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Abstract
Fully Homomorphic Encryption over the Torus (TFHE) allows

arbitrary computations to happen directly on ciphertexts using ho-

momorphic logic gates. However, each TFHE gate on state-of-the-

art hardware platforms such as GPUs and FPGAs is extremely slow

(> 0.2𝑚𝑠). Moreover, even the latest FPGA-based TFHE accelerator

cannot achieve high energy efficiency, since it frequently invokes

expensive double-precision floating point FFT and IFFT kernels.

In this paper, we propose a fast and energy-efficient accelerator,

MATCHA, to process TFHE gates. MATCHA supports aggressive

bootstrapping key unrolling to accelerate TFHE gates without de-

cryption errors by approximate multiplication-less integer FFTs and

IFFTs, and a pipelined datapath. Compared to prior accelerators,

MATCHA improves the TFHE gate processing throughput by 2.3×,
and the throughput per Watt by 6.3×.

CCS Concepts
• Hardware→ Application-specific VLSI designs; • Security

and privacy → Cryptography.
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1 Introduction
In cloud computing, it is dangerous for clients upload their raw

data to untrusted cloud servers, due to potential data breaches.

Moreover, recent legislation [12] requires cloud computing enter-

prises to provide sufficient security for clients’ personal data.

Recently, Fully Homomorphic Encryption (FHE) [3, 5, 6] emerges

as one of the most promising cryptographic solutions to allowing ar-

bitrary computations on encrypted data in untrusted cloud servers.

Compared to Secure Multi-Party Computation, FHE requires nei-

ther frequent communications between clients and cloud servers,

nor significant circuit garbling overhead on the client side. FHE

enables a client to encrypt her data and to send only ciphertexts to
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Table 1: The comparison between various HE schemes.

Scheme FHE Op. Data Type Bootstrapping

BGV [3] mult, add integer ∼ 800𝑠
BFV [9] mult, add integer > 1000𝑠
CKKS [5] mult, add fixed point ∼ 500𝑠
FHEW [8] Boolean binary < 1𝑠

TFHE [6] Boolean binary 13ms

a cloud server that can directly evaluate homomorphic functions,

e.g., encrypted neural inferences [4] or encrypted general-purpose

computing [14], on the ciphertexts. When all computations are

completed, the server returns the encrypted results to the client

without learning any intermediate or final output, due to the end-

to-end encrypted data flow. Only the client can decrypt the results

by her secret key.

Among all FHE cryptosystems, FHE over the Torus (TFHE) [6]

is the most efficient scheme supporting arbitrary operations with

an unlimited computation depth, as shown in Table 1. First, TFHE

supports arbitrary operations by various homomorphic Boolean

logic gates. Traditional FHE schemes such as BGV [3], BFV [9], and

CKKS [5] can perform only homomorphic additions and multiplica-

tions, while both FHEW [8] and TFHE [6] can enable homomorphic

Boolean algebra, e.g., NAND, XOR, and XNOR gates. Second, TFHE

obtains the fastest bootstrapping. Each FHE operation inevitably

introduces a certain amount of noise into the ciphertext. If there are

too many FHE operations on the computational critical path, the ac-

cumulated noise in the ciphertext may exceed a threshold, and thus

the ciphertext cannot be decrypted successfully. To support an un-

limited computation depth, a FHE scheme has to periodically invoke

a bootstrapping operation to decrease the amount of noise in the

ciphertext. The bootstrapping operation is extremely expensive for

BGV, BFV, and CKKS. For example, a BGV bootstrapping typically

costs several hundred seconds [11]. Therefore, these FHE schemes

can support only a limited computation depth by designing a large

enough noise budget. Although a bootstrapping of FHEW takes

only 1𝑠 , TFHE can obtain a even faster bootstrapping, i.e., a TFHE

bootstrapping requires only 13𝑚𝑠 on a CPU. By fast bootstrapping,

TFHE allows an unlimited computation depth.

Unfortunately, a TFHE-based complex circuit consisting of mul-

tiple TFHE gates is still extremely slow. For instance, a TFHE-based

simple RISC-V CPU [14] comprising thousands of TFHE gates can

run at only 1.25𝐻𝑧. In order to realize practical TFHE-based com-

puting, it is critical to accelerate TFHE gates by specialized hard-

ware. However, TFHE is only well-implemented on CPUs [16] and

GPUs [7]. Although a recent work [10] accelerates TFHE gates on a

FPGA, the TFHE gate latency on the FPGA is much longer than that

on a GPU. To the best of our knowledge, there is no ASIC-based

hardware accelerator for TFHE.

In this paper, we propose a fast and energy-efficient accelerator,

MATCHA, to process TFHE gates. We find that the bootstrapping
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dominates the latency of all TFHE logic operations. The kernels of

fast Fourier transform (FFT) and inverse FFT (IFFT) are the bottle-

necks in a bootstrapping operation. MATCHA is designed to acceler-

ate the TFHE bootstrapping using approximate multiplication-less

integer FFTs and IFFTs. We also propose a pipelined datapath for

MATCHA to support aggressive bootstrapping key unrolling [2, 22]

that invokes FFTs and IFFTs less frequently. Our contributions can

be summarized as follows.

