SMART: A Heterogeneous Scratchpad Memory Architecture for
Superconductor SFQ-based Systolic CNN Accelerators

Farzaneh Zokaee
fzokaee@iu.edu
Indiana University
Bloomington, USA

ABSTRACT

Ultra-fast & low-power superconductor single-flux-quantum (SFQ)-
based CNN systolic accelerators are built to enhance the CNN infer-
ence throughput. However, shift-register (SHIFT)-based scratchpad
memory (SPM) arrays prevent a SFQ CNN accelerator from exceed-
ing 40% of its peak throughput, due to the lack of random access
capability. This paper first documents our study of a variety of
cryogenic memory technologies, including Vortex Transition Mem-
ory (VTM), Josephson-CMOS SRAM, MRAM, and Superconducting
Nanowire Memory, during which we found that none of the afore-
mentioned technologies made a SFQ CNN accelerator achieve high
throughput, small area, and low power simultaneously. Second, we
present a heterogeneous SPM architecture, SMART, composed of
SHIFT arrays and a random access array to improve the inference
throughput of a SFQ CNN systolic accelerator. Third, we propose a
fast, low-power and dense pipelined random access CMOS-SFQ ar-
ray by building SFQ passive-transmission-line-based H-Trees that
connect CMOS sub-banks. Finally, we create an ILP-based com-
piler to deploy CNN models on SMART. Experimental results show
that, with the same chip area overhead, compared to the latest
SHIFT-based SFQ CNN accelerator, SMART improves the inference
throughput by 3.9x (2.2X), and reduces the inference energy by
86% (71%) when inferring a single image (a batch of images).

CCS CONCEPTS

« Hardware — Quantum technologies; Static memory; Logic
circuits; Memory and dense storage.

KEYWORDS

scratchpad memory, single-flux-quantum, CNN accelerator

ACM Reference Format:

Farzaneh Zokaee and Lei Jiang. 2021. SMART: A Heterogeneous Scratchpad
Memory Architecture for Superconductor SFQ-based Systolic CNN Accel-
erators. In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO °21), October 18-22, 2021, Virtual Event, Greece.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3466752.3480041

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480041

912

Lei Jiang
jlang60@iu.edu
Indiana University
Bloomington, USA

1 INTRODUCTION

Deep learning has been the dominant approach to solving a wide
variety of problems such as computer vision [24], natural language
processing, and recommender systems. However, an inference of
convolutional neural networks (CNNs) requires a multitude of com-
puting-intensive convolutions. For instance, an AlexNet inference
[24] costs 1.5 billion multiply-accumulate (MAC) operations in-
volving 61 million parameters. As the era of Moore’s law draws
to a close, recent work [17] builds a systolic CNN accelerator, Su-
perNPU, to process CNN inferences by superconductor SFQ logic.
The SFQ technology [30, 57] enables a low-level voltage impulse-
driven switching, so that SFQ-based designs can achieve extremely
high frequency (e.g., ~ 70 GHz) but consume only tiny energy (e.g.,
1071 J per switching). SuperNPU [17] is designed to run at 52 GHz
by consuming only 1.9 W power. Compared to the state-of-the-art
(SOTA) CMOS TPU [21], SuperNPU improves the batch inference
throughput of various CNNs by 23x.

Unfortunately, the inference throughput of SFQ-based systolic CNN
accelerators is seriously limited by their on-chip scratchpad mem-
ory (SPM) arrays. SFQ logic gates can naturally implement the
gate-level pipelining, i.e., a clock pulse triggers a SFQ gate to trans-
fer the stored SFQ to its adjacent gates. By a pulse-driven clock,
SFQ circuits flow many data pulses through one wire simultane-
ously to achieve high operating frequency. However, SFQ-based
decoders cost significant hardware overhead [36, 37], because the
maximal fan-out of a SFQ gate is only 2 [40]. Therefore, it is eco-
nomical and convenient to implement shift-register-based memory
(SHIFT) arrays comprising only serially-connected delay-flip-flops
for a SFQ systolic CNN accelerator, since SHIFT fully utilizes the
SFQ gate-level pipelining and does not require complex controls.
However, SHIFT makes the SOTA SFQ systolic CNN accelerator
SuperNPU [17] achieve only 40% of its maximal inference through-
put when processing a large batch of images, due to the lack of
random access capability. Moreover, SuperNPU can only reach 16%
of its peak inference throughput when inferring a single image.
Nowadays most clients are sensitive to the end-to-end latency of
cloud-based services. It is more likely for data centers [13] to pro-
cess CNN inferences with only small batch sizes, e.g., one image,
simply because they are required to respond the clients rapidly and
have no time to form a large batch.

It is difficult to construct a fast, dense, and power-efficient on-
chip SPM architecture with random access capability for SFQ CNN
accelerators by prior cryogenic memory technologies. SFQ logic
works only at the 4K cryogenic temperature, so the SPM of a SFQ-
based CNN accelerator has to use cryogenic memory technologies
that can maintain their functionality and reliability at 4K. SOTA

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

clock
SFQ .~‘super|cond. input “* " Joutput clock _| l l
. ‘ > insulator input _i1 ‘;0‘5
-..|supercond| JJ}~ “$21) T
i) = SFQ < output

(a) A SFQ ring. (b) A SFQ DFF. (c) DFF operations.

Figure 1: Josephson Junction and SFQ Delay-Flip-Flop.
cryogenic memory technologies include Vortex Transition Mem-
ory (VIM) [44, 46], Josephson-CMOS SRAM [11, 37, 48], Magnetic
Memory (MRAM) [38], and Superconducting Nanowire Memory
(SNM) [3, 61]. First, prior cryogenic memory technologies use SFQ-
based decoders, thereby suffering from large hardware overhead,
due to the fan-out limitation of SFQ gates. Second, the scalabil-
ity of VIM is poor, although accessing a VTM array costs only
0.1ns. A VTM cell [44] is composed of four Josephson Junctions
(JJs) and occupies 99 ym? at the 600 A /um? technology. A large
capacity VITM-based SPM requires prohibitively large chip area.
Third, Josephson-CMOS SRAM, MRAM, and SNM have too long
access latency to match the ultra-high operating frequency of a
SFQ CNN accelerator. For instance, accessing a 28 MB SRAM array
at 4K requires 2~4 ns, while writing a MRAM or SNM cell costs
>2ns. Such long access latency seriously deteriorates the inference
throughput of a SFQ CNN accelerator.

In this paper, we propose a novel heterogeneous Scratchpad
Memory ARchiTecture, SMART, for SFQ systolic CNN accelera-
tors to improve their inference throughput. Our contributions are
summarized as follows.

e A comparison of cryogenic memory technologies: We com-
pared a variety of SFQ-compatible cryogenic memory technolo-
gies including VTM, Josephson-CMOS SRAM, MRAM, and SNM
on the SOTA SFQ systolic CNN accelerator, SuperNPU. We found
that no prior cryogenic memory technology can support Super-
NPU to obtain high inference throughput, low power consump-
tion, and small hardware overhead at the same time.

o A heterogeneous SPM architecture: We present a heteroge-
neous SPM architecture that combines SHIFT arrays and a random
access-memory (RANDOM) array to support ultra-fast sequential
accesses and fast random accesses. A SFQ CNN accelerator can
store its sequentially accessed data in SHIFT arrays and randomly
accessed data in the RANDOM array separately.

e A pipelined CMOS-SFQ RANDOM array: We propose a dense
CMOS-SFQ RANDOM array for SMART to achieve fast and
power-efficient random accesses. We built a pipelined SFQ-based
H-Tree by SFQ passive transmission lines (PTLs) to decrease the
access latency and energy consumption. Our pipelined CMOS-
SFQ array uses SFQ-based H-Trees to connect CMOS sub-banks,
each of which consists of SRAM cells and CMOS peripherals, e.g.,
row decoders, column multiplexers, and sense amplifiers.

o AnILP-based compiler: We formulated the allocation and prefetch-

ing of input, weight, output, and PSum data to SMART as an
integer-linear-programming (ILP) problem. Our ILP-based com-
piler makes near-optimal schedules for various CNN models on
a SFQ systolic CNN accelerator with SMART.

e Inference throughput and throughput per Watt: We eval-
uated and compared SMART to the SOTA SFQ systolic CNN
accelerator, SuperNPU. Under the same area constraint, com-
pared to SuperNPU, SMART improves the inference throughput

913

Zokaee and Jiang, et al.

10% 1812
Zy Sie
z /"'—_ S1E-16
c 1 g
R S1E-18
T A0
10 1E-20.
6 50 100 150 200 0 50 100 150 200
length (um) length (um)
(a) Latency. (b) Energy.

Figure 2: A comparison between SFQ and CMOS wires.
by 3.9% (2.2%), and reduces the inference energy by 86% (71%)
when inferring a single image (a batch of images).

The paper is organized as: SFQ logic and cryogenic memories are
introduced in Section 2. Section 3 describes design motivation. SM-
RAT is proposed in Section 4. We present experiment methodology
and results in Section 5 and Section 6 respectively. Related work is
presented in Section 7, followed by our conclusion in Section 8.

2 BACKGROUND
2.1 SFQ Technology

Josephson Junction. Superconductor SFQ logic [26, 49] is one
of the most promising emerging technologies for ultra-fast and
low-power computing at cryogenic temperatures. A basic element
of SFQ technology, i.e., a superconductor ring [26], is shown in
Figure 1(a). Instead of voltage levels in CMOS logic, SFQ circuits
use the existence of a single magnetic flux quantum (SFQ) in the
superconductor ring to represent “1” or “0”. A superconductor ring
stores and transfers the SFQ by Josephson junctions (JJs) [50, 51],
each of which consists of a thin insulator sandwiched by two super-
conductors. A JJ can reliably operate at ~ 70 GHz. Each JJ switching
costs only ~ 107177

SFQ Delay-Flip-Flop. To explain the working mechanism of
SFQ logic, we use a SFQ-based delay-flip-flop (DFF) as an example
because of its simple structure, i.e., it consists of only a single
superconductor ring and a clock line. As Figure 1(b) shows, an input
pulse makes the current flowing through the left JJ higher than its
critical current I.. And then, the left JJ produces a voltage pulse,
which is stored in the ring as a SFQ. When a clock pulse arrives,
the right JJ is activated, and the SFQ in the ring is outputted as a
voltage pulse. A SFQ DFF passes a “1” as the existence of the stored
SFQ between two clock pulses, as shown in Figure 1(c). In contrast,
if there is no input pulse during a clock period, no voltage pulse
(“0”) is produced on the output. Several chips [33, 34] composed of
SFQ logic units and memories are fabricated and demonstrated at
tens of GHz.

