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Abstract
Homomorphic encryption (HE) and garbled

circuit (GC) provide the protection for users’

privacy. However, simply mixing the HE and

GC in RNN models suffer from long inference

latency due to slow activation functions. In

this paper, we present a novel hybrid structure

of HE and GC gated recurrent unit (GRU) net-

work, CRYPTOGRU, for low-latency secure

inferences. CRYPTOGRU replaces computa-

tionally expensive GC-based tanh with fast

GC-based ReLU , and then quantizes sigmoid
and ReLU to smaller bit-length to acceler-

ate activations in a GRU. We evaluate CRYP-

TOGRU with multiple GRU models trained

on 4 public datasets. Experimental results

show CRYPTOGRU achieves top-notch accu-

racy and improves the secure inference latency

by up to 138× over one of the state-of-the-art

secure networks on the Penn Treebank dataset.

1 Introduction

Billions of text analysis requests are processed by

powerful RNN models (Bahdanau et al., 2015; Kan-

nan et al., 2016) deployed on public clouds every-

day. These text analysis requests contain private

emails, personal text messages, and sensitive online

reviews. For instance, Gmail smart reply genera-

tion needs to scan users’ plaintext email messages

anonymously (Kannan et al., 2016).

Prior work (Juvekar et al., 2018) proposes a

hybrid cryptographic scheme that uses homomor-

phic encryption (HE) to process linear layers and

garbled circuits (GC) to compute activations in

a convolutional neural network. Compared to

convolutional neural networks (CNN), RNNs can

achieve more competitive accuracy in text analysis

tasks (Bahdanau et al., 2015; Podschwadt and Tak-

abi, 2020; Bakshi and Last, 2020). Mixing HE and

GC presents impressing results in secure classifica-

tion tasks (Barni et al., 2011). However, mixing HE

and GC in RNN will suffer from a long inference

latency due to the slow GC-based activations. In

contrast to a CNN, a RNN (Bahdanau et al., 2015)

requires more types of activations such as tanh
and sigmoid. The GC protocol (Ohrimenko et al.,

2016) has to use a huge garbled table to implement

a tanh or sigmoid activation. Both garbling and

evaluating such a large table add significant latency

to RNN layers. Based on our experimental and

theoretical analysis, the GC-based activations can

occupy up to 91% of the inference latency in a HE

and GC hybrid secure GRU.

To reduce the GC-based activation latency, we

propose a novel secure gated recurrent unit (GRU)

network framework, CRYPTOGRU, that achieves

high security level and low inference latency si-

multaneously. We use SIMD HE kerel functions

from Juvekar et al. (2018) to process linear opera-

tions in a GRU cell, while it adopts GC to compute

activations. Our contributions are summarized as

follows:

• We build a HE and GC hybrid privacy-preserving

cryptosystem, CRYPTOGRU, that uses HE oper-

ations to process multiplications and additions,

and adopts GC to compute activations such as

ReLU , tanh, and sigmoid.

• We replace computationally expensive GC-based

tanh activations in a GRU cell with fast ReLU
activations without sacrificing the inference ac-

curacy. We quantize GC-based sigmoid and

ReLU activations with smaller bitwidths to fur-

ther accelerate activations in a GRU.

• We implement all proposed techniques of CRYP-

TOGRU and compared CRYPTOGRU against

state-of-the-art secure networks.

2 Background and Related Work

Text analysis using GRU. GRU and long short-

term memory (LSTM) are two types of RNNs that

can capture long term dependencies (Chung et al.,

2014), which are important text classification and

text generation (Bahdanau et al., 2015). A single

LSTM cell has totally 4×(n2+nm+n) parameters,



2053

while a single GRU cell has only 3×(n2+nm+n)
parameters, where m means the dimension of the

input and n for the dimension of the hidden state.

Prior studies (Chung et al., 2014; Bahdanau et al.,

2015) show GRU can the same level of inference

accuracy as LSTM.

