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Abstract

With the growing use of machine learning algorithms in highly consequential domains, the quantification and removal of
disparity in decision making with respect to protected attributes, such as gender, race, etc., is becoming increasingly important.
While quantifying disparity is essential, sometimes the needs of a business (e.g., hiring) may require the use of certain features
that are critical in a way that any disparity that can be explained by them might need to be exempted. For instance, in hiring a
software engineer for a safety-critical application, a coding-test score may be a critical feature that is weighed strongly in the
decision even if it introduces disparity, whereas other features, such as name, zip code, or reference letters may be used to improve
decision-making, but only to the extent that they do not add disparity. In this work, we propose a novel information-theoretic
decomposition of the total disparity (a quantification inspired from counterfactual fairness) into two components: a non-exempt
component which quantifies the part of the disparity that cannot be accounted for by the critical features, and an exempt component
which quantifies the remaining disparity. This decomposition is important: it allows one to check if the disparity arose purely
due to the critical features (inspired from the business necessity defense of disparate impact law) and also enables selective
removal of the non-exempt component of disparity if desired. We arrive at this decomposition through canonical examples that
lead to a set of desirable properties (axioms) that any measure of non-exempt disparity should satisfy. We then demonstrate that
our proposed counterfactual measure of non-exempt disparity satisfies all of them. Our quantification bridges ideas of causality,
Simpson’s paradox, and a body of work from information theory called Partial Information Decomposition (PID). We also obtain
an impossibility result showing that no observational measure of non-exempt disparity can satisfy all of the desired properties,
which leads us to relax our goals and examine alternative observational measures that satisfy only some of these properties. We
perform case studies to show how one can audit existing models as well as train new models while reducing non-exempt disparity.

I. INTRODUCTION

As artificial intelligence becomes ubiquitous, it is important to understand whether the output of a machine-learnt model is
unfairly biased with respect to protected attributes such as gender, race, etc., and if so, how we can engineer fairness into
such a model. The field of fair machine learning provides several measures for fairness [2]–[29], and uses them to reduce
disparity, e.g., as a regularizer during training [6], [10]. In several applications, there are some features that are critical in a
way that they are required to be weighed strongly in the decision even if they give rise to disparity. Examples of such critical
features might be weightlifting ability for a firefighter’s job, educational qualification for an academic job, coding skills for a
software engineering job, merit and seniority in deciding salary, etc. In an attempt to preserve the importance of the critical
features in the decision making, one might choose to exempt the disparity created by them. On the other hand, racial disparity
in mortgage lending decisions arising due to zip code (a non-critical feature) [30], or disparity in promotion/transfer decisions
arising from aptitude tests1 are examples of non-exempt disparity. In this work, our goal is to formalize and quantify the
non-exempt disparity, i.e., the part of the disparity that cannot be accounted for by the critical features. This quantification is
important for two reasons: (i) it allows one to check if the disparity arose purely due to the critical features (inspired from the
“business necessity defense” in the disparate impact law, i.e., Title VII of the Civil Rights Act of 1964 [32]); and (ii) it enables
selective removal of the non-exempt component if desired.

In this work, we assume that the critical features or business necessities are known (similar to [4], [17]; this discussion is
revisited in Section VIII). We let Xc and Xg denote the critical and the non-critical (or general) features, and X denote the
entire set of features. We also denote the protected attribute(s) by Z, the true label by Y , and the model output by Ŷ which is
a function of the entire feature vector X . While we acknowledge that such categorization of features is application-dependent
and might require domain knowledge and ethical evaluation, such exemptions do exist in law. E.g., the US Equal Pay Act [33]
exempts for difference in salary based on gender that can be explained by merit and seniority. Similarly, the US employment
discrimination law contains a business necessity defense [31] where disparity about protected attributes may be exempted if
the disparity can be justified as “necessary to the normal operation of that particular business.” For example, a standardized
coding-test score may be a critical feature in hiring software engineers for a safety-critical application. Similarly, weightlifting
ability might be a critical feature in hiring firefighters so that they are able to carry fire victims out of a burning building. The
critical feature is therefore required to be weighed strongly in hiring even if it is correlated with some protected attributes.