SFQ Interconnect. SFQ logic components are connected by
active Josephson transmission lines (JTLs) and passive transmission
lines (PTLs) [43]. As Figure 2(a) shows, compared to a CMOS wire,
JTL and PTL enjoy two orders of magnitude shorter latency, since
they have no DC resistance [18, 19]. A PTL requires a much smaller
delay than a JTL, particularly when the length is large. Furthermore,
the energy comparison between CMOS and SFQ interconnects is
shown in Figure 2(b). The energy of a CMOS wire is roughly six
orders of magnitude greater than the energy dissipated by a PTL.
To implement a long line, a JTL consumes 100X more energy than
a PTL.

SFQ Fan-out. Unlike CMOS logic, each SFQ gate can drive only
one other node [22, 40], due to the use of SFQ pulses. That is to say,

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO °21, October 18-22, 2021, Virtual Event, Greece

output R/WAABB T
nTron [SFQMUX Vy 0017 latch C'?Ck
- ’ | TTNOR outputy
ST cmos & & Toboutput; 3,
28|:| srRam o SRe (LI [TNORRT]POtRth 5
Lol | array | [[NORL-T{opoutput: =
el
srq-Li cMos =1
DC/SFQ | NORIe]
input = L4 L4 .
(a) shift-register (b) Josephson- (c) nTron (d) SFQ 2-to-4 decoder (e) SHE-MRAM (f) superconducting

-based memory CMOS memory

nanowire memory

Figure 3: Various cryogenic memory technologies and their components.

the fan-out of a SFQ gate is only one. If a gate needs to have >1 fan-
out, a SFQ splitter is required to be inserted at the output of the gate
to enable a fan-out of two. To support additional fan-outs, a binary
tree of SFQ splitters can be used. Because of the fan-out constraint,
it is expensive to implement peripherals of a memory array by SFQ
logic. For instance, a SFQ 4-to-16 decoder fabricated by the NEC Nb
standard process occupies 885 pmx350 ym [35], i.e., 77K 72, where
we define ¥ as the diameter of a JJ. However, we synthesized a
28 nm CMOS 4-to-16 decoder occupying only 18.7 um?, i.e., 23K F?,
where F is the technology node size, i.e., 28 nm.

CMOS Compatibility. Superconducting SFQ technology is CMOS
compatible [41]. A CMOS SRAM array and SFQ peripherals have
been successfully fabricated on the same wafer [11]. CMOS circuits
optimized for cryogenic temperatures are first fabricated on a wafer.
SFQ logic can subsequently be fabricated on the same wafer using
standard SFQ process technology [11].

Figure 4: SuperNPU: a SFQ-based systolic CNN accelerator
(DAU: data alignment unit).

2.2 SuperNPU and SHIFT

To accelerate deep learning inferences, a recent work [17] proposes
a SFQ systolic CNN accelerator, SuperNPU, as shown in Figure 4.
Due to the gate-level pipelining and the pulse-driven clocking, it
would be easy to implement systolic and pipelined matrix multipli-
cation units that can operate at 52.6 GHz with low power consump-
tion by SFQ logic. Instead of power-hungry hardware-managed
caches [1], SuperNPU uses only SHIFT [17] as its on-chip SPM
arrays to store input, weight, output, and PSum data. As Figure 3(a)
shows, SHIFT comprises serially connected DFFs and a feedback
loop. As Table 1 describes, due to its simple structure, SHIFT can
achieve ultra-short access latency, high density, and low power
consumption. An access to a SHIFT cell requires only 0.02 ns and
consumes only 0.1f]. A SHIFT cell occupies only 39 72, where
¥ is the diameter of a JJ. However, SHIFT arrays seriously limit
the inference throughput of SuperNPU, i.e., sequentially accessing
CNN data makes SuperNPU achieve only 40% of its peak inference
throughput even when processing a batch of images.

2.3 Cryogenic Memory

Though SFQ-based computing logic units [10, 15, 23, 39, 47] achieve
ultra-high operating frequency and low power consumption, it is

914

challenging to implement low-power and dense random-access-
memory (RANDOM) arrays that can match the speed of super-
conducting computing at 4K. There are several types of cryogenic
memory technologies that can serve as on-chip SPM for a SFQ
systolic CNN accelerator.

Vortex Transition Memory (VITM). JJ-based Vortex Transi-
tion Memory (VTM) [44, 46] has been demonstrated at the scale of
512-byte. However, VIM suffers from poor scalability. As Table 1
shows, each VTM cell [44] consists of four JJs and eight inductors,
thereby occupying a cell size of 203 2. A VTM cell must use large
superconductor rings. It is difficult to create a VIM cell in a smaller
size even with self-shunted JJs. As a result, a recent VTM array
demonstration [44] achieves only 0.9 Mbit/cm? functional density.
Accessing a VTM array typically costs 0.1 ns [44, 46].

Table 1: The comparison between cryogenic memories.

[Features [[SHIFT| VTM [SRAM [MRAM [SNM |
Read Latency (ns) 0.02 0.1 2~4 0.1 0.1
Write Latency (ns) || 0.02 0.1 2~4 2 3
Cell Size 3977 [20377 | 146F% | 89F* [547°
Read Energy 0.1fJ | 0.1p] | 0.1p] 1p] | 10f]
Write Energy 0.1fJ | 0.1p] | 0.1p] 8pJ | 10f]
Leakage Power no tiny |medium | tiny | tiny
Random Access no yes yes yes yes

Josephson-CMOS SRAM. Due to the SFQ CMOS compatibility,
prior work [11, 37, 48, 54] builds a Josephson-CMOS memory array
that connects a SFQ decoder and a SFQ multiplexer to a SRAM array
vianTrons [60], as shown in Figure 3(b). These works [11, 37, 48, 54]
have demonstrated that SRAM can reliably operate at 4K but with
faster speed and lower power consumption compared to the room
temperature. As Figure 3(c) highlights, nTron is a superconducting
device whose superconductivity can be switched by the injection of
hot quasiparticles generated at the gate. SFQ circuits can use nTrons
to access CMOS components at 10 GHz [60]. Therefore, it is more
practical to implement large and reliable cryogenic memory arrays
by Josephson-CMOS SRAM, due to the maturity of CMOS SRAM
technology. However, it is important to note that SRAM is slow, e.g.,
accessing a 28 MB SRAM array typically costs 2~4 ns, as shown
in Table 1. Moreover, a SFQ-based decoder [37] costs significant
hardware overhead. Due to the fan-out limitation, as shown in
Figure 3(d), a SFQ-based N -to-2NV decoder requires at least O(2V)
SFQ splitters to distribute its clock pulses. A SFQ decoder [35] is
larger than its CMOS counterpart by multiple times, even if JJ can
be scaled to the same size of a transistor.

Magnetic Memory (MRAM). To build a fast, dense, and power-
efficient cryogenic memory array, recent work [38] suggests a spin
hall effect (SHE) magnetic RAM (MRAM) array, as shown in Fig-
ure 3(e). A SHE-MRAM cell consists of a SHE magnetic tunnel

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

107 10
£10" _— &
3
B0 & 10"
E 1 = g
510 1 5
c c 4
104

107
AR R N AR RIS FEN N

(a) Latency. (b) Energy.

Figure 5: The comparison of SuperNPU with various cryogenic-memory-techno-
logy-based SPM when inferring AlexNet (mem: SPM; matrix: matrix unit).

junction (MT]J) and a superconducting heater-cryotron (hTron) bit-
select element. A SHE-MT]J consists of a MT]J sitting on a metallic
spin hall channel, while a hTron, which is a variant of the nTron,
can be driven by SFQ logic and thus supports sufficient current
to switch the SHE-MT]J. A SHE-MRAM cell is 89 2, as shown in
Table 1. Besides SFQ decoders and multiplexers, a SHE-MT]J array
is connected to row and column driving hTrons. To write a cell, the
SFQ multiplexer sends a triggering pulse to each corresponding
column hTron. The bias current (1) flows through all hTrons in the
column, which are superconducting. A row hTron is triggered by
the SFQ decoder and sends its bias current to all bit-select hTrons in
that row (2). For a hTron which receives both the current from the
column driver and the current from the row driver, a writing pulse
is generated to the SHE-MT]J channel to change the state of the
MT]J (3). The switching of a SHE-MRAM typically costs 2 ns [38].
The reading process is similar to that of writing, except that the
reading current is much smaller.

Superconducting Nanowire Memory (SNM). A Supercon-
ducting Nanowire Memory (SNM) [3, 61] can be also used to build
a cryogenic memory array. As Figure 3(f) shows, each SNM cell has
two hTrons, such that the right hTron has a larger switching cur-
rent and larger inductance than the left hTron. The two hTrons are
connected serially so that both hTrons are modulated by the same
current. The cell has four connections arranged in two electrically
isolated pairs, wherein one is the access port, while the other is the
select port. As Table 1 shows, a SNM cell is only 54 72. To write a
cell, a bias current is applied to the column, and flows through all
the cells within the column, but its amplitude is too small to alter
the state of any cells. A row enabling current is applied to the row.
This weakens the channels of the hTrons within the row, thereby
allowing the write bias to cause the selected cells to switch. A write
operation spends 3 ns [3, 61]. Each read is destructive. After each
read, a write operation is required to restore the data.

3 MOTIVATION

In this section, we present the design motivation by comparing
the inference latency, energy consumption, and area overhead of
SuperNPU [17] with SPMs made by various cryogenic memory
technologies. SuperNPU has two 24 MB SHIFT-based SPMs for
inputs and outputs/PSums, respectively. We used other cryogenic
memory technologies that support random accesses to build a 64-
bank 12 MB input SPM, a 256-bank 16 MB output/PSum SPM, and a
64 KB weight SPM for SuperNPU. We evaluated SuperNPU for one-
image inferences, thus SPMs with such capacities are large enough
for each layer of AlexNet without generating thrashing traffic to
DRAM. The configuration of SuperNPU is shown in Section 5.
Inference Latency. As Figure 5(a) shows, SuperNPU using SH-
IFT spends a huge portion of inference latency in sequentially

915

©
%048'
- 0.67]

€

5 0.47]
<0.27]

SRS WM

Zokaee and Jiang, et al.

cyc coly coly col,

0: 0x989680 0x9897EB 0x989956 ...

