 3. Interaction-induced modifications of band structure, second-order conductivity, shift vector, and interband Berry connection for
flat-to-flat band transitions. (a) Band structure with Hartree corrections. All curves are shifted to the same energy at «’. Note how as
filling increases (decreases), the electron (hole) flat band flattens and the hole (electron) band broadens. (b) FF contribution to shift-current
conductivity for the noninteracting case (upper panel) and the interacting case (bottom panel). Electron-electron band flattening increases the
overall magnitude of the response and narrows the resonance in frequency. (c) k-space profiles of the shift vector S)7 in units of the lattice
constant of the monolayer graphene lattice, interband Berry connection magnitude square, |A*, |?, the integrand R*?, and energy contours for
€74 in k space for the transition between two flat bands at four different fillings used to calculate shift-current response in Eq. (10). It is worth
noticing that the shift vector can be orders of magnitude larger than the lattice constant a. This is expected as the Berry connection is roughly

of the order of the lattice constant of the moiré€ lattice.

6(w — &) factor, and the energy contours for a given val-
ley are not symmetric about k, = 0, which results in a large
net contribution whenever the filling is nonzero as shown
in Fig. 2(d) (left and right panels). This imbalance between
positive and negative regions is more prominent for the fillings
v ~ 2, which results in a significant contribution from the
regions near the p point (see later discussion surrounding
Fig. 5). It is worth noticing that these regions are extremely
flat (as they lie in the vicinity of the van Hove singularity)
and thus contribute heavily due to the large density of states.
The shift vector from the ¢ = —1 valley is opposite in value
to the shift vector from the ¢ = 41 valley, but at the same
time the energy contours are time-reversal partners of each
other, which results in the same contribution to second-order
conductivity. We can apply similar arguments to conclude
that the contribution from shift vector integrand R** would
vanish as the energy contours are symmetric about k, = 0 but
R (ky, ky) = —R™(k., —k,). This is to be expected from the
symmetry analysis of Sec. III D, but here it is demonstrated as
an explicit consequence of the integrand R**#.

In fact, the frequency dependence of the photoresponse
for the noninteracting model is largely decided by the gap,
which can be tuned by improving the lattice alignment be-
tween between the hBN layers and the TBG sample. In
our plots we considered a sublattice offset A =5 meV for
both layers, which results in a gap of about 10 meV, and
thus the contribution from flat-to-flat band transitions peaks

around 10 meV. We present our results for other sublat-
tice offset values in Fig. S2 of the Supplemental Material
[72]. We notice that the frequency response can be tuned
by varying the sublattice offset. However, as we keep on
increasing A, we notice that the second-order response starts
to diminish. This is to be expected as in addition to a
suppression coming from the energy denominators exem-
plified in Eq. (11), the wave-function overlap between the
bands decreases and the bands become more decoupled with
increasing A.

An important point to notice about the flat-flat contribution
is that it indirectly depends on the presence of dispersive
bands. The shift vector between two flat bands has a contri-
bution from virtual transitions to dispersive bands as evident
from the second term in Eq. (11) even though we are focusing
here on direct flat-to-flat transitions. As a result, the number
of dispersive bands also plays an important role in deciding
the behavior of the shift vector originating from transitions
between the two flat bands. In our simulations we found that,
to achieve convergence of the second-order conductivity, it
was necessary to include ten dispersive bands while evaluating
the shift vector using the expression in Eq. (11) (where virtual
transitions are captured by the second term).

We now focus on another contribution to second-order
conductivity that comes from real transitions between a flat
band and a dispersive band depicted by orange arrows in
Fig. 2(a) (which we refer to as FD). In this case, the integrand
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> SonRomn 8(w — &) (We include those indices which ac-
count for transitions between flat and dispersive bands) is
concentrated around the y point in k space [Fig. 2(e)], and
thus we observe a significant nonzero contribution only when
the Fermi level lies between a flat band and a dispersive band.

