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Moiré materials, and in particular twisted bilayer graphene (TBG), exhibit a range of fascinating phenomena

that emerge from the interplay of band topology and interactions. We show that the nonlinear second-order

photoresponse is an appealing probe of this rich interplay. A dominant part of the photoresponse is the shift

current, which is determined by the geometry of the electronic wave functions and carrier properties and thus

becomes strongly modified by electron-electron interactions. We analyze its dependence on the twist angle

and doping and investigate the role of interactions. In the absence of interactions, the response of the system

is dictated by two energy scales: (i) the mean energy of direct transitions between the hole and electron flat

bands and (ii) the gap between flat and dispersive bands. Including electron-electron interactions both enhances

the response at the noninteracting characteristic frequencies and produces new resonances. We attribute these

changes to the filling-dependent band renormalization in TBG. Our results highlight the connection between

nontrivial geometric properties of TBG and its optical response, as well as demonstrate how optical probes can

access the role of interactions in moiré materials.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) is an exciting arena where

quantum geometry and enhanced electronic interactions play

both against and with each other. While the interactions are

boosted by the flatness of the electronic bands near charge

neutrality, geometric effects are amplified by the large size

of the moiré unit cell as the lattice constant sets the scale for

the Berry connection. This conjunction of interactions and ge-

ometry is responsible for a growing list of fascinating effects

[1–9] ranging from surprisingly strong superconductivity

[5–7] to symmetry-breaking electronic transitions (“cascade”)

[8,9] and anomalous Hall phases [3]. In this paper we focus on

the second-order photoresponse of TBG, in particular, on the

shift current. We contend that it is a unique probe that can

wield the enhanced geometric effects of the electronic wave

function to systematically probe the role of interactions in

TBG at a range of fillings and twist angles.
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By quantum geometry (QG) we refer to the structure of

the electronic Bloch wave functions. Many interesting signa-

tures of QG are revealed in transport properties and optical

responses of these systems [10–20], and especially in the

zero-magnetic field quantized anomalous linear Hall effect

in setups with time-reversal symmetry (TRS) [3,4,21]. The

effects of QG go well beyond linear response effects, and

can in fact manifest themselves in nonlinear optical responses

(NLORs) as shown recently [22–37]. Furthermore, the NLOR

does not require broken TRS, but rather a nonzero Berry cur-

vature profile. These nonlinear effects can manifest in various

ways, such as nonlinear response to dc fields (induced by

Berry curvature dipole [22,26,27,33–37]), second-harmonic

generation (SHG), bulk-photovoltaic effects such as shift cur-

rent (SC) [28,29,31,38], and circular photogalvanic effects

(CPGEs) [24,39,40]. Recently, there has been a lot of empha-

sis on the nonlinear response to ac fields [23,24,40], which not

only serves as a probe of nontrivial topology but also heralds

the promise of more efficient and robust photovoltaic devices

[32].

The shift-current response [41–44] is a particularly inter-

esting part of the NLOR. In topological systems it could

generate a giant dc response from weak linearly polarized

electromagnetic fields, which makes it relevant for photo-

voltaic applications [28–32]. Furthermore, the shift-current

response is tied to the quantum geometric properties of the

system [11,12,15,45] and microscopically arises due to a

change in properties of the Bloch wave function upon ex-

citation between bands. Specifically, the magnitude of such
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FIG. 1. Interaction-induced modifications to band structure and shift-current response of twisted bilayer graphene. (a) Band structure of

the noninteracting (Non-int) model presented in Eq. (2), (b) band structure that includes Hartree corrections at different fillings ν, (c) and

(d) contributions to the second-order conductivity σ y
xx (0, ω,−ω) from flat-to-flat band transitions for the noninteracting case and for the

interacting case with Hartree corrections, and (e) and (f) contributions to the second-order conductivity σ y
xx (0, ω,−ω) from flat-to-dispersive

band transitions for the noninteracting case and for the interacting case with Hartree corrections. These Hartree corrections flatten both the

flat and dispersive bands significantly as the filling is increased. This results in an enhanced second-order response and also gives rise to a

second peak in the flat-to-dispersive contribution. As a consequence of a velocity gauge, as explained in the text, there is an apparent ∝1/ω2

divergence as ω → 0.

QG effects is sensitive to the change in average position of

Bloch wave functions within the unit cell [15]. Previous works

that studied the shift-current response in bilayer graphene

and transition-metal dichalcogenides (TMDs) [32,46–49] pre-

dicted a strong effect due to their nonzero Berry curvature

profile.

Quantum-geometry-induced processes become more dom-

inant in flat bands [16,50], where the large effective lattice

constant sets the scale for the Berry connection in the flat

bands. Recent pioneering studies considered twisted bilayer

graphene at the magic angle (MATBG) [51,52] and confirmed

the expectation of an unprecedented magnitude of the re-

sponse.

Our work expands on these initial investigations and pro-

vides a systematic study of the relationship of the shift-current

response to twist angle, filling factor, and encapsulation

environment. We identify the role of the band structure,

relevant quantum geometry tensor elements, and the sys-

tem’s symmetries in determining the shift-current response.

Particularly, we compute the shift-current response while

including electron-electron interactions and show that they

significantly enhance the response as compared with a non-

interacting model. Many recent works [53–62] have shown

that interactions can also drastically alter the noninteract-

ing band structure and associated wave-function profiles. As

we will show in this paper, these modifications significantly

affect the shift-current response studied in previous works

[51,52] that only considered a response of a noninteracting

TBG.

Inspired by recent experimental results [61,63], we con-

sider a specific class of electron-electron renormalizations of

the electron band structure that stem from inhomogeneous

charge distribution in the moiré unit cell (see Figs. 1(a) and

1(b) and Refs. [53,54,57]). We demonstrate that these interac-

tions can change both the magnitude and frequency response

of the second-order conductivity. We argue that these changes

arise from the interaction-induced band flattening and mod-

ifications of Bloch wave functions, specifically the quantum

geometric connection, that are closely related to the shift-

current photoresponse [12,15].