‘ [other @l decoder [Jarray Wl matrix ‘
1.0

1: 0x989681 0X9897EC'§UX989957
2: 0x989682 0x9897ED:0x989958 ...
3: 0x989683 0x9897EE: 0x989959 ...

4: -
sequential reads

Figure 6: Memory accesses of
SuperNPU (cyc: cycle; col: PE ar-
ray column).

ra:ndom reads
(c) Area (@28nm).

searching the input and PSum data. If SuperNPU SPMs support
random accesses, the inference latency can be reduced. However,
since Jose-phson-CMOS SRAM, VTM, MRAM, and SNM have much
longer read and write latencies, no prior cryogenic memory tech-
nology can significantly reduce the inference latency. The write
latencies of SRAM, MRAM, and SNM are >2 ns, they prolong the
inference latency of SuperNPU by at least 5x. Only VTM decreases
the inference latency of SuperNPU by 11% over SHIFT, since the
latency saving introduced by its random access capability is larger
than the slowdown caused by its prolonged access latency. If there
were a random access array with 0.02 ns latency, SuperNPU would
have eliminated memory access stalls. Such fast random access
arrays can reduce the inference latency of SuperNPU by 94%.

Inference Energy. The energy comparison of various types of
on-chip SPM arrays is shown in Figure 5(b). Since all the other
cryogenic memory technologies have larger read and write energy
than SHIFT, they enlarge the energy of an AlexNet inference by
30%~2.5% over SHIFT. Although CMOS SRAM dissipates large
leakage power at room temperatures, the cryogenic temperatures
substantially reduce leakage by >90% [28]. As a result, the large
write energy makes cryogenic SHE-MRAM consume even more
energy than Josephson-CMOS SRAM.

Area Overhead. The area comparison between various types of
on-chip SPM arrays is highlighted in Figure 5(c). SuperNPU [17] as-
sumes JJs can be scaled to 28 nm. We adopted the same assumption
for SHIFT-, MRAM-, SNM-, and VTM-based SPM arrays. We also
assumed SRAM arrays are fabricated at 28 nm. The SHIFT SPMs of
SuperNPU have few SFQ decoders and multiplexers to select banks,
each of which is a long lane of SHIFT memory cells. Although the
capacity of MRAM-, SNM-, and VTM-based SPM arrays is 58% of
that of SHIFT, they can reduce from 8% to 45% of the area. This is
because they use more SFQ peripherals and have larger cells, which
are demonstrated in Table 1. Particularly, SFQ-based decoders cost
16%~ 28% of the area in non-SHIFT arrays. Due to the fact that
Josephson-CMOS SRAM has the second largest cell size, compared
to SHIFT, the Josephson-CMOS SRAM array with a 58% capacity
reduces the area by only 22%.

Drawbacks of Prior Cryogenic Memories. Compared to the
perfect pipeline without memory stall, the SHIFT-based SPMs pro-
long the inference latency of SuperNPU by 17X, due to the fact
that it only supports sequential reads. As the memory traces in
Figure 6 show, when SuperNPU reads weights, it has both sequen-
tial and random reads. Although SHIFT-based SPM can efficiently
process sequential reads, it also has to move many unnecessary bits
to support random accesses. Josephson-CMOS-SRAM-, MRAM-,
SNM-, and VTM-based SPM arrays can perform random accesses,
but they cannot achieve reasonable latency reduction, since their

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO °21, October 18-22, 2021, Virtual Event, Greece

10'3 CYC rowW, rOWny coly
g . i 1: fetchin cycle-1 0x989680
£10 2: 0x989681
E10 Z : 0x9§?682
2 . weight

1 : finput

AR A S AN 4: ...0x2A1 Ox2A0....
Figure 8: SMART prefetching
(cyc: cycle; row: PE array row;

col: PE array column).

Figure 7: The inference laten-
cy comparison of a heteroge-
neous SPM.

read or/and write latency are too long. MRAM and SNM are bot-
tlenecked by their write latency and energy. Despite that VTM
has the shortest access latency among prior cryogenic memory
technologies, it is still not fast enough to make an observable la-
tency reduction. Furthermore, the large VIM cell size significantly
enlarges the array area. Thus, although the SFQ peripherals of
Josephson-CMOS SRAM are very fast, CMOS H-Trees [28] inside
SRAM arrays greatly degrade the access latency and energy. The
area efficiency of Josephson-CMOS-SRAM-, MRAM-, SNM-, and
VTM-based SPM arrays are limited by SFQ peripherals. In sum-
mary, no prior cryogenic memory technology is a good candidate
to implement on-chip SPMs for SuperNPU.

4 SMART

In this section, we propose a heterogeneous SPM architecture, SM-
ART, in order to reduce the inference latency of a SFQ systolic
CNN accelerator. SMART is composed of SHIFT arrays performing
sequential accesses and a random-access-memory (RANDOM) array
supporting random accesses. We further present a fast RANDOM
array, i.e., a pipelined SFQ-CMOS array, for SMART to minimize
the inference latency, energy and hardware area. A pipelined SFQ-
CMOS array uses SFQ PTLs and splitter units to implement H-trees
connecting CMOS sub-banks to achieve small access latency and
energy. At last, we propose an ILP-based compiler to deploy various
CNN models on SMART.

4.1 A Heterogeneous SPM Architecture

We present a heterogeneous SPM architecture consisting of SHIFT
arrays and a RANDOM array for a SFQ systolic CNN accelerator.
For each convolutional layer, SHIFT arrays store all data receiving
sequential accesses, while the RANDOM array is used to support
random accesses during an inference. There are two challenges we
face when trying to use this heterogeneous SPM architecture to
effectively reduce the inference latency of the SFQ systolic acceler-
ator. First, though SHIFT arrays process sequential accesses well,
the inference latency of the accelerator is still heavily influenced
by the access latency of the RANDOM array. However, it is difficult
to build a fast, dense, and power-efficient RANDOM array by prior
cryogenic memory technologies. Second, there is no compilation
technique that can deploy a CNN and enable prefetching on the
heterogeneous SPM architecture. Although data allocation to SPMs
has been heavily studied before, prior work [8, 27, 45, 53, 55] focuses
only on general-purpose applications running on CPUs.

We elaborate the two challenges in applying heterogeneous
SPMs on SuperNPU in Figure 7, where we assume a perfect data al-
location for both sequentially accessed data and randomly accessed
data. We consider three 32 KB SHIFT arrays for inputs, outputs

‘ W other Bl sen B BL[cdec M H-tree [Jarr ‘

Jiinimin
280% ’E

S 60%

o

© 40% e

o S spl|tter

-

520%
0%

IEk
E $EE

unit
latency

energy
Figure 9: The latency & ener-
gy of CMOS H-Trees in 28 MB
Josephson-CMOS array with Figure 10: A CMOS-SFQ array.
256 banks.
& PSums, and weights as their SPMs, respectively. All CNN data
share a 28 MB 256-bank RANDOM array in the heterogeneous SPM
architecture. The RANDOM array can be built by Josephson-CMOS-
SRAM, MRAM, SNM, or VTM. We call these heterogeneous SPM
schemes hSRAM, hMRAM, hSNM, and hVTM in Figure 7. Com-
pared to SHIFT, hSRAM, hMRAM, and hSNM prolong the inference
latency by 3.36X, 2.59%, and 2.38X, respectively. hVTM reduces
the inference latency by 70% over SHIFT, due to its short access
latency. We find that the RANDOM array access latency in SMART
heavily influences the inference latency of the accelerator. This
is because for a weight-stationary systolic CNN accelerator, most
accesses to input, and output & PSum data are random. The systolic
accelerator maintains an iterative computing flow, where weights
are first deployed on the matrix unit, inputs are fetched to start
a systolic computation, and then the next iteration continues, as
shown in Figure 8. Considering the fact that there is no dependency
between inputs and weights, if the prefetching of inputs to its SPM
is enabled, we can start the systolic computation earlier. As Figure 7
shows, the prefetching (hWWTM-+p) further reduces the inference
latency by 64.4% over hVTM. However, no prior SPM management
technique supports prefetching for an accelerator.

B

@Eg@

subbank

4.2 A Pipelined CMOS-SFQ Array

4.2.1 The limitations imposed by CMOS H-trees. In an array, both
the address and data of a memory request are routed by H-Trees [31],
which make the memory request consistent in its access to all MATs.
A memory array has two separate H-Trees including a request net-
work and a reply network. Data and addresses are transferred from
the edge of the array to MATs by the request network, while data
are sent out from MATSs by the reply network. Both the request and
reply H-Trees are composed of two parts including a network con-
necting the array edge to the bank edge, and a network connecting
the bank edge to MATs.

The Josephson-CMOS array access latency can be divided into
SFQ decoder delay, CMOS H-Tree delay, CMOS decoder delay,
CMOS wordline delay, CMOS bitline delay, CMOS sense ampli-
fier delay, and SFQ DC/SFQ delay. Throughout the components,
the CMOS H-tree dominates the latency and energy consumption
of a large Josephson-CMOS SRAM array at 4K. As Figure 9 shows,
the H-tree costs 84% of the access latency, and 49% of the access
energy in a 256-bank 28 MB Josephson-CMOS SRAM array. Partic-
ularly, in the sub-10nm regime, the resistance of copper wires [5]
exponentially increases as the process technology scales. Therefore,
the latency and energy consumption of H-trees will become more
significant in Josephson-CMOS arrays at future process nodes.

916

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Zokaee and Jiang, et al.

N
SFQ H-tree: sub-

bank to array

CMOS to SFQ

m
stages

nTrony - ¥ address, data,
CMOS MUX = splitter R/W signals
2 [CMOS o o unit o N
: g% SRAM rec gPI SFQ H-tree: array
»O array splitter 2 edge to sub-bank
CMOS SA 8| PTL[drv[drv|PTL| & Eo
DC/SFQ conv -3

N2
[sFatocmos |5{ cMOS sub-bank |

stage stage

(a) CMOS sub-bank (b) splitter unit

(c) an array pipeline

(e) receiver

Figure 11: The components and pipeline of a pipelined CMOS-SFQ array.

energy (pJ)
© o o o
(=] o o o
o - N w

(a) Latency.
Figure 12: The validation of a CMOS sub-bank.

(b) Energy.

