
SMART: A Heterogeneous Scratchpad Memory Architecture for
Superconductor SFQ-based Systolic CNN Accelerators

Farzaneh Zokaee
fzokaee@iu.edu

Indiana University
Bloomington, USA

Lei Jiang
jiang60@iu.edu

Indiana University
Bloomington, USA

ABSTRACT

Ultra-fast & low-power superconductor single-flux-quantum (SFQ)-

based CNN systolic accelerators are built to enhance the CNN infer-

ence throughput. However, shift-register (SHIFT)-based scratchpad

memory (SPM) arrays prevent a SFQ CNN accelerator from exceed-

ing 40% of its peak throughput, due to the lack of random access

capability. This paper first documents our study of a variety of

cryogenic memory technologies, including Vortex Transition Mem-

ory (VTM), Josephson-CMOS SRAM, MRAM, and Superconducting

Nanowire Memory, during which we found that none of the afore-

mentioned technologies made a SFQ CNN accelerator achieve high

throughput, small area, and low power simultaneously. Second, we

present a heterogeneous SPM architecture, SMART, composed of

SHIFT arrays and a random access array to improve the inference

throughput of a SFQ CNN systolic accelerator. Third, we propose a

fast, low-power and dense pipelined random access CMOS-SFQ ar-

ray by building SFQ passive-transmission-line-based H-Trees that

connect CMOS sub-banks. Finally, we create an ILP-based com-

piler to deploy CNN models on SMART. Experimental results show

that, with the same chip area overhead, compared to the latest

SHIFT-based SFQ CNN accelerator, SMART improves the inference

throughput by 3.9× (2.2×), and reduces the inference energy by

86% (71%) when inferring a single image (a batch of images).

CCS CONCEPTS

•Hardware→ Quantum technologies; Static memory; Logic

circuits;Memory and dense storage.

KEYWORDS

scratchpad memory, single-flux-quantum, CNN accelerator

ACM Reference Format:

Farzaneh Zokaee and Lei Jiang. 2021. SMART: A Heterogeneous Scratchpad

Memory Architecture for Superconductor SFQ-based Systolic CNN Accel-

erators. In MICRO-54: 54th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO ’21), October 18–22, 2021, Virtual Event, Greece.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3466752.3480041

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480041

1 INTRODUCTION

Deep learning has been the dominant approach to solving a wide

variety of problems such as computer vision [24], natural language

processing, and recommender systems. However, an inference of

convolutional neural networks (CNNs) requires a multitude of com-

puting-intensive convolutions. For instance, an AlexNet inference

[24] costs 1.5 billion multiply-accumulate (MAC) operations in-

volving 61 million parameters. As the era of Moore’s law draws

to a close, recent work [17] builds a systolic CNN accelerator, Su-

perNPU, to process CNN inferences by superconductor SFQ logic.

The SFQ technology [30, 57] enables a low-level voltage impulse-

driven switching, so that SFQ-based designs can achieve extremely

high frequency (e.g., ∼ 70GHz) but consume only tiny energy (e.g.,

10−19 J per switching). SuperNPU [17] is designed to run at 52GHz

by consuming only 1.9W power. Compared to the state-of-the-art

(SOTA) CMOS TPU [21], SuperNPU improves the batch inference

throughput of various CNNs by 23×.
Unfortunately, the inference throughput of SFQ-based systolic CNN

accelerators is seriously limited by their on-chip scratchpad mem-

ory (SPM) arrays. SFQ logic gates can naturally implement the

gate-level pipelining, i.e., a clock pulse triggers a SFQ gate to trans-

fer the stored SFQ to its adjacent gates. By a pulse-driven clock,

SFQ circuits flow many data pulses through one wire simultane-

ously to achieve high operating frequency. However, SFQ-based

decoders cost significant hardware overhead [36, 37], because the

maximal fan-out of a SFQ gate is only 2 [40]. Therefore, it is eco-

nomical and convenient to implement shift-register-based memory

(SHIFT) arrays comprising only serially-connected delay-flip-flops

for a SFQ systolic CNN accelerator, since SHIFT fully utilizes the

SFQ gate-level pipelining and does not require complex controls.

However, SHIFT makes the SOTA SFQ systolic CNN accelerator

SuperNPU [17] achieve only 40% of its maximal inference through-

put when processing a large batch of images, due to the lack of

random access capability. Moreover, SuperNPU can only reach 16%

of its peak inference throughput when inferring a single image.

Nowadays most clients are sensitive to the end-to-end latency of

cloud-based services. It is more likely for data centers [13] to pro-

cess CNN inferences with only small batch sizes, e.g., one image,

simply because they are required to respond the clients rapidly and

have no time to form a large batch.

It is difficult to construct a fast, dense, and power-efficient on-

chip SPM architecture with random access capability for SFQ CNN

accelerators by prior cryogenic memory technologies. SFQ logic

works only at the 4K cryogenic temperature, so the SPM of a SFQ-

based CNN accelerator has to use cryogenic memory technologies

that can maintain their functionality and reliability at 4K. SOTA

912

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Zokaee and Jiang, et al.

supercond.

supercond.
insulator

JJ

SFQ

(a) A SFQ ring.

clock

input output

JJJJ
SFQ

(b) A SFQ DFF.

clock
input

output

1
1
0

0

(c) DFF operations.

Figure 1: Josephson Junction and SFQ Delay-Flip-Flop.
cryogenic memory technologies include Vortex Transition Mem-

ory (VTM) [44, 46], Josephson-CMOS SRAM [11, 37, 48], Magnetic

Memory (MRAM) [38], and Superconducting Nanowire Memory

(SNM) [3, 61]. First, prior cryogenic memory technologies use SFQ-

based decoders, thereby suffering from large hardware overhead,

due to the fan-out limitation of SFQ gates. Second, the scalabil-

ity of VTM is poor, although accessing a VTM array costs only

0.1 ns. A VTM cell [44] is composed of four Josephson Junctions

(JJs) and occupies 99 μm2 at the 600 μA/μm2 technology. A large

capacity VTM-based SPM requires prohibitively large chip area.

Third, Josephson-CMOS SRAM, MRAM, and SNM have too long

access latency to match the ultra-high operating frequency of a

SFQ CNN accelerator. For instance, accessing a 28MB SRAM array

at 4K requires 2∼4 ns, while writing a MRAM or SNM cell costs

>2 ns. Such long access latency seriously deteriorates the inference

throughput of a SFQ CNN accelerator.

In this paper, we propose a novel heterogeneous Scratchpad

Memory ARchiTecture, SMART, for SFQ systolic CNN accelera-

tors to improve their inference throughput. Our contributions are

summarized as follows.

• A comparison of cryogenic memory technologies: We com-

pared a variety of SFQ-compatible cryogenic memory technolo-

gies including VTM, Josephson-CMOS SRAM, MRAM, and SNM

on the SOTA SFQ systolic CNN accelerator, SuperNPU. We found

that no prior cryogenic memory technology can support Super-

NPU to obtain high inference throughput, low power consump-

tion, and small hardware overhead at the same time.

• A heterogeneous SPM architecture: We present a heteroge-

neous SPM architecture that combines SHIFT arrays and a random-

access-memory (RANDOM) array to support ultra-fast sequential

accesses and fast random accesses. A SFQ CNN accelerator can

store its sequentially accessed data in SHIFT arrays and randomly

accessed data in the RANDOM array separately.

• ApipelinedCMOS-SFQRANDOMarray: We propose a dense

CMOS-SFQ RANDOM array for SMART to achieve fast and

power-efficient random accesses. We built a pipelined SFQ-based

H-Tree by SFQ passive transmission lines (PTLs) to decrease the

access latency and energy consumption. Our pipelined CMOS-

SFQ array uses SFQ-based H-Trees to connect CMOS sub-banks,

each of which consists of SRAM cells and CMOS peripherals, e.g.,

row decoders, column multiplexers, and sense amplifiers.

• An ILP-based compiler:We formulated the allocation and prefetch-

ing of input, weight, output, and PSum data to SMART as an

integer-linear-programming (ILP) problem. Our ILP-based com-

piler makes near-optimal schedules for various CNN models on

a SFQ systolic CNN accelerator with SMART.

• Inference throughput and throughput per Watt: We eval-

uated and compared SMART to the SOTA SFQ systolic CNN

accelerator, SuperNPU. Under the same area constraint, com-

pared to SuperNPU, SMART improves the inference throughput

0 50 100 150 200
100

101

102

103

la
te

nc
y

(p
s)

length (µm)

 PTL JTL CMOS

(a) Latency.

0 50 100 150 200
1E-20
1E-18
1E-16
1E-14
1E-12

en
er

gy
 (J

)

length (µm)

 PTL JTL CMOS

(b) Energy.

Figure 2: A comparison between SFQ and CMOS wires.

by 3.9× (2.2×), and reduces the inference energy by 86% (71%)

when inferring a single image (a batch of images).

The paper is organized as: SFQ logic and cryogenic memories are

introduced in Section 2. Section 3 describes design motivation. SM-

RAT is proposed in Section 4. We present experiment methodology

and results in Section 5 and Section 6 respectively. Related work is

presented in Section 7, followed by our conclusion in Section 8.

2 BACKGROUND

2.1 SFQ Technology

Josephson Junction. Superconductor SFQ logic [26, 49] is one

of the most promising emerging technologies for ultra-fast and

low-power computing at cryogenic temperatures. A basic element

of SFQ technology, i.e., a superconductor ring [26], is shown in

Figure 1(a). Instead of voltage levels in CMOS logic, SFQ circuits

use the existence of a single magnetic flux quantum (SFQ) in the

superconductor ring to represent “1” or “0”. A superconductor ring

stores and transfers the SFQ by Josephson junctions (JJs) [50, 51],

each of which consists of a thin insulator sandwiched by two super-

conductors. A JJ can reliably operate at ∼ 70GHz. Each JJ switching

costs only ∼ 10−19 J.
SFQ Delay-Flip-Flop. To explain the working mechanism of

SFQ logic, we use a SFQ-based delay-flip-flop (DFF) as an example

because of its simple structure, i.e., it consists of only a single

superconductor ring and a clock line. As Figure 1(b) shows, an input

pulse makes the current flowing through the left JJ higher than its

critical current Ic . And then, the left JJ produces a voltage pulse,

which is stored in the ring as a SFQ. When a clock pulse arrives,

the right JJ is activated, and the SFQ in the ring is outputted as a

voltage pulse. A SFQ DFF passes a “1” as the existence of the stored

SFQ between two clock pulses, as shown in Figure 1(c). In contrast,

if there is no input pulse during a clock period, no voltage pulse

(“0”) is produced on the output. Several chips [33, 34] composed of

SFQ logic units and memories are fabricated and demonstrated at

tens of GHz.