Threat model and cryptographic primitives.
We consider semi-honest corruptions (Juvekar

et al., 2018; Lou and Jiang, 2019; Chou et al., 2020)

in our threat model, where a server S is hosting a

model and many clients C are sending inputs for

inference using S’ model. The client and the server

adhere the protocol, but attempt to infer informa-

tion about the other party’s input. Our protocol

hides model weights, biases, and activations of a

network model, which are likely to be proprietary.

HE (Gentry et al., 2009) is a cryptosystem that

supports computation on ciphertext without decryp-

tion. GC enables two parties (Sender and Receiver)

to jointly compute a function over their private data

without revealing data beyond output from each

other. A GC function is represented by a Boolean

circuit with 2-input gates (e.g., XOR, AND, etc.).

The Sender garbles the Boolean circuit and gener-

ates the garbled table. The Receiver receives the

garbled table from an Oblivious Transfer (Juvekar

et al., 2018) and then evaluates the table. The to-

tal GC communication overhead is proportional

to the number of non-XOR gates in the garbling

function (Rouhani et al., 2018; Riazi et al., 2018).

For instance, a 12-bit ReLU requires only 30 non-

XOR gates, while a 12-bit tanh needs > 2K non-

XOR gates.

Comparison with prior privacy-preserving in-
ference. Prior studies create GC-only (Ohri-

menko et al., 2016), HE-only (Chou et al., 2020;

Badawi et al., 2019) and HE+GC hybrid (Juvekar

et al., 2018) privacy-preserving neural networks for

secure inferences. GC-only secure networks have

to pay huge communication overhead and long

inference latency, whereas the HE-only networks

cannot accurately implement nonlinear activations

by only homomorphic multiplications and addi-

tions. So, secure networks (Juvekar et al., 2018)

implement linear layers with HE operations and

nonlinear activations with GC operations. We com-

pare CRYPTOGRU against prior related works in

Table 1. PrivFT (Badawi et al., 2019), and FHE-

Infer (Chou et al., 2020) are two HE-only secure

neural networks. While Gazelle (Juvekar et al.,

Text
tasks

Accurate Efficient No
decrypt

PrivFT � � � �
FHE-Infer � � � �
Gazelle � � � �
SHE � � � �
HE-RNN � � � �
CRYPTOGRU � � � �

Table 1: The comparison of secure models. � means

the scheme performs good under such condition or is

friendly to the description and � means the opposite.

2018) is one of the first HE and GC hybrid convo-

lutional neural networks, it does not support RNN

cells. Although SHE (Lou and Jiang, 2019) uses

an emerging HE protocol (TFHE), many TFHE-

based activations greatly prolong its inference la-

tency in text analysis tasks. Several prior works

HE-RNN (Bakshi and Last, 2020; Podschwadt and

Takabi, 2020) use HE to implement linear opera-

tions, and return the intermediate encrypted results

to the client without non-linear operations.

Latency Bottleneck and Motivation. In a typi-

cal GRU cell, there are nine stages of linear opera-

tions and two non-linear operations. In out baseline

implementation using Gazelle, the non-linear oper-

ations take up to 91.37%. Therefore GC-based non-

linear operations are the bottleneck in this structure.

This is further discussed in Section 3.

3 CRYPTOGRU

3.1 Constructing the base CRYPTOGRU

Conventional neural network inference uses depth-

bounded arithmetic circuits (LHE). However, the

computation cost is large for the LHE scheme.

CRYPTOGRU adopts a simpler HE scheme,

namely packed additive homomorphic encryption

(PAHE) scheme and garbled circuits (GC).