For simplicity, we perform our self-consistent calculations

using temperature T = 0 K, but we expect the observed

features to remain prominent up to liquid nitrogen temper-

atures, T ≈ 77 K. This is because the characteristic energy

scale for flat-to-dispersive band transitions that produces new

resonances as well as the charge-inhomogeneity-driven band

flattening is above that energy scale. Also, since we are con-

cerned with this high-temperature regime, we do not consider

correlated effects that typically emerge at temperatures T �
15 K [1,5,8,64].

In addition to the shift current, quantum geometry can

also lead to other nonlinear optical responses such as in-

jection current [24,39,40], which arises from the change in

group velocity of carriers upon excitation between two bands.

However, for time-reversal-symmetric systems, such effects

vanish for linearly polarized light [12], and thus we ignore

these effects in this paper. Additionally, at frequencies much

smaller than the gap, there can be a semiclassical contribution
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to second-order conductivity arising from the Berry curvature

dipole [26,27,29,65]. In two-dimensional (2D) systems, this

contribution survives only if the largest symmetry is a single

mirror plane [27], which is not the case for TBG.

The paper is organized as follows. In Sec. II we present

a brief summary of our main results. In Sec. III we present

the model used in our simulations, the mean-field treat-

ment of Coulomb interactions, and the methods employed

to evaluate the shift-current response. We also compare dif-

ferent approaches used in the literature and comment on

their numerical amenability. In Sec. IV we proceed to study

the shift-current response in a noninteracting twisted bilayer

model and investigate the role of twist angle, sublattice offset,

and symmetry properties. Additionally, we analyze the con-

tribution arising from different types of band transitions, e.g.,

flat-to-flat (FF) and flat-to-dispersive (FD) bands. In Sec. V

we discuss how these results are modified by interactions.

Finally, we conclude by providing a summary of our analysis

and specific experimental predictions.

II. SUMMARY OF RESULTS

We study the role of twist angle, doping, encapsulation

environment, and electron-electron interactions in the shift-

current response in twisted bilayer graphene. We find that in

the absence of interactions, or equivalently at twist angles

where the noninteracting band structure accurately captures

electronic properties, the photoresponse has a universal form.

This form is controlled by a moiré length scale and character-

istic energies associated with flat-to-flat and flat-to-dispersive

band transitions. The overall contribution of these two—flat-

to-flat and flat-to-dispersive—processes to the shift current

also depends on the sublattice offset, which can be tuned

by varying the encapsulation environment. A finite sublattice

offset leads to a gap opening between flat bands which can be

controlled by the relative alignment between the graphene and

hexagonal boron nitride (hBN) layer. Specifically, we find that

the sublattice offset does not drastically affect the gap between

the flat and dispersive bands, unlike the gap between the flat

bands. Therefore the sublattice offset allows one to control the

relative importance of both types of transitions in shaping the

photoresponse.

Most importantly, we find that electron-electron inter-

actions significantly change the shift-current response as

compared with a noninteracting system [see Figs. 1(c)–1(f)].

The role of interactions in the photoresponse becomes more

pronounced as the twist angle is brought closer to the magic

angle, leading, within the extent of approximations used for

the modeling of interactions, to a sharp increase in mag-

nitude and narrowing of corresponding frequency window

where resonances in shift current were expected on the ba-

sis of the noninteracting model. The key contribution of

electron-electron interactions to the shift current is in altering

the photoresponse corresponding to transitions between flat

and dispersive bands. We attribute these features to electron-

electron-interaction-driven changes to the band dispersion,

the nature of Bloch wave functions, and thus the resulting

quantum geometry.

Our results demonstrate that frequency range and magni-

tude can be tuned significantly by varying the twist angle and

the substrate properties. Specifically, we observe a second-

order conductivity of the order of 1000 μA nm V−2 in the

frequency range of 10–100 meV. This is in agreement with

previous results of Refs. [51] and [46] for TBG and gapped bi-

layer graphene, respectively. We note, however, that Ref. [51]

studies the frequency response in the range 1–10 meV and

Ref. [46] considers a frequency of 100 meV. Finally, our

work shows how the photoresponse can serve as a probe

of electron-electron interactions in TBG, pointing towards a

possible experimental direction for the TBG field.

III. MODEL AND METHODS

A. TBG single-particle Hamiltonian

The single-particle energy spectrum of twisted bilayer

graphene near the magic angle can be described with the help

of a continuum model [66–69]. Here, we follow the notation

and model considered in Ref. [66], which gives a Hamilto-

nian:

H0 =
∑

γ={ζ ,σ }

∫

�

d2r ψ†
γ (r)Ĥ(ζ ,σ )ψγ (r), (1)

Ĥ(ζ ,σ ) =
(

Hζ1(r) U
†
ζ (r)

Uζ (r) Hζ2(r)

)
, (2)

where � represents the moiré unit cell, Hζ ,l represents the

intralayer Hamiltonian of layer l = 1, 2, and Uζ (r) encodes

the moiré interlayer hopping. The Hamiltonian is written in

the basis of (A1, B1, A2, B2) sites of the two layers, and we

use the shorthand notation γ ≡ {ζ (= ±1), σ (= ±1)} for the

valley and spin degrees of freedom, respectively. In the rest of

this paper, we refer to this Hamiltonian as the “noninteracting

model.”

The intralayer part of the Hamiltonian Hζ ,l is given by the

two-dimensional Dirac equation expanded about the Kl
ζ point

of the original graphene layer,

Hl = −h̄v

[
R(±θ/2)

(
k − Kl

ζ

)]
· (ζσx, σy) + 
lσz, (3)

where k is a momentum in the Brillouin zone (BZ) of the orig-

inal graphene layers, R(±θ/2) is the 2 × 2 two-dimensional

matrix accounting for the rotation of layer l = 1(2) by an

angle ±θ/2 about the z axis with respect to the initial AA

stacked bilayer. We set h̄v/a = 2.1354 eV as the kinetic en-

ergy scale for the Hamiltonians, Hξ l with a = 0.246 nm being

the original graphene’s lattice constant. We also introduce a

layer-dependent sublattice offset term, 
lσz, that leads to a

gap opening at the Dirac points and breaking of inversion

symmetry.