SFQ Interconnect. SFQ logic components are connected by

active Josephson transmission lines (JTLs) and passive transmission

lines (PTLs) [43]. As Figure 2(a) shows, compared to a CMOS wire,

JTL and PTL enjoy two orders of magnitude shorter latency, since

they have no DC resistance [18, 19]. A PTL requires a much smaller

delay than a JTL, particularly when the length is large. Furthermore,

the energy comparison between CMOS and SFQ interconnects is

shown in Figure 2(b). The energy of a CMOS wire is roughly six

orders of magnitude greater than the energy dissipated by a PTL.

To implement a long line, a JTL consumes 100× more energy than

a PTL.

SFQ Fan-out. Unlike CMOS logic, each SFQ gate can drive only

one other node [22, 40], due to the use of SFQ pulses. That is to say,

913

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO ’21, October 18–22, 2021, Virtual Event, Greece

nTron

...

(b) Josephson (c) nTron(a) shift register

...

MUX

output

input

DFF

DFF

based memory

SFQ MUX
...

...
CMOS memory

de
co
de

r
SF
Q CMOS

SRAM
array

DC/SFQ

Vd
Id
RsIg

SFQ CMOS

(d) SFQ 2 to 4 decoder

NOR
NOR
NOR
NOR
latch

DC
/S
FQ

clock
output0
output1
output2
output3

B BR/WA A

FeMag

barrier
MTJ

metal

(e) SHE MRAM

HL

LR

HR

LL
Ip

(f) superconducting
nanowire memory

1

2 3

Figure 3: Various cryogenic memory technologies and their components.

the fan-out of a SFQ gate is only one. If a gate needs to have >1 fan-

out, a SFQ splitter is required to be inserted at the output of the gate

to enable a fan-out of two. To support additional fan-outs, a binary

tree of SFQ splitters can be used. Because of the fan-out constraint,

it is expensive to implement peripherals of a memory array by SFQ

logic. For instance, a SFQ 4-to-16 decoder fabricated by the NEC Nb

standard process occupies 885 μm×350 μm [35], i.e., 77K F 2, where

we define F as the diameter of a JJ. However, we synthesized a

28 nm CMOS 4-to-16 decoder occupying only 18.7 μm2, i.e., 23K F2,

where F is the technology node size, i.e., 28 nm.

CMOSCompatibility. Superconducting SFQ technology is CMOS

compatible [41]. A CMOS SRAM array and SFQ peripherals have

been successfully fabricated on the same wafer [11]. CMOS circuits

optimized for cryogenic temperatures are first fabricated on a wafer.

SFQ logic can subsequently be fabricated on the same wafer using

standard SFQ process technology [11].

input ...

...

...
output ...

...

...

DA
U

SHIFT
Figure 4: SuperNPU: a SFQ-based systolic CNN accelerator

(DAU: data alignment unit).

2.2 SuperNPU and SHIFT

To accelerate deep learning inferences, a recent work [17] proposes

a SFQ systolic CNN accelerator, SuperNPU, as shown in Figure 4.

Due to the gate-level pipelining and the pulse-driven clocking, it

would be easy to implement systolic and pipelined matrix multipli-

cation units that can operate at 52.6GHz with low power consump-

tion by SFQ logic. Instead of power-hungry hardware-managed

caches [1], SuperNPU uses only SHIFT [17] as its on-chip SPM

arrays to store input, weight, output, and PSum data. As Figure 3(a)

shows, SHIFT comprises serially connected DFFs and a feedback

loop. As Table 1 describes, due to its simple structure, SHIFT can

achieve ultra-short access latency, high density, and low power

consumption. An access to a SHIFT cell requires only 0.02 ns and

consumes only 0.1 fJ. A SHIFT cell occupies only 39F 2, where

F is the diameter of a JJ. However, SHIFT arrays seriously limit

the inference throughput of SuperNPU, i.e., sequentially accessing

CNN data makes SuperNPU achieve only 40% of its peak inference

throughput even when processing a batch of images.

2.3 Cryogenic Memory

Though SFQ-based computing logic units [10, 15, 23, 39, 47] achieve

ultra-high operating frequency and low power consumption, it is

challenging to implement low-power and dense random-access-

memory (RANDOM) arrays that can match the speed of super-

conducting computing at 4K. There are several types of cryogenic

memory technologies that can serve as on-chip SPM for a SFQ

systolic CNN accelerator.

Vortex Transition Memory (VTM). JJ-based Vortex Transi-

tion Memory (VTM) [44, 46] has been demonstrated at the scale of

512-byte. However, VTM suffers from poor scalability. As Table 1

shows, each VTM cell [44] consists of four JJs and eight inductors,

thereby occupying a cell size of 203F 2. A VTM cell must use large

superconductor rings. It is difficult to create a VTM cell in a smaller

size even with self-shunted JJs. As a result, a recent VTM array

demonstration [44] achieves only 0.9Mbit/cm2 functional density.

Accessing a VTM array typically costs 0.1 ns [44, 46].
Table 1: The comparison between cryogenic memories.

Features SHIFT VTM SRAM MRAM SNM

Read Latency (ns) 0.02 0.1 2 ∼ 4 0.1 0.1

Write Latency (ns) 0.02 0.1 2 ∼ 4 2 3

Cell Size 39F2 203F2 146F 2 89F2 54F2

Read Energy 0.1f J 0.1p J 0.1p J 1p J 10f J

Write Energy 0.1f J 0.1p J 0.1p J 8p J 10f J

Leakage Power no tiny medium tiny tiny

Random Access no yes yes yes yes

Josephson-CMOS SRAM. Due to the SFQ CMOS compatibility,

prior work [11, 37, 48, 54] builds a Josephson-CMOS memory array

that connects a SFQ decoder and a SFQmultiplexer to a SRAM array

via nTrons [60], as shown in Figure 3(b). These works [11, 37, 48, 54]

have demonstrated that SRAM can reliably operate at 4K but with

faster speed and lower power consumption compared to the room

temperature. As Figure 3(c) highlights, nTron is a superconducting

device whose superconductivity can be switched by the injection of

hot quasiparticles generated at the gate. SFQ circuits can use nTrons

to access CMOS components at 10GHz [60]. Therefore, it is more

practical to implement large and reliable cryogenic memory arrays

by Josephson-CMOS SRAM, due to the maturity of CMOS SRAM

technology. However, it is important to note that SRAM is slow, e.g.,

accessing a 28MB SRAM array typically costs 2∼4 ns, as shown
in Table 1. Moreover, a SFQ-based decoder [37] costs significant

hardware overhead. Due to the fan-out limitation, as shown in

Figure 3(d), a SFQ-based N -to-2N decoder requires at least O(2N)
SFQ splitters to distribute its clock pulses. A SFQ decoder [35] is

larger than its CMOS counterpart by multiple times, even if JJ can

be scaled to the same size of a transistor.

MagneticMemory (MRAM). To build a fast, dense, and power-

efficient cryogenic memory array, recent work [38] suggests a spin

hall effect (SHE) magnetic RAM (MRAM) array, as shown in Fig-

ure 3(e). A SHE-MRAM cell consists of a SHE magnetic tunnel

914

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Zokaee and Jiang, et al.

SHIFT
SRAM

MRAM SNM VTM
10-2

10-1

100

101

102

no
rm

. l
at

en
cy

 mem matrix

(a) Latency.

SHIFT
SRAM

MRAM SNM VTM
10-1

100

101

no
rm

. e
ne

rg
y

 mem matrix

(b) Energy.

SHIFT
SRAM

MRAM SNM VTM0.0
0.2
0.4
0.6
0.8
1.0

no
rm

. a
re

a

 other decoder array matrix

(c) Area (@28nm).

Figure 5: The comparison of SuperNPU with various cryogenic-memory-techno-

logy-based SPM when inferring AlexNet (mem: SPM; matrix: matrix unit).

...

0: 0x989680 0x9897EB 0x989956 ...
1: 0x989681 0x9897EC 0x989957 ...
2: 0x989682 0x9897ED 0x989958 ...
3: 0x989683 0x9897EE 0x989959 ...
4:
sequential reads random reads

col0 col1 col2cyc

Figure 6: Memory accesses of

SuperNPU (cyc: cycle; col: PE ar-

ray column).

junction (MTJ) and a superconducting heater-cryotron (hTron) bit-

select element. A SHE-MTJ consists of a MTJ sitting on a metallic

spin hall channel, while a hTron, which is a variant of the nTron,

can be driven by SFQ logic and thus supports sufficient current

to switch the SHE-MTJ. A SHE-MRAM cell is 89F 2, as shown in

Table 1. Besides SFQ decoders and multiplexers, a SHE-MTJ array

is connected to row and column driving hTrons. To write a cell, the

SFQ multiplexer sends a triggering pulse to each corresponding

column hTron. The bias current (1) flows through all hTrons in the

column, which are superconducting. A row hTron is triggered by

the SFQ decoder and sends its bias current to all bit-select hTrons in

that row (2). For a hTron which receives both the current from the

column driver and the current from the row driver, a writing pulse

is generated to the SHE-MTJ channel to change the state of the

MTJ (3). The switching of a SHE-MRAM typically costs 2 ns [38].

The reading process is similar to that of writing, except that the

reading current is much smaller.

Superconducting Nanowire Memory (SNM). A Supercon-

ducting Nanowire Memory (SNM) [3, 61] can be also used to build

a cryogenic memory array. As Figure 3(f) shows, each SNM cell has

two hTrons, such that the right hTron has a larger switching cur-

rent and larger inductance than the left hTron. The two hTrons are

connected serially so that both hTrons are modulated by the same

current. The cell has four connections arranged in two electrically

isolated pairs, wherein one is the access port, while the other is the

select port. As Table 1 shows, a SNM cell is only 54F 2. To write a

cell, a bias current is applied to the column, and flows through all

the cells within the column, but its amplitude is too small to alter

the state of any cells. A row enabling current is applied to the row.

This weakens the channels of the hTrons within the row, thereby

allowing the write bias to cause the selected cells to switch. A write

operation spends 3 ns [3, 61]. Each read is destructive. After each

read, a write operation is required to restore the data.

3 MOTIVATION

In this section, we present the design motivation by comparing

the inference latency, energy consumption, and area overhead of

SuperNPU [17] with SPMs made by various cryogenic memory

technologies. SuperNPU has two 24MB SHIFT-based SPMs for

inputs and outputs/PSums, respectively. We used other cryogenic

memory technologies that support random accesses to build a 64-

bank 12MB input SPM, a 256-bank 16MB output/PSum SPM, and a

64 KB weight SPM for SuperNPU. We evaluated SuperNPU for one-

image inferences, thus SPMs with such capacities are large enough

for each layer of AlexNet without generating thrashing traffic to

DRAM. The configuration of SuperNPU is shown in Section 5.