Just as in the case of the flat-to-flat response in Fig. 2(b),
we can similarly extract the 6-independent form of the pho-
toresponse corresponding to flat-to-dispersive transitions. As
expected from Eq. (11), the integrand R, decreases as 1/¢7,,
where ¢4 is the gap between the flat band and the dispersive
band. This gap shows a very strong dependence on twist angle
6 as it increases sharply with the increase in mini-BZ size. The
integral also carries an additional length-scale dependence.
Hence, to present results in a twist-angle-independent manner,
we rescale the response by a prefactor &2 /Ly, where Ly is
the moiré length as shown in Fig. 2(c). Although the main plot
shown in this figure was obtained for the twist angle 6 = 0.8°,
it looks quantitatively identical for all other twist angles near
the magic angle. As evident from the behavior of the scal-
ing factor &2 4/ Lum, the second-order conductivity is orders of
magnitude larger for & = 0.8° in comparison to # > 1°, and
the peak value is approximately equal to 20 000 A nm V2
for this twist angle, which is an order of magnitude higher than
that corresponding to the flat-to-flat transitions in Fig. 2(b).
We also highlight that the largest response is seen at a fre-
quency corresponding to that of a flat-to-dispersive band
gap, = &4, but additional resonances occur at higher fre-
quencies. We will explore these features in the following
section.

Similar to the first contribution to the shift-current
response, the second contribution arising from the flat-to-
dispersive band transitions is influenced by the substrate
properties. When the sublattice offset A is increased from
5 to 10 meV, we notice that the FD signal is shifted to a
lower frequency and the peak becomes more pronounced as
shown in Fig. S2(c) of the Supplemental Material [72]. This
can be explained on the basis of the shift in band energies
(Fig. S2(a) of the Supplemental Material [72]). An increased
A increases the gap between flat bands but does not affect
the dispersive bands much. As a result, the gap between flat
and dispersive bands starts to decrease. A smaller value of
the gap, &4, shifts the peak to a lower frequency and also
increases the value of the integrand, which scales as 1/g74
as mentioned earlier. However, if we increase the sublattice
offset further, it suppresses the overlap between Bloch wave
functions, as discussed previously in the context of flat-to-flat
transitions, and the shift-current signal is diminished as shown
in Fig. S2 of the Supplemental Material [72]. This shows that
the sublattice offset can serve as an important knob to tune
the optical response. Additionally, the direction of the current
density and its relation to the polarization of the EM field can
also be modified by changing the sublattice offset indepen-
dently in two layers. As discussed in Sec. III D, the constraints
on the second-order conductivity tensor are different for the
A1 = Aj case and the A # A, case. Here, in Figs. 2-4, we
have considered A; = A;, and thus the only nonzero com-
ponents are o3y, Oy, Oy, 0o 7 0, which can all be expressed
in terms of o3, plotted in these figures. We also verified the
relation between different elements as shown in Fig. S3 of the
Supplemental Material [72]. However, for A| # A,, there are

two independent nonzero elements, which are shown in the
lower panel of Fig. S3.

V. EFFECTS OF INTERACTIONS ON
SHIFT-CURRENT RESPONSE

Next, we discuss how the shift-current response is modified
by electron-electron interactions, which we incorporate by
using the mean-field procedure described in Sec. III B. As
shown in Fig. 1(b), one of the most prominent effects of
interactions is the band flattening of the flat bands near the
y point causing a large enhancement of the density of states.
Additionally, these interactions also affect the structure of
Bloch wave functions in real space, which modifies the shift
vector.

For the flat-to-flat contribution shown in the noninteracting
case, we noticed that the o3, peak was significantly larger
for fillings v & 2 [Fig. 2(b)]. We explained this behavior on
the basis of a significant contribution from the extreme flat
regions around the p points, corresponding to the van Hove
singularities, as depicted in Figs. 2(b) and 5(a). Upon increas-
ing the filling further beyond these flat regions, the transitions
to these states are Pauli blocked, and they no longer contribute
to the optical response in the noninteracting case. However,
when electron-electron interactions are included in the analy-
sis, we notice that these flat regions around the p point expand
further in k space as shown in Fig. 3(a) until they span the
whole mini BZ (when the y point is locally flat). Now, these
extremely flat regions can participate in band transitions even
at higher fillings. It consequently affects the peaks at larger
fillings, e.g., |v| > 3, which not only increase in strength but
also shift in frequency and coincide with the peaks at fillings
[v| = 1.5,2, cf. Fig. 3(b). This behavior clearly arises due
to the increased density of states coming from Hartree band
flattening that shifts van Hove singularity to higher fillings
[cf. Supplemental Material Fig. S1(b) for a chemical level
assignment for each filling]. Additionally, we also notice a
change in the profile of the flat-to-dispersive contribution of
the integrand Y, Ryn8(w — &y,) along the y-u line which
leads to an increased asymmetry in positive and negative
regions of the mini BZ with increasing |v| as depicted in the
third column of Fig. 3(c), and hence an enhanced response.