The moiré interlayer potential Uζ (r) in Eq. (2) can be

approximated as

Uζ (r) =
(

u u′

u′ u

)
+

(
u u′e−i2πζ/3

u′ei2πζ/3 u

)
eiζGM

1 ·r

+
(

u u′ei2πζ/3

u′e−i2πζ/3 u

)
eiζ (GM

1 +GM
2 )·r, (4)

where we take u′ = 90 meV and u = 0.4u′ for twist angles

near the magic angle. We justify our choice of parameters in

the next section. To diagonalize the Hamiltonian equation (2)

in k space, we can account for this interlayer potential by
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introducing a coupling between Bloch wave Ansätze at mo-

mentum k and k + G. Here, G = n1GM
1 + n2GM

2 is a linear

combination of moiré reciprocal vectors GM
1 and GM

2 , where

n1 and n2 are integers, and G = |GM
1 | = |GM

2 | sets the char-

acteristic momentum scale of the problem. These reciprocal

lattice vectors are given by GM
i = R(−θ/2)Gi − R(θ/2)Gi,

with G1 = (2π/a)(1,−1/
√

3) and G2 = (2π/a)(0, 2/
√

3)

being the reciprocal lattice vectors of a graphene monolayer.

B. Mean-field interacting Hamiltonian

We consider electron-electron interactions given by the

Coulomb term

Hc =
1

2

∫

�

d2rd2r′δρ(r)Vc(r − r′)δρ(r′), (5)

δρ(r) =
∑

γ={ζ ,σ }

ψ†
γ (r)ψγ (r) − ρCN(r), (6)

where δρ(r) is the density relative to that at charge neutral-

ity, ρCN(r), and Vc(r − r′) is the Coulomb potential with a

Fourier transform, Vc(q) = 2πe2/εq. The dielectric constant

ε depends on the substrate and is treated as a free parameter

(reasons to be made clear below). We approximate the above

interaction term using a self-consistent Hartree approximation

Hc ≈ HH , where

HH =
∑

γ={ζ ,σ }

∫

�

d2rVH (r)ψ†
γ (r)ψγ (r) (7)

with the Hartree potential

VH (r) =
∫

�

d2r′
VC (r − r′)

∑

γ

〈ψ†
γ (r′)ψγ (r′)〉H . (8)

In the above expression, 〈· · · 〉H denotes a summation over

occupied states measured from the charge neutrality point

(CNP; ν = 0) [53]. When doping is increased with respect

to the charge neutrality point, there is a preferential buildup

of charge at AA sites in real space [53], corresponding to

electronic states near the κ , κ ′ points of the mini Brillouin

zone. The nonuniform spatial charge distribution generates an

electrostatic potential that prefers an even redistribution of the

electron density. In contrast, the real-space charge distribution

corresponding to electronic states near the γ point is more

uniform in the unit cell. The effect of the electrostatic Hartree

potential and the associated charge redistribution thus leads to

an increase in the energy of the electronic states near the κ ,

κ ′ and μ points compared with the energy of states near the γ

point [53,54,57,70,71].

The effect of the Hartree potential becomes increasingly

pronounced as a function of decreasing twist angle, especially

near the magic angle, where the noninteracting bandwidth

is minimal. There is an increasing tendency towards band

inversion near the γ point [54,55], a feature that has not been

observed in experiments to date [61]. However, it is important

to note that other mechanisms, for example, strain or a Fock

term, can act against this tendency towards band inversion by

increasing the overall bandwidth (both strain and Fock) or

by contributing an opposing correction to the self-energy as

compared with the Hartree term (Eq. (8); Fock only). In our

analysis we focus only on the Hartree correction for a wide

range of θ and caution that results in the vicinity of the magic

angle, 0.96◦ < θ < 1.04◦ in our parametrization, would likely

be modified by other interaction effects. More specifically, in

this range, we anticipate that the Hartree term would produce

extreme band inversions not seen experimentally, which are

most likely counteracted by another mechanism.

The band structure is obtained by employing a fitting pro-

cedure introduced in Ref. [61] and summarized in Appendix

A of the Supplemental Material [72]. This approximate fit-

ting protocol relies on matching microscopic parameters of

the Hamiltonian such that the theoretical energy spectrum of

the system reproduces experimental scanning tunneling mi-

croscopy (STM) results sufficiently far away from the magic

angle where no correlated effects are present. As explained

in the Supplemental Material [72] and Ref. [61], for general

agreement with the experimental results, it is necessary to

use a dielectric constant ε larger than that set by the sub-

strate. Similar procedures were employed in earlier studies

[53,55,73], and their origins theoretically can be justified

by arguing that dispersive bands renormalize the dielectric

constant for the Coulomb interaction projected to the flat

bands. The final renormalized band structures at fixed angle

of θ = 0.8◦ are shown as a function of filling ν per moiré

unit cell in Fig. 1(b). The most notable manifestation of the

Hartree-induced effects is the band flattening around the γ

and μ points beyond a certain filling.

We note that the contribution of band-flattening effects to

TBG properties was studied in recent works [74–76]. Qual-

itatively, the role of band flattening was either to enhance

the density of states at the Fermi level or to decrease overall

bandwidth, and as a result, the corresponding twist angle

range, over which correlated effects were expected, increased.

We stress, however, that no other papers that studied NLORs

in TBG [51,52] have considered the role that interactions can

play in the photoresponse.