Inference Latency. As Figure 5(a) shows, SuperNPU using SH-

IFT spends a huge portion of inference latency in sequentially

searching the input and PSum data. If SuperNPU SPMs support

random accesses, the inference latency can be reduced. However,

since Jose-phson-CMOS SRAM, VTM, MRAM, and SNM have much

longer read and write latencies, no prior cryogenic memory tech-

nology can significantly reduce the inference latency. The write

latencies of SRAM, MRAM, and SNM are >2 ns, they prolong the

inference latency of SuperNPU by at least 5×. Only VTM decreases

the inference latency of SuperNPU by 11% over SHIFT, since the

latency saving introduced by its random access capability is larger

than the slowdown caused by its prolonged access latency. If there

were a random access array with 0.02 ns latency, SuperNPU would

have eliminated memory access stalls. Such fast random access

arrays can reduce the inference latency of SuperNPU by 94%.

Inference Energy. The energy comparison of various types of

on-chip SPM arrays is shown in Figure 5(b). Since all the other

cryogenic memory technologies have larger read and write energy

than SHIFT, they enlarge the energy of an AlexNet inference by

30%∼2.5× over SHIFT. Although CMOS SRAM dissipates large

leakage power at room temperatures, the cryogenic temperatures

substantially reduce leakage by >90% [28]. As a result, the large

write energy makes cryogenic SHE-MRAM consume even more

energy than Josephson-CMOS SRAM.

Area Overhead. The area comparison between various types of

on-chip SPM arrays is highlighted in Figure 5(c). SuperNPU [17] as-

sumes JJs can be scaled to 28 nm. We adopted the same assumption

for SHIFT-, MRAM-, SNM-, and VTM-based SPM arrays. We also

assumed SRAM arrays are fabricated at 28 nm. The SHIFT SPMs of

SuperNPU have few SFQ decoders and multiplexers to select banks,

each of which is a long lane of SHIFT memory cells. Although the

capacity of MRAM-, SNM-, and VTM-based SPM arrays is 58% of

that of SHIFT, they can reduce from 8% to 45% of the area. This is

because they use more SFQ peripherals and have larger cells, which

are demonstrated in Table 1. Particularly, SFQ-based decoders cost

16%∼ 28% of the area in non-SHIFT arrays. Due to the fact that

Josephson-CMOS SRAM has the second largest cell size, compared

to SHIFT, the Josephson-CMOS SRAM array with a 58% capacity

reduces the area by only 22%.

Drawbacks of Prior Cryogenic Memories. Compared to the

perfect pipeline without memory stall, the SHIFT-based SPMs pro-

long the inference latency of SuperNPU by 17×, due to the fact

that it only supports sequential reads. As the memory traces in

Figure 6 show, when SuperNPU reads weights, it has both sequen-

tial and random reads. Although SHIFT-based SPM can efficiently

process sequential reads, it also has to move many unnecessary bits

to support random accesses. Josephson-CMOS-SRAM-, MRAM-,

SNM-, and VTM-based SPM arrays can perform random accesses,

but they cannot achieve reasonable latency reduction, since their

915

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO ’21, October 18–22, 2021, Virtual Event, Greece

SHIFT
hSRAM

hMRAMhSNMhVTM
hVTM+p10-2

10-1

100

101

no
rm

. l
at

en
cy

 mem matrix

Figure 7: The inference laten-

cy comparison of a heteroge-

neous SPM.

...

cyc
0x989680
0x989681
0x989682

...

...0x2A1 0x2A0 ...

1:
2:
3:
4:

64:

rown rown+1 col0
fetch in cycle 1

weight
input

Figure 8: SMARTprefetching

(cyc: cycle; row: PE array row;

col: PE array column).

latency energy0%
20%
40%
60%
80%

100%
 other sen BL cdec H-tree arr

br
ea

kd
ow

n

Figure 9: The latency & ener-

gy of CMOSH-Trees in 28MB

Josephson-CMOS array with

256 banks.

PTL

su
bb

an
k S SS

S

S SS

M
AT

nT
ro
n

splitter
unit

Figure 10: A CMOS-SFQ array.

read or/and write latency are too long. MRAM and SNM are bot-

tlenecked by their write latency and energy. Despite that VTM

has the shortest access latency among prior cryogenic memory

technologies, it is still not fast enough to make an observable la-

tency reduction. Furthermore, the large VTM cell size significantly

enlarges the array area. Thus, although the SFQ peripherals of

Josephson-CMOS SRAM are very fast, CMOS H-Trees [28] inside

SRAM arrays greatly degrade the access latency and energy. The

area efficiency of Josephson-CMOS-SRAM-, MRAM-, SNM-, and

VTM-based SPM arrays are limited by SFQ peripherals. In sum-

mary, no prior cryogenic memory technology is a good candidate

to implement on-chip SPMs for SuperNPU.

4 SMART

In this section, we propose a heterogeneous SPM architecture, SM-

ART, in order to reduce the inference latency of a SFQ systolic

CNN accelerator. SMART is composed of SHIFT arrays performing

sequential accesses and a random-access-memory (RANDOM) array

supporting random accesses. We further present a fast RANDOM

array, i.e., a pipelined SFQ-CMOS array, for SMART to minimize

the inference latency, energy and hardware area. A pipelined SFQ-

CMOS array uses SFQ PTLs and splitter units to implement H-trees

connecting CMOS sub-banks to achieve small access latency and

energy. At last, we propose an ILP-based compiler to deploy various

CNN models on SMART.

4.1 A Heterogeneous SPM Architecture

We present a heterogeneous SPM architecture consisting of SHIFT

arrays and a RANDOM array for a SFQ systolic CNN accelerator.

For each convolutional layer, SHIFT arrays store all data receiving

sequential accesses, while the RANDOM array is used to support

random accesses during an inference. There are two challenges we

face when trying to use this heterogeneous SPM architecture to

effectively reduce the inference latency of the SFQ systolic acceler-

ator. First, though SHIFT arrays process sequential accesses well,

the inference latency of the accelerator is still heavily influenced

by the access latency of the RANDOM array. However, it is difficult

to build a fast, dense, and power-efficient RANDOM array by prior

cryogenic memory technologies. Second, there is no compilation

technique that can deploy a CNN and enable prefetching on the

heterogeneous SPM architecture. Although data allocation to SPMs

has been heavily studied before, prior work [8, 27, 45, 53, 55] focuses

only on general-purpose applications running on CPUs.

We elaborate the two challenges in applying heterogeneous

SPMs on SuperNPU in Figure 7, where we assume a perfect data al-

location for both sequentially accessed data and randomly accessed

data. We consider three 32 KB SHIFT arrays for inputs, outputs

& PSums, and weights as their SPMs, respectively. All CNN data

share a 28MB 256-bank RANDOM array in the heterogeneous SPM

architecture. The RANDOM array can be built by Josephson-CMOS-

SRAM, MRAM, SNM, or VTM. We call these heterogeneous SPM

schemes hSRAM, hMRAM, hSNM, and hVTM in Figure 7. Com-

pared to SHIFT, hSRAM, hMRAM, and hSNM prolong the inference

latency by 3.36×, 2.59×, and 2.38×, respectively. hVTM reduces

the inference latency by 70% over SHIFT, due to its short access

latency. We find that the RANDOM array access latency in SMART

heavily influences the inference latency of the accelerator. This

is because for a weight-stationary systolic CNN accelerator, most

accesses to input, and output & PSum data are random. The systolic

accelerator maintains an iterative computing flow, where weights

are first deployed on the matrix unit, inputs are fetched to start

a systolic computation, and then the next iteration continues, as

shown in Figure 8. Considering the fact that there is no dependency

between inputs and weights, if the prefetching of inputs to its SPM

is enabled, we can start the systolic computation earlier. As Figure 7

shows, the prefetching (hVTM+p) further reduces the inference

latency by 64.4% over hVTM. However, no prior SPM management

technique supports prefetching for an accelerator.

4.2 A Pipelined CMOS-SFQ Array

4.2.1 The limitations imposed by CMOS H-trees. In an array, both

the address and data of amemory request are routed byH-Trees [31],

which make the memory request consistent in its access to all MATs.

A memory array has two separate H-Trees including a request net-

work and a reply network. Data and addresses are transferred from

the edge of the array to MATs by the request network, while data

are sent out from MATs by the reply network. Both the request and

reply H-Trees are composed of two parts including a network con-

necting the array edge to the bank edge, and a network connecting

the bank edge to MATs.

The Josephson-CMOS array access latency can be divided into

SFQ decoder delay, CMOS H-Tree delay, CMOS decoder delay,

CMOS wordline delay, CMOS bitline delay, CMOS sense ampli-

fier delay, and SFQ DC/SFQ delay. Throughout the components,

the CMOS H-tree dominates the latency and energy consumption

of a large Josephson-CMOS SRAM array at 4K. As Figure 9 shows,

the H-tree costs 84% of the access latency, and 49% of the access

energy in a 256-bank 28MB Josephson-CMOS SRAM array. Partic-

ularly, in the sub-10nm regime, the resistance of copper wires [5]

exponentially increases as the process technology scales. Therefore,

the latency and energy consumption of H-trees will become more

significant in Josephson-CMOS arrays at future process nodes.

916

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Zokaee and Jiang, et al.

re
c

re
c PTL PTL

splitter
unit

drv

rec
splitter
drv drv

PT
L

(b) splitter unit

nTron
CMOS MUX

...

... de
c

CM
O
S CMOS

SRAM
array

CMOS SA

(a) CMOS sub bank
DC/SFQ conv

m
st
ag
es

CMOS sub bank

CMOS to SFQ

SFQ H tree: sub
bank to array

SFQ to CMOS

SFQ H tree: array
edge to sub bank

address, data,
R/W signals

1
st
ag
e

1
st
ag
e

1
st
ag
e

m
st
ag
es

(c) an array pipeline

(d) PTL

(e) receiver

L1 L2 Ln
C1 C2 Cn

V

(f) driver

(g) splitter

L1 RL3
IB

JJ2
in

L2LB1
out

IB

JJ1

LB2

L1 L3
IB1

JJ2
in

L2LB1
out

IB2

JJ1

LB2

JJ3

IB3LB3
L4 L1 IB

JJ1
in L3 out2

IB3
JJ3

L2 out1
IB2

JJ2

Figure 11: The components and pipeline of a pipelined CMOS-SFQ array.

8KB 128KB 2MB
0.0
0.1
0.2
0.3
0.4
0.5

la
te

nc
y

(n
s)

 chip
 simulated

(a) Latency.