• In order to fully take advantage of the error tolerance capability

of TFHE, MATCHA accelerates polynomial multiplications by

approximate multiplication-less integer FFTs and IFFTs requiring

only additions and binary shifts. Although approximate FFTs and

IFFTs introduce errors in each ciphertext, the ciphertext can still

be correctly decrypted, since the errors can be rounded off along

with the noise during decryption.

• We build a pipelined datapath consisting of TGSW clusters and

external product cores to enable aggressive bootstrapping key

unrolling that invokes FFTs and IFFTs less frequently during a

bootstrapping operation. The datapath uses different register

banks to serve sequential memory accesses during TGSW opera-

tions, and irregular memory accesses during FFTs and IFFTs.

• We implemented, evaluated, and compared MATCHA against

prior TFHE hardware accelerators. Compared to prior accelera-

tors, MATCHA improves the TFHE gate processing throughput

by 2.3×, and the throughput per Watt by 6.3×.

2 Background

FHE. Fully Homomorphic Encryption (FHE) enables arbitrary

operations on ciphertexts. A FHE operation� is defined if there is an-
other operation★ such that𝐷𝑒𝑐 [𝐸𝑛𝑐 (𝑥1)�𝐸𝑛𝑐 (𝑥2)] = 𝐷𝑒𝑐 [𝐸𝑛𝑐 (𝑥1★
𝑥2)], where 𝑥1 and 𝑥2 are input plaintexts, 𝐸𝑛𝑐 indicates encryption,
and 𝐷𝑒𝑐 is decryption.

Notation. T denotes the torus of real numbers modulo 1, R/Z.
For any ring R, polynomials of the variable 𝑋 with coefficients in

R are represented by R[𝑋 ]. We define R𝑁 [𝑋 ] := R[𝑋 ]/(𝑋𝑁 + 1),
Z𝑁 [𝑋 ] := Z[𝑋 ]/(𝑋𝑁 + 1), and T𝑁 [𝑋 ] := R𝑁 [𝑋 ]/Z𝑁 [𝑋 ], which
are the ring of polynomials of variable 𝑋 with quotient 𝑋𝑁 + 1 and

real coefficients modulo 1. B � {0, 1} is a set, and we write vectors

in bold. Given a set S, we write s
$
←− S to indicate that s is sampled

uniformly at random from S. We write 𝑒 ← X to denote that 𝑒 is
sampled according to X.

TFHE. In TFHE [6], we assume𝑚 ∈ B is a plaintext. The en-

cryption scheme works as follows:

• 𝑆𝑒𝑡𝑢𝑝 (𝜆) first selects public parameters 𝑛 = 𝑛(𝜆), and 𝜎 = 𝜎 (𝜆),
where 𝜆 is the security parameter. It samples and produces a

secret key s
$
←− B𝑛 .

• 𝐸𝑛𝑐 [s,𝑚] samples a uniformly random vector a
$
←− T𝑛 and a noise

𝑒 ← DT𝑁 [𝑋 ],𝜎 , where DT𝑁 [𝑋 ],𝜎 is the Gaussian distribution

over T𝑁 [𝑋 ] with a standard deviation 𝜎 . It outputs a ciphertext
(a, 𝑏), where 𝑏 = a · s + 𝑒 +𝑚/2.

• 𝐷𝑒𝑐 [s, (a, 𝑏)] returns �2(𝑏−a ·s)�. It outputs plaintext correctly if
the size of noise 𝑒 is bounded as |𝑒 | < 1/4, since 2(𝑏−a·s) = 2𝑒+𝑚,

|2𝑒 | < 1/2, and thus �2(𝑏 − a · s)� =𝑚.

• 𝐿𝑜𝑔𝑖𝑐 [𝑐0, 𝑐1] returns the ciphertext of the result of the logic oper-
ation between two ciphertexts 𝑐0 and 𝑐1, and the logic operation

Algorithm 1: The bootstrapping operation of TFHE.

Input: A TLWE sample (a, 𝑏) whose plaintext is𝑚𝑖𝑛 ; a

constant𝑚𝑠𝑒𝑡 ; a bootstrapping key BKs→s′′ ,𝛼 ; and a

key-switching key KSs′→s,𝛾 ′ (s′ = KeyExtract(s′′)).
Output: A TLWE sample encrypting𝑚𝑜𝑢𝑡 =𝑚𝑖𝑛 ·𝑚𝑠𝑒𝑡 .