Accepted for publication at the IEEE Transactions on Information Theory; Some of these results have appeared in part at AAAI 2020 [1] (oral presentation).
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(sanghamd@andrew.cmu.edu), P. Venkatesh (vpraveen@cmu.edu), P. Mardziel (piotrm@cmu.edu), A. Datta (danupam@cmu.edu), P. Grover (pulkit@cmu.edu).
1In the landmark employment discrimination court-case of Griggs v. Duke Power [31], the US Supreme Court deemed certain aptitude tests as not job-related

and hence not business necessities, ruling against the employer.

ar
X

iv
:2

00
6.

07
98

6v
2 

 [c
s.I

T]
  6

 A
ug

 2
02

1



FAIRNESS UNDER FEATURE EXEMPTIONS: COUNTERFACTUAL AND OBSERVATIONAL MEASURES 2

TABLE I: Observational Measures (MNE) of Non-Exempt Disparity (Utility and Limitations)

Desirable Properties Uni(Z : Ŷ | Xc) I(Z; Ŷ | Xc) I(Z; Ŷ | Xc, X′)

1. No counterfactual causal influence from Z to Ŷ ⇒ MNE = 0. Yes Not Always Not Always
2. MNE detects unique information about Z in Ŷ not in Xc. Yes Yes Not Always
3. MNE detects non-exempt masked disparity. No Masked by g(Xc) Masked by g(Xc, X′)
4. MNE equals total disparity if Xc = φ and Xg = X . No No No
5. MNE is non-increasing as more features are added to Xc from Xg . Yes No No
6. MNE is 0 (complete exemption) if Xc = X and Xg = φ. Yes Yes Yes

Why should we use the “general” features at all for prediction if they are not critical? General features can improve
performance metrics such as accuracy of the model, or even help reduce the candidate pool, e.g., if 60% applicants clear a
test, but resources are available to interview only 10%. Not using the general features at all can reduce accuracy, or produce a
very large candidate pool. In this work, our proposition is to use both critical and general features in a way that maximizes
accuracy (to the extent possible) while preventing non-exempt disparity. For instance (inspired from [32]), to choose a “good”
employee, an employer could evaluate standardized test scores and also reference letters (human-graded performance reviews).
All these features are “job-related” in that they have statistical correlation with the prediction goal, and can help improve the
accuracy. However, test scores, a critical feature, may need to be weighed strongly in the decision, even if they introduce
disparity, whereas, reference letters may be used only to the extent that they do not discriminate.

This work treads a middle ground between two popular measures of fairness that do not use domain knowledge, namely,
statistical parity [3], [6], [12], [27], which enforces the criterion Z ⊥⊥ Ŷ , and equalized odds [7], [12], [27], which enforces
Z ⊥⊥ Ŷ |Y (directly or through practical relaxations). Our selective quantification of non-exempt disparity (using domain
knowledge to identify critical features) helps address one of the major criticisms against statistical parity. The criticism is that it
can lead to the selection of unqualified members from the protected group [7], [22], e.g., by disregarding the critical features
if they are correlated with the protected attribute Z. In fact, in our case study in Section VII, we observe that the weight of
the critical feature is significantly reduced in the decision making when one uses statistical parity as a regularizer with the
loss function because the critical feature is correlated with Z (also see Canonical Example 1 in Section III-C). On the other
hand, equalized odds suffers from label bias [26], [30], [34], [35] because it is based on agreement with the true labels. In
fact, we demonstrate (Canonical Example 2 in Section III-C) that if the historic labels themselves reinforce disparity from the
non-critical features, then even if we obtain a perfect classifier after training on the historic data, which satisfies equalized odds,
it can reinforce undesirable non-exempt disparity2.

A. Contributions

Our main contribution in this work is the quantification of non-exempt disparity based on a rigorous axiomatic approach. As
a first step towards this quantification, we propose an information-theoretic quantification (see Definition 4 in Section II-B) of
the total disparity (exempt and non-exempt) that is 0 if and only if the model is counterfactually fair [16]. Counterfactual
fairness [16], [18] is a causal notion of fairness where the features X , the protected attribute Z and the model output Ŷ are
assumed to be observables in a Structural Causal Model (SCM) (defined formally in Section II; see Definition 2). The model is
deemed counterfactually fair if Z has no counterfactual causal influence on Ŷ , i.e., Ŷ does not change if we are able to vary Z
in the SCM in a manner that other independent latent factors remain constant (defined formally in Section II; see Definition 3).