4.2.2 A Pipelined CMOS-SFQ Array. Overall Architecture. We
propose a pipelined CMOS-SFQ array as shown in Figure 10 to
reduce the access latency and energy at 4K. Our pipelined CMOS-
SFQ array consists of only CMOS sub-banks connected by SFQ
H-Trees. The design philosophy of our CMOS-SFQ array is differ-
ent from Josephson-CMOS SRAM [11, 37, 48]. To avoid the large
hardware overhead of SFQ decoders, we use SRAM cells and CMOS
peripherals including row decoders, column multiplexers, and sense
amplifiers. We use PTL lines and SFQ-based peripherals including
splitters, drivers, receivers, and nTrons to build SFQ H-Trees. The
major components of our pipelined CMOS-SFQ array can be sum-
marized as follows.

e CMOS Sub-bank: As Figure 11(a) shows, CMOS sub-banks of
a pipelined CMOS-SFQ array are constructed by SRAM cells
and CMOS peripherals including CMOS row decoders, column
multiplexers, and sense amplifiers. To drive the row decoders and
column multiplexers, we use nTron devices to convert the SFQ
memory requests to electrical signals for a CMOS sub-bank. After
a CMOS sub-bank makes the data ready, we also use level-driven
DC/SFQ converters [48] to transform the data in sense amplifiers
into SFQ pulses.

e SFQ H-Tree: We use PTL lines to replace all CMOS (e.g., copper)
lines in a pipelined CMOS-SFQ array. Due to the fan-out limita-
tion of SFQ logic, we add a splitter unit to each position where
the fan-out needs to be increased. The details of a splitter unit
can be viewed in Figure 11(b). In order to pass a SFQ pulse via
a PTL line, we need a driver at the source end and a receiver at
the destination end of the PTL line. A splitter unit consists of a
receiver at the input end, two drivers at the two output ends, and
a splitter connecting them together.

Pipeline. We propose a multi-stage pipeline architecture for
our CMOS-SFQ array in Figure 11(c). To communicate with the
SFQ systolic matrix unit, request SFQ H-trees transfer each mem-
ory request to a sub-bank from the array edge. nTrons are used to
convert the SFQ request to electrical signals that can drive CMOS
arrays to fetch (write) the data from (to) the CMOS sub-bank. If the
request is a read, level-driven DC/SFQ converters are adopted to
convert the electrical signals of the reading data back to SFQ pulses.
Finally, the SFQ data pulses are returned to the systolic matrix unit
via reply SFQ H-trees. Since splitter units in SFQ H-Trees naturally

917

have gate-level pipelining, multiple memory requests can be trans-
ferred simultaneously in the same H-Tree. If we can guarantee all
requests go to different sub-banks, a CMOS-SFQ array can process
these requests in a pipelined way. To decide the frequency of the
pipeline, we identified the operations of nTrons (SFQ to CMOS),
CMOS sub-banks, and level-driven DC/SFQ converters as the bot-
tlenecks. Both a nTron and a level-driven DC/SFQ converter [48]
can complete a conversion around 0.1 ns. We can limit the latency
of each sub-bank within ~0.1 ns by adjusting the number of MATs
inside a sub-bank. Then, a H-Tree operation can be broken into
multiple pipeline stages by inserting SFQ repeaters, each of which
is composed of a driver and a receiver, so that each pipeline stage of
H-tree can also fit into ~0.1 ns. The detailed pipeline design space
exploration is shown in Section 4.2.4. Since all memory accesses
of a systolic CNN accelerator can be known before executions, it
is possible to read (write) a line from (to) a pipelined SFQ-CMOS
array every ~0.1ns via data allocation and prefetching.

4.2.3 Modeling and Validation. Modeling a CMOS Sub-bank at
4K. We adopted the cryogenic memory model, CryoRAM [25] to
model a CMOS SRAM sub-bank. CryoRAM includes a validated
cryogenic MOSFET model cryo-pgen, and a CACTI-based cryo-
genic memory model cryo-mem. Cryo-pgen can derive a variety
of MOSFET characteristics at only 77K. We modified cryo-pgen to
model MOSFET at 4K by adjusting three fabrication-related and
temperature-dependent MOSFET variables including carrier mo-
bility, carrier’s saturation velocity, and threshold voltage based on
recent cryogenic MOSFET data [2, 12]. Then, we plugged the 4K
MOSEFET parameters generated by cryo-pgen into cryo-mem to
study the access latency and energy of a CMOS array at 4K.
Validating the 4K CMOS Sub-bank Model. We validated the
access latency and energy of a CMOS array at 4K generated by

cryo-mem against a published 4K SRAM array demonstration [48]

fabricated at 0.18 ym. As Figure 12 shows, the 4K SRAM demon-

stration has three configurations: an 8 KB sub-bank consisting of
eight MATs, a 128 KB sub-bank containing 32 MATs, and a 2 MB
sub-bank comprised of 128 MATs. The latency values simulated by
our modified cryo-mem are larger than those of the 4K SRAM chip
by 3%~8% as shown in Figure 12(a), since we applied conservative
cryogenic MOSFET parameters to cryo-mem. Our conservative
cryogenic MOSFET parameters also make the energy values of
our modified cryo-mem larger than those of the 4K SRAM chip by
8%~12%.

Modeling a SFQ H-Tree at 4K. The components of a SFQ H-

Tree include the follows.

e PTL: We used micro-strip PTLs [20], due to its small size, better
scalability and simplicity of geometry. A micro-strip PTL can
be represented as a lossless distributed LC network shown in
Figure 11(d). The inductance per unit length of a micro-strip PTL

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators

Table 2: The latency and power of SFQ H-Trees.

Latency | Leakage Dynamic
Component
(ps) | Power (uW) | Power (nW)
Splitter 7 0 0.15
Driver 3.5 0.874 0.181
Receiver 5.25 0 0.275
nTron 103.02 8.8 13
100 447
= = simulated
z gg %, simulated|” ,~ 4.0 ¢ ;oM —
<70 Se elosim |- g36 {—
§ gg v ;;03.2
%gg-—' Pa— ggz,g.ﬁ.i...i
= 0001050304 05060708 ® 0T T]
length(mm) length(mm)
(a) Latency. (b) Energy.

Figure 13: The validation of our SFQ H-Tree model.

(L) [29] is composed of the magnetic inductance introduced by
magnetic fluxes within a superconductive line, and the kinetic
inductance caused by the motion of paired electrons. L can be

calculated as:
1+ ﬁcoth (;—1) + A—zcoth (t—z)]

_ Hoh
Kw h 1 h A

where w is the line width; t; means the thickness of the PTL;
t5 is the thickness of the ground plane of the PTL; K indicates
the fringing field factor; h is the thickness of dielectric; A; and
A2 denote penetration depths of the micro-strip and the ground
plane, respectively.

L (1)

€rEQW

C=
h

(2) Z:\/g 3 T=NVLxC (4)
The capacitance per unit length of a micro-strip PTL (C) can be
calculated by Equation 2, where w and h are defined in Equation 1;
€, is the dielectric constant of the insulation between the line
and ground plane layer; and € is the permittivity of free space.
As Equation 3 shows, the impedance of a micro-strip PTL can
be derived from the inductance and capacitance per unit. The
delay of a micro-strip PTL is a function of total LC, and increases
linearly with the line length as shown in Equation 4, where N is
the number of LC sections in the micro-strip PTL.

o Splitter: Due to the fan-out limitation, a splitter [40] is the core
of a splitter unit used to transform a pulse to two pulses, each of
which can be sent in one direction of a cross-point in the H-Tree.
The structure of a splitter is shown in Figure 11(g), where a SFQ
pulse is converted into two flux quanta. A splitter consists of
three inductors and three JJs. The latency, and dynamic power
of a splitter are shown in Table 2.

e Driver & Receiver: As Figure 11(b) shows, a SFQ pulse is sent
to a PTL by a driver [43] and received by a receiver [43]. A
PTL driver in Figure 11(f) consists of a 2-stage JTL cascaded
with a resistance. The JTL acts as both a buffer and a SFQ pulse
reconstruction device. A receiver composed of a 3-stage JTL is
exhibited in Figure 11(e). The resonance frequency f of a PTL

with a driver and a receiver is defined as f = where T

1
2T+1,°
is the PTL delay, another T avoids the resonance, and fy is the
delay of a driver and a receiver [6]. The operating frequency

of a PTL can be set to at most 90% of f [32]. Otherwise, the

918

MICRO 21, October 18-22, 2021, Virtual Event, Greece

—a 2
E 10y =103 ~ 10%
i G 10} = G 107—cameseme—
S10%—tr——— > ' P
. 13 o T 10—t T 10t
A | E— : S0
et qu_lOr | S] I
ha 5 O B DO & 10 F T 10 e,
PPN =10 751001752700 10" 107 10° 10" 10°
leakage power (mW) energy (nJ) area (mm’)
(a) Latency. (b) Energy. (c) Area.

Figure 14: The design space exploration.

resonance effect on the PTL may cause timing jitters and errors.
In order to increase the frequency of a PTL, we need to insert
more repeaters, each of which consists of a driver and a receiver.
Therefore, a long PTL can be partitioned into shorter segments.
Inserting repeaters into a PTL increases not only the resonance
frequency, but also the power consumption of the PTL. The bias
currents and resistors in the bias network of a driver increase
the static power, while more JJs introduced by repeater insertion
also increase the dynamic power. The area overhead of repeater
insertion is proportional to the number of JJs.

Validating the 4K SFQ H-Tree Model. We implemented our
pipelined SFQ H-Trees (Equation 1~Equation 4) in the CACTI-
based cryogenic memory model cryo-mem [25]. We mainly focus
on validating the new modules added to cryo-mem including PTL
lines and splitter units, each of which consists of a driver, a receiver,
and a splitter. Thus, we used a splitter unit shown in Figure 11(b)
with various PTL lengths to perform the validation. We measured
the latency and energy of passing a SFQ pulse from the top driver
to the bottom right receiver, since the two bottom receivers are
the same. We ran the superconductor SPICE simulator, JoSIM [7],
to validate the results of pipelined CMOS-SFQ arrays generated
by our modified cryo-mem. We assumed Hypres ERSFQ 1.0um
technology [56] to validate the splitter unit. Figure 13(a) exhibits
the latency comparison of a splitter unit with various PTL lengths
between our model and JoSIM, while their energy correlation is
described in Figure 13(b). Compared to the JoSIM HSPICE results,
the latency values of a driver and a receiver estimated by our SFQ H-
Tree model have +6% deviations, particularly when the PTL length
is <0.2mm . The energy values of a SFQ H-Tree predicted by our
model are also close to the JoSIM results with +£11% errors.