1 𝜇 =𝑚𝑠𝑒𝑡/2, 𝜇
′ = 𝜇/2 /* Initialization */

2 𝑏 = �2𝑁𝑏�, 𝑎𝑖 = �2𝑁𝑎𝑖 � for each 𝑖 ∈ [1, 𝑛] /* Rounding */

3 𝑡𝑒𝑠𝑡𝑣 = (1 + 𝑋 + . . . + 𝑋𝑁+1) · 𝑋𝑁 /2 · 𝜇′

4 𝐴𝐶𝐶 ← 𝑋𝑏 · (0, 𝑡𝑒𝑠𝑡𝑣) /* 𝐴𝐶𝐶 = 𝑇𝐿𝑊𝐸 (𝑋 (𝑏−𝑎̄𝑠 ) · 𝑡𝑒𝑠𝑡𝑣) */

5 for 𝑖 = 1 to 𝑛 do

6 BK𝑖 = h + (𝑋 −𝑎𝑖 − 1) · BK𝑖
7 𝐴𝐶𝐶 ← BK𝑖 �𝐴𝐶𝐶 /* BlindRotate */

8 u = (0, 𝜇′) + 𝑆𝑎𝑚𝑝𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝐴𝐶𝐶) /* Extract */

9 return 𝐾𝑒𝑦𝑆𝑤𝑖𝑡𝑐ℎ𝐾𝑆 (u) /* KeySwitch */

can be XOR, NAND, AND, and OR. A TFHE logic operation

involves an addition between 𝑐0 and 𝑐1, and a bootstrapping.

TLWE. TLWE is a torus analogue of the learning with error

(LWE) problem [3]. 𝑘 is a positive integer. 𝑁 is a power of 2, and

X is a probability distribution over R𝑁 [𝑋 ]. A TLWE secret key s̄

is a vector of 𝑘 polynomials over Z𝑁 [𝑋 ] with binary coefficients,

denoted as s̄ ∈ R𝑁 [𝑋 ]𝑘 . Given a polynomial message 𝜇 ∈ T𝑁 [𝑋 ],
a TLWE ciphertext of 𝜇 under the key s̄ is a TLWE sample (ā, 𝑏) ∈

T𝑁 [𝑋 ]𝑘 ×T𝑁 [𝑋 ], where ā ← T𝑁 [𝑋 ]𝑘 and 𝑏 = s̄ · ā + 𝜇 + 𝑒 , where
𝑒 ← X.

TGSW. TGSW is the matrix extension of TLWE. Each row of a

TGSW sample is a TLWE sample. An external product � that maps�:
𝑇𝐺𝑆𝑊 ×𝑇𝑊𝐿𝐸 → 𝑇𝐿𝑊𝐸 can be defined by TFHE [6]. The product

of the TGSW ciphertext of a polynomial message 𝜇𝑇𝐺𝑆𝑊 ∈ T𝑁 [𝑋 ]
and the TLWE ciphertext of a polynomial message 𝜇𝑇𝐿𝑊𝐸 ∈ T𝑁 [𝑋 ]
becomes a TLWE ciphertext of a polynomial message 𝜇𝑇𝐺𝑆𝑊 ·
𝜇𝑇𝐿𝑊𝐸 ∈ T𝑁 [𝑋 ]

Bootstrapping. Each TFHE logic operation inevitably intro-

duces a certain amount of noise into the resulting ciphertext. A

bootstrapping has to be performed to remove the noise at the end

of each TFHE logic operation. In various TFHE logic operations,

the bootstrapping step is the largest performance bottleneck. The

details of a TFHE bootstrapping can be viewed in [6]. The boot-

strapping procedure is shown in Algorithm 1. The dimension of

the TLWE sample is set as 𝑘 = 1 [6], which means that the TLWE

sample is simply the Ring-LWE sample (𝑎,𝑏) ∈ T𝑁 [𝑋 ] × T𝑁 [𝑋 ].
The most computationally intensive step of a bootstrapping is the

homomorphic decryption in line 7, where the message of 𝐴𝐶𝐶 be-

comes a polynomial 𝑋𝑏−ās · 𝑡𝑒𝑠𝑡𝑣 . Particularly, homomorphically

computing𝑋 −ās = 𝑋
∑𝑛

𝑖=1 −ā𝑖 s𝑖 =
∏𝑛

𝑖=1 𝑋
−ā𝑖 s𝑖 involves a great num-

ber of polynomial multiplications. Naïvely multiplying two degree

𝑁 polynomials has the complexity of O(𝑁 2). FFT and IFFT are

used to reduce the complexity of a polynomial multiplication to

O(𝑁 log(𝑁 )) [7], where 𝑁 is the degree of polynomials.

Torus Implementation. Theoretically, the scale invariant scheme

of TFHE is defined over the real torus T, where all operations are

modulo 1. But TFHE rescales the elements over T by a factor 232,

and maps them to 32-bit integers [6], since it can work with ap-

proximations. Therefore, TFHE does not have to actively perform

modular reduction, since all operations on 32-bit integers implicitly
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call a native and automatic mod 232 operation. To maintain high

conversion accuracy, TFHE uses 64-bit double-precision floating

point FFT and IFFT kernels [6].