8KB 128KB 2MB
0.00

0.01

0.02

0.03
en

er
gy

 (p
J)

 chip
 simulated

(b) Energy.

Figure 12: The validation of a CMOS sub-bank.

4.2.2 A Pipelined CMOS-SFQ Array. Overall Architecture. We

propose a pipelined CMOS-SFQ array as shown in Figure 10 to

reduce the access latency and energy at 4K. Our pipelined CMOS-

SFQ array consists of only CMOS sub-banks connected by SFQ

H-Trees. The design philosophy of our CMOS-SFQ array is differ-

ent from Josephson-CMOS SRAM [11, 37, 48]. To avoid the large

hardware overhead of SFQ decoders, we use SRAM cells and CMOS

peripherals including row decoders, columnmultiplexers, and sense

amplifiers. We use PTL lines and SFQ-based peripherals including

splitters, drivers, receivers, and nTrons to build SFQ H-Trees. The

major components of our pipelined CMOS-SFQ array can be sum-

marized as follows.

• CMOS Sub-bank: As Figure 11(a) shows, CMOS sub-banks of

a pipelined CMOS-SFQ array are constructed by SRAM cells

and CMOS peripherals including CMOS row decoders, column

multiplexers, and sense amplifiers. To drive the row decoders and

column multiplexers, we use nTron devices to convert the SFQ

memory requests to electrical signals for a CMOS sub-bank. After

a CMOS sub-bank makes the data ready, we also use level-driven

DC/SFQ converters [48] to transform the data in sense amplifiers

into SFQ pulses.

• SFQ H-Tree: We use PTL lines to replace all CMOS (e.g., copper)

lines in a pipelined CMOS-SFQ array. Due to the fan-out limita-

tion of SFQ logic, we add a splitter unit to each position where

the fan-out needs to be increased. The details of a splitter unit

can be viewed in Figure 11(b). In order to pass a SFQ pulse via

a PTL line, we need a driver at the source end and a receiver at

the destination end of the PTL line. A splitter unit consists of a

receiver at the input end, two drivers at the two output ends, and

a splitter connecting them together.

Pipeline. We propose a multi-stage pipeline architecture for

our CMOS-SFQ array in Figure 11(c). To communicate with the

SFQ systolic matrix unit, request SFQ H-trees transfer each mem-

ory request to a sub-bank from the array edge. nTrons are used to

convert the SFQ request to electrical signals that can drive CMOS

arrays to fetch (write) the data from (to) the CMOS sub-bank. If the

request is a read, level-driven DC/SFQ converters are adopted to

convert the electrical signals of the reading data back to SFQ pulses.

Finally, the SFQ data pulses are returned to the systolic matrix unit

via reply SFQ H-trees. Since splitter units in SFQ H-Trees naturally

have gate-level pipelining, multiple memory requests can be trans-

ferred simultaneously in the same H-Tree. If we can guarantee all

requests go to different sub-banks, a CMOS-SFQ array can process

these requests in a pipelined way. To decide the frequency of the

pipeline, we identified the operations of nTrons (SFQ to CMOS),

CMOS sub-banks, and level-driven DC/SFQ converters as the bot-

tlenecks. Both a nTron and a level-driven DC/SFQ converter [48]

can complete a conversion around 0.1 ns. We can limit the latency

of each sub-bank within ∼0.1 ns by adjusting the number of MATs

inside a sub-bank. Then, a H-Tree operation can be broken into

multiple pipeline stages by inserting SFQ repeaters, each of which

is composed of a driver and a receiver, so that each pipeline stage of

H-tree can also fit into ∼0.1 ns. The detailed pipeline design space

exploration is shown in Section 4.2.4. Since all memory accesses

of a systolic CNN accelerator can be known before executions, it

is possible to read (write) a line from (to) a pipelined SFQ-CMOS

array every ∼0.1 ns via data allocation and prefetching.

4.2.3 Modeling and Validation. Modeling a CMOS Sub-bank at

4K. We adopted the cryogenic memory model, CryoRAM [25] to

model a CMOS SRAM sub-bank. CryoRAM includes a validated

cryogenic MOSFET model cryo-pgen, and a CACTI-based cryo-

genic memory model cryo-mem. Cryo-pgen can derive a variety

of MOSFET characteristics at only 77K. We modified cryo-pgen to

model MOSFET at 4K by adjusting three fabrication-related and

temperature-dependent MOSFET variables including carrier mo-

bility, carrier’s saturation velocity, and threshold voltage based on

recent cryogenic MOSFET data [2, 12]. Then, we plugged the 4K

MOSFET parameters generated by cryo-pgen into cryo-mem to

study the access latency and energy of a CMOS array at 4K.

Validating the 4K CMOS Sub-bank Model. We validated the

access latency and energy of a CMOS array at 4K generated by

cryo-mem against a published 4K SRAM array demonstration [48]

fabricated at 0.18 μm. As Figure 12 shows, the 4K SRAM demon-

stration has three configurations: an 8KB sub-bank consisting of

eight MATs, a 128 KB sub-bank containing 32 MATs, and a 2MB

sub-bank comprised of 128 MATs. The latency values simulated by

our modified cryo-mem are larger than those of the 4K SRAM chip

by 3%∼8% as shown in Figure 12(a), since we applied conservative

cryogenic MOSFET parameters to cryo-mem. Our conservative

cryogenic MOSFET parameters also make the energy values of

our modified cryo-mem larger than those of the 4K SRAM chip by

8%∼12%.
Modeling a SFQ H-Tree at 4K. The components of a SFQ H-

Tree include the follows.

• PTL: We used micro-strip PTLs [20], due to its small size, better

scalability and simplicity of geometry. A micro-strip PTL can

be represented as a lossless distributed LC network shown in

Figure 11(d). The inductance per unit length of a micro-strip PTL

917

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 2: The latency and power of SFQ H-Trees.

Component
Latency Leakage Dynamic

(ps) Power (μW) Power (nW)

Splitter 7 0 0.15

Driver 3.5 0.874 0.181

Receiver 5.25 0 0.275

nTron 103.02 8.8 13

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
30
40
50
60
70
80
90

100
 simulated
 JoSIM

fre
qu

en
cy

 (G
Hz

)

length(mm)

(a) Latency.

0.01 0.1 1
2.4
2.8
3.2
3.6
4.0
4.4 simulated

 JoSIM
en

er
gy

 (x
10

-5
 n

J)

length(mm)

(b) Energy.

Figure 13: The validation of our SFQ H-Tree model.

(L) [29] is composed of the magnetic inductance introduced by

magnetic fluxes within a superconductive line, and the kinetic

inductance caused by the motion of paired electrons. L can be

calculated as:

L =
μ0h

Kw

[
1 +

λ1
h
coth

(
t1
λ1

)
+
λ2
h
coth

(
t2
λ2

)]
(1)

where w is the line width; t1 means the thickness of the PTL;

t2 is the thickness of the ground plane of the PTL; K indicates

the fringing field factor; h is the thickness of dielectric; λ1 and
λ2 denote penetration depths of the micro-strip and the ground

plane, respectively.

C =
ϵr ϵ0w

h
(2) Z =

√
L

C
(3) T = N

√
L ×C (4)

The capacitance per unit length of a micro-strip PTL (C) can be

calculated by Equation 2, wherew andh are defined in Equation 1;
ϵr is the dielectric constant of the insulation between the line

and ground plane layer; and ϵ0 is the permittivity of free space.

As Equation 3 shows, the impedance of a micro-strip PTL can

be derived from the inductance and capacitance per unit. The

delay of a micro-strip PTL is a function of total LC, and increases

linearly with the line length as shown in Equation 4, where N is

the number of LC sections in the micro-strip PTL.

• Splitter: Due to the fan-out limitation, a splitter [40] is the core

of a splitter unit used to transform a pulse to two pulses, each of

which can be sent in one direction of a cross-point in the H-Tree.

The structure of a splitter is shown in Figure 11(g), where a SFQ

pulse is converted into two flux quanta. A splitter consists of

three inductors and three JJs. The latency, and dynamic power

of a splitter are shown in Table 2.

• Driver & Receiver: As Figure 11(b) shows, a SFQ pulse is sent

to a PTL by a driver [43] and received by a receiver [43]. A

PTL driver in Figure 11(f) consists of a 2-stage JTL cascaded

with a resistance. The JTL acts as both a buffer and a SFQ pulse

reconstruction device. A receiver composed of a 3-stage JTL is

exhibited in Figure 11(e). The resonance frequency f of a PTL

with a driver and a receiver is defined as f = 1
2T+t0

, where T

is the PTL delay, another T avoids the resonance, and t0 is the
delay of a driver and a receiver [6]. The operating frequency

of a PTL can be set to at most 90% of f [32]. Otherwise, the

95100105110115120
10-2
10-1
100
101
102

fre
qu

en
cy

 (G
Hz

)

leakage power (mW)

(a) Latency.

0.0 0.5 1.0 1.5 2.010-2
10-1
100
101
102

fre
qu

en
cy

 (G
Hz

)

energy (nJ)

(b) Energy.

101 102 103 104 10510-2

10-1

100

101

102

fr
eq

ue
nc

y
(G

Hz
)

area (mm2)

(c) Area.

Figure 14: The design space exploration.

resonance effect on the PTL may cause timing jitters and errors.

In order to increase the frequency of a PTL, we need to insert

more repeaters, each of which consists of a driver and a receiver.

Therefore, a long PTL can be partitioned into shorter segments.

Inserting repeaters into a PTL increases not only the resonance

frequency, but also the power consumption of the PTL. The bias

currents and resistors in the bias network of a driver increase

the static power, while more JJs introduced by repeater insertion

also increase the dynamic power. The area overhead of repeater

insertion is proportional to the number of JJs.

Validating the 4K SFQ H-Tree Model. We implemented our

pipelined SFQ H-Trees (Equation 1∼Equation 4) in the CACTI-

based cryogenic memory model cryo-mem [25]. We mainly focus

on validating the new modules added to cryo-mem including PTL

lines and splitter units, each of which consists of a driver, a receiver,

and a splitter. Thus, we used a splitter unit shown in Figure 11(b)

with various PTL lengths to perform the validation. We measured

the latency and energy of passing a SFQ pulse from the top driver

to the bottom right receiver, since the two bottom receivers are

the same. We ran the superconductor SPICE simulator, JoSIM [7],

to validate the results of pipelined CMOS-SFQ arrays generated

by our modified cryo-mem. We assumed Hypres ERSFQ 1.0μm
technology [56] to validate the splitter unit. Figure 13(a) exhibits

the latency comparison of a splitter unit with various PTL lengths

between our model and JoSIM, while their energy correlation is

described in Figure 13(b). Compared to the JoSIM HSPICE results,

the latency values of a driver and a receiver estimated by our SFQ H-

Tree model have ±6% deviations, particularly when the PTL length

is <0.2mm . The energy values of a SFQ H-Tree predicted by our

model are also close to the JoSIM results with ±11% errors.