Algorithm 1: CRYPTOGRU cell

Input: an input ciphertext [xt]
Output: a ciphertext hidden state [ht]
[ir], [ii], [in] = MultPC([x],Ωi, bi) // HE
[hr], [hi], [hn] = MultPC([ht−1],Ωh, bh) // HE

[Gatereset] = GCSig(AddCC([ir], [hr])) // GC

[Gateinput] = GCSig(AddCC([ii], [hi])) // GC

[Gatenew] = GCTanh( // GC

AddCC([in],MultCC([Gatereset], [hn])))
// HE

[ht] = AddCC([Gatenew], // HE
MultCC([Gateinput], // HE
AddCC([ht−1],−[Gatenew]))) // HE

return [ht]
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Figure 1: A cell of CRYPTOGRU with HE-based linear operations and GC-based non-linear operations.

Figure 1 illustrates the details of an internal view

of a full GRU cell, which consists of both linear

and non-linear operations. The linear operations

are in blue, as shown in Figure 1. In a GRU cell,

linear operations include matrix vector multiplica-

tions (MATMUL), element-wise add, minus, and

multiplications (ADD,1-,MUL). Element-wise mi-

nus function is implemented as adding negative

elements. In CRYPTOGRU, we map the neural net-

work layers to PAHE matrix-vector multiplication

for these linear operations. The activation func-

tion sigmoid and tanh are non-linear, which are

shown in red in Figure 1. For non-linear opera-

tions, we apply garbled circuits. The process of

updating hidden states inside a GRU cell is shown

in Algorithm 1. Here, the MultPC is a matrix

vector multiplication based on HE, where the ma-

trix is plaintext and the vector is ciphertext. We

use [ ] to denote a ciphertext. In this function, [ir]
is the product of [x] with the first third of Ωi, [ii]
is the product of [x] with the second third of Ωi,

and [in] is the product of [x] with the last third of

Ωi. This mechanism also applies to the product of

[ht−1] with Ωh. Here, the AddCC and MultCC
are element-wise addition and multiplication re-

spectively. In addition, the GCSig and GCTanh
are the GC-enabled sigmoid function and tanh
function respectively.

3.2 1 Replacing tanh with ReLU

In this paper, we aim to build a privacy-preserving

GRU network for text analysis. However, if we use

the HE and GC hybrid technique (Juvekar et al.,

2018) to implement a GRU network, the complex

GC-based activations including tanh and sigmoid
significantly prolong the inference latency. In GRU

RNN, the activation nonlinearity function is typi-

cally tanh but can also be implemented with the

rectified linear unit ReLU (Ravanelli et al., 2018;

Chung et al., 2014). More importantly, we investi-

Accuracy Latency
Datasets tanh ReLU tanh ReLU
IMDB 84.8% 84.6% 14860ms 3779ms
Yelp Reviews 77.3% 78.1% 5383ms 1852ms

Table 2: The tanh activation vs. ReLU activation.

gate that a ReLU activation is more GC-friendly

than a tanh activation. A 8-bit ReLU activation

requires ∼ 4× less latency than a 8-bit tanh activa-

tion since a 8-bit ReLU requires only 24 non-XOR

gates, but a tanh needs 95 non-XOR gates.

We use some tests against two public datasets

to demonstrate this motivation. One dataset is the

IMDB, which consists of 50,000 movie reviews.

The other dataset is the Yelp review. Both datasets

are used in binary classification tasks. In a one-

layer GRU network, we compare the accuracy of

using tanh with ReLU on the two datasets and

compare the latency for a single sample inference.

The results are summarized in Table 2. From this

table, the GRU model with ReLU can gain almost

the same accuracy as that uses tanh but trade off its

training time for significant shorter latency during

the inference stage. We label this version as “CG-

1 ” in all the following text.

3.3 2 Quantizing both sigmoid and ReLU

During the computation of a full GRU cell, we

identify the latency bottleneck is at non-linear func-

tions. In Figure 1, we show the computation time

for non-linear operations hold about 91.37% for a

typical case. This is mainly due to the computa-

tional complexity for ciphertext is significantly pro-

portional to the underlying bit-length (Riazi et al.,

2018). As shown in Table 2, the latency of ReLU
is significant less than that of tanh due to simpler

computational complexity (Rouhani et al., 2018).