3 Related Work and Motivation

RelatedWork. Except some TFHE implementations onCPUs [6],

GPUs [7], and FPGAs [10], there is no specialized hardware accel-

erator that can process TFHE. A TFHE accelerator is different from

the accelerators designed for other FHE schemes such as BGV, BFV,

and CKKS in two points. First, although few prior accelerators [19]

support BGV and CKKS bootstrapping along a tiny multiplicative

depth datapath, most prior works [15, 18, 20] design hardware accel-

erators to process leveled BFV or CKKS homomorphic operations

without bootstrapping. However, a TFHE accelerator must perform

bootstrapping at the end of each TFHE gate. Second, BGV, BFV, and

CKKS require NTT and INTT kernels, while TFHE needs only FFT

and IFFT kernels without modular reduction.

Motivation. A TFHE gate performs not only polynomial ad-

ditions but also a bootstrapping (FFT+IFFT+other) that costs 99%

of the gate latency on a CPU, as shown in Figure 1. Therefore, in

order to shorten the latency of TFHE gates, we need to accelerate

the bootstrapping step in TFHE gates. Moreover, FFTs and IFFTs

consume 80% of the bootstrapping latency in various TFHE gates.

In order to accelerate TFHE gates, MATCHA adopts approximate

multiplication-less integer FFTs and IFFTs, and uses a pipelined

datapath to support aggressive bootstrapping key unrolling [2, 22].

4 MATCHA

4.1 Approximate Fast Integer FFT and IFFT

Despite the fact that elements over T are mapped to 32-bit in-

tegers, TFHE still uses 64-bit double-precision floating point FFT

and IFFT kernels, since 32-bit integer or single-precision floating

point FFT and IFFT kernels are not accurate enough to guarantee

the correct decryption of a ciphertext [6]. However, processing

64-bit double-precision floating point FFT and IFFT kernels incurs

significant hardware overhead and power consumption.

Novelty. We first identify the opportunity to use approximate in-

teger FFTs and IFFTs to accelerate TFHE without decryption errors

for MATCHA. It is difficult to apply approximate NTTs and INTTs

in accelerating other FHE schemes, e.g., BGV, BFV, and CKKS, which

do not include a bootstrapping step after each homomorphic multi-

plication or addition. The errors introduced by approximate NTTs

and INTTs will be quickly accumulated in the ciphertext and result

in a decryption error, if a bootstrapping step cannot be performed

in time. On the contrary, TFHE keeps the approximation errors of

integer FFTs and IFFTs in check by performing a bootstrapping step

at the end of each TFHE gate.

Depth-first FFT. Most prior FHE accelerators [18–20] perform

NTTs and INTTs by the Cooley-Tukey data flow that introduces

irregular memory accesses particularly in its bit-reversal stage. In

order to remove the bit-reversal overhead, a prior ideal-lattice-

based cryptographic accelerator [13] uses the Cooley-Tukey flow

for NTTs and the Gentlemen-Sande flow for INTTs. These cryp-

tographic accelerators store a polynomial mod 𝑋𝑁 + 1 as a list of

𝑁 coefficients. For each multiplication between two polynomials,

they execute two NTT kernels on two polynomials respectively,

perform element-wise multiplications, and then run an INTT ker-

nel on the result. The invoking frequency ratio between NTTs and

INTTs is 2 : 1. These FHE accelerators have are many opportunities

(i.e., switchings from NTT to INTT) to reduce the bit-reversal over-

head. In contrast, TFHE saves a polynomial mod 𝑋𝑁 + 1 as either a

list of 𝑁 coefficients or the Lagrange half-complex representation

consisting in the complex evaluations of the polynomial over the

roots of unity 𝑒𝑥𝑝 (𝑖 (2 𝑗 + 1)𝜋/𝑁 ) for 𝑗 ∈ 
0, 𝑁2 
. FFT and IFFT

kernels are required only during the conversion between these two

representations. The invoking frequency ratio between FFTs and

IFFTs in a TFHE gate is 1 : 4. As Figure 1 shows, the latency of

IFFT kernels is much longer than FFT kernels. TFHE does not have

many opportunities to reduce the bit-reversal overhead. Instead,

for MATCHA, we focus on decreasing the computing overhead

of a single FFT or IFFT kernel. We adopt the depth-first iterative

conjugate-pair FFT (CPFFT) algorithm [1]. Unlike the Cooley-Tukey

or Gentlemen-Sande flow, the CPFFT requires only a single com-

plex root of unity read per radix-4 butterfly. Two butterflies in

the same block can share the same twiddle factor, further halving

the number of reads to the twiddle-factor buffer [1]. Moreover,

the Cooley-Tukey and Gentlemen-Sande flows process FFTs/IFFTs

stage by stage in a breadth-first manner, as shown in Figure 2(a). To

capture the spatial locality, as Figure 2(b) shows, CPFFT traverses

the FFT flow in a depth-first fashion by completing a sub-transform

before moving to the next.