Before proceeding with the discussion of the shift cur-

rents in TBG, we pause to clarify key assumptions of our

modeling. Firstly, we intentionally do not include the effects

associated with the “cascade” transitions at integer fillings

near the magic angle [8,9] and the correlated effects such

as superconductivity [5] or insulating states [1]. Physically,

this approximation is motivated by the fact that optical NLOR

experiments are typically performed at temperatures [23] ex-

ceeding the characteristic temperatures (T � 15 K) associated

with these phenomena [1,5,8,64]. In principle, however, these

effects could provide interesting constraints on and signatures

in the photoresponse. We expect Hartree corrections to per-

sist to higher temperatures as they are a reflection of charge

inhomogeneity of the system. Secondly, we also neglect the

possibility of varying interlayer hopping parameters (u, u′) in

Eq. (4). We argue that this approximation is justified since our

choice of u′ = 90 meV is comparable to typical literature val-

ues and the ratio of η = u/u = 0.4 is not too far from values

quoted in the literature that are typically in the range η = 0.3–

0.7. Most crucially, however, even if η were to be varied with

the twist angle, the location of the van Hove singularity would

remain fixed near filling of ±1.9 (or not drastically different

energies; see also Ref. [77]) until very high η values of 0.8.

Such values are typically not used in modeling. As such we

expect that although quantitative changes (such as precise
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frequency locations of peaks) can vary, overall behavior of

the system, in particular, its charge density profile, will remain

qualitatively similar.

C. Shift current

The shift current is a second-order dc response to an elec-

tromagnetic field arising from interband optical excitations

[41]. In time-reversal-symmetric systems, the shift current

depends on the linearly polarized component of light, and its

origins can be traced back to the real-space shift experienced

by the Bloch wave packet upon excitation from one band to

another. If the light is circularly polarized, then band transi-

tions can also lead to an additional second-order dc response,

known as injection current, which arises due to the change

in carrier velocities upon excitation [43]. However, for a lin-

early polarized light, this kind of injection current response

vanishes in a two-dimensional system if the time-reversal

symmetry is preserved in the system. The shift current is

sensitive to the intraband and interband Berry connection of

the bands involved in the transition process [43] and hence

offers a possibility to detect and harness the nontrivial band

topology of Bloch bands in photovoltaic processes.

The shift-current response is determined by a rank-three

tensor, σμ
αα , which satisfies

Jμ = 2σμ
αα (0, ω,−ω)Eα (ω)Eα (−ω), (9)

where Jμ is the μth component of the current density, E (t ) =
E (ω)eiωt + E (−ω)e−iωt is the electric field, and Greek indices

denote spatial components, α = {x, y}. The second-order

conductivity tensor element, σμ
αα (0, ω,−ω), is given by

(see Appendix B of the Supplemental Material [72] and

Ref. [78])

σμ
αα (0, ω,−ω) =

πe3

h̄2

∑

m,n

∫
d2k fmn

∣∣Aα
mn

∣∣2
Sμα

mnδ(ω − εmn),

(10)

where εmn = εm − εn is the energy difference between the two

states that participate in the optical transition and fmn = fm −
fn is the difference in occupancy of their energy levels. The

above expression features two geometric terms: a shift vec-

tor Sμα
mn = Aμ

mm − Aμ
nn − ∂μ(ArgAα

mn) and the interband Berry

connection Amn = −i〈um|∇k|un〉 for Bloch wave functions

|um〉 and |um〉. This interband Berry connection enters into

the shift-vector expression as the electromagnetic (EM) field

couples through the dipole matrix and carries no other direct

physical interpretation, while the shift vector represents the

shift experienced by the Bloch wave packet upon excitation

from the mth to the nth band [42,44,78]. We denote the in-

tegrand of the above expression as Rααμ
mn = |Aα

mn|2Sμα
mn , and

provided that the Hamiltonian has a linear dependence on

momentum, it can also be expressed as

R
ααμ

ab
=

1

ε2
ab

Im

[
hα

abh
μ

ba

α

ab

εab

]

+
1

ε2
ab

Im

[ ∑

d �=a,b

(
hα

bah
μ

ad
hα

db

εad

−
hα

bah
μ

db
hα

ad

εdb

)]
, (11)

where hα
ab = 〈a|∇kα

H |b〉 and 
α
ab = hα

aa − hα
bb. The above ex-

pression for the shift current is equivalent to the sum rule

commonly used to calculate the shift vector [78]. We stress

that if the time-reversal symmetry is broken intrinsically or

by application of circularly polarized light, there can be an

additional contribution to the current density which is lin-

ear in scattering time and is known as the injection current

[24,39,40,43].

In the literature there are several methods to calculate

second-order NLOR conductivity [32,43,79,80]. In fact, in

some previous works, Eq. (10) is often presented in a slightly

different form without any explicit reference to the shift vec-

tor. For example, one of the most common expressions [52,80]

is of the form

σ
μ

αβ = −
e3

h̄2ω2

× Re

( ∑

�=±ω,m,n,l

∫
d2k

hα
nlh

β

lm
hμ

mn

(εmn − i0+)(εnl + � − i0+)

)
,

(12)

which we show in Appendix B of the Supplemental Material

[72] is equivalent to Eq. (10) except for the injection current

term which arises for m = n in the above summation. This

injection current term vanishes if α = β or if the TRS is

preserved. We also note an apparent discrepancy between

the two expressions. The above expression incorporates three

states involved in the transition process, while the expression

of Eq. (10) features only two. This is resolved by realizing that

one of the states in the above expression comes from a virtual

transition and is accounted for explicitly in the summation as

shown in Eq. (11). Also, we caution that this expression is

derived by employing the velocity gauge. This gauge is more

suitable for calculating optical responses when the matrix

elements of ∇kH are known, which is the case here. However,

it is also well known that it suffers from some apparent diver-

gences, ∝1/ω2 in the limit ω → 0, and hence cannot predict

the response at ω ≪ εmn [79].