Interestingly, note that the total disparity (in a counterfactual sense) may not exhibit itself entirely in the mutual information
I(Z; Ŷ ), which is the statistically visible information3 about Z in Ŷ , because of “statistical masking effects” (also relates to
Simpson’s paradox [36]). Consider an example inspired from [16], [20], [26] where a software engineering job advertisement
is shown only to a) men with coding skills above a threshold, and b) women with coding skills below a threshold. That
is, the decision Ŷ = Z ⊕ G where ⊕ denotes XOR, G is the binary variable denoting whether coding skills are above a
threshold (that does not have a causal influence of Z in this example), and G,Z are i.i.d. Bern(1/2). This decision is biased
against the high-skilled women for whom the ad is relevant, but I(Z; Ŷ ) = 0 here, thus failing to capture this bias. Intuitively,
our quantification of total disparity also extends the idea of proxy-use [20] from white-box models4 to black-box models.
Proxy-use [20] examines “white-box” models, i.e., models with clearly defined constituents (e.g., decision trees) and regards a
model as having disparity if (i) there is a constituent that has high mutual information about Z (a proxy of Z); and (ii) this
constituent also causally influences the output Ŷ (i.e., varying the constituent while keeping other constituents constant does
not change the output). In this work, the total disparity captures the intuitive notion of a virtual constituent or proxy of Z

2Our quantification does not use the true labels for fairness (unlike equalized odds), addressing the criticism in [32] which says that “ [...] often the best
labels for different classifications will be open to debate.”

3This is a quantification of disparity inspired from statistical parity which deems a model fair if and only if Ŷ ⊥⊥ Z. Note that, I(Z; Ŷ ) = 0 if and only if
Ŷ ⊥⊥ Z.

4White-box models [20] are the type of models where one can clearly explain how they behave, how they produce predictions and what the influencing
variables or sub-components of the model are, e.g., decision trees, linear regression, etc.
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that causally influences the final output Ŷ (this intuition is revisited to understand Scenario 2 in Section II-B). For instance, a
virtual constituent Z is formed in the example of masked disparity in ads that causally influences Ŷ even though I(Z; Ŷ ) = 0.

Next, we quantify the non-exempt part of this total disparity, i.e., the part that cannot be explained by the critical features
(Xc). Building on the extension of proxy-use [20] for black-box models as discussed above, we aim to quantify the influence
of a discriminatory virtual constituent or proxy of Z, if formed inside the black-box model, on the model output Ŷ , and
that cannot be attributed entirely to the critical features (this idea is revisited for an intuitive understanding of the canonical
examples in Section II-B.). To quantify this non-exempt disparity, we consider toy examples and thought experiments to first
arrive at a set of desirable properties (axioms) that any measure of non-exempt disparity should satisfy, and then provide a
measure that satisfies them (see Theorem 1). These desirable properties can be intuitively described as follows. If the model is
counterfactually fair, e.g., if the virtual constituents or proxies of Z cancel each other leading to a final model output that
has no counterfactual causal influence of Z, then it is desirable that the non-exempt disparity is also 0. Next, it is desirable
that the measure be non-zero if Ŷ has any “unique” statistically visible information about Z that is not present in Xc because
then that information content is also attributed to Xg. However, because of statistical masking effects, even if this unique
information is 0, there may still be non-exempt masked disparity that needs to be captured, e.g., in the aforementioned example
of software-engineering-job ads (also revisited in Canonical Example 4 in Section III-B where we discuss our rationale for the
properties). The next three properties are more intuitive. If all the features are in the non-critical set, then the measure should
be equal to the total disparity since no disparity is exempt. For a fixed set of features X and a fixed model, as more features
become categorized as critical, the measure of non-exempt disparity should not increase, i.e., it either decreases or stays the
same. Ultimately, if all the features are in the critical set Xc, then we require the measure of non-exempt disparity to be 0
since then the total disparity is exempt.