A Multiplication-less Butterfly. The lifting structure [17], a

special type of lattice substrate implemented by cascading identity

matrices with a single nonzero off-diagonal element, is proposed to

approximate multiplications in FFT and IFFT kernels by additions

and binary shifts. The basic lifting step shown in Figure 3(a) can

be expressed by 𝑦 𝑗 (𝑛) = 𝑥 𝑗 (𝑛), 𝑦𝑖 (𝑛) = 𝑥𝑖 (𝑛) + �𝑇𝑥 𝑗 (𝑛)�, 𝑧 𝑗 (𝑛) =
𝑦 𝑗 (𝑛), and 𝑧𝑖 (𝑛) = 𝑦𝑖 (𝑛) − �𝑇𝑦 𝑗 (𝑛)�, where𝑇 is a lifting coefficient.

And thus, the lifting structure with the rounding operation can

achieve integer-to-integer transform. Also, the lifting and its inverse

matrices in this case are represented as

[
1 𝑇
0 1

]
and

[
1 𝑇
0 1

]−1
=[

1 −𝑇
0 1

]
, respectively. A floating-point lifting coefficient can be

quantized as an approximate dyadic-valued coefficient 𝛼/2𝛽 , and
hence computed with only adders and shifters, where we allocate 𝛽
bits to the lifting coefficient, and 𝛼, 𝛽 ∈ N. For example, a coefficient

9/128 can be operated as 9
128 = 23+20

27
= 1

24
+ 1

27
. Hence, the lifting

with its coefficient 9/128 and a rounding operation is replaced to
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the summation of 4 and 7 bit-shifters illustrated in Figure 3(b). The

perfect reconstruction in lifting is always kept if floating-point

coefficients are approximated to dyadic-valued coefficients.

4.2 Aggressive Bootstrapping Key Unrolling
Bootstrapping Key Unrolling. A TFHE bootstrapping needs

to compute external produces, i.e., 𝑋 −as = 𝑋
∑𝑛

𝑖=1 −a𝑖 s𝑖 sequentially,

thereby becoming the performance bottleneck of a TFHE gate. In-

stead, bootstrapping key unrolling (BKU) [2, 22] is proposed to

compute 𝑋
∑𝑛/2

𝑖=1 −a2𝑖−1s2𝑖−1−a2𝑖 s2𝑖 in each external product, so that

the number of homomorphic additions can be reduced from 𝑛 to

𝑛/2. The secret key s is sampled from B𝑛 , so 𝑠𝑖 ∈ {0, 1}, where
0 ≤ 𝑖 ≤ 𝑛. Based on the values of 𝑠2𝑖 and 𝑠2𝑖+1, the truth table of

𝑋
∑𝑛/2

𝑖=1 −a2𝑖−1s2𝑖−1−a2𝑖 s2𝑖 can be shown in Figure 4. So BKU rewrites

𝑋 −𝑎2𝑖−1 ·𝑠2𝑖−1−𝑎2𝑖 ·𝑠2𝑖 as 𝑋 −𝑎2𝑖−1−𝑎2𝑖 · 𝑠2𝑖−1𝑠2𝑖 − 𝑋
−𝑎2𝑖−1 · 𝑠2𝑖−1 (1 −

𝑠2𝑖 ) − 𝑋
−𝑎2𝑖 · (1 − 𝑠2𝑖−1)𝑠2𝑖 − (1 − 𝑠2𝑖−1) (1 − 𝑠2𝑖 ). Due to the fact

that 𝑠2𝑖−1𝑠2𝑖 + (1− 𝑠2𝑖 )𝑠2𝑖−1 + 𝑠2𝑖 (1− 𝑠2𝑖−1) + (1− 𝑠2𝑖−1) (1− 𝑠2𝑖 ) is
always equal to 1 [2], 𝑋 −𝑎2𝑖−1 ·𝑠2𝑖−1−𝑎2𝑖 ·𝑠2𝑖 can be further simplified

to (𝑋 −𝑎2𝑖−1−𝑎2𝑖 −1) ·𝑠2𝑖−1𝑠2𝑖 +(𝑋
−𝑎2𝑖−1−1) ·𝑠2𝑖−1 (1−𝑠2𝑖 )−(𝑋 −𝑎2𝑖 −

1) · (1 − 𝑠2𝑖−1)𝑠2𝑖 + 1. As Figure 5 shows, BKU encrypts 𝑠2𝑖−1𝑠2𝑖 ,
𝑠2𝑖−1 (1 − 𝑠2𝑖 ), and (1 − 𝑠2𝑖−1)𝑠2𝑖 as TGSW ciphertexts, and builds a

bootstrapping key bundle to unroll the orginal bootstrapping key

for two times.