These interaction-induced changes in band structure also
affect the contribution coming from transitions between flat
and dispersive bands. One obvious modification arises from
the changes in band structure which are quite prominent
around the y point. This region was the hot spot for the
FD contribution in the noninteracting case as discussed in
Sec. IV and shown in Fig. 2(e). The Hartree corrections to the
noninteracting Hamiltonian increase the gap at the y points.
This correction also results in an increased band flattening of
dispersive bands, which in turn decreases the gap significantly
in a large region of the mini BZ around the p points as shown
in Fig. 4(a).

These Hartree corrections to the band structure and Bloch
wave functions also modify the shift-current integrand, R™.
Its momentum profile exhibits a significant increase in regions
away from the y point as shown in Figs. 4(d)—4(g) and 6(b).
These factors give rise to some unexpected features in the
second-order conductivity response. We can now observe a
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FIG. 4. Interaction-induced modification of band structure, second-order conductivity, shift vector, and interband Berry connection for flat-
to-dispersive band transitions. (a) Band structure with Hartree corrections showing flat and dispersive bands, (b) FD contribution to shift-current
conductivity for the noninteracting case, and (c) FD contribution when Hartree corrections are included. Note the appearance of additional
peaks in (c) as compared with (b). (d)~(g) Shift vector S?* , interband Berry connection magnitude square, |A*, |2, the integrand R*?, and energy
contours for &7, in k space for the four FD transitions, where (d) and (e) represent transitions between the hole flat band and hole dispersive
bands and (f) and (g) describe transitions between the electron flat band and the electron dispersive bands.

reasonably large contribution at fillings less than |v| = 4,
which arises due to the spreading of R;,, in the mini BZ as
shown in the bottom panel of Fig. 6(b).

Arguably, however, the most important role (at least ex-
perimentally) of these filling-dependent corrections is the
appearance of new features in the second-order shift-current

013

conductivity. Specifically, there is also a second peak, in
Fig. 4(c) at w ~ 60 meV, which has the opposite sign to
the peak at w &~ 25 meV. We attribute this second peak to
transitions that involve van Hove singularity points of the
flat band as their frequency is quite close to the energy gap
around those k points. This is further substantiated by the
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FIG. 5. Comparison between the momentum space profile of the FF contribution of shift-current conductivity for the noninteracting
and interacting case at peak frequencies for different filling factors. The flat-to-flat band transition contribution to the peak of second-order
conductivity from different k£ points within the mini BZ at different filling factors for the (a) noninteracting model and (b) interacting model
with Hartree corrections. In each set of panels (consisting of an upper and a lower panel), the upper panel shows the variation of the shift-current
conductivity with frequency at a given filling, and the lower panel shows the k-space profile of the shift-current integrand from Eq. (10) for
the flat-to-flat band transitions at frequencies corresponding to the dashed line in the upper panel. We notice a significant increase in the
contribution from the regions near the p point which mainly arises from the band-flattening effect of interactions.

fact that the integrand in these regions is opposite to that of
the contribution from the y point as shown in Fig. 6(b) and
the third column of Figs. 4(e) and 4(f). We argue that this
enhanced response and the appearance of the second peak can
act as a probe of interaction-induced changes to both the band
structure and the quantum geometry. Most crucially, however,
this additional peak occurs at frequencies that far exceed those
characteristic frequencies of flat-to-flat band transitions (a few
meVs), placing it more firmly in the characteristic range of
optical experiments (tens of meVs).

VI. DISCUSSION

In this paper, we presented a detailed analysis of the shift-
current response in TBG and investigated the role of twist
angle, doping, encapsulation environment, and interactions
in the shift-current response of twisted bilayer graphene. We
identified two different contributions: one arising from the
transitions between two flat bands and another from the tran-
sitions between a flat band and a dispersive band as shown
in Fig. 1. In the absence of interactions, the first and second
contributions result in a second-order conductivity with peak
values of ~1000 and ~10000 @A nm V=2, respectively, with
the typical frequency dependence tunable by changing the
twist angle and the sublattice offset. This giant photoresponse

arising from the nontrivial band topology of flat bands in
TBG renders it an exceptional material for photovoltaic ap-
plications in the terahertz range. Additionally, we showed that
interactions can significantly alter the photoresponse of TBG.
This opens up a route for probing interaction-induced changes
to band structure and quantum geometry with the help of
optical probes.