Our proposed measure of non-exempt disparity, that satisfies all these desirable properties, is counterfactual in nature, i.e.,
it depends on the true SCM, and hence, is not observational5 in general. We also show the theoretical impossibility of any
observational measure in satisfying all the desirable properties together (see Theorem 3). We note that in some applications,
counterfactual measures can be realized or approximated with assumptions on the causal model. However, for more general
use in practical applications, we also propose several observational relaxations of our measure that satisfy only some of these
properties. Nevertheless, we believe that a counterfactual measure and its properties are crucial in understanding the utility and
the limitations of different observational measures and informing which measure to choose in practice (summarized in Table I;
detailed discussion in Section VI).

To summarize, our contributions in this work are as follows:
1. Quantification of Non-Exempt Disparity: We propose a novel counterfactual measure of non-exempt disparity that captures
the disparity that cannot be explained by the critical features. Our quantification attempts to capture the intuitive notion of
whether a discriminatory virtual constituent or proxy [20] of Z is formed inside the black-box model that influences the output
Ŷ and that cannot be attributed entirely to the critical features (Xc). We adopt a rigorous axiomatic approach where we first
arrive at a set of desirable properties that any measure of non-exempt disparity should satisfy by analyzing several canonical
examples (thought experiments). Next, we show that the proposed measure satisfies these properties (see Theorem 1). Our
quantification leverages a body of work in information theory called Partial Information Decomposition (PID), as well as,
causality.
2. Overall Decomposition of Total Disparity into Statistically Visible and Masked components: Our quantification finally
leads us to an overall decomposition of the total disparity into four non-negative components, namely, exempt and non-exempt
statistically visible disparity and exempt and non-exempt masked disparity (see Theorem 2). The exempt and non-exempt
statistically visible disparities add up to give I(Z; Ŷ ) which is the total statistically visible disparity.
3. An Impossibility Result: We show that no purely observational measure of non-exempt disparity can satisfy all our desirable
properties (see Theorem 3).
4. Observational Relaxations: Relaxing our requirements, we obtain purely observational measures that satisfy some of the
desirable properties (summarized in Table I) and then use them in case studies to demonstrate how to (i) audit existing models;
and also (ii) train new models that selectively reduce non-exempt disparity.

Our contribution in the context of related works: Causal approaches for fairness have been explored in [16]–[20], [37], [38],
including impossibility results on purely observational measures [17], [20]. Our main novelty lies in using a rigorous axiomatic
approach based on realistic examples and thought experiments for quantifying non-exempt and exempt disparity separately,
thereby allowing for exemptions due to critical features. The decomposition of total disparity into exempt and non-exempt
components is tricky. For instance, following the ideas of path-specific counterfactual fairness [19], one might be tempted to
examine specific causal paths from Z to Ŷ that pass (or do not pass) through Xc, and deem those influences as the two (exempt
and non-exempt) measures. However, we provide a counterexample (see Canonical Example 6 in Section III-B) to show that
disparity can also arise from synergistic information about Z in both Xc and Xg , that cannot be attributed to any one of them
alone, i.e., I(Z;Xc) and I(Z;Xg) may both be 0 but I(Z;Xc, Xg) may not be. Purely causal measures (that do not rely on the

5Observational measures are those that can be estimated from the probability distribution of the data without knowledge of the underlying SCM.
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PID framework) can attribute such disparity entirely to Xc. We contend that such synergistic information, if influencing the
decision, must be included in the non-exempt component of disparity because both Xc and Xg are contributors. We note that
identifying synergy is important: synergy arises frequently in machine-learning and other related applications [36], [39], [40].

Some observational measures for quantifying non-exempt disparity have been introduced previously in [2], [4] where the
authors propose a decomposition of statistically visible discrimination (statistical parity) into explainable and non-explainable
components (see also subsequent works [5], [29], [41]–[43] that build on this idea). They examine the difference in the
expected model output (Ŷ ) for candidates of different races/genders (Z) after conditioning on specific subsets of features6