Aggressive BKU Performing Badly on CPUs. BKU can be

further generalized as

𝑋
∑ 𝑛

𝑚
𝑖=1 −a𝑚 ·𝑖 s𝑚 ·𝑖−a𝑚 ·𝑖+1s𝑚 ·𝑖+1−...−a𝑚 ·𝑖+𝑚−1s𝑚 ·𝑖+𝑚−1 , (1)

where𝑚 ∈ [2, 𝑛]. So it is possible to more aggressively unroll the

bootstrapping key by increasing𝑚. Although unrolling the boot-

strapping key for two times (𝑚 = 2) reduces the bootstrapping

latency by 49%, we find that further enlarging𝑚 beyond 2 even

prolongs the bootstrapping latency on a CPU, as explained in Sec-

tion 6. Our experimental methodology is described in Section 5.

The reason can be summarized as follows.

• The limited number of cores on a CPU. With an enlarged

𝑚, there are more terms in the exponent part of Equation 1.

For instance, when 𝑚 = 4, there are 15 terms, each of which

requires a TGSW scale-and-add operation. Unfortunately, our
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Figure 7: The architecture of MATCHA (mem. ctrl: memory

controller; addr gen.: address generation; twid: twiddle factor;

butt.: butterfly; and shift.: shifter).

CPU baseline has only 8 physical cores. Mapping each terms to a

core, and summing the results from all cores introduce significant

communication overhead.

• More cache conflicts. The size of bootstrapping key increases

exponentially with an enlarged𝑚. For example, as Figure 5 shows,

instead of a single bootstrapping key, BKU with𝑚 = 2 requires

three bootstrapping keys. Each TGSW scale-and-add operation

happening on a term fetches its corresponding bootstrapping key

to the shared last level cache, generating more cache conflicts.

• The lack of a pipelined design. As Figure 5 highlights, in each

iteration, the construction of the bootstrapping key bundle BKB

and the external product operation are executed sequentially.

Although it is possible to start the computation of BKB for the

next iteration and perform the external product operation of this

iteration at the same time, the current BKU implementation [22]

cannot do this, due to the lack of a pipelined design.

MATCHA for Aggressive BKU. In this paper, we propose a

pipeline flow for MATCHA to support aggressive BKU with a larger

𝑚. Compared to our CPU baseline, our pipeline flow can be easily

accelerated by a large number of specialized hardware components

including TGSW clusters and External Product (EP) cores. As Fig-

ure 6(a) shows, we divide the bottleneck of a TFHE bootstrapping

into two steps, i.e., the construction of the bootstrapping key bun-

dle, and the EP operation. A TGSW cluster is used to construct the

bootstrapping key bundle, while an EP core processes EP operations

between the bootstrapping key bundle and𝐴𝐶𝐶 . � A TGSW cluster

consists of a TGSW adder tree and multiple TGSW scale units, each

of which computes one term in the bootstrapping key bundle, e.g.,

when𝑚 = 2, (𝑋 −𝑎2𝑖−1−𝑎2𝑖 − 1) · BKi,0, where BKi,0 is the TGSW

ciphertext of 𝑠2𝑖−1𝑠2𝑖 . And then, the TGSW adder sums all terms

and generates the bootstrapping key bundle. � With the bootstrap-

ping key bundle (BKBi), an EP core computes𝐴𝐶𝐶 ← BKBi�𝐴𝐶𝐶 .
The TGSW cluster and the EP core have their separated register

file banks to reduce on-chip memory conflicts. Moreover, these two

steps of a TFHE bootstrapping can be deployed on a TGSW cluster

and an EP core in a pipelined manner, as shown in Figure 6(b).

In each time step, the EP core computes the EP operation with

the bootstrapping key bundle generated by the TGSW cluster in

the previous time step. When𝑚 is increased, the workload of the

bootstrapping key bundle construction becomes larger.

4.3 The Architecture of MATCHA

Architecture. The overall architecture of MATCHA is shown

in Figure 7(a). MATCHA has multiple computing components in-

cluding a polynomial unit, eight TGSW clusters, and eight External

Product (EP) cores. All computing components of MATCHA are
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Table 2: The power and area of MATCHA operating at 2𝐺𝐻𝑧.

Name Spec Power (𝑊 ) Area (𝑚𝑚2)

TGSW ×16 multipliers & adders,
0.98 0.368

cluster and a 16KB, 2-bank reg. file
EP 4 IFFT, 1 FFT, ×4 multipliers & adders,

2.87 1.89
core and a 256KB, 8-bank reg. file

Sub-total ×8 EP cores and TGSW clusters 30.8 18.06

polynomial ×32 adders & cmps & logic units,
2.33 0.32

unit and a 8KB, 2-bank reg. file
crossbar 1/2 8 × 32/8 NoCs (256b bit-sliced) 2.11 0.44
SPM a 4MB, 32-bank SPM 3.52 3.25

mem ctrl memory controller and HBM2 PHY 1.225 14.9

Total 39.98 36.96

connected to 32 scratchpad memory (SPM) banks by crossbars.