4.2.4 Pipeline Design Space Exploration. The design space explo-
ration of our pipelined SFQ-CMOS array is exhibited in Figure 14.
The bottleneck of the entire pipeline of our SFQ-CMOS array lies in
the stage of nTrons, whose latency is 103.02 ps, since we cannot fur-
ther break the latency into multiple pipeline stages. Therefore, the
maximal frequency of our pipelined SFQ-CMOS array is 9.6 GHz.
To achieve the maximal pipeline frequency, we adjusted the size of
CMOS sub-banks and the frequency of SFQ H-Trees. By reducing
the size of CMOS sub-banks, the access latency to sub-banks is
reduced to fit into one pipeline stage, since bitlines and wordlines
in each MAT become shorter. However, the leakage power and area
overhead of a sub-bank increased substantially, since more CMOS
peripherals were added into each sub-bank. On the other hand, we
inserted drivers and receivers to break a H-Tree into more pipeline
stages, each of which has the latency of 103.02 ps. As a result, both
the area overhead and access energy of a pipelined SFQ-CMOS
array increase.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Table 3: The notations of the ILP formulation.

l Notation [[Description]

Memory object: weight («), input (5), output (y),
M
PSum (8)

i The i, edge in the DAG

Is SPM access: load (£), and store (S)
The status of M: in a SHIFT array (H), in a
RANDOM array (R), accesses between H and R
(HR), accesses between H and DRAM (HD),
accesses between R and DRAM (RD)

st

the ny, iteration

[n+1,n+a] n-1 [n+1,n+a] n

€n-1 Ree_!d_ B[n, n+a) 6[n, n+a) Matrfx_ [n+1, n+a] [n+1, n+a]
-y Weights Multiply |
- e -
inszn an iNSzn41 Cannt

Figure 15: The DAG of a convolutional layer.

4.3 A Compiler for Heterogeneous SPMs

We built a novel compiler to allocate and prefetch memory objects
onto SMART composed of SHIFT arrays and a RANDOM array for a
SFQ systolic CNN accelerator by integer linear programming (ILP).
No prior SPM management technique has the ability to schedule
or prefetch memory requests for a systolic CNN accelerator, since
prior work [8, 27, 45, 53, 55] focuses on general-purpose applica-
tions with multiple basic blocks, each of which is an instruction
sequence with no branches in except to the entry and no branches
out except at the exit. A convolutional layer is a 6-nested loop [59]
belonging to a basic block. Our ILP-based compiler aims to allocate
and prefetch memory objects at the instruction level without modi-
fying the computing flow of a systolic CNN accelerator. Instead of
1-byte data, we set the granularity of allocation to memory objects,
each of which is a multi-byte data block with consecutive addresses,
to capture the temporal and spatial locality. Unlike prior SPM man-
agement schemes [8, 27, 45, 53, 55], which assume a memory object
is alive throughout the whole basic block, we performed lifespan
analysis of each memory object on the directed acyclic graph (DAG)
of each convolutional layer to see how many iterations a memory
object can live. Our compiler makes the near-optimal memory ob-
ject allocation and prefetching to SMART on edges of the DAG of
a convolutional layer. We designed our ILP-based technique for
SMART consisting of private SHIFT arrays for inputs, weights, and
PSums/outputs, and a shared RANDOM array for all, to enable data
movements between SHIFT and RANDOM arrays, and to decide
the schedule of a convolutional layer.

Memory Object: We considered weights (@), inputs (), outputs
(y), and PSum (8) results that need to be accumulated as candidates
for SPM allocation. An ideal memory trace including all read and
write accesses can be generated by the accelerator simulator SCALE-
SIM [42] by assuming that there is no delay caused by SPMs and
DRAM. To capture fine-grained spatial and temporal locality, we
grouped consecutive memory addresses across different processing
elements (PEs) or consecutive cycles into one memory object M.
A memory object can be a weight filter kernel, a part of the input
map, or an output channel.

Lifespan Analysis: We performed the lifespan analysis of mem-
ory objects at the instruction level on the DAG of a convolutional
layer, as shown in Figure 15. Unlike prior SPM management schemes

919

Zokaee and Jiang, et al.

[8, 27, 45, 53, 55] compiling complex general-purpose applications

on a CPU, our compiler focuses on each convolutional layer, which

contains only one basic block. To maintain the original computing

flow of the systolic CNN accelerator, a convolutional layer is first

unrolled and compiled into a DAG. Each node in the DAG is an

instruction of the systolic CNN accelerator, e.g., Google TPU [21],

which has several types of CISC instructions as follows.

o Read_Weights: Sending weights to the Matrix Unit.

o Matrix_Multiply: Making the Matrix Unit perform a matrix mul-
tiply from the SPMs into accumulators.

o Activate: Performing activations and poolings.

e Write(Read) Host_Memory: Writing (Reading) data from SPMs

(the CPU memory) to the CPU memory (SPMs).

An edge between two instructions indicates that the destination
node has data dependency on the source node. We annotated each
edge with its related memory objects. For instance, at e2,-1, i.e., the
last edge of the (n — 1), iteration of the layer, the weight objects
(a™) for the next (n;p,) iteration have to be fetched.

Prefetching. Unlike prior SPM schemes [8, 27, 45, 53, 55], we
enable the data fetching of memory objects that will be used in
next several iterations by prolonging the lifespan of each memory
object. For example, in Figure 15, for the first edge ez, of the nyy,
iteration, besides writing the output objects of the previous (n—1),,
iteration (y"~1), our compiler reads the weight objects al"+1-7+al
for next a iterations, the input objects [n.n+a) for current and next
(a — 1) iterations, and the PSum objects slmn+a) for current and
next (a — 1) iterations. The allocation and schedule results achieved
by our ILP-based compiler are only “near”-optimal, since we do not
exhaustively search the best value of a. Instead, we set a fixed value
for a.

ILP Variable: We define binary variables of the ILP formulas to
attain the near-optimal scheme on a SFQ systolic CNN accelerator
with SMART. As Table 3 shows, these variables can be summarized
as M;’sSt, where M canbe a, f8, y, or §; Iscan be L or S; and st can
be H, R, HR, HD, and RD. For instance, if an input memory object is
allocated to the SHIFT array on the i;;, edge of the DAG, we have
pEH = 1and poR = 0. Setting a binary variable of SPM access to 1
indicates a load or store is enabled. For example, f§ LHD _ 4 denotes
loading the input memory object from the DRAM to the RANDOM
SPM on the i;, edge of the DAG.

ILP Objective Function: The objective function is to obtain
the shortest execution time of each convolutional layer on a sys-
tolic CNN accelerator with heterogeneous SPM architecture. The
objective function is summarized as

maxz {TSILIXMi’H+T5 x MR

i Me{a,p,y,6}
- T'HD X MZHD - T,RD X MZRD (5)

HR i,HR _ +HD i,HD
—TE XM =T, T XM

RD i,RD _ nHR i,HR
—Ty7 XM =T x Mg}

where TH (TR) is the reduced latency if a memory object is allocated
to a SHIFT (RANDOM) array instead of the DRAM. THP / TRP
/ THR is the latency of reading a memory object from DRAM /
DRAM / a RANDOM array and writing it to a SHIFT / RANDOM /
SHIFT array. TP / TRD / THR is the latency of writing a memory

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO °21, October 18-22, 2021, Virtual Event, Greece

10? glég SHIFT
3104 — H ! W H-Tree
> o 807y
%104 - 2 6ol [other
% 10Ql = 5 404 l dec

Qo
1 — 201 Harray
10 T J 1 i !
38A\<3'S\A\§6\<B'S\A\ilgaé%\ég—%“‘obw 5 O W matrix
A

SuperNPU SMART

Figure 16: The energy.

object back to DRAM / DRAM / a RANDOM array from a SHIFT /

RANDOM / SHIFT array.

ILP Constraints: We use the following ILP constraints to guar-
antee the correctness of the final SPM allocation and schedule of a
convolutional layer.

e DAG and lifespan: The scheduling and prefetching result has
to match the lifespan analysis of memory objects, and the data
dependency of the DAG.

e Consistency of SPM accesses: The consistency of SPM ac-
cesses is enforced by

Vi<j, MPH_pEIP _ AEHR A H 2

Figure 17: The area.

Vi<j. MIR-MERD - MR < (6)
vi<j. MR- MR <o

If we allocate a memory object to a SHIFT array on an edge e;,
as displayed in the first line of Equation 6, this memory object
should be either allocated in the same array on a prior edge
e; (i < j) or loaded to this SPM on edge ej. The second line
guarantees the consistency of SPM accesses in the RANDOM
array. The last line enforces the memory object should be already
allocated to the RANDOM array on edge e;, if it is loaded to a
SHIFT array on edge e; from this RANDOM array.

e SPM size: The aggregate size of all memory objects allocated to
the same array cannot exceed the array size.

e SPM bandwidth: The total read (write) bandwidth of a SPM
cannot exceed its maximal read (write) bandwidth.

o Sub-bank: If two requests are scheduled to the same sub-bank
at the same time, they are processed sequentially.

4.4 Design Overhead

The Heterogeneous SPM. SuperNPU [17] has a 24 MB 64-bank

input SHIFT buffer, a 24 MB 256-bank output/PSum SHIFT buffer,

and a 128 KB weight SHIFT buffer. In contrast, SMART has three 256-

bank 32 KB SHIFT arrays for inputs, outputs/PSums, and weights,

respectively. It also has a 256-bank 28 MB SFQ-CMOS SRAM array

that can be operated at 9.7 GHz for all data.

o Latency: The access latency of a SHIFT array is 0.02 ns, while a
SFQ-CMOS bank can read or write 1-byte data each 0.11 ns.

e Leakage: A SHIFT array has no leakage, but the leakage power
consumption of the pipelined SFQ-CMOS SRAM array is 102 mW.

e Dynamic energy: As Figure 16 shows, compared to a 384KB or
96KB bank of SuperNPU, the SHIFT arrays of SMART move only
128 DFFs per access, thereby reducing the access energy by 99%.
The access to the SFQ-CMOS array of SMART costs only 50% of
the dynamic energy of accessing the 96KB bank SuperNPU, due
to low-power SFQ H-Trees.

e Area: Compared to SuperNPU, SMART reduces the SPM capacity
by 41%. But it has more CMOS sub-banks and more repeaters

920

Table 4: The baseline configuration.

l Name [[Description

0.7GHz; 45 TMAC/s peak perf.; PE array size
TPU 256 X 256; input, weight, and output: 24 MB;
PSum: 4 MB

52.6GHz; 842 TMAC/s peak perf.; PE array size
64 X 256; input: 64-bank, 24 MB; output/PSum:
256-bank, 24 MB; weight: 128 KB, 0.02 ns
52.6GHz; 842 TMAC/s peak perf.; PE array size
64 % 256; three 32 KB SHIFT arrays for inputs,
outputs/PSums, and weights: 256-bank, 0.02 ns;
a 28 MB SFQ- CMOS array: 256-bank, 0.11ns

SuperNPU

SMART

in SFQ H-Trees to achieve 9.7 GHz. As Figure 17 shows, SMART

increases the area by 3%, when we assume SFQ JJs and CMOS

transistors can be scaled to 28nm [17].