(this relates to dependence between Z and Ŷ after conditioning on specific features; also referred to as conditional statistical
parity [41]). In this context, in this work, we provide simple yet relevant counterexamples showing that conditioning may not
always faithfully capture non-exempt disparity. E.g., Canonical Example 3 in Section III-B) is deemed unfair by conditional
mutual information (or conditional statistical parity), but is fair by counterfactual fairness [16], [18]. We use these examples as
motivation to decompose conditional mutual information into unique and synergistic information using PID, separating two
kinds of “statistical dependence” which conditioning alone fails to do (see Section II-A). We refer to Section III-C for more
detailed discussion on existing measures that have some provision for exemption, namely, conditional statistical parity [41],
[43], justifiable fairness [42], as well as a related causal measure of path-specific counterfactual fairness [19]. Our problem
also differs from sub-group fairness [26] where the sub-populations in consideration are based on the protected attributes
alone, e.g., Z = (Z1, Z2) with Z1 being gender, and Z2 being race, and does not consider exemptions with respect to the
other (non-protected) attributes. Another interesting related work is [44] which approaches the problem of fairness from the
perspective of feature selection while allowing for a set of admissible attributes/features. In [44], the authors propose conditional
independence tests (observational) with respect to the admissible attributes for feature selection while using group testing to
improve the complexity of the technique, and demonstrate that the proposed technique satisfies the interventional fairness
definition in [42].

We also note that the idea of using correlation-based observational approximations of disparity (e.g., correlation between
Z and Ŷ to represent statistical parity) as a regularizer during training has been proposed earlier [10]. In this context, our
main contribution here is on first arriving at a measure of non-exempt disparity (that happens to be non-observational), and
then proposing 3 observational measures for applications in both auditing existing models and training new models with
reduced non-exempt disparity. For auditing, we use alternate non-correlation-based estimators for unique information, mutual
information, and conditional mutual information from the dit package [45]. For training, we rely on simplistic correlation-based
approximations for mutual information and conditional mutual information along the lines of [10] for ease of computation.
For unique information, we introduce novel correlation-based regularizers for training in Section VII, leveraging a Gaussian
approximation for PID [46].

B. Paper Outline

The rest of the paper is organized as follows. Section II introduces the background, system model and assumptions underlying
our problem formulation, i.e., how to quantify the non-exempt disparity. Section III-A first states all the desirable properties
that a measure of non-exempt disparity should satisfy, and then introduces our proposed counterfactual measure that satisfies
all of them (Theorem 1 in Section III-A). This is followed by a rationale behind the desirable properties through canonical
examples and thought experiments in Section III-B. We also discuss the utility and limitations of some existing measures,
namely, path-specific counterfactual fairness [19], conditional statistical parity [41], and justifiable fairness [42] in Section III-C.
Next, Section IV provides insights on the overall decomposition of the total disparity (in a counterfactual sense) into exempt
and non-exempt components, with each of them being further decomposed into statistically visible and masked components
(Theorem 2 in Section IV). Section V provides an impossibility result on observational measures, stating that no observational
measure can satisfy all of the desirable properties. Nonetheless, since counterfactual measures are often difficult to realize in
practice, we propose several observational relaxations of our proposed counterfactual measure in Section VI (that only satisfy
some of the desirable properties), and discuss their utility and limitations. Next, in Section VII, we use our observational
measures to conduct case studies on both artificial and real datasets to demonstrate practical application in training. Finally, we
conclude with a discussion in Section VIII.

II. PRELIMINARIES

Here, we first provide a brief background on Partial Information Decomposition (PID) in Section II-A to help follow the
paper. Appendix B provides more details on the specific properties used in the proofs. Next, we introduce our system model and
assumptions in Section II-B. We use the following notations: (i) X = (X1, X2, . . . , Xn) denotes a tuple [47], i.e., an ordered
set of elements X1, X2, . . . , Xn; (ii) φ denotes the empty tuple (no elements); (iii) For tuple with a single element, the bracket
is omitted for brevity, i.e., (X1) = X1; (iv) (X,A) is equivalent to the new tuple (X1, X2, . . . , Xn, A) formed by appending

6Conditional mutual information (conditioned on the critical feature(s)) as a measure of non-exempt disparity has surfaced in [43] with a focus on novel
estimators.
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𝐼(𝑍; 𝐵)

𝐼(𝑍; 𝐴)
𝑆𝑦𝑛(𝑍: (𝐴, 𝐵))