The above shift-vector expression of Eq. (10) can be calcu-

lated directly from the Berry connection matrix. In practice,

however, the direct numerical approach is plagued by gauge

fixing issues and hence is not reliable. We instead consider

the approach used in Refs. [32,79] to calculate the shift

vector using the sum rule described in Eq. (11), which, as

explained above, is equivalent to the three-velocity expression

in Ref. [79]. This approach is more amenable for numerical

simulations and also puts the different expressions considered

above on an equal footing. We provide a detailed derivation

of the shift-current conductivity in Appendix B of the Sup-

plemental Material [72] and elucidate the connection between

different expressions encountered in the literature.

D. Symmetry constraints on second-order conductivity

It is well known that second-order optical processes are

observed only in noncentrosymmetric materials [44,81]. The

number of nonvanishing and independent elements of the

second-order conductivity tensor can be deduced directly

from the symmetry groups of the crystal via a simple applica-

tion of group theory. The continuum TBG model considered

here has D3 symmetry generated by a C3z and C2y when the
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(a) (c)(b)

(e)(d)

FIG. 2. Band structure and shift-current response of twisted bilayer graphene near the magic angle. (a) Band structure of noninteracting

twisted bilayer graphene for a twist angle θ = 0.8◦ and a sublattice offset 
 = 5 meV on both layers. Here, FF and FD denote flat-to-flat

and flat-to-dispersive band transitions, respectively. (b) FF contribution to second-order conductivity as a function of frequency shown in units

of average gap between two flat bands. The behavior of this average gap with twist angle θ is shown in the inset. Note that the van Hove

singularity in our model occurs near ν ≈ ±1.9 and thus the peak value of σxxy is significantly larger for fillings close to this value. (c) FD

contribution to shift-current conductivity scaled by ε2
f d/LM (see main text for justification) as a function of frequency in units of the band gap

between flat and dispersive bands denoted by ε f d . Dependence of this energy gap ε f d and the moiré-length-dependent parameter ε2
f d/LM is

shown in the insets. Here the same filling to color assignment is made as in Fig. 1. (d) and (e) The top row shows the conductivity at different

fillings, and the bottom row shows the k-space profile of the integrand
∑

m,n fmnRxxy
mn δ(ω − εmn) contributing to the second-order conductivity

at the frequency corresponding to the dashed line for flat-to-flat and flat-to-dispersive transitions shown in the top row, respectively.

sublattice offset term is the same on both layers. However,

when 
1 �= 
2 �= 0, the symmetry group reduces to C3z. As a

result of these symmetry properties, as derived in Appendix C

of the Supplemental Material [72], we expect the conductivity

tensor to satisfy

σ y
xx = −σ y

yy = σ y
xy = σ x

yx �= 0,

σ x
yy = −σ x

xx = σ y
yx = σ y

xy = 0 (13)

when 
1 = 
2 �= 0. On the other hand, for 
1 �= 
2, we have

σ y
xx = −σ y

yy = σ y
xy = σ x

yx �= 0,

σ x
yy = −σ x

xx = σ y
yx = σ y

xy �= 0. (14)

Indeed these group-theory-based conclusions can be explicitly

checked through evaluation of Eq. (10). When 
1 = 
2 = 0

inversion symmetry is unbroken and the conductivity tensor

vanishes.

IV. SHIFT CURRENT IN THE NONINTERACTING CASE

In this section, we investigate how this shift current

changes with different parameters of the system, for now in

the absence of electron-electron interaction. We identify two

different contributions to the photocurrent in the presence of

linearly polarized light: (i) those originating from transitions

from a flat band to another flat band, which is referred to as

the FF contribution, and (ii) those arising due to transitions

between a flat band and a dispersive band, which is referred

to as the FD contribution. Both are schematically depicted in

Fig. 2(a), where we have explicitly summed up the contribu-

tion from two valleys.

The frequency dependence of the second-order conduc-

tivity is dictated by the integrand
∑

m,n fmnRααμ
mn δ(ω − εmn).

For the cases of flat-to-flat transitions, as expected, the peak

frequency is close to the average gap between two flat bands

as shown in Fig. 2(b), and the obtained second-order conduc-

tivity looks almost identical for all twist angles away from the

magic angle. This result is to be expected as the TBG con-

tinuum model (near the magic angle) for various θ produces

qualitatively similar band structures (and wave functions) up

to an overall scale factor. Furthermore, the peak of the re-

sponse in Fig. 2(b) occurs near ν ≈ 2, which corresponds to

the filling associated with the van Hove singularity location

ν ≈ 1.9 for our continuum model parameters (cf. Supplemen-

tal Material Fig. S1 for a chemical level assignment for each

filling). As the (u, u′) parameters of Eq. (2) are kept constant

for all θ , this location of the van Hove singularity will remain

at the same filling, further demonstrating the similarity of the

response for a wide range of angles.

In addition to being sensitive to the energy gap between

flat bands, the overall behavior of second-order conduc-

tivity also depends on the k-space profile of the quantity∑
m,n fmnRααμ

mn δ(ω − εmn), which we refer to as the shift-

vector integrand. An important point to notice is that the

profile of the shift-vector integrand, Rααμ
mn , in momentum

space peaks around the μ points and has equal regions of

positive and negative values as shown in the middle panel

of Fig. 2(d). However, the integral in Eq. (10) also has a
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(a)

(b)

(c)

FIG. 3. Interaction-induced modifications of band structure, second-order conductivity, shift vector, and interband Berry connection for

flat-to-flat band transitions. (a) Band structure with Hartree corrections. All curves are shifted to the same energy at κ ′. Note how as

filling increases (decreases), the electron (hole) flat band flattens and the hole (electron) band broadens. (b) FF contribution to shift-current

conductivity for the noninteracting case (upper panel) and the interacting case (bottom panel). Electron-electron band flattening increases the

overall magnitude of the response and narrows the resonance in frequency. (c) k-space profiles of the shift vector Syx
mn in units of the lattice

constant of the monolayer graphene lattice, interband Berry connection magnitude square, |Ax
mn|2, the integrand Rxxy

mn , and energy contours for

ε f d in k space for the transition between two flat bands at four different fillings used to calculate shift-current response in Eq. (10). It is worth

noticing that the shift vector can be orders of magnitude larger than the lattice constant a. This is expected as the Berry connection is roughly

of the order of the lattice constant of the moiré lattice.