The ILP-based Compiler. We used SCALE-SIM [42] to extract
the DAGs of each CNN model, and identify memory objects. We
adopted the Gurobi ILP solver [14] to solve our ILP equations. For
each of our CNN models (shown in Section 5), the ILP solver can
find a solution within one hour.

5 EXPERIMENTAL METHODOLOGY

Simulation. We used SCALE-SIM [42] to model SMART, and our
baselines including CMOS-based Google TPU [21] and supercon-
ducting SFQ-based SuperNPU [17]. SCALE-SIM supports cycle-
acc-urate performance simulations of a systolic CNN accelerator
running inferences. The configurations of SMART and our baselines
are shown in Table 4. We set the memory bandwidth of TPU, Su-
perNPU, and SMART to 300 GB/s. The average power consumption
of TPU is 40W [21], while the power consumption of SuperNPU
fabricated by the Hypres ERSFQ 1.0um technology [56] is only
1.9W. We assume all components of SMART are also fabricated by
the same ERSFQ 1.0um technology. The cooling cost of SuperNPU
and SMART at 4K is 400x [16] of their power consumption.

CNN Models. We selected six CNN models that have different
characteristics, e.g., computational intensity, network topology and
on-chip memory bandwidth needs. We ran single-image and batch-
based inferences on baselines. The batch size setting is the same
as [17]. For TPU and SMART, in a batch, AlexNet has 22 images,
while VGG16 has 3 images. All the other models have 20 images
in a batch. For SuperNPU, since it has larger SPMs, except VGG16
having 7 images in a batch, all the other models have 30 images in
each batch.

Cryogenic Memory Modeling. The details of SFQ-CMOS ar-
ray modeling can be found in Section 4.2.2. We modified the cryo-
genic memory model cryo-mem [25] to derive the access latency,
energy consumption and area of VTM, MRAM, SNM arrays with the
memory parameters in Table 1. We validated the simulated results
of cryo-mem on VTM, MRAM, SNM arrays against their published
array demonstrations [3, 38, 44] respectively. We observed at most a
14% error between the cryo-mem simulated data and the fabricated
array. Compared to the large performance and energy degradation
caused by VTM, MRAM, SNM arrays, the errors of cryo-mem are
not significant.

Schemes. Besides our baseline TPU, we implemented and com-
pared the following schemes:

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

Zokaee and Jiang, et al.

« 50 [sHIFT OsRAM [Heter [J Pipe ISMART| W sHIFT [sRAM [l Heter [Pipe [SMART |
o 40]
.30 a
£ 20 £
© 104 o 104
c 07 c E
Ne N Net L onNe) G\ ea" nNet N Net L onNe) G ea?
ner Qas’te‘?‘c' Goo%\e N\o‘o‘\e \:\e‘-“\e \G g wex (—as\e‘?‘c' Goo%\e N\o‘o‘\e ge’a“e \G A
Figure 18: The single-image speedup (norm. to TPU). Figure 19: The batch speedup (norm. to TPU).
= 10? SHIFT SRAM_ Heter lD dynamc [static [J matrix‘ % 10? SHIFT SRAM_ Heter E dynamc [static [J matrix‘
% 105 = = el - % 10; —— =— =
511‘?.11 = o Pibes Smart 511(?11 - M N Pipe Smart
€102 M | £102 M =
o LR Poenlie feneg 520 Ee i WLEEL T LR Pienl o fmenllen
GSepe HESxge MosSxpes teSxpe THESxge WES2pe HE3Sxpg HESxge osSxzpes IteSx2@e
S S Sw Sw > S Sw Sw Sw S

Figure 20: The single image energy reduction (norm. to TPU; Figure 21: The batch energy reduction (norm. to TPU; ma-
matrix: matrix unit energy; dynamic: SPM dynamic energy; trix: matrix unit energy; dynamic: SPM dynamic energy; and

and static: SPM static energy).

SuperNPU: The configuration of SuperNPU [17] is shown in

Table 4.

SRAM: SuperNPU replaces all SHIFT arrays by Josephson-CMOS

SRAM arrays with the same capacity of TPU.

o Heter: Three 32 KB SHIFT arrays are added to the SRAM scheme.
We assume an ideal SPM allocation, where the sequentially ac-
cessed data are always allocated in SHIFT arrays while the ran-
domly accessed data are always allocated in the SRAM arrays.

o Pipe: Pipe replaces all Josephson-CMOS SRAM arrays of the Heter
scheme by a 28 MB pipelined SFQ-CMOS SRAM array.

e SMART: Our ILP-base compiler is used by the Pipe scheme. The

prefetching iteration number a is set to 3.

6 RESULTS AND ANALYSIS
6.1 Inferring a Single Image

Performance. The performance improvement achieved by SMART
inferring a single image is shown in Figure 18. The performance
is measured by the throughput (i.e., TMAC/s) normalized to that
of the TPU. Average customers are sensitive to the latency of their
cloud-based machine learning services. Therefore, the performance
of a single image inference becomes more critical, because TPUs in
the cloud have no time to form a large image batch. For one-image
inferences, SuperNPU improves the inference throughput by only
8.6x over TPU, although the operating frequency of SuperNPU is
75x% higher than that of TPU. Compared to SuperNPU, Josephson-
CMOS SRAM arrays actually decrease the inference throughput.
This is because the benefit brought by the random access capability
of Josephson-CMOS SRAM is offset by its slow access speed. Even if
we add a small SHIFT array to each heterogeneous SPM, we cannot
win back the performance loss. Heter still obtains lower inference
throughput than SuperNPU. On the contrary, our pipe-lined SFQ-
CMOS array (Pipe) greatly improves the inference throughput, on
average, by 2.4x over SuperNPU, due to its ultra-fast random access
ability. Our ILP compiler (SMART) further increases the inference
throughput improvement to 3.9x over SuperNPU, since it enables
the prefetching of input, weight, and PSum data of a model.
Energy Consumption. The energy comparison between vari-
ous schemes when inferring a single image is shown in Figure 20.
Since SuperNPU is fabricated by the ERSFQ technology, it has no
leakage power. We consider the cooling cost of each scheme at 4K

921

static: SPM static energy).

as 400x [16] of the power consumption of that scheme. Since, on
average, SuperNPU improves the performance per Watt by 23%
over TPU [17], it consumes more energy on large CNN models, e.g.,
ResNet50 when considering the cooling overhead. SRAM and Heter
tend to increase the inference energy when inferring a single image,
because they obtain only longer inference latency and spend larger
power in their Josephson-CMOS SRAM arrays. Our pipelined SFQ-
CMOS array (Pipe) reduces the power consumption of RANDOM
arrays by replacing CMOS H-Trees with SFQ H-Trees. Moreover,
Pipe also shortens the inference latency over SuperNPU. As a result,
Pipe reduces the inference energy by 81%. SMART decreases the
inference energy by 86% over SuperNPU by further reducing the
inference latency. On average, SMART uses only 1.9% of the infer-
ence energy of TPU when inferring the same image. For SMART,
48% of its energy is consumed by the matrix units, while 42% of its
energy is the dynamic energy of the heterogeneous SPM.

6.2 Inferring a Batch of Images

Performance. The performance improvement achieved by SMART
inferring a batch of images is shown in Figure 19. The inference
performance of a batch of images shares the same trend as that
of a single image. Compared to the single image case, SuperNPU
inferring a batch of images improves the inference throughput by
2.5%. In contrast, SMART processing a batch of images improves
the inference throughput by only 34.5% over the single image case
of SMART. This is because SuperNPU has larger on-chip space to
store more images, i.e., SuperNPU has 48 MB SPM arrays, while
SMART has only a 28 MB on-chip RANDOM array. On average,
when processing a batch of images, SMART improves the inference
throughput over SuperNPU by 2.2x.

Energy Consumption. The energy reduction of SMART infer-
ring a batch of images is shown in Figure 21. We also consider the
cooling cost in the comparison. The inference energy of a batch
shares the same trend as that of a single image. On average, SMART
reduces the inference energy by 71% over SuperNPU, and uses only
1.6% of the inference energy of TPU when processing a batch of
images. In SMART, 42.3% of its energy consumption is the energy
of the matrix units, while 48.9% of the energy is the dynamic energy
of its heterogeneous SPM arrays.

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO °21, October 18-22, 2021, Virtual Event, Greece

B 168 [32«8 W 64kB] 128K8]

5 5 l 14mB []28vB B 56MB [] 112MB

[

Ho.11ns[J2ns[]3ns

5ﬁla=1[|a=2 Bo=30a=40a=5-
o4

4

speedup
speedup

4
3
2
1

3
2
1

single batch

Figure 22: SHIFT capacity
(norm. to SuperNPU).

single batch

(norm. to SuperNPU).

6.3 Sensitivity Study

SHIFT array capacity. The sensitivity study on the capacity of
SHIFT arrays in SMART is shown in Figure 22. The input, out-
put/PSum, and weight data have three SHIFT arrays with the ca-
pacity of X, where X can be 16 KB, 32 KB, 64 KB, and 128 KB. Com-
pared to 32KB, the larger capacity of SHIFT arrays cannot help
single-image inferences, and only slightly improve the inference
throughput on a batch of images by 11%. On the contrary, three
16 KB SHIFT arrays greatly increase the swapping traffic between
SHIFT arrays and the RANDOM array, thereby decreasing the in-
ference throughput of a single image and a batch of images by 61%
and 45%, respectively.