4.2.4 Pipeline Design Space Exploration. The design space explo-

ration of our pipelined SFQ-CMOS array is exhibited in Figure 14.

The bottleneck of the entire pipeline of our SFQ-CMOS array lies in

the stage of nTrons, whose latency is 103.02 ps, since we cannot fur-

ther break the latency into multiple pipeline stages. Therefore, the

maximal frequency of our pipelined SFQ-CMOS array is 9.6GHz.

To achieve the maximal pipeline frequency, we adjusted the size of

CMOS sub-banks and the frequency of SFQ H-Trees. By reducing

the size of CMOS sub-banks, the access latency to sub-banks is

reduced to fit into one pipeline stage, since bitlines and wordlines

in each MAT become shorter. However, the leakage power and area

overhead of a sub-bank increased substantially, since more CMOS

peripherals were added into each sub-bank. On the other hand, we

inserted drivers and receivers to break a H-Tree into more pipeline

stages, each of which has the latency of 103.02 ps. As a result, both

the area overhead and access energy of a pipelined SFQ-CMOS

array increase.

918

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Zokaee and Jiang, et al.

Table 3: The notations of the ILP formulation.

Notation Description

M Memory object: weight (α), input (β), output (γ),

PSum (δ)

i The ith edge in the DAG

ls SPM access: load (L), and store (S)

st

The status of M: in a SHIFT array (H), in a

RANDOM array (R), accesses between H and R

(HR), accesses between H and DRAM (HD),

accesses between R and DRAM (RD)

ins2n ins2n+1 e2n+1
...
e2n 1

the nth iteration

Read_
Weights

Matrix_
Multiply

[n+1, n+a]

[n+1, n+a]

n

[n+1, n+a]
...

e2n

[n+1,n+a]

[n, n+a)

n 1

[n, n+a)

Figure 15: The DAG of a convolutional layer.

4.3 A Compiler for Heterogeneous SPMs

We built a novel compiler to allocate and prefetch memory objects

onto SMART composed of SHIFT arrays and a RANDOM array for a

SFQ systolic CNN accelerator by integer linear programming (ILP).

No prior SPM management technique has the ability to schedule

or prefetch memory requests for a systolic CNN accelerator, since

prior work [8, 27, 45, 53, 55] focuses on general-purpose applica-

tions with multiple basic blocks, each of which is an instruction

sequence with no branches in except to the entry and no branches

out except at the exit. A convolutional layer is a 6-nested loop [59]

belonging to a basic block. Our ILP-based compiler aims to allocate

and prefetch memory objects at the instruction level without modi-

fying the computing flow of a systolic CNN accelerator. Instead of

1-byte data, we set the granularity of allocation to memory objects,

each of which is a multi-byte data block with consecutive addresses,

to capture the temporal and spatial locality. Unlike prior SPM man-

agement schemes [8, 27, 45, 53, 55], which assume a memory object

is alive throughout the whole basic block, we performed lifespan

analysis of each memory object on the directed acyclic graph (DAG)

of each convolutional layer to see how many iterations a memory

object can live. Our compiler makes the near-optimal memory ob-

ject allocation and prefetching to SMART on edges of the DAG of

a convolutional layer. We designed our ILP-based technique for

SMART consisting of private SHIFT arrays for inputs, weights, and

PSums/outputs, and a shared RANDOM array for all, to enable data

movements between SHIFT and RANDOM arrays, and to decide

the schedule of a convolutional layer.

Memory Object: We considered weights (α), inputs (β), outputs
(γ), and PSum (δ) results that need to be accumulated as candidates

for SPM allocation. An ideal memory trace including all read and

write accesses can be generated by the accelerator simulator SCALE-

SIM [42] by assuming that there is no delay caused by SPMs and

DRAM. To capture fine-grained spatial and temporal locality, we

grouped consecutive memory addresses across different processing

elements (PEs) or consecutive cycles into one memory objectM.

A memory object can be a weight filter kernel, a part of the input

map, or an output channel.

LifespanAnalysis: We performed the lifespan analysis of mem-

ory objects at the instruction level on the DAG of a convolutional

layer, as shown in Figure 15. Unlike prior SPMmanagement schemes

[8, 27, 45, 53, 55] compiling complex general-purpose applications

on a CPU, our compiler focuses on each convolutional layer, which

contains only one basic block. To maintain the original computing

flow of the systolic CNN accelerator, a convolutional layer is first

unrolled and compiled into a DAG. Each node in the DAG is an

instruction of the systolic CNN accelerator, e.g., Google TPU [21],

which has several types of CISC instructions as follows.

• Read_Weights: Sending weights to the Matrix Unit.

• Matrix_Multiply: Making the Matrix Unit perform a matrix mul-

tiply from the SPMs into accumulators.

• Activate: Performing activations and poolings.

• Write(Read)_Host_Memory: Writing (Reading) data from SPMs

(the CPU memory) to the CPU memory (SPMs).

An edge between two instructions indicates that the destination

node has data dependency on the source node. We annotated each

edge with its related memory objects. For instance, at e2n−1, i.e., the
last edge of the (n − 1)th iteration of the layer, the weight objects

(αn) for the next (nth) iteration have to be fetched.

Prefetching. Unlike prior SPM schemes [8, 27, 45, 53, 55], we

enable the data fetching of memory objects that will be used in

next several iterations by prolonging the lifespan of each memory

object. For example, in Figure 15, for the first edge e2n of the nth
iteration, besides writing the output objects of the previous (n−1)th
iteration (γn−1), our compiler reads the weight objects α [n+1,n+a]
for next a iterations, the input objects β [n,n+a) for current and next
(a − 1) iterations, and the PSum objects δ [n,n+a) for current and
next (a − 1) iterations. The allocation and schedule results achieved

by our ILP-based compiler are only “near”-optimal, since we do not

exhaustively search the best value of a. Instead, we set a fixed value
for a.

ILP Variable: We define binary variables of the ILP formulas to

attain the near-optimal scheme on a SFQ systolic CNN accelerator

with SMART. As Table 3 shows, these variables can be summarized

asMi,st
ls

, whereM can be α , β , γ , or δ ; ls can be L or S; and st can
be H, R, HR, HD, and RD. For instance, if an input memory object is

allocated to the SHIFT array on the ith edge of the DAG, we have

βi,H = 1 and βi,R = 0. Setting a binary variable of SPM access to 1

indicates a load or store is enabled. For example, βi,HD
L = 1 denotes

loading the input memory object from the DRAM to the RANDOM

SPM on the ith edge of the DAG.

ILP Objective Function: The objective function is to obtain

the shortest execution time of each convolutional layer on a sys-

tolic CNN accelerator with heterogeneous SPM architecture. The

objective function is summarized as

max
∑
i

∑
M∈{α,β,γ ,δ }

{TH
s ×Mi,H +TR

s ×Mi,R

−THD
r ×Mi,HD

L −TRD
r ×Mi,RD

L
−THR

r ×Mi,HR
L −THD

w ×Mi,HD
S

−TRD
w ×Mi,RD

S −THR
w ×Mi,HR

S }

(5)

whereTH
s (TR

s) is the reduced latency if a memory object is allocated

to a SHIFT (RANDOM) array instead of the DRAM. THD
r / TRD

r

/ THR
r is the latency of reading a memory object from DRAM /

DRAM / a RANDOM array and writing it to a SHIFT / RANDOM /

SHIFT array. THD
w / TRD

w / THR
w is the latency of writing a memory

919

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO ’21, October 18–22, 2021, Virtual Event, Greece

384KB-SHIFT
96KB-SHIFT

128B-SHIFT
192KB-RANDOM10-1

100
101
102
103

en
er

gy
 (p

J)

Figure 16: The energy.

SuperNPU SMART
0

20
40
60
80

100
120

ar
ea

 b
re

ak
do

w
n

(%
)

 SHIFT
 H-Tree
 other
 dec
 array
 matrix

Figure 17: The area.

object back to DRAM / DRAM / a RANDOM array from a SHIFT /

RANDOM / SHIFT array.

ILP Constraints: We use the following ILP constraints to guar-

antee the correctness of the final SPM allocation and schedule of a

convolutional layer.

• DAG and lifespan: The scheduling and prefetching result has

to match the lifespan analysis of memory objects, and the data

dependency of the DAG.

• Consistency of SPM accesses: The consistency of SPM ac-

cesses is enforced by

∀i < j, M j,H −M j,HD
L −M j,HR

L −Mi,H = 0

∀i < j, M j,R −M j,RD
L −Mi,R = 0

∀i < j, M j,HR
L −Mi,R ≤ 0

(6)

If we allocate a memory object to a SHIFT array on an edge ej ,
as displayed in the first line of Equation 6, this memory object

should be either allocated in the same array on a prior edge

ei (i < j) or loaded to this SPM on edge ej . The second line

guarantees the consistency of SPM accesses in the RANDOM

array. The last line enforces the memory object should be already

allocated to the RANDOM array on edge ei , if it is loaded to a

SHIFT array on edge ej from this RANDOM array.

• SPM size: The aggregate size of all memory objects allocated to

the same array cannot exceed the array size.

• SPM bandwidth: The total read (write) bandwidth of a SPM

cannot exceed its maximal read (write) bandwidth.

• Sub-bank: If two requests are scheduled to the same sub-bank

at the same time, they are processed sequentially.

4.4 Design Overhead

The Heterogeneous SPM. SuperNPU [17] has a 24MB 64-bank

input SHIFT buffer, a 24MB 256-bank output/PSum SHIFT buffer,

and a 128 KBweight SHIFT buffer. In contrast, SMART has three 256-

bank 32KB SHIFT arrays for inputs, outputs/PSums, and weights,

respectively. It also has a 256-bank 28MB SFQ-CMOS SRAM array

that can be operated at 9.7GHz for all data.

• Latency: The access latency of a SHIFT array is 0.02 ns, while a

SFQ-CMOS bank can read or write 1-byte data each 0.11 ns.

• Leakage: A SHIFT array has no leakage, but the leakage power

consumption of the pipelined SFQ-CMOS SRAM array is 102mW.

• Dynamic energy: As Figure 16 shows, compared to a 384KB or

96KB bank of SuperNPU, the SHIFT arrays of SMART move only

128 DFFs per access, thereby reducing the access energy by 99%.

The access to the SFQ-CMOS array of SMART costs only 50% of

the dynamic energy of accessing the 96KB bank SuperNPU, due

to low-power SFQ H-Trees.