MATCHA also employs a memory controller to manage the off-

chip memory requests issued to HBM2 DRAMs. The polynomial

unit is in charge of performing polynomial additions/subtractions

for each TFHE logic operation, initializing bootstrapping opera-

tions, extracting samples, and conducting key-switching operations

that consist of additions, logic comparisons, and Boolean logic

operations. One TGSW cluster and an EP core can support one

bootstrapping pipeline. As Figure 7(b) shows, a TGSW cluster 16

32-bit integer multipliers and 16 32-bit integer adders to support

TGSW scale operations. Each TGSW cluster has only two register

banks, since the memory accesses during a TGSW scale operation

have strong spatial locality. The TGSW cluster can read a register

bank while write the other bank concurrently. An EP core consists

of an FFT core and four IFFT cores to accelerate the FFT and IFFT

kernels during an EP operation, as shown in Figure 7(c). It has 8 reg-

ister banks to serve the irregular memory accesses in FFT and IFFT

kernels. An EP core also has four 32-bit integer multipliers and four

32-bit integer adders to manipulate TGSW ciphertexts during an

EP operation. An FFT core is similar to an IFFT core, except its data

flow. As Figure 7(d) highlights, an FFT core comprises an address

generation unit, a twiddle factor buffer, two input/output FIFOs,

and 128 butterfly cores, each of which consists of two 64-bit integer

adders and two 64-bit binary shifters. The address generation unit

guides butterfly cores to access the twiddle factor buffer.

Design Overhead. We implemented MATCHA in RTL, and

synthesized it in 16𝑛𝑚 PTM process technology using state-of-the-

art tools. We used CACTI to model all SPM components and register

file banks. Due to its simple structure, the entire design of MATCHA

can run at 2𝐺𝐻𝑧. Among various on-chip network architectures,

e.g., meshs, rings, and crossbars, we selected two 8×32, and one 8×8
bit-sliced crossbars, i.e., SPM → cores/clusters, cores/clusters →
SPM, and cores/clusters → cores/clusters. The hardware overhead

and power consumption of MATCHA are shown in Table 2. Totally,

MATCHA occupies 36.96𝑚𝑚2 and consumes 39.98Watt. The HBM2

bandwidth is 640𝐺𝐵/𝑠 .
Error and Noise. The error of the polynomial multiplication

result caused by approximate multiplication-less integer FFT and

IFFT kernels is shown in Figure 8. All polynomial coefficients are

32-bit integers, while we quantize the twiddle factors of FFT and

IFFT with various bitwidths. With an increasing bitwidth of twiddle

factors, the error caused by approximate FFT and IFFT decreases,

and is similar to that generated by original double-precision floating

point FFT and IFFT. With 64-bit dyadic-value-quantized twiddle

factors (DVQTFs), the error caused by approximate FFT and IFFT is
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Figure 8: The error of

approx. FFT & IFFT.

metric BKU [2, 22] MATCHA

EP 𝛿/2 𝛿/𝑚
rounding RO/2 RO/𝑚

BK 3BK (2𝑚 − 1)BK
I/FFT -150dB -141dB

Table 3: The noise comparison (𝛿 :
the noise of EPs; RO: the noise of

roundings; BK: the noise of boot-

strapping keys).

∼ 141𝑑𝐵, which is still larger than that produced by 64-bit double-

precision floating point FFT and IFFT, since the approximate FFT

and IFFT perform only additions and binary shifts. At the TFHE gate

level, the noise comparison between BKU andMATCHA is exhibited

in Table 3, where BKU unrolls the bootstrapping key for two times

while MATCHA unrolls that for𝑚 times (𝑚 ≥ 2). With an enlarging

𝑚, the noise from EP and rounding operations decreases linearly,

but the noise caused by bootstrapping keys increases exponentially.

As a result, TFHE with a smaller𝑚 can tolerate more errors caused

by approximate FFT and IFFT. Based on our experiments, 38-bit

DVQTFs produce no decryption failure in the test of 108 TFHE

gates. However, for a large𝑚, e.g.,𝑚 = 5, we have to use 64-bit

DVQTFs to guarantee there is no decryption failure in the same

test, since the noise caused by more bootstrapping keys dominates

the total noise in ciphertexts. Therefore, MATCHA adopts 64-bit

DVQTFs for all approximate multiplication-less integer FFT and

IFFT kernels.

5 Experimental Methodology

Simulation and Compilation: To simulate the performance

of MATCHA at cycle level, we used a CGRA modeling framework,

OpenCGRA [21], which has been validated against multiple ASIC

accelerators. OpenCGRA first compiles a TFHE logic operation into

a data flow graph (DFG) of the operations supported by MATCHA,

solves its dependencies, and removes structural hazards. The ar-

chitecture of MATCHA is abstracted to an architecture description

(AD) in OpenCGRA, which computes the latency and the energy

consumption of each TFHE logic operation by scheduling and map-

ping the DFG onto the AD.