Alongside the shift-current response, the circular photogal-
vanic effect (CPGE) and, generally, injection photocurrents
also occur in materials with Dirac cone dispersions. The injec-
tion current emerges from the difference in group velocities
between the original and excited bands and is proportional
to the electronic relaxation time. It is usually the domi-
nant second-order photocurrent response in Weyl semimetals
[24,40]. It requires, however, circularly polarized light or
tilted Dirac cones illuminated by linearly polarized light to
be nonzero. Our work considered only the linear polarization
response and ignored these additional terms, which we expect
are either subleading in TBG or vanish by symmetry consid-
erations. Specifically, for a two-dimensional system with Cs,
symmetry, even the circular polarization cannot generate an
in-plane injection current at normal incidence (see Ref. [82]
and discussion in Appendix C of the Supplemental Material
[72]). As such, unless Cs, symmetry is lifted, for example,
by applying a strain (as recently shown in Ref. [83]) or by
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FIG. 6. Comparison between the momentum space profile of the FD contribution of shift-current conductivity for the noninteracting and
interacting case at peak frequencies for different filling factors. The flat-to-dispersive band transition contribution to the peak of second-order
conductivity from different k£ points within the mini BZ at different filling factors for the (a) noninteracting model and (b) interacting model
with Hartree corrections. In each set of panels (consisting of an upper and a lower panel), the upper panel shows the variation of the shift-current
conductivity with frequency at a given filling, and the lower panel shows the k-space profile of the shift-current integrand from Eq. (10) for
the flat-to-dispersive band transitions at frequencies corresponding to the dashed line in the upper panel. We notice a significant increase in the
contribution from the regions near the u point which mainly arises from the band-flattening effect of interactions.

interactions [84—86] beyond the Hartree correction considered
here, we expect the injection current to vanish under these
conditions in TBG.

Another interesting aspect is the dependence of the shift
vector on the nature of the perturbation, i.e., the momentum
derivative of the excitation matrix phase [87]. It could be
interesting to contrast this contribution to the shift current
with currents induced by other nonequilibrium perturbations
arising from coupling between EM fields and other de-
grees of freedom such as orbital or phononic degrees of
freedom.

Furthermore, in this paper we mainly focused on the
photoresponse originating from interband processes. How-
ever, if the spatial symmetry of the system is lowered
further by breaking some mirror symmetries, we could also
get a second-order contribution from intraband processes
which are captured by the Berry curvature dipole [27]. Such
semiclassical processes can be made to contribute to the non-
linear optical response by applying a strain as discussed in
Refs. [36,88]. In TBG, we expect the strain-induced contribu-
tion to be of the same order of magnitude [51], and therefore
it should not alter our results drastically.

Another interesting effect is the impact of valley polariza-
tion on the shift current and the photoresponse in general.
Our shift-current expression considered in Eq. (10) has equal

contributions from both valleys if the Dirac cones of the un-
derlying graphene layers are not tilted. However, in addition to
the shift-current contribution which comes with a Dirac-delta
function, the second-order conductivity also has a contribution
from the principal part as presented in Eq. (B22) of Ap-
pendix B of the Supplemental Material [72]. This contribution
is equal and opposite to that from two valleys and hence can
affect the shift-current response for a valley-polarized setup
only. This valley dependence would be even more apparent
for injection currents.

As pointed out earlier, the shift currents are a reflection
of the quantum geometry of the electronic bands. The effect
is also clearly related to the charge distribution of the Bloch
wave functions in the moiré unit cell. Indeed, as argued in
Sec. III B, different momentum states lead to a different spatial
distribution of charge; for example, for flat bands, «, k’-point
states give rise to charge buildup near AA sites, while y-point
states cause a buildup of charge in a ring surrounding AA
sites. For the first dispersive bands, however, the relation
flips: «, «’-point states give rise to charge buildup in a ring
surrounding AA sites, while y-point states lead to a charge
buildup at the AA sites. We propose that the qualitatively
sharp resonances seen in Fig. 4 correspond to the transitions
from an AA charge profile to that of a ring surrounding the
AA sites or vice versa, but the precise relation remains to be
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explored (see Appendix D of the Supplemental Material [72]
for further discussion). In future work, it would be fascinating
to consider what additional effects emerge from these unusual
rearrangements of the electronic probability density within the
moiré unit cell.
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