• Area: Compared to SuperNPU, SMART reduces the SPM capacity

by 41%. But it has more CMOS sub-banks and more repeaters

Table 4: The baseline configuration.

Name Description

TPU

0.7GHz; 45 TMAC/s peak perf.; PE array size

256 × 256; input, weight, and output: 24MB;

PSum: 4MB

52.6GHz; 842 TMAC/s peak perf.; PE array size

SuperNPU 64 × 256; input: 64-bank, 24MB; output/PSum:

256-bank, 24MB; weight: 128 KB, 0.02 ns

SMART

52.6GHz; 842 TMAC/s peak perf.; PE array size

64 × 256; three 32 KB SHIFT arrays for inputs,

outputs/PSums, and weights: 256-bank, 0.02 ns;

a 28MB SFQ- CMOS array: 256-bank, 0.11 ns

in SFQ H-Trees to achieve 9.7GHz. As Figure 17 shows, SMART

increases the area by 3%, when we assume SFQ JJs and CMOS

transistors can be scaled to 28nm [17].

The ILP-based Compiler. We used SCALE-SIM [42] to extract

the DAGs of each CNN model, and identify memory objects. We

adopted the Gurobi ILP solver [14] to solve our ILP equations. For

each of our CNN models (shown in Section 5), the ILP solver can

find a solution within one hour.

5 EXPERIMENTAL METHODOLOGY

Simulation. We used SCALE-SIM [42] to model SMART, and our

baselines including CMOS-based Google TPU [21] and supercon-

ducting SFQ-based SuperNPU [17]. SCALE-SIM supports cycle-

acc-urate performance simulations of a systolic CNN accelerator

running inferences. The configurations of SMART and our baselines

are shown in Table 4. We set the memory bandwidth of TPU, Su-

perNPU, and SMART to 300GB/s. The average power consumption

of TPU is 40W [21], while the power consumption of SuperNPU

fabricated by the Hypres ERSFQ 1.0μm technology [56] is only

1.9W . We assume all components of SMART are also fabricated by

the same ERSFQ 1.0μm technology. The cooling cost of SuperNPU

and SMART at 4K is 400× [16] of their power consumption.

CNN Models. We selected six CNN models that have different

characteristics, e.g., computational intensity, network topology and

on-chip memory bandwidth needs. We ran single-image and batch-

based inferences on baselines. The batch size setting is the same

as [17]. For TPU and SMART, in a batch, AlexNet has 22 images,

while VGG16 has 3 images. All the other models have 20 images

in a batch. For SuperNPU, since it has larger SPMs, except VGG16

having 7 images in a batch, all the other models have 30 images in

each batch.

Cryogenic Memory Modeling. The details of SFQ-CMOS ar-

ray modeling can be found in Section 4.2.2. We modified the cryo-

genic memory model cryo-mem [25] to derive the access latency,

energy consumption and area of VTM,MRAM, SNM arrays with the

memory parameters in Table 1. We validated the simulated results

of cryo-mem on VTM, MRAM, SNM arrays against their published

array demonstrations [3, 38, 44] respectively. We observed at most a

14% error between the cryo-mem simulated data and the fabricated

array. Compared to the large performance and energy degradation

caused by VTM, MRAM, SNM arrays, the errors of cryo-mem are

not significant.

Schemes. Besides our baseline TPU, we implemented and com-

pared the following schemes:

920

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Zokaee and Jiang, et al.

AlexNet
FasterRCNN

GoogleNet
MobileNet

ResNet50
VGG16

gmean
0

10
20
30
40
50

no
rm

. p
er

f. SHIFT SRAM Heter Pipe SMART

Figure 18: The single-image speedup (norm. to TPU).

AlexNet
FasterRCNN

GoogleNet
MobileNet

ResNet50
VGG16

gmean
010203040506070 SHIFT SRAM Heter Pipe SMART

no
rm

. p
er

f.

Figure 19: The batch speedup (norm. to TPU).

Al
ex

Fa
st

Go
og

M
ob

i
Re

sN
VG

G1
6

gm
ea

n
Al

ex
Fa

st
Go

og
M

ob
i

Re
sN

VG
G1

6
gm

ea
n

Al
ex

Fa
st

Go
og

M
ob

i
Re

sN
VG

G1
6

gm
ea

n
Al

ex
Fa

st
Go

og
M

ob
i

Re
sN

VG
G1

6
gm

ea
n

Al
ex

Fa
st

Go
og

M
ob

i
Re

sN
VG

G1
6

gm
ea

n10-310-210-1100101102

SmartPipe

HeterSRAM

no
rm

. e
ne

rg
y dynamc static matrixSHIFT

Figure 20: The single image energy reduction (norm. to TPU;

matrix: matrix unit energy; dynamic: SPM dynamic energy;

and static: SPM static energy).

Al
ex

Fa
st

Go
og

M
ob

i
Re

sN
VG

G1
6

gm
ea

n
Al

ex
Fa

st
Go

og
M

ob
i

Re
sN

VG
G1

6
gm

ea
n

Al
ex

Fa
st

Go
og

M
ob

i
Re

sN
VG

G1
6

gm
ea

n
Al

ex
Fa

st
Go

og
M

ob
i

Re
sN

VG
G1

6
gm

ea
n

Al
ex

Fa
st

Go
og

M
ob

i
Re

sN
VG

G1
6

gm
ea

n10-310-210-1100101102

no
rm

. e
ne

rg
y dynamc static matrix

SmartPipe

HeterSRAMSHIFT

Figure 21: The batch energy reduction (norm. to TPU; ma-

trix: matrix unit energy; dynamic: SPM dynamic energy; and

static: SPM static energy).

• SuperNPU : The configuration of SuperNPU [17] is shown in

Table 4.

• SRAM : SuperNPU replaces all SHIFT arrays by Josephson-CMOS

SRAM arrays with the same capacity of TPU.

• Heter : Three 32 KB SHIFT arrays are added to the SRAM scheme.

We assume an ideal SPM allocation, where the sequentially ac-

cessed data are always allocated in SHIFT arrays while the ran-

domly accessed data are always allocated in the SRAM arrays.

• Pipe: Pipe replaces all Josephson-CMOS SRAM arrays of the Heter

scheme by a 28MB pipelined SFQ-CMOS SRAM array.

• SMART : Our ILP-base compiler is used by the Pipe scheme. The

prefetching iteration number a is set to 3.

6 RESULTS AND ANALYSIS

6.1 Inferring a Single Image

Performance. The performance improvement achieved by SMART

inferring a single image is shown in Figure 18. The performance

is measured by the throughput (i.e., TMAC/s) normalized to that

of the TPU. Average customers are sensitive to the latency of their

cloud-based machine learning services. Therefore, the performance

of a single image inference becomes more critical, because TPUs in

the cloud have no time to form a large image batch. For one-image

inferences, SuperNPU improves the inference throughput by only

8.6× over TPU, although the operating frequency of SuperNPU is

75× higher than that of TPU. Compared to SuperNPU, Josephson-

CMOS SRAM arrays actually decrease the inference throughput.

This is because the benefit brought by the random access capability

of Josephson-CMOS SRAM is offset by its slow access speed. Even if

we add a small SHIFT array to each heterogeneous SPM, we cannot

win back the performance loss. Heter still obtains lower inference

throughput than SuperNPU. On the contrary, our pipe-lined SFQ-

CMOS array (Pipe) greatly improves the inference throughput, on

average, by 2.4× over SuperNPU, due to its ultra-fast random access

ability. Our ILP compiler (SMART) further increases the inference

throughput improvement to 3.9× over SuperNPU, since it enables

the prefetching of input, weight, and PSum data of a model.

Energy Consumption. The energy comparison between vari-

ous schemes when inferring a single image is shown in Figure 20.

Since SuperNPU is fabricated by the ERSFQ technology, it has no

leakage power. We consider the cooling cost of each scheme at 4K

as 400× [16] of the power consumption of that scheme. Since, on

average, SuperNPU improves the performance per Watt by 23%

over TPU [17], it consumes more energy on large CNN models, e.g.,

ResNet50 when considering the cooling overhead. SRAM and Heter

tend to increase the inference energy when inferring a single image,

because they obtain only longer inference latency and spend larger

power in their Josephson-CMOS SRAM arrays. Our pipelined SFQ-

CMOS array (Pipe) reduces the power consumption of RANDOM

arrays by replacing CMOS H-Trees with SFQ H-Trees. Moreover,

Pipe also shortens the inference latency over SuperNPU. As a result,

Pipe reduces the inference energy by 81%. SMART decreases the

inference energy by 86% over SuperNPU by further reducing the

inference latency. On average, SMART uses only 1.9% of the infer-

ence energy of TPU when inferring the same image. For SMART,

48% of its energy is consumed by the matrix units, while 42% of its

energy is the dynamic energy of the heterogeneous SPM.

6.2 Inferring a Batch of Images

Performance. The performance improvement achieved by SMART

inferring a batch of images is shown in Figure 19. The inference

performance of a batch of images shares the same trend as that

of a single image. Compared to the single image case, SuperNPU

inferring a batch of images improves the inference throughput by

2.5×. In contrast, SMART processing a batch of images improves

the inference throughput by only 34.5% over the single image case

of SMART. This is because SuperNPU has larger on-chip space to

store more images, i.e., SuperNPU has 48MB SPM arrays, while

SMART has only a 28MB on-chip RANDOM array. On average,

when processing a batch of images, SMART improves the inference

throughput over SuperNPU by 2.2×.
Energy Consumption. The energy reduction of SMART infer-

ring a batch of images is shown in Figure 21. We also consider the

cooling cost in the comparison. The inference energy of a batch

shares the same trend as that of a single image. On average, SMART

reduces the inference energy by 71% over SuperNPU, and uses only

1.6% of the inference energy of TPU when processing a batch of

images. In SMART, 42.3% of its energy consumption is the energy

of the matrix units, while 48.9% of the energy is the dynamic energy

of its heterogeneous SPM arrays.

921

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO ’21, October 18–22, 2021, Virtual Event, Greece

single batch
1

2

3

4

5

sp
ee

du
p

 16KB 32KB 64KB 128KB

Figure 22: SHIFT capacity

(norm. to SuperNPU).

single batch
1

2

3

4

5

sp
ee

du
p

 14MB 28MB 56MB 112MB

Figure 23: RAND. capacity

(norm. to SuperNPU).

single batch
1

2

3

4

5

sp
ee

du
p

 a=1 a=2 a=3 a=4 a=5

Figure 24: Prefetch. iter. #

(norm. to SuperNPU).

single batch
10-1

100

101

sp
ee

du
p

 0.11ns 2ns 3ns

Figure 25: RAND. W lat-ency

(norm. to SuperNPU).