Then, we quantize the all default bit-length from

20 to 8 in activations. First, the design of garbled

circuits is proportional simpler after the quantiza-
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Figure 2: Latency comparison for two sets of experi-

ments. “B1”, the first “CG1”, and the first “CG2” rep-

resents a model with the input size set at 10 and the hid-

den size set as 128. “B2”, the second “CG1”, and the

second “CG2” represents a model with the input size

set at 100 and the hidden size set as 64. “CG1” and

“CG2” represents the CG- 1 and CG- 2 respectively.

For both baseline cases, the online latency is signifi-

cant. CG- 1 can reduce the online and offline latency

and CG- 2 can further reduce the online latency while

maintains the same level of the offline and setup.

tion since the garbled circuits are sensitive to the

bit length. Second, since these activation functions

do not have any weight parameters, the overall

accuracy of the neural networks with quantized ac-

tivation functions can still hold. We summarize

the results of testing CRYPTOGRU in Table 3 and

we compare the latency shown in Figure 2. This

benefit is further discussed in Section 4. We label

this version as “CG- 2 ” in all the following text.

4 Experiments and Results

4.1 Cryptographic settings

We develop the CRYPTOGRU with the Gazelle

SIMD Homomorphic operations in C++ (Juvekar

et al., 2018). Two main sets of cryptographic primi-

tives are used for the CRYPTOGRU inference. One

set is for homomorphic encryption and the other set

is for a garbled-circuit scheme. For the homomor-

phic encryption, we use Brakerski-Fan-Vercauteren

(BFV) scheme (Brakerski, 2012). Yao’s garbled

circuits scheme is used for a two-party secure com-

putation (Yao, 1986). We set the bit-length to 20 for

plaintext and 60 for ciphertext in the BFV scheme

as explained in Section 3.1.

4.2 Ablation studies from 1 and 2

We test our three versions of CRYPTOGRU for

the performance with respect to the latency. The

results are shown in Table 3 and Figure 2. In a sin-

gle GRU cell, there are 12 operations, 9 of which

are linear and 3 are non-linear as discussed in Sec-

tion 3.1. For each operation, we calibrate its setup

latency, offline latency, online latency. In addition,

the complexity of these operations are proportional

to the size of input and configured hidden size. We

use 30 time steps in the default settings. Here we

illustrate two sets of input and hidden sizes. Given

the input size is 10 and hidden size is 128, for the

baseline case, the offline latency is 1651.2ms, the

setup latency is 107.5ms, and the total latency is

1567.85ms. Compared to this case, CG- 1 can fin-

ish with a 258ms offline latency, 107.5ms setup

latency, and 3225.15ms online latency, resulting a

total of 3590.65ms latency.

The offline latency and online latency are im-

proved due to the simpler computational complex-

ity of using ReLU . Benchmark results show that

the ReLU function can use 6.4 times less circuit

gates for ciphertexts. This version is about 77%

faster than the baseline. By contrast, the CG- 2 has

the same setup and offline latency as the CG- 1 ,

but the online latency is only about 1290.06ms, re-

sulting that the total latency is 1655.56ms, which

is about 54% faster than the CG- 1 . The two tech-

niques show the same effect when the input and

hidden sizes are 100, and 64 respectively. The base-

line version use a total of 5392.91ms, the CG- 1

use a total of 1851.32ms, and the CG- 2 use a total

of 913.32ms. In this setting, the CG- 1 shows an

improvement of about 66% respect to the latency

of the baseline and CG- 2 shows a further improve-

ment of about 51% compared to the CG- 1 .

Applying two techniques 1 and 2 can decrease

the total latency and online message size for GC.