𝑈𝑛𝑖(𝑍: 𝐴|𝐵)

𝑈𝑛𝑖(𝑍: 𝐵|𝐴)

𝑅𝑒𝑑(𝑍: (𝐴, 𝐵))

(a) Venn diagram showing PID of I(Z; (A,B))

𝐼(𝑍; 𝐴, 𝐵)

𝐼(𝑍; 𝐵)

𝐼(𝑍; 𝐴)

𝑆𝑦𝑛(𝑍: (𝐴, 𝐵))

𝑈𝑛𝑖(𝑍: 𝐴|𝐵)

𝑈𝑛𝑖(𝑍: 𝐵|𝐴)

𝑅𝑒𝑑(𝑍: (𝐴, 𝐵))

𝐼(𝑍; 𝐴|𝐵)

𝐼(𝑍; 𝐵|𝐴)

𝐼(𝑍; 𝐴, 𝐵)

(b) Tabular Representation of PID of I(Z; (A,B))

Fig. 1: Mutual information I(Z; (A,B)) is decomposed into 4 non-negative terms, namely, Uni(Z : A|B), Uni(Z : B|A),
Red(Z : (A,B)) and Syn(Z : (A,B)). Also note that, I(Z; (A,B)) = I(Z;B) + I(Z;A | B), each of which is in turn a sum
of two PID terms. Red(Z : (A,B)) is the sub-volume between I(Z;A) and I(Z;B), and Uni(Z : A|B) is the sub-volume
between I(Z;A | B) and I(Z;A).

the element A at the end of tuple X; (v) X1 ∈ X means X1 is an element of tuple X; (vi) S ⊆ X means the set of elements
in tuple S form a subset of the set of elements in tuple X; and (vii) X\X2 denotes a new tuple formed by removing element
X2 from X without changing the order of other elements, i.e., (X1, X3, X4, . . . , Xn).

A. Background on Partial Information Decomposition (PID)

The PID framework [48]–[50] decomposes the mutual information I(Z; (A,B)) about a random variable Z contained in the
tuple (A,B) into four non-negative terms as follows (also see Fig. 1):

I(Z; (A,B)) = Uni(Z : A|B) + Uni(Z : B|A) + Red(Z : (A,B)) + Syn(Z : (A,B)). (1)

Here, Uni(Z : A|B) denotes the unique information about Z that is present only in A and not in B. Likewise, Uni(Z : B|A)
is the unique information about Z that is present only in B and not in A. The term Red(Z : (A,B)) denotes the redundant
information about Z that is present in both A and B, and Syn(Z : (A,B)) denotes the synergistic information not present
in either of A or B individually, but present jointly in (A,B). All four of these terms are non-negative. Also notice that,
Red(Z : (A,B)) and Syn(Z : (A,B)) are symmetric in A and B. Before defining these PID terms formally, let us understand
them through an intuitive scenario.

Scenario 1 (Understanding Partial Information Decomposition). Let Z = (Z1, Z2, Z3) with Z1, Z2, Z3 ∼ i.i.d. Bern(1/2). Let
A = (Z1, Z2, Z3 ⊕N), B = (Z2, N), N ∼ Bern(1/2) is independent of Z. Here, I(Z; (A,B)) = 3 bits.

The unique information about Z that is contained only in A and not in B is effectively contained in Z1 and is given
by Uni(Z : A|B) = I(Z;Z1) = 1 bit. The redundant information about Z that is contained in both A and B is effectively
contained in Z2 and is given by Red(Z : (A,B)) = I(Z;Z2) = 1 bit. Lastly, the synergistic information about Z that is not
contained in either A or B alone, but is contained in both of them together is effectively contained in the tuple (Z3 ⊕N,N),
and is given by Syn(Z : (A,B)) = I(Z; (Z3 ⊕N,N)) = 1 bit. This accounts for the 3 bits in I(Z; (A,B)). Here, B does not
have any unique information about Z that is not contained in A, i.e., Uni(Z : B|A) = 0.