6.3 Sensitivity Study

SHIFT array capacity. The sensitivity study on the capacity of

SHIFT arrays in SMART is shown in Figure 22. The input, out-

put/PSum, and weight data have three SHIFT arrays with the ca-

pacity of X , where X can be 16 KB, 32 KB, 64 KB, and 128 KB. Com-

pared to 32 KB, the larger capacity of SHIFT arrays cannot help

single-image inferences, and only slightly improve the inference

throughput on a batch of images by 11%. On the contrary, three

16 KB SHIFT arrays greatly increase the swapping traffic between

SHIFT arrays and the RANDOM array, thereby decreasing the in-

ference throughput of a single image and a batch of images by 61%

and 45%, respectively.

RANDOM array capacity. The sensitivity study on the RAN-

DOM array capacity in SMART is shown in Figure 23. Though the

input, output/PSum, and weight data have three SHIFT arrays re-

spectively, they share the same RANDOM array. We tried different

capacities of the RANDOM array in the figure. Compared to 28MB,

further increasing the RANDOM array capacity does not improve

the single-image inference throughput. However, a 56MB (112MB)

RANDOM array improves the inference throughput of a batch by

41% (73%). On the other hand, a smaller RANDOM array hurts the

inference throughput of both a single image and a batch of images.

Prefetching iteration number. The sensitivity study on the

prefetching iteration number of SMART is shown in Figure 24. Our

ILP compiler achieves only near-optimal results, since we did not

exhaustively explore the optimal prefetching iteration number. We

set the prefetching iteration number a = 3. a = 1 indicates there is

no prefetching. A smaller a substantially decreases the throughput

of both single-image and batch inferences. On the other hand, a

larger a (e.g., a = 4) does not obviously improve the inference

throughput of six CNN models we selected.

Write latency. The sensitivity study on the write latency of the

RANDOM array in SMART is shown in Figure 25. Since MRAM and

SNM have smaller cell sizes than SRAM, if JJs can be scaled to the

same size of a transistor, it is possible to use them to build a much

denser RANDOMarray. However, their write latency ismuch longer.

We explore different values of the write latency of the RANDOM

array in the figure. A longer write operation significantly decreases

the throughput of both single-image and batch inferences, since

the outputs of a layer are the inputs of the next layer. Therefore,

these high-density cryogenic memory technologies may not be

ideal candidates to implement the RANDOM array due to their

slow writes.

7 RELATEDWORK

SFQ Accelerators. As we are approaching the end of Moore’s Law,

several ambitious designs for superconducting ALUs [9, 23] and

microprocessors [58] have been presented to demonstrate the ca-

pability of SFQ computing. For domain-specific computing, besides

SFQ CNN systolic accelerators, a SFQ stochastic-computing-based

deep learning accelerator [4] also demonstrates ultra-high inference

throughput. Moreover, a SFQ-based temporal logic accelerator [52]

is built to significantly boost the throughput of genome alignment.

A SFQ-based SHA-256 accelerator [49] is designed to maximize

the processing throughput of cryptographic hash functions. These

superconducting designs primarily depend on simplified architec-

tures, bit-serial processing, and shift registers. However, the use

of SFQ shift registers is not a viable solution for more complex

accelerator designs.

Cryogenic Memories and Caches. Recent work adopts the

77K cryogenic temperature to improve the performance and energy

consumption of off-chip DRAM main memories [25] and on-chip

SRAM caches [28]. However, these studies investigate only how

the main memory and cache architectures are influenced by the

77K temperature when running general-purpose applications on

CPUs. No prior work designs an on-chip SPM architecture for SFQ

systolic CNN accelerators at the 4K temperature.

8 CONCLUSION

In this paper, we propose a heterogeneous SPM architecture, SMART,

consisting of SHIFT arrays and a RANDOM array for SFQ deep

learning accelerators to maximize their inference throughput. How-

ever, we found that no existing memory technology can serve as the

RANDOM array of SMART to obtain high inference throughput,

small chip area, and low power consumption at the same time. We

built a fast, dense and power-efficient pipelined CMOS-SFQ array

that supports random accesses in SMART. We also created an ILP-

based SPM allocation and prefetching technique to minimize the

inference latency on SMART. Experimental results show that, with

the same area overhead, compared to the prior SHIFT-based SFQ

CNN accelerator, SMART improves the inference throughput by

3.9× (2.2×), and reduces the inference energy by 86% (71%) when

inferring a single image (a batch of images).

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their

valuable comments and helpful suggestions. This work was par-

tially supported by the National Science Foundation (NSF) through

awards CCF-1908992, CCF-1909509, and CCF-2105972.

REFERENCES
[1] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrishnan, and Peter

Marwedel. 2002. Scratchpadmemory: A design alternative for cache on-chipmem-
ory in embedded systems. In IEEE International Symposium on Hardware/Software
Codesign. 73–78.

922

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Zokaee and Jiang, et al.

[2] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais, and C. Enz.
2020. Physical Model of Low-Temperature to Cryogenic Threshold Voltage
in MOSFETs. IEEE Journal of the Electron Devices Society 8 (2020), 780–788.
https://doi.org/10.1109/JEDS.2020.2989629

[3] Brenden A Butters, Reza Baghdadi, Murat Onen, Emily A Toomey, Owen
Medeiros, and Karl K Berggren. 2021. A scalable superconducting nanowire
memory cell and preliminary array test. Superconductor Science and Technology
34, 3 (2021), 035003.

[4] Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian, Jie
Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang. 2019. A stochastic-
computing based deep learning framework using adiabatic quantum-flux-
parametron superconducting technology. In ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA). 567–578.

[5] Xiangyu Chen, Jiale Liang, and H.-S. Philip Wong. 2012. Interconnect Scaling
into the Sub-10nm Regime. In ACM International Workshop on System Level
Interconnect Prediction. 2.

[6] B. B. Chonigman, A. Shukla, M. Habib, V. Gupta, A. Talalaevskii, A. Sahu, D.
Kirichenko, A. Inamdar, and D. Gupta. 2021. Optimization of Passive Trans-
mission Lines for Single Flux Quantum Circuits. IEEE Transactions on Applied
Superconductivity (2021), 1–1. https://doi.org/10.1109/TASC.2021.3062589

[7] Johannes Delport. 2018. JoSIM - Superconductor SPICE Simulator. https://github.
com/JoeyDelp/JoSIM.

[8] Jean-Francois Deverge and Isabelle Puaut. 2007. WCET-directed dynamic scratch-
padmemory allocation of data. In IEEE Euromicro Conference on Real-Time Systems.
IEEE, 179–190.

[9] T Filippov, M Dorojevets, A Sahu, A Kirichenko, C Ayala, and O Mukhanov. 2011.
8-bit asynchronous wave-pipelined RSFQ arithmetic-logic unit. IEEE transactions
on applied superconductivity 21, 3 (2011), 847–851.

[10] Timur V Filippov, Anubhav Sahu, Alex F Kirichenko, Igor V Vernik, Mikhail
Dorojevets, Christopher L Ayala, and Oleg A Mukhanov. 2012. 20 GHz operation
of an asynchronous wave-pipelined RSFQ arithmetic-logic unit. Physics Procedia
36 (2012), 59–65.

[11] U. Ghoshal, D. Hebert, and T. Van Duzer. 1993. Josephson-CMOS memories. In
IEEE International Solid-State Circuits Conference Digest of Technical Papers. 54–55.
https://doi.org/10.1109/ISSCC.1993.280086

[12] Alexander Grill, E Bury, Jakob Michl, S Tyaginov, D Linten, Tibor Grasser,
Bertrand Parvais, Ben Kaczer, Michael Waltl, and I Radu. 2020. Reliability and
variability of advanced CMOS devices at cryogenic temperatures. In IEEE Inter-
national Reliability Physics Symposium (IRPS). IEEE, 1–6.

[13] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
2020. The architectural implications of facebook’s dnn-based personalized rec-
ommendation. In IEEE International Symposium on High Performance Computer
Architecture (HPCA). 488–501.

[14] LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http:
//www.gurobi.com

[15] H. Hara, K. Obata, H. Park, Y. Yamanashi, K. Taketomi, N. Yoshikawa, M. Tanaka,
A. Fujimaki, N. Takagi, K. Takagi, and S. Nagasawa. 2009. Design, Implementation
and On-Chip High-Speed Test of SFQ Half-Precision Floating-Point Multiplier.
IEEE Transactions on Applied Superconductivity 19, 3 (2009), 657–660. https:
//doi.org/10.1109/TASC.2009.2018039

[16] D. S. Holmes, A. L. Ripple, and M. A. Manheimer. 2013. Energy-Efficient Su-
perconducting Computing—Power Budgets and Requirements. IEEE Trans-
actions on Applied Superconductivity 23, 3 (2013), 1701610–1701610. https:
//doi.org/10.1109/TASC.2013.2244634

[17] Koki Ishida, Ilkwon Byun, Ikki Nagaoka, Kosuke Fukumitsu, Masamitsu Tanaka,
Satoshi Kawakami, Teruo Tanimoto, Takatsugu Ono, Jangwoo Kim, and Koji
Inoue. 2020. Supernpu: An extremely fast neural processing unit using supercon-
ducting logic devices. In IEEE/ACM International Symposium on Microarchitecture
(MICRO). 58–72.

[18] Tahereh Jabbari and Eby G. Friedman. 2020. Global Interconnects in VLSI Com-
plexity Single Flux Quantum Systems. In the Workshop on System-Level Intercon-
nect: Problems and Pathfinding. Article 4, 7 pages.

[19] Tahereh Jabbari, Gleb Krylov, StephenWhiteley, Jamil Kawa, and Eby G Friedman.
2020. Repeater Insertion in SFQ Interconnect. IEEE Transactions on Applied
Superconductivity 30, 8 (2020), 1–8.

[20] T. Jabbari, G. Krylov, S. Whiteley, J. Kawa, and E. G. Friedman. 2020. Repeater
Insertion in SFQ Interconnect. IEEE Transactions on Applied Superconductivity
30, 8 (2020), 1–8. https://doi.org/10.1109/TASC.2020.3000982

[21] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In IEEE/ACM
International Symposium on Computer Architecture. 1–12.

[22] Yoshio Kameda, Shinichi Yorozu, and Yoshihito Hashimoto. 2006. Automatic
single-flux-quantum (SFQ) logic synthesis method for top-down circuit design.
In Journal of Physics: Conference Series, Vol. 43. 287.

[23] Alex F Kirichenko, Igor V Vernik, Michael Y Kamkar, Jason Walter, Maximilian
Miller, Lucian Remus Albu, and Oleg A Mukhanov. 2019. ERSFQ 8-bit parallel

arithmetic logic unit. IEEE Transactions on Applied Superconductivity 29, 5 (2019),
1–7.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, Vol. 25. Curran Associates, Inc.