RANDOM array capacity. The sensitivity study on the RAN-
DOM array capacity in SMART is shown in Figure 23. Though the
input, output/PSum, and weight data have three SHIFT arrays re-
spectively, they share the same RANDOM array. We tried different
capacities of the RANDOM array in the figure. Compared to 28 MB,
further increasing the RANDOM array capacity does not improve
the single-image inference throughput. However, a 56 MB (112 MB)
RANDOM array improves the inference throughput of a batch by
41% (73%). On the other hand, a smaller RANDOM array hurts the
inference throughput of both a single image and a batch of images.

Prefetching iteration number. The sensitivity study on the
prefetching iteration number of SMART is shown in Figure 24. Our
ILP compiler achieves only near-optimal results, since we did not
exhaustively explore the optimal prefetching iteration number. We
set the prefetching iteration number a = 3. a = 1 indicates there is
no prefetching. A smaller a substantially decreases the throughput
of both single-image and batch inferences. On the other hand, a
larger a (e.g., a = 4) does not obviously improve the inference
throughput of six CNN models we selected.

Write latency. The sensitivity study on the write latency of the
RANDOM array in SMART is shown in Figure 25. Since MRAM and
SNM have smaller cell sizes than SRAM, if JJs can be scaled to the
same size of a transistor, it is possible to use them to build a much
denser RANDOM array. However, their write latency is much longer.
We explore different values of the write latency of the RANDOM
array in the figure. A longer write operation significantly decreases
the throughput of both single-image and batch inferences, since
the outputs of a layer are the inputs of the next layer. Therefore,
these high-density cryogenic memory technologies may not be
ideal candidates to implement the RANDOM array due to their
slow writes.

7 RELATED WORK

SFQ Accelerators. As we are approaching the end of Moore’s Law,
several ambitious designs for superconducting ALUs [9, 23] and

Figure 23: RAND. capacity

922

=]
23
(1)

o
“2

1

single batch sin'gle batch

Figure 24: Prefetch. iter. # Figure 25: RAND. W lat-ency
(norm. to SuperNPU).

(norm. to SuperNPU).

microprocessors [58] have been presented to demonstrate the ca-
pability of SFQ computing. For domain-specific computing, besides
SFQ CNN systolic accelerators, a SFQ stochastic-computing-based
deep learning accelerator [4] also demonstrates ultra-high inference
throughput. Moreover, a SFQ-based temporal logic accelerator [52]
is built to significantly boost the throughput of genome alignment.
A SFQ-based SHA-256 accelerator [49] is designed to maximize
the processing throughput of cryptographic hash functions. These
superconducting designs primarily depend on simplified architec-
tures, bit-serial processing, and shift registers. However, the use
of SFQ shift registers is not a viable solution for more complex
accelerator designs.

Cryogenic Memories and Caches. Recent work adopts the
77K cryogenic temperature to improve the performance and energy
consumption of off-chip DRAM main memories [25] and on-chip
SRAM caches [28]. However, these studies investigate only how
the main memory and cache architectures are influenced by the
77K temperature when running general-purpose applications on
CPUs. No prior work designs an on-chip SPM architecture for SFQ
systolic CNN accelerators at the 4K temperature.

8 CONCLUSION

In this paper, we propose a heterogeneous SPM architecture, SMART,
consisting of SHIFT arrays and a RANDOM array for SFQ deep
learning accelerators to maximize their inference throughput. How-
ever, we found that no existing memory technology can serve as the
RANDOM array of SMART to obtain high inference throughput,
small chip area, and low power consumption at the same time. We
built a fast, dense and power-efficient pipelined CMOS-SFQ array
that supports random accesses in SMART. We also created an ILP-
based SPM allocation and prefetching technique to minimize the
inference latency on SMART. Experimental results show that, with
the same area overhead, compared to the prior SHIFT-based SFQ
CNN accelerator, SMART improves the inference throughput by
3.9% (2.2x), and reduces the inference energy by 86% (71%) when
inferring a single image (a batch of images).

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
valuable comments and helpful suggestions. This work was par-
tially supported by the National Science Foundation (NSF) through
awards CCF-1908992, CCF-1909509, and CCF-2105972.

REFERENCES

[1] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrishnan, and Peter
Marwedel. 2002. Scratchpad memory: A design alternative for cache on-chip mem-
ory in embedded systems. In IEEE International Symposium on Hardware/Software
Codesign. 73-78.

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

(2]

=

&

(6]

(71
(8]

[9

=

[10

(1]

[12]

[13]

[14]

[15

[16]

[17

[18

[19]

[20

[21]

[22]

[23]

A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais, and C. Enz.
2020. Physical Model of Low-Temperature to Cryogenic Threshold Voltage
in MOSFETs. IEEE Journal of the Electron Devices Society 8 (2020), 780-788.
https://doi.org/10.1109/JEDS.2020.2989629

Brenden A Butters, Reza Baghdadi, Murat Onen, Emily A Toomey, Owen
Medeiros, and Karl K Berggren. 2021. A scalable superconducting nanowire
memory cell and preliminary array test. Superconductor Science and Technology
34, 3 (2021), 035003.

Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian, Jie
Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang. 2019. A stochastic-
computing based deep learning framework using adiabatic quantum-flux-
parametron superconducting technology. In ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA). 567-578.

Xiangyu Chen, Jiale Liang, and H.-S. Philip Wong. 2012. Interconnect Scaling
into the Sub-10nm Regime. In ACM International Workshop on System Level
Interconnect Prediction. 2.

B. B. Chonigman, A. Shukla, M. Habib, V. Gupta, A. Talalaevskii, A. Sahu, D.
Kirichenko, A. Inamdar, and D. Gupta. 2021. Optimization of Passive Trans-
mission Lines for Single Flux Quantum Circuits. IEEE Transactions on Applied
Superconductivity (2021), 1-1. https://doi.org/10.1109/TASC.2021.3062589
Johannes Delport. 2018. JoSIM - Superconductor SPICE Simulator. https://github.
com/JoeyDelp/JoSIM.

Jean-Francois Deverge and Isabelle Puaut. 2007. WCET-directed dynamic scratch-
pad memory allocation of data. In IEEE Euromicro Conference on Real-Time Systems.
IEEE, 179-190.

T Filippov, M Dorojevets, A Sahu, A Kirichenko, C Ayala, and O Mukhanov. 2011.
8-bit asynchronous wave-pipelined RSFQ arithmetic-logic unit. IEEE transactions
on applied superconductivity 21, 3 (2011), 847-851.

Timur V Filippov, Anubhav Sahu, Alex F Kirichenko, Igor V Vernik, Mikhail
Dorojevets, Christopher L Ayala, and Oleg A Mukhanov. 2012. 20 GHz operation
of an asynchronous wave-pipelined RSFQ arithmetic-logic unit. Physics Procedia
36 (2012), 59-65.

U. Ghoshal, D. Hebert, and T. Van Duzer. 1993. Josephson-CMOS memories. In
IEEE International Solid-State Circuits Conference Digest of Technical Papers. 54-55.
https://doi.org/10.1109/ISSCC.1993.280086

Alexander Grill, E Bury, Jakob Michl, S Tyaginov, D Linten, Tibor Grasser,
Bertrand Parvais, Ben Kaczer, Michael Waltl, and I Radu. 2020. Reliability and
variability of advanced CMOS devices at cryogenic temperatures. In IEEE Inter-
national Reliability Physics Symposium (IRPS). IEEE, 1-6.

Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
2020. The architectural implications of facebook’s dnn-based personalized rec-
ommendation. In IEEE International Symposium on High Performance Computer
Architecture (HPCA). 488—501.

LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual.
//www.gurobi.com

H. Hara, K. Obata, H. Park, Y. Yamanashi, K. Taketomi, N. Yoshikawa, M. Tanaka,
A. Fujimaki, N. Takagi, K. Takagi, and S. Nagasawa. 2009. Design, Implementation
and On-Chip High-Speed Test of SFQ Half-Precision Floating-Point Multiplier.
IEEE Transactions on Applied Superconductivity 19, 3 (2009), 657-660. https:
//doi.org/10.1109/TASC.2009.2018039

D. S. Holmes, A. L. Ripple, and M. A. Manheimer. 2013. Energy-Efficient Su-
perconducting Computing—Power Budgets and Requirements. IEEE Trans-
actions on Applied Superconductivity 23, 3 (2013), 1701610-1701610. https:
//doi.org/10.1109/TASC.2013.2244634

Koki Ishida, Ilkwon Byun, Ikki Nagaoka, Kosuke Fukumitsu, Masamitsu Tanaka,
Satoshi Kawakami, Teruo Tanimoto, Takatsugu Ono, Jangwoo Kim, and Koji
Inoue. 2020. Supernpu: An extremely fast neural processing unit using supercon-
ducting logic devices. In IEEE/ACM International Symposium on Microarchitecture
(MICRO). 58-72.

Tahereh Jabbari and Eby G. Friedman. 2020. Global Interconnects in VLSI Com-
plexity Single Flux Quantum Systems. In the Workshop on System-Level Intercon-
nect: Problems and Pathfinding. Article 4, 7 pages.

Tahereh Jabbari, Gleb Krylov, Stephen Whiteley, Jamil Kawa, and Eby G Friedman.
2020. Repeater Insertion in SFQ Interconnect. IEEE Transactions on Applied
Superconductivity 30, 8 (2020), 1-8.

T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, and E. G. Friedman. 2020. Repeater
Insertion in SFQ Interconnect. IEEE Transactions on Applied Superconductivity
30, 8 (2020), 1-8. https://doi.org/10.1109/TASC.2020.3000982

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In IEEE/ACM
International Symposium on Computer Architecture. 1-12.

Yoshio Kameda, Shinichi Yorozu, and Yoshihito Hashimoto. 2006. Automatic
single-flux-quantum (SFQ) logic synthesis method for top-down circuit design.
In Journal of Physics: Conference Series, Vol. 43. 287.

Alex F Kirichenko, Igor V Vernik, Michael Y Kamkar, Jason Walter, Maximilian
Miller, Lucian Remus Albu, and Oleg A Mukhanov. 2019. ERSFQ 8-bit parallel

http:

923

[24

[25]

[26

~
=

(32]

[33

[34

@
2

[36

[37

[38

[39

[40

[41

[42

[45

[46

Zokaee and Jiang, et al.

arithmetic logic unit. IEEE Transactions on Applied Superconductivity 29, 5 (2019),
1-7.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, Vol. 25. Curran Associates, Inc.