Irrespective of the formal definition of these individual terms, the following identities also hold (see Fig. 1b):

I(Z;A) = Uni(Z : A|B) + Red(Z : (A,B)). (2)
I(Z;A | B) = Uni(Z : A|B) + Syn(Z : (A,B)). (3)

Remark 1 (An Interpretation of PID as Information-Theoretic Sub-Volumes). Equations (1), (2) and (3) have been represented
in a tabular fashion in Fig. 1b. Notice that, Uni(Z : A|B) can be viewed as the information-theoretic sub-volume of the
intersection between I(Z;A) and I(Z;A | B). Similarly, Red(Z : (A,B)) is the sub-volume between I(Z;A) and I(Z;B).

These equations also demonstrate that Uni(Z : A|B) and Red(Z : (A,B)) are the information contents that exhibit themselves
in I(Z;A) which is the statistically visible information content about Z present in A. Because both these PID terms are
non-negative, if any one of them is non-zero, we will have I(Z;A) > 0. Similarly, Uni(Z : B|A) and Red(Z : (A,B)) also
exhibit themselves in I(Z;B). On the other hand, Syn(Z : (A,B)) is the information content that does not exhibit itself in
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Fig. 2: An SCM with protected attribute Z, features X = (X1, X2, X3), and output Ŷ . Here X and Ŷ are the observables, and
UZ and UX = (UX1 , UX2 , UX3) are the latent social factors. Z does not have any parents in the SCM and Ŷ is completely
determined by X = (X1, X2, X3).

I(Z;A) or I(Z;B) individually, i.e., these terms can still be 0 even if Syn(Z : (A,B)) > 0. But, Syn(Z : (A,B)) exhibits
itself in I(Z; (A,B)). Notice that,

I(Z; (A,B)) = Uni(Z : A|B) + Red(Z : (A,B))︸ ︷︷ ︸
I(Z;A)

+ Uni(Z : B|A) + Syn(Z : (A,B))︸ ︷︷ ︸
I(Z;B|A)

(4)

= Uni(Z : B|A) + Red(Z : (A,B))︸ ︷︷ ︸
I(Z;B)

+ Uni(Z : A|B) + Syn(Z : (A,B))︸ ︷︷ ︸
I(Z;A|B)

. (5)

Given three independent equations (1), (2) and (3) in four unknowns (the four PID terms), defining any one of the terms
(e.g., Uni(Z : A|B)) is sufficient to obtain the other three. For completeness, we include the definition of unique information
from [48] (that also allows for estimation via convex optimization [51]) with the specific properties used in the proofs in
Appendix B. To follow the paper, only an intuitive understanding is sufficient.

Definition 1 (Unique Information [48]). Let ∆ be the set of all joint distributions on (Z,A,B) and ∆p be the set
of joint distributions with the same marginals on (Z,A) and (Z,B) as their true distribution, i.e., ∆p = {Q ∈ ∆ :
q(z, a)= Pr(Z=z,A=a) and q(z, b)= Pr(Z=z,B=b)}. Then, Uni(Z : A|B) = minQ∈∆p IQ(Z;A | B), where IQ(Z;A | B)
is the conditional mutual information when (Z,A,B) have joint distribution Q.

The key intuition behind this definition is that the unique information should only depend on the marginal distribution of the
pairs (Z,A) and (Z,B). This is motivated from an operational perspective that if A has unique information about Z (with
respect to B), then there must be a situation where one can predict Z better using A than B (more details in [48, Section
2]). Therefore, all the joint distributions in the set ∆p with the same marginals essentially have the same unique information,
and the distribution Q∗ that minimizes IQ(Z;A | B) is the joint distribution that has no synergistic information leading to
IQ∗(Z;A | B) = Uni(Z : A|B). Definition 1 also defines Red(Z : (A,B)) and Syn(Z : (A,B)) using (2) and (3).

B. System Model and Assumptions

Here, we introduce our system model and assumptions. We start with an introduction to Structural Causal Model (SCM).

Definition 2 (Structural Causal Model: SCM(U, V,F) [36]). A structural causal model (U, V,F) consists of a set of latent
(unobserved) and mutually independent variables U which are not caused by any variable in the set of observable variables
V , and a collection of deterministic functions (structural assignments) F = (F1, F2, . . .), one for each Vi ∈ V , such that:
Vi = Fi(Vpai

, Ui). Here Vpai
⊆ V \Vi are the parents of Vi, and Ui ⊆ U . The structural assignment graph of SCM(U, V,F)

has one vertex for each Vi, and directed edges to Vi from each parent in Vpai
, and is always a directed acyclic graph.