Compared with related work, CRYPTOGRU can

achieve low latency in a secure inference system

and maintain the same level of accuracy. There are

some limitations due to the nature of homomorphic

computing complexity. In addition, the recurrent

computation would raise noise in homomorphic

encryption. We mitigate the noise by bootstrapping

the ciphertext (Chillotti et al., 2020).

4.3 Results

We test the latency and accuracy of CRYPTOGRU

against public datasets and compare the perfor-

mance with the state-of-art prior related works. We

use Enron emails (Klimt and Yang, 2004) and Penn

Treebank datasets (Le et al., 2015) that are com-

mon to machine learning tasks for text to evaluate

the performance of the CG- 2 (referred as CRYP-

TOGRU in this section) as well as the IMDB and

Yelp datasets from Section 3.2. Experiments cov-
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Schemes Input Size Hidden Size Total Latency GC Msg Size

Baseline 10 128 15675.85 ms 213.4 MB
CG- 1 10 128 3590.65 ms 19.4 MB
CG- 2 10 128 1655.56 ms 7.7 MB
Baseline 100 64 5382.91 ms 106.7 MB
CG- 1 100 64 1851.32 ms 9.7 MB
CG- 2 100 64 913.32 ms 3.9 MB

Table 3: The benchmark results of CRYPTOGRU.

Datasets Neural Networks Accuracy(%) Latency

Enron
Emails

PrivFT - 7.95s∗
CryptoGRU 84.2 2.03s

Penn
Treebank

SHE 89.8ppw ∼576s
CryptoGRU 79.4ppw 4.14s

IMDB
HE-RNN 86.47∗ 70.6s∗
PrivFT 91.49∗ 7.90s∗
CryptoGRU 84.6 2.07s

Yelp
Review

PrivFT 96.06∗ 7.88s∗
CryptoGRU 91.3 0.91s

Table 4: Results from CRYPTOGRU and related work.

ered in Table 4 are typical classification or regres-

sion tasks for text datasets. We use the perplexity

per word (PPW) as the target for the Penn Treebank

dataset, which means the average log-probability

per word. This is a common regression task for this

dataset. Enron Emails is a dataset collection con-

sisting of 500,000 emails with subjects and body

messages.For Enron email datasets, we classify

emails as spam or ham. This is a binary classifica-

tion task. We perform the binary classification task

for the IMDB dataset that labels the reviews either

as positive or negative (Maas et al., 2011). For

Yelp reviews dataset 1, we also perform the binary

classification task. Reviews with a star greater than

and equal to 3 are regarded as positive.

We summarize the comparison results in Table 4.

For the Penn Treebank dataset, our CRYPTOGRU

can infer a sample in 4.14s, which is about 138

times faster than the SHE (Lou and Jiang, 2019).

For the IMDB datset, our CRYPTOGRU can finish

one sample inference within 2.07s on CPU, which

is about 33 times faster than the HE-RNN (Pod-

schwadt and Takabi, 2020). The CRYPTOGRU can

infer a sample from Enron Emails in 2.03 and Yelp

reviews in 0.91s.

5 Conclusion

Machine learning as a service attracts interest from

many aspects in industry. Public cloud companies

already launched prediction services. However,

1https://www.ics.uci.edu/~vpsaini/

sending plaintext to model servers for inference

raise attentions to user privacy issues. We propose

CRYPTOGRU, a secure inference building block

for gated recurrent unit that emphasises on text-

like or time series models. We elaborate all the

improvements based on theoretical analysis and

confirm the legitimacy for all optimization means.

CRYPTOGRU improves a GRU with homomorphic

encryption, share secrets, and garbled circuits het-

erogeneously to achieve low latency as well as high

accuracy.

Code Availability
CRYPTOGRU code is available at: https://
github.com/bfeng/CryptoGRU. The pub-

lic repository also includes software dependencies

like the ‘cryptoTools’ and the ‘Gazelle’ code. Used

datasets from all experiments are downloadable

from the internet as described in the text.
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