δ(ω − εmn) factor, and the energy contours for a given val-

ley are not symmetric about kx = 0, which results in a large

net contribution whenever the filling is nonzero as shown

in Fig. 2(d) (left and right panels). This imbalance between

positive and negative regions is more prominent for the fillings

ν ≈ 2, which results in a significant contribution from the

regions near the μ point (see later discussion surrounding

Fig. 5). It is worth noticing that these regions are extremely

flat (as they lie in the vicinity of the van Hove singularity)

and thus contribute heavily due to the large density of states.

The shift vector from the ζ = −1 valley is opposite in value

to the shift vector from the ζ = +1 valley, but at the same

time the energy contours are time-reversal partners of each

other, which results in the same contribution to second-order

conductivity. We can apply similar arguments to conclude

that the contribution from shift vector integrand Ryyx would

vanish as the energy contours are symmetric about ky = 0 but

Ryyx(kx, ky) = −Ryyx (kx,−ky ). This is to be expected from the

symmetry analysis of Sec. III D, but here it is demonstrated as

an explicit consequence of the integrand Rααμ.

In fact, the frequency dependence of the photoresponse

for the noninteracting model is largely decided by the gap,

which can be tuned by improving the lattice alignment be-

tween between the hBN layers and the TBG sample. In

our plots we considered a sublattice offset 
 = 5 meV for

both layers, which results in a gap of about 10 meV, and

thus the contribution from flat-to-flat band transitions peaks

around 10 meV. We present our results for other sublat-

tice offset values in Fig. S2 of the Supplemental Material

[72]. We notice that the frequency response can be tuned

by varying the sublattice offset. However, as we keep on

increasing 
, we notice that the second-order response starts

to diminish. This is to be expected as in addition to a

suppression coming from the energy denominators exem-

plified in Eq. (11), the wave-function overlap between the

bands decreases and the bands become more decoupled with

increasing 
.

An important point to notice about the flat-flat contribution

is that it indirectly depends on the presence of dispersive

bands. The shift vector between two flat bands has a contri-

bution from virtual transitions to dispersive bands as evident

from the second term in Eq. (11) even though we are focusing

here on direct flat-to-flat transitions. As a result, the number

of dispersive bands also plays an important role in deciding

the behavior of the shift vector originating from transitions

between the two flat bands. In our simulations we found that,

to achieve convergence of the second-order conductivity, it

was necessary to include ten dispersive bands while evaluating

the shift vector using the expression in Eq. (11) (where virtual

transitions are captured by the second term).

We now focus on another contribution to second-order

conductivity that comes from real transitions between a flat

band and a dispersive band depicted by orange arrows in

Fig. 2(a) (which we refer to as FD). In this case, the integrand
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∑
mn fmnR

xxy
mn δ(ω − εmn) (we include those indices which ac-

count for transitions between flat and dispersive bands) is

concentrated around the γ point in k space [Fig. 2(e)], and

thus we observe a significant nonzero contribution only when

the Fermi level lies between a flat band and a dispersive band.
Just as in the case of the flat-to-flat response in Fig. 2(b),

we can similarly extract the θ -independent form of the pho-
toresponse corresponding to flat-to-dispersive transitions. As
expected from Eq. (11), the integrand R

xxy
mn decreases as 1/ε2

f d ,
where ε f d is the gap between the flat band and the dispersive
band. This gap shows a very strong dependence on twist angle
θ as it increases sharply with the increase in mini-BZ size. The
integral also carries an additional length-scale dependence.
Hence, to present results in a twist-angle-independent manner,
we rescale the response by a prefactor ε2

f d/LM , where LM is
the moiré length as shown in Fig. 2(c). Although the main plot
shown in this figure was obtained for the twist angle θ = 0.8◦,
it looks quantitatively identical for all other twist angles near
the magic angle. As evident from the behavior of the scal-
ing factor ε2

f d/LM , the second-order conductivity is orders of
magnitude larger for θ = 0.8◦ in comparison to θ > 1◦, and
the peak value is approximately equal to 20 000 μA nm V−2

for this twist angle, which is an order of magnitude higher than
that corresponding to the flat-to-flat transitions in Fig. 2(b).
We also highlight that the largest response is seen at a fre-
quency corresponding to that of a flat-to-dispersive band
gap, ω = ε f d , but additional resonances occur at higher fre-
quencies. We will explore these features in the following
section.

Similar to the first contribution to the shift-current

response, the second contribution arising from the flat-to-

dispersive band transitions is influenced by the substrate

properties. When the sublattice offset 
 is increased from

5 to 10 meV, we notice that the FD signal is shifted to a

lower frequency and the peak becomes more pronounced as

shown in Fig. S2(c) of the Supplemental Material [72]. This

can be explained on the basis of the shift in band energies

(Fig. S2(a) of the Supplemental Material [72]). An increased


 increases the gap between flat bands but does not affect

the dispersive bands much. As a result, the gap between flat

and dispersive bands starts to decrease. A smaller value of

the gap, ε f d , shifts the peak to a lower frequency and also

increases the value of the integrand, which scales as 1/ε f d

as mentioned earlier. However, if we increase the sublattice

offset further, it suppresses the overlap between Bloch wave

functions, as discussed previously in the context of flat-to-flat

transitions, and the shift-current signal is diminished as shown

in Fig. S2 of the Supplemental Material [72]. This shows that

the sublattice offset can serve as an important knob to tune

the optical response. Additionally, the direction of the current

density and its relation to the polarization of the EM field can

also be modified by changing the sublattice offset indepen-

dently in two layers. As discussed in Sec. III D, the constraints

on the second-order conductivity tensor are different for the


1 = 
2 case and the 
1 �= 
2 case. Here, in Figs. 2–4, we

have considered 
1 = 
2, and thus the only nonzero com-

ponents are σ
y
xx, σ

y
yy, σ

y
xy, σ

x
yx �= 0, which can all be expressed

in terms of σ
y
xx plotted in these figures. We also verified the

relation between different elements as shown in Fig. S3 of the

Supplemental Material [72]. However, for 
1 �= 
2, there are

two independent nonzero elements, which are shown in the

lower panel of Fig. S3.