Our Baselines. We compared MATCHA against state-of-the-art

CPU-, GPU-, FPGA-, and ASIC-based TFHE hardware platforms.

Our CPU baseline is a 8-core 3.7𝐺𝐻𝑧 Xeon E-2288G processor

executing the TFHE library [6], while our GPU baseline is a 5120-

core Tesla-V100 GPU equipped with a 16GB HBM2 DRAM running

the cuFHE library [7]. TFHE Vector Engine (TVE) [10] was imple-

mented on a low-end ZedBoard Zynq-7000 FPGA. We implemented

8 copies of TVE on a Stratix-10 GX2800 FPGA, and used it as our

FPGA baseline, since the Stratix-10 board has more resources. Be-

cause there is no existing ASIC-based design, we synthesized our

FPGA baseline with the 16𝑛𝑚 PTM process as our ASIC baseline.

We enable BKU on CPU, GPU, and MATCHA but fix𝑚 = 1 on FPGA

and ASIC, since they do not support BKU.

TFHE Operations and Parameters. We studied all TFHE logic

operations including NOT, AND, OR, NAND, XOR, and XNOR, but

we only report the results on NAND in Section 6. This is because

AND, OR, NAND, XOR, and XNOR have almost the same latency

which is dominated by the bootstrapping step, while NOT has no

bootstrapping at all. To maintain the standard 110-bit security, we
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adopt the TFHE parameters from [6], i.e., the polynomial degree in

the ring 𝑁 = 1024, the TLWE dimension 𝑘 = 1, the basis and length

for the TGSW ciphertext decomposition 𝐵𝑔 = 1024 and 𝓁 = 3.

6 Results and Analysis

Latency. The latency comparison of a TFHE NAND gate be-

tween our various baselines and MATCHA is shown in Figure 9.

The NAND gate on CPU costs 13.1𝑚𝑠 , while 𝑚 = 2 reduces its

latency to 6.67𝑚𝑠 . Aggressive BKU with an increasing𝑚 cannot

further reduce the NAND gate latency anymore on CPU, due to

the limited number of cores, more cache conflicts, and the non-

pipelined processing style. It takes only 0.37𝑚𝑠 for GPU to process

a NAND gate. With an enlarging 𝑚, GPU gradually reduces the

NAND gate latency. When𝑚 = 4, the NAND gate latency on GPU

is 0.18𝑚𝑠 . MATCHA reduces the NAND gate latency by 13% over

GPU only when𝑚 = 3, since GPU can fully use its all resources to

process one TFHE gate when𝑚 = 1 or 2. MATCHA cannot support

aggressive BKU with𝑚 = 4 efficiently either, since it has only 8

TGSW clusters. FPGA and ASIC do not have any pipelined design

or memory optimization to support BKU, and they need > 6.8𝑚𝑠
to complete a NAND gate when𝑚 = 1.

Throughput. The NAND gate throughput comparison between

various baselines and MATCHA is shown in Figure 10. FPGA and

ASIC duplicate 8 copies of the TVE [10], so they support only𝑚 = 1.

By enabling aggressive BKU, even CPU (𝑚 = 2) can achieve higher

gate processing throughput than ASIC and FPGA with𝑚 = 1. GPU

and MATCHA obtain much higher throughput than ASIC, FPGA

and CPU. Compared to GPU, MATCH improves the NAND gate

throughput by 2.3× (𝑚 = 3), due to its pipelined architecture for

aggressive BKU.

Throughput per Watt. The comparison of the NAND gate

throughput per Watt between various baselines and MATCHA is

shown in Figure 11. FPGA and ASIC consume only ∼ 40𝑊 and

∼ 26𝑊 , and improve the NAND gate throughput per Watt by 2.4×
and 8.3× over CPU respectively, when 𝑚 = 1. Due to the large

power consumption (> 200𝑊 ) of GPU, the best throughput per

Watt of GPU (𝑚 = 4) is only about 58% of that of ASIC. Compared

to ASIC, MATCHA improves the NAND gate throughput per Watt

by 6.3×, since it consumes only 39.98𝑊 .

7 Conclusion

TFHE enables arbitrary computations with an unlimited multi-

plicative depth to directly occur on ciphertexts. However, TFHE

gates are time-consuming and power-hungry on state-of-the-art

hardware platforms. In this paper, we build MATCHA to accelerate

TFHE gates. MATCHA allows aggressive bootstrapping key un-

rolling to process TFHE gates without decryption errors by approx-

imate multiplication-less integer FFTs and IFFTs, and a pipelined

datapath. Compared to prior CPU-, GPU-, FPGA- and ASIC-based

solutions, MATCHA improves the TFHE gate processing through-

put by 2.3×, and the throughput per Watt by 6.3×.
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