Gyu-hyeon Lee, Dongmoon Min, Ilkwon Byun, and Jangwoo Kim. 2019. Cryo-
genic Computer Architecture Modeling with Memory-Side Case Studies. In
ACMY/IEEE International Symposium on Computer Architecture. 774-787.

K. K. Likharev and V. K. Semenov. 1991. RSFQ logic/memory family: a new
Josephson-junction technology for sub-terahertz-clock-frequency digital systems.
IEEE Transactions on Applied Superconductivity 1, 1 (1991), 3-28. https://doi.org/
10.1109/77.80745

Y. Liu and W. Zhang. 2012. Exploiting multi-level scratchpad memories for time-
predictable multicore computing. In IEEE International Conference on Computer
Design (ICCD). 61-66.

Dongmoon Min, Ilkwon Byun, Gyu-Hyeon Lee, Seongmin Na, and Jangwoo
Kim. 2020. Cryocache: A fast, large, and cost-effective cache architecture for
cryogenic computing. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 449-464.

Hamid Reza Mohebbi and A Hamed Majedi. 2009. CAD model for circuit param-
eters of superconducting-based hybrid planar transmission lines. Superconductor
Science and Technology 22, 12 (2009), 125028.

Oleg A Mukhanov. 2011. Energy-efficient single flux quantum technology. IEEE
Transactions on Applied Superconductivity 21, 3 (2011), 760-769.

N. Muralimanohar, R. Balasubramonian, and N. Jouppi. 2007. Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In
IEEE/ACM International Symposium on Microarchitecture (MICRO 2007). 3-14.
https://doi.org/10.1109/MICRO.2007.33

NA N Joukov, DE Kirichenko, AYu Kidiyarova-Shevchenko, and M Yu Kupriyanov.
2000. Matching of Rapid Single Flux Quantum Digital Circuits and Superconduc-
tive Microstrip Lines. IEEE Transactions on Applied Superconductivity 167 (2000),
745-748.

Ikki Nagaoka, Masamitsu Tanaka, Koji Inoue, and Akira Fujimaki. 2019. A 48ghz
5.6 mw gate-level-pipelined multiplier using single-flux quantum logic. In IEEE
International Solid-State Circuits Conference-(ISSCC). 460-462.

Ikki Nagaoka, Masamitsu Tanaka, Kyosuke Sano, Taro Yamashita, Akira Fujimaki,
and Koji Inoue. 2019. Demonstration of an Energy-Efficient, Gate-Level-Pipelined
100 TOPS/W Arithmetic Logic Unit Based on Low-Voltage Rapid Single-Flux-
Quantum Logic. In IEEE International Superconductive Electronics Conference
(ISEC). 1-3.

Shuichi Nagasawa, Haruhiro Hasegawa, Tatsunori Hashimoto, Hideo Suzuki,
Kazunori Miyahara, and Youichi Enomoto. 1999. Design of a 16 kbit supercon-
ducting latching/SFQ hybrid RAM. Superconductor Science and Technology 12, 11
(1999), 933.

Shuichi Nagasawa, Haruhiro Hasegawa, Tatsunori Hashimoto, Hideo Suzuki,
Kazunori Miyahara, and Youichi Enomoto. 2000. Superconducting SFQ-NOR
Decoder. In Advances in Superconductivity XII. Springer, 1093-1095.

Shuichi Nagasawa, Haruhiro Hasegawa, Tatsunori Hashimoto, Hideo Suzuki,
Kazunori Miyahara, and Youichi Enomoto. 2001. Superconducting latching/SFQ
hybrid RAM. IEEE transactions on applied superconductivity 11, 1 (2001), 533-536.
Minh-Hai Nguyen, Guilhem J Ribeill, Martin V Gustafsson, Shengjie Shi, Sri-
harsha V Aradhya, Andrew P Wagner, Leonardo M Ranzani, Lijun Zhu, Reza
Baghdadi, Brenden Butters, et al. 2020. Cryogenic memory architecture inte-
grating spin Hall effect based magnetic memory and superconductive cryotron
devices. Scientific reports 10, 1 (2020), 1-11.

Tomohiro Ono, Hideo Suzuki, Yuki Yamanashi, and Nobuyuki Yoshikawa. 2017.
Design and implementation of an SFQ-based single-chip FFT processor. IEEE
Transactions on Applied Superconductivity 27, 4 (2017), 1-5.

Ghasem Pasandi, Alireza Shafaei, and Massoud Pedram. 2018. SFQmap: A tech-
nology mapping tool for single flux quantum logic circuits. In IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 1-5.

A Potts, GJ Parker, J] Baumberg, and PAJ de Groot. 2001. CMOS compatible
fabrication methods for submicron Josephson junction qubits. IEE Proceedings-
Science, Measurement and Technology 148, 5 (2001), 225-228.

Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. Scale-Sim: Systolic CNN Accelerator Simulator. arXiv preprint
arXiv:1811.02883 (2018).

Lieze Schindler, Paul le Roux, and Coenrad J Fourie. 2020. Impedance matching
of passive transmission line receivers to improve reflections between RSFQ logic
cells. IEEE Transactions on Applied Superconductivity 30, 2 (2020), 1-7.

Vasili K Semenov, Yuri A Polyakov, and Sergey K Tolpygo. 2019. Very large
scale integration of Josephson-junction-based superconductor random access
memories. IEEE Transactions on Applied Superconductivity 29, 5 (2019), 1-9.
Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. 2005. WCET
centric data allocation to scratchpad memory. In IEEE International Real-Time
Systems Symposium (RTSS 05).

Shuichi Tahara, Ichiro Ishida, Yumi Ajisawa, and Yoshifusa Wada. 1989. Ex-
perimental vortex transitional nondestructive read-out Josephson memory cell.

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators

[47]

[48]

[49

[50]

[51]

[52]

[53]

Journal of applied physics 65, 2 (1989), 851-856.

M. Tanaka, F. Matsuzaki, T. Kondo, N. Nakajima, Y. Yamanashi, A. Fujimaki, H.
Hayakawa, N. Yoshikawa, H. Terai, and S. Yorozu. 2004. A single-flux-quantum
logic prototype microprocessor. In IEEE International Solid-State Circuits Confer-
ence. 298-529 Vol.1. https://doi.org/10.1109/ISSCC.2004.1332714

Masamitsu Tanaka, Masato Suzuki, Gen Konno, Yuki Ito, Akira Fujimaki, and
Nobuyuki Yoshikawa. 2016. Josephson-CMOS hybrid memory with nanocry-
otrons. IEEE Transactions on Applied Superconductivity 27, 4 (2016), 1-4.
Swamit S Tannu, Poulami Das, Michael L Lewis, Robert Krick, Douglas M
Carmean, and Moinuddin K Qureshi. 2019. A case for superconducting ac-
celerators. In ACM International Conference on Computing Frontiers. 67-75.

S. K. Tolpygo, V. Bolkhovsky, D. E. Oates, R. Rastogi, S. Zarr, A. L. Day, T. J.
Weir, A. Wynn, and L. M. Johnson. 2018. Superconductor Electronics Fabrication
Process with MoNx Kinetic Inductors and Self-Shunted Josephson Junctions.
IEEE Transactions on Applied Superconductivity 28, 4 (2018), 1-12.

S. K. Tolpygo, V. Bolkhovsky, S. Zarr, T. J. Weir, A. Wynn, A. L. Day, L. M.
Johnson, and M. A. Gouker. 2017. Properties of Unshunted and Resistively
Shunted Nb/AlOx-Al/Nb Josephson Junctions With Critical Current Densities
From 0.1 to 1 mA/pum?. IEEE Transactions on Applied Superconductivity 27, 4
(2017), 1-15. https://doi.org/10.1109/TASC.2017.2667403

Georgios Tzimpragos, Dilip Vasudevan, Nestan Tsiskaridze, George Michelogian-
nakis, Advait Madhavan, Jennifer Volk, John Shalf, and Timothy Sherwood. 2020.
A Computational Temporal Logic for Superconducting Accelerators. In ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 435-448.

Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. 2006. Dynamic al-
location for scratch-pad memory using compile-time decisions. ACM Transactions
on Embedded Computing Systems (TECS) 5, 2 (2006), 472-511.

924

[54]

[55

[56

[58

[59

[60

]

]

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

T. Van Duzer, L. Zheng, S. R. Whiteley, H. Kim, J. Kim, X. Meng, and T. Ortlepp.
2013. 64-kb Hybrid Josephson-CMOS 4 Kelvin RAM With 400 ps Access Time
and 12 mW Read Power. IEEE Transactions on Applied Superconductivity 23, 3
(2013), 1700504-1700504. https://doi.org/10.1109/TASC.2012.2230294

M. Verma and P. Marwedel. 2006. Overlay techniques for scratchpad memories in
low power embedded processors. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 14, 8 (2006), 802-815.

D. T. Yohannes, R. T. Hunt, J. A. Vivalda, D. Amparo, A. Cohen, L. V. Vernik, and
A. F. Kirichenko. 2015. Planarized, Extendible, Multilayer Fabrication Process for
Superconducting Electronics. IEEE Transactions on Applied Superconductivity 25,
3(2015), 1-5. https://doi.org/10.1109/TASC.2014.2365562

S Yorozu, Y Kameda, H Terai, A Fujimaki, T Yamada, and S Tahara. 2002. A single
flux quantum standard logic cell library. Physica C: Superconductivity 378 (2002),
1471-1474.

Nobuyuki Yoshikawa, F Matsuzaki, N Nakajima, K Fujiwara, K Yoda, and K
Kawasaki. 2003. Design and component test of a tiny processor based on the SFQ
technology. IEEE transactions on applied superconductivity 13, 2 (2003), 441-445.
Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-Based Accelerator Design for Deep Convolutional Neural
Networks. In ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 161-170.

Qing-Yuan Zhao, Adam N McCaughan, Andrew E Dane, Karl K Berggren, and
Thomas Ortlepp. 2017. A nanocryotron comparator can connect single-flux-
quantum circuits to conventional electronics. Superconductor Science and Tech-
nology 30, 4 (2017), 044002.

Qing-Yuan Zhao, Emily A Toomey, Brenden A Butters, Adam N McCaughan, An-
drew E Dane, Sae-Woo Nam, and Karl K Berggren. 2018. A compact superconduct-
ing nanowire memory element operated by nanowire cryotrons. Superconductor
Science and Technology 31, 3 (2018), 035009.