[25] Gyu-hyeon Lee, Dongmoon Min, Ilkwon Byun, and Jangwoo Kim. 2019. Cryo-
genic Computer Architecture Modeling with Memory-Side Case Studies. In
ACM/IEEE International Symposium on Computer Architecture. 774–787.

[26] K. K. Likharev and V. K. Semenov. 1991. RSFQ logic/memory family: a new
Josephson-junction technology for sub-terahertz-clock-frequency digital systems.
IEEE Transactions on Applied Superconductivity 1, 1 (1991), 3–28. https://doi.org/
10.1109/77.80745

[27] Y. Liu and W. Zhang. 2012. Exploiting multi-level scratchpad memories for time-
predictable multicore computing. In IEEE International Conference on Computer
Design (ICCD). 61–66.

[28] Dongmoon Min, Ilkwon Byun, Gyu-Hyeon Lee, Seongmin Na, and Jangwoo
Kim. 2020. Cryocache: A fast, large, and cost-effective cache architecture for
cryogenic computing. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 449–464.

[29] Hamid Reza Mohebbi and A Hamed Majedi. 2009. CAD model for circuit param-
eters of superconducting-based hybrid planar transmission lines. Superconductor
Science and Technology 22, 12 (2009), 125028.

[30] Oleg A Mukhanov. 2011. Energy-efficient single flux quantum technology. IEEE
Transactions on Applied Superconductivity 21, 3 (2011), 760–769.

[31] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. 2007. Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In
IEEE/ACM International Symposium on Microarchitecture (MICRO 2007). 3–14.
https://doi.org/10.1109/MICRO.2007.33

[32] NAN Joukov, DE Kirichenko, AYu Kidiyarova-Shevchenko, andM Yu Kupriyanov.
2000. Matching of Rapid Single Flux Quantum Digital Circuits and Superconduc-
tive Microstrip Lines. IEEE Transactions on Applied Superconductivity 167 (2000),
745–748.

[33] Ikki Nagaoka, Masamitsu Tanaka, Koji Inoue, and Akira Fujimaki. 2019. A 48ghz
5.6 mw gate-level-pipelined multiplier using single-flux quantum logic. In IEEE
International Solid-State Circuits Conference-(ISSCC). 460–462.

[34] Ikki Nagaoka, Masamitsu Tanaka, Kyosuke Sano, Taro Yamashita, Akira Fujimaki,
and Koji Inoue. 2019. Demonstration of an Energy-Efficient, Gate-Level-Pipelined
100 TOPS/W Arithmetic Logic Unit Based on Low-Voltage Rapid Single-Flux-
Quantum Logic. In IEEE International Superconductive Electronics Conference
(ISEC). 1–3.

[35] Shuichi Nagasawa, Haruhiro Hasegawa, Tatsunori Hashimoto, Hideo Suzuki,
Kazunori Miyahara, and Youichi Enomoto. 1999. Design of a 16 kbit supercon-
ducting latching/SFQ hybrid RAM. Superconductor Science and Technology 12, 11
(1999), 933.

[36] Shuichi Nagasawa, Haruhiro Hasegawa, Tatsunori Hashimoto, Hideo Suzuki,
Kazunori Miyahara, and Youichi Enomoto. 2000. Superconducting SFQ-NOR
Decoder. In Advances in Superconductivity XII. Springer, 1093–1095.

[37] Shuichi Nagasawa, Haruhiro Hasegawa, Tatsunori Hashimoto, Hideo Suzuki,
Kazunori Miyahara, and Youichi Enomoto. 2001. Superconducting latching/SFQ
hybrid RAM. IEEE transactions on applied superconductivity 11, 1 (2001), 533–536.

[38] Minh-Hai Nguyen, Guilhem J Ribeill, Martin V Gustafsson, Shengjie Shi, Sri-
harsha V Aradhya, Andrew P Wagner, Leonardo M Ranzani, Lijun Zhu, Reza
Baghdadi, Brenden Butters, et al. 2020. Cryogenic memory architecture inte-
grating spin Hall effect based magnetic memory and superconductive cryotron
devices. Scientific reports 10, 1 (2020), 1–11.

[39] Tomohiro Ono, Hideo Suzuki, Yuki Yamanashi, and Nobuyuki Yoshikawa. 2017.
Design and implementation of an SFQ-based single-chip FFT processor. IEEE
Transactions on Applied Superconductivity 27, 4 (2017), 1–5.

[40] Ghasem Pasandi, Alireza Shafaei, and Massoud Pedram. 2018. SFQmap: A tech-
nology mapping tool for single flux quantum logic circuits. In IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 1–5.

[41] A Potts, GJ Parker, JJ Baumberg, and PAJ de Groot. 2001. CMOS compatible
fabrication methods for submicron Josephson junction qubits. IEE Proceedings-
Science, Measurement and Technology 148, 5 (2001), 225–228.

[42] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. Scale-Sim: Systolic CNN Accelerator Simulator. arXiv preprint
arXiv:1811.02883 (2018).

[43] Lieze Schindler, Paul le Roux, and Coenrad J Fourie. 2020. Impedance matching
of passive transmission line receivers to improve reflections between RSFQ logic
cells. IEEE Transactions on Applied Superconductivity 30, 2 (2020), 1–7.

[44] Vasili K Semenov, Yuri A Polyakov, and Sergey K Tolpygo. 2019. Very large
scale integration of Josephson-junction-based superconductor random access
memories. IEEE Transactions on Applied Superconductivity 29, 5 (2019), 1–9.

[45] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. 2005. WCET
centric data allocation to scratchpad memory. In IEEE International Real-Time
Systems Symposium (RTSS’05).

[46] Shuichi Tahara, Ichiro Ishida, Yumi Ajisawa, and Yoshifusa Wada. 1989. Ex-
perimental vortex transitional nondestructive read-out Josephson memory cell.

923

SMART: A Heterogeneous Scratchpad Memory Architecture for Superconductor SFQ-based Systolic CNN Accelerators MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Journal of applied physics 65, 2 (1989), 851–856.
[47] M. Tanaka, F. Matsuzaki, T. Kondo, N. Nakajima, Y. Yamanashi, A. Fujimaki, H.

Hayakawa, N. Yoshikawa, H. Terai, and S. Yorozu. 2004. A single-flux-quantum
logic prototype microprocessor. In IEEE International Solid-State Circuits Confer-
ence. 298–529 Vol.1. https://doi.org/10.1109/ISSCC.2004.1332714

[48] Masamitsu Tanaka, Masato Suzuki, Gen Konno, Yuki Ito, Akira Fujimaki, and
Nobuyuki Yoshikawa. 2016. Josephson-CMOS hybrid memory with nanocry-
otrons. IEEE Transactions on Applied Superconductivity 27, 4 (2016), 1–4.

[49] Swamit S Tannu, Poulami Das, Michael L Lewis, Robert Krick, Douglas M
Carmean, and Moinuddin K Qureshi. 2019. A case for superconducting ac-
celerators. In ACM International Conference on Computing Frontiers. 67–75.

[50] S. K. Tolpygo, V. Bolkhovsky, D. E. Oates, R. Rastogi, S. Zarr, A. L. Day, T. J.
Weir, A. Wynn, and L. M. Johnson. 2018. Superconductor Electronics Fabrication
Process with MoNx Kinetic Inductors and Self-Shunted Josephson Junctions.
IEEE Transactions on Applied Superconductivity 28, 4 (2018), 1–12.

[51] S. K. Tolpygo, V. Bolkhovsky, S. Zarr, T. J. Weir, A. Wynn, A. L. Day, L. M.
Johnson, and M. A. Gouker. 2017. Properties of Unshunted and Resistively
Shunted Nb/AlOx-Al/Nb Josephson Junctions With Critical Current Densities

From 0.1 to 1 mA/μm2. IEEE Transactions on Applied Superconductivity 27, 4
(2017), 1–15. https://doi.org/10.1109/TASC.2017.2667403

[52] Georgios Tzimpragos, Dilip Vasudevan, Nestan Tsiskaridze, George Michelogian-
nakis, Advait Madhavan, Jennifer Volk, John Shalf, and Timothy Sherwood. 2020.
A Computational Temporal Logic for Superconducting Accelerators. In ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 435–448.

[53] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. 2006. Dynamic al-
location for scratch-padmemory using compile-time decisions. ACMTransactions
on Embedded Computing Systems (TECS) 5, 2 (2006), 472–511.

[54] T. Van Duzer, L. Zheng, S. R. Whiteley, H. Kim, J. Kim, X. Meng, and T. Ortlepp.
2013. 64-kb Hybrid Josephson-CMOS 4 Kelvin RAMWith 400 ps Access Time
and 12 mW Read Power. IEEE Transactions on Applied Superconductivity 23, 3
(2013), 1700504–1700504. https://doi.org/10.1109/TASC.2012.2230294

[55] M. Verma and P. Marwedel. 2006. Overlay techniques for scratchpad memories in
low power embedded processors. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 14, 8 (2006), 802–815.

[56] D. T. Yohannes, R. T. Hunt, J. A. Vivalda, D. Amparo, A. Cohen, I. V. Vernik, and
A. F. Kirichenko. 2015. Planarized, Extendible, Multilayer Fabrication Process for
Superconducting Electronics. IEEE Transactions on Applied Superconductivity 25,
3 (2015), 1–5. https://doi.org/10.1109/TASC.2014.2365562

[57] S Yorozu, Y Kameda, H Terai, A Fujimaki, T Yamada, and S Tahara. 2002. A single
flux quantum standard logic cell library. Physica C: Superconductivity 378 (2002),
1471–1474.

[58] Nobuyuki Yoshikawa, F Matsuzaki, N Nakajima, K Fujiwara, K Yoda, and K
Kawasaki. 2003. Design and component test of a tiny processor based on the SFQ
technology. IEEE transactions on applied superconductivity 13, 2 (2003), 441–445.

[59] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-Based Accelerator Design for Deep Convolutional Neural
Networks. In ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 161–170.

[60] Qing-Yuan Zhao, Adam N McCaughan, Andrew E Dane, Karl K Berggren, and
Thomas Ortlepp. 2017. A nanocryotron comparator can connect single-flux-
quantum circuits to conventional electronics. Superconductor Science and Tech-
nology 30, 4 (2017), 044002.

[61] Qing-Yuan Zhao, Emily A Toomey, Brenden A Butters, Adam N McCaughan, An-
drew E Dane, Sae-Woo Nam, and Karl K Berggren. 2018. A compact superconduct-
ing nanowire memory element operated by nanowire cryotrons. Superconductor
Science and Technology 31, 3 (2018), 035009.

924