V. EFFECTS OF INTERACTIONS ON

SHIFT-CURRENT RESPONSE

Next, we discuss how the shift-current response is modified

by electron-electron interactions, which we incorporate by

using the mean-field procedure described in Sec. III B. As

shown in Fig. 1(b), one of the most prominent effects of

interactions is the band flattening of the flat bands near the

γ point causing a large enhancement of the density of states.

Additionally, these interactions also affect the structure of

Bloch wave functions in real space, which modifies the shift

vector.

For the flat-to-flat contribution shown in the noninteracting

case, we noticed that the σ
y
xx peak was significantly larger

for fillings ν ≈ 2 [Fig. 2(b)]. We explained this behavior on

the basis of a significant contribution from the extreme flat

regions around the μ points, corresponding to the van Hove

singularities, as depicted in Figs. 2(b) and 5(a). Upon increas-

ing the filling further beyond these flat regions, the transitions

to these states are Pauli blocked, and they no longer contribute

to the optical response in the noninteracting case. However,

when electron-electron interactions are included in the analy-

sis, we notice that these flat regions around the μ point expand

further in k space as shown in Fig. 3(a) until they span the

whole mini BZ (when the γ point is locally flat). Now, these

extremely flat regions can participate in band transitions even

at higher fillings. It consequently affects the peaks at larger

fillings, e.g., |ν| > 3, which not only increase in strength but

also shift in frequency and coincide with the peaks at fillings

|ν| = 1.5, 2, c.f. Fig. 3(b). This behavior clearly arises due

to the increased density of states coming from Hartree band

flattening that shifts van Hove singularity to higher fillings

[cf. Supplemental Material Fig. S1(b) for a chemical level

assignment for each filling]. Additionally, we also notice a

change in the profile of the flat-to-dispersive contribution of

the integrand
∑

mn R
xxy
mn δ(ω − εmn) along the γ -μ line which

leads to an increased asymmetry in positive and negative

regions of the mini BZ with increasing |ν| as depicted in the

third column of Fig. 3(c), and hence an enhanced response.

These interaction-induced changes in band structure also

affect the contribution coming from transitions between flat

and dispersive bands. One obvious modification arises from

the changes in band structure which are quite prominent

around the γ point. This region was the hot spot for the

FD contribution in the noninteracting case as discussed in

Sec. IV and shown in Fig. 2(e). The Hartree corrections to the

noninteracting Hamiltonian increase the gap at the γ points.

This correction also results in an increased band flattening of

dispersive bands, which in turn decreases the gap significantly

in a large region of the mini BZ around the μ points as shown

in Fig. 4(a).

These Hartree corrections to the band structure and Bloch

wave functions also modify the shift-current integrand, Rxxy.

Its momentum profile exhibits a significant increase in regions

away from the γ point as shown in Figs. 4(d)–4(g) and 6(b).

These factors give rise to some unexpected features in the

second-order conductivity response. We can now observe a
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(a) (b) (c)

(d) (e)

(f) (g)

FIG. 4. Interaction-induced modification of band structure, second-order conductivity, shift vector, and interband Berry connection for flat-

to-dispersive band transitions. (a) Band structure with Hartree corrections showing flat and dispersive bands, (b) FD contribution to shift-current

conductivity for the noninteracting case, and (c) FD contribution when Hartree corrections are included. Note the appearance of additional

peaks in (c) as compared with (b). (d)–(g) Shift vector Syx
mn, interband Berry connection magnitude square, |Ax

mn|2, the integrand Rxxy
mn , and energy

contours for ε f d in k space for the four FD transitions, where (d) and (e) represent transitions between the hole flat band and hole dispersive

bands and (f) and (g) describe transitions between the electron flat band and the electron dispersive bands.

reasonably large contribution at fillings less than |ν| = 4,

which arises due to the spreading of R
xxy
mn in the mini BZ as

shown in the bottom panel of Fig. 6(b).

Arguably, however, the most important role (at least ex-

perimentally) of these filling-dependent corrections is the

appearance of new features in the second-order shift-current

conductivity. Specifically, there is also a second peak, in

Fig. 4(c) at ω ≈ 60 meV, which has the opposite sign to

the peak at ω ≈ 25 meV. We attribute this second peak to

transitions that involve van Hove singularity points of the

flat band as their frequency is quite close to the energy gap

around those k points. This is further substantiated by the

013164-9



CHAUDHARY, LEWANDOWSKI, AND REFAEL PHYSICAL REVIEW RESEARCH 4, 013164 (2022)

(a)

(b)

FIG. 5. Comparison between the momentum space profile of the FF contribution of shift-current conductivity for the noninteracting

and interacting case at peak frequencies for different filling factors. The flat-to-flat band transition contribution to the peak of second-order

conductivity from different k points within the mini BZ at different filling factors for the (a) noninteracting model and (b) interacting model

with Hartree corrections. In each set of panels (consisting of an upper and a lower panel), the upper panel shows the variation of the shift-current

conductivity with frequency at a given filling, and the lower panel shows the k-space profile of the shift-current integrand from Eq. (10) for

the flat-to-flat band transitions at frequencies corresponding to the dashed line in the upper panel. We notice a significant increase in the

contribution from the regions near the μ point which mainly arises from the band-flattening effect of interactions.

fact that the integrand in these regions is opposite to that of

the contribution from the γ point as shown in Fig. 6(b) and

the third column of Figs. 4(e) and 4(f). We argue that this

enhanced response and the appearance of the second peak can

act as a probe of interaction-induced changes to both the band

structure and the quantum geometry. Most crucially, however,

this additional peak occurs at frequencies that far exceed those

characteristic frequencies of flat-to-flat band transitions (a few

meVs), placing it more firmly in the characteristic range of

optical experiments (tens of meVs).

VI. DISCUSSION

In this paper, we presented a detailed analysis of the shift-

current response in TBG and investigated the role of twist

angle, doping, encapsulation environment, and interactions

in the shift-current response of twisted bilayer graphene. We

identified two different contributions: one arising from the

transitions between two flat bands and another from the tran-

sitions between a flat band and a dispersive band as shown

in Fig. 1. In the absence of interactions, the first and second

contributions result in a second-order conductivity with peak

values of ∼1000 and ∼10 000 μA nm V−2, respectively, with

the typical frequency dependence tunable by changing the

twist angle and the sublattice offset. This giant photoresponse

arising from the nontrivial band topology of flat bands in

TBG renders it an exceptional material for photovoltaic ap-

plications in the terahertz range. Additionally, we showed that

interactions can significantly alter the photoresponse of TBG.

This opens up a route for probing interaction-induced changes

to band structure and quantum geometry with the help of

optical probes.

Alongside the shift-current response, the circular photogal-

vanic effect (CPGE) and, generally, injection photocurrents

also occur in materials with Dirac cone dispersions. The injec-

tion current emerges from the difference in group velocities

between the original and excited bands and is proportional

to the electronic relaxation time. It is usually the domi-

nant second-order photocurrent response in Weyl semimetals

[24,40]. It requires, however, circularly polarized light or

tilted Dirac cones illuminated by linearly polarized light to

be nonzero. Our work considered only the linear polarization

response and ignored these additional terms, which we expect

are either subleading in TBG or vanish by symmetry consid-

erations. Specifically, for a two-dimensional system with C3z

symmetry, even the circular polarization cannot generate an

in-plane injection current at normal incidence (see Ref. [82]

and discussion in Appendix C of the Supplemental Material

[72]). As such, unless C3z symmetry is lifted, for example,

by applying a strain (as recently shown in Ref. [83]) or by

013164-10



SHIFT-CURRENT RESPONSE AS A PROBE OF QUANTUM … PHYSICAL REVIEW RESEARCH 4, 013164 (2022)

(a)

(b)

FIG. 6. Comparison between the momentum space profile of the FD contribution of shift-current conductivity for the noninteracting and

interacting case at peak frequencies for different filling factors. The flat-to-dispersive band transition contribution to the peak of second-order

conductivity from different k points within the mini BZ at different filling factors for the (a) noninteracting model and (b) interacting model

with Hartree corrections. In each set of panels (consisting of an upper and a lower panel), the upper panel shows the variation of the shift-current

conductivity with frequency at a given filling, and the lower panel shows the k-space profile of the shift-current integrand from Eq. (10) for

the flat-to-dispersive band transitions at frequencies corresponding to the dashed line in the upper panel. We notice a significant increase in the

contribution from the regions near the μ point which mainly arises from the band-flattening effect of interactions.

interactions [84–86] beyond the Hartree correction considered

here, we expect the injection current to vanish under these

conditions in TBG.

Another interesting aspect is the dependence of the shift

vector on the nature of the perturbation, i.e., the momentum

derivative of the excitation matrix phase [87]. It could be

interesting to contrast this contribution to the shift current

with currents induced by other nonequilibrium perturbations

arising from coupling between EM fields and other de-

grees of freedom such as orbital or phononic degrees of

freedom.

Furthermore, in this paper we mainly focused on the

photoresponse originating from interband processes. How-

ever, if the spatial symmetry of the system is lowered

further by breaking some mirror symmetries, we could also

get a second-order contribution from intraband processes

which are captured by the Berry curvature dipole [27]. Such

semiclassical processes can be made to contribute to the non-

linear optical response by applying a strain as discussed in

Refs. [36,88]. In TBG, we expect the strain-induced contribu-

tion to be of the same order of magnitude [51], and therefore

it should not alter our results drastically.

Another interesting effect is the impact of valley polariza-

tion on the shift current and the photoresponse in general.

Our shift-current expression considered in Eq. (10) has equal

contributions from both valleys if the Dirac cones of the un-

derlying graphene layers are not tilted. However, in addition to

the shift-current contribution which comes with a Dirac-delta

function, the second-order conductivity also has a contribution

from the principal part as presented in Eq. (B22) of Ap-

pendix B of the Supplemental Material [72]. This contribution

is equal and opposite to that from two valleys and hence can

affect the shift-current response for a valley-polarized setup

only. This valley dependence would be even more apparent

for injection currents.

As pointed out earlier, the shift currents are a reflection

of the quantum geometry of the electronic bands. The effect

is also clearly related to the charge distribution of the Bloch

wave functions in the moiré unit cell. Indeed, as argued in

Sec. III B, different momentum states lead to a different spatial

distribution of charge; for example, for flat bands, κ , κ ′-point

states give rise to charge buildup near AA sites, while γ -point

states cause a buildup of charge in a ring surrounding AA

sites. For the first dispersive bands, however, the relation

flips: κ , κ ′-point states give rise to charge buildup in a ring

surrounding AA sites, while γ -point states lead to a charge

buildup at the AA sites. We propose that the qualitatively

sharp resonances seen in Fig. 4 correspond to the transitions

from an AA charge profile to that of a ring surrounding the

AA sites or vice versa, but the precise relation remains to be
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explored (see Appendix D of the Supplemental Material [72]

for further discussion). In future work, it would be fascinating

to consider what additional effects emerge from these unusual

rearrangements of the electronic probability density within the

moiré unit cell.
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