Our System Model: For our problem, consistent with several other works on fairness [16], [17], [19], the latent variables U
represent possibly unknown social factors. The observables V consist of the protected attributes Z, the features X and the
output Ŷ (see Fig. 2). For simplicity, we assume ancestral closure of the protected attributes, i.e., the parents of any Vi ∈ Z also
lie in Z and hence Z is not caused by any of the features in X (Vi ∈ Z are source nodes in the graph). Therefore, Z = fz(UZ)
for UZ ⊆ U . Any feature Xj in X is a function of its corresponding latent variable (UXj ) and its parents, which are again
functions of their own latent variables and parents. Therefore, each Xj can also be written as fj(Z,UX) for some deterministic
fj(·), where UX = U\UZ denotes the latent factors in U that do not cause Z (see a formal proof in [36, Proposition 6.3]).
Here, fj(·) may be constant in some of its arguments. This claim holds because the underlying graph is acyclic, and hence the
structural assignments of the ancestors of Xj can be substituted recursively into one another until all observables except Z are
substituted by latent variables. Also note that, Z ⊥⊥ UX . A model takes X (which consists of critical features Xc and general
features Xg) as its input and produces an output Ŷ which is a deterministic function of X , i.e., Ŷ = r(X) where X is itself a
deterministic function of (Z,UX). Therefore, Ŷ = h(Z,UX) for some deterministic function h(·).
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Fig. 3: Illustration of Scenario 2 for understanding the concept of counterfactual fairness: Different models are used to make
hiring decisions on data corresponding to the same SCM with Z denoting the protected attribute, UX1

denoting inner ability,
X1 = Z + UX1

denoting interview score, and X3 denoting an alternate feature, e.g., location.

Next, we introduce the concept of Counterfactual Causal Influence (CCI) ( [16], [18], [52]–[56]), which will help us understand
the well-known causal definition of fairness called counterfactual fairness [16].

Definition 3 (Counterfactual Causal Influence: CCI(Z → Ŷ )). Consider the aforementioned system model. Let Ŷ = h(Z,UX)
for some deterministic function h(·) where UX are latent variables that do not cause Z in the true SCM. Then,

CCI(Z → Ŷ ) = EZ,Z′,UX
[|h(Z,UX)− h(Z ′, UX)|] where Z ′, Z are i.i.d. (6)

Counterfactual causal influence quantifies the change in Ŷ = h(Z,UX) if we only vary Z while keeping the other latent factors
(UX ) unchanged. A model is said to satisfy counterfactual fairness [16], [18] if and only if the output Ŷ has no counterfactual
causal influence of Z (we formally derive that CCI(Z → Ŷ ) = 0 is equivalent to counterfactual fairness [16] in Lemma 6
in Appendix A-B). What this means is that a model is counterfactually fair if and only if the output Ŷ = h(Z,UX) does
not change with Z while keeping the other latent factors (UX ) unchanged. It captures the intuitive notion that no virtual
constituent or proxy of Z influences the output (inspired from the work on proxy-use [20]). In other words, Ŷ ⊥⊥ Z|UX (proved
in Lemma 1), i.e.,

Pr(Ŷ = y|Z = z, UX = ux) = Pr(Ŷ = y|Z = z′, UX = ux) ∀z, z′, y, ux. (7)

This notion of fairness also leads us to propose an information-theoretic quantification of total disparity (exempt and non-exempt)
that is 0 if and only if the counterfactual causal influence of Z on Ŷ is 0 (equivalence is demonstrated in Lemma 1 with the
proof in Appendix A-A).

Definition 4 (Total Disparity). The total disparity in a model is defined as I(Z; (Ŷ , UX)).

Notice that,
I(Z; (Ŷ , UX)) = I(Z; Ŷ |UX) + I(Z;UX)︸ ︷︷ ︸

=0 since Z⊥⊥UX

= I(Z; Ŷ |UX). (8)

Lemma 1 (Equivalences of CCI). Consider the aforementioned system model. Let Ŷ = h(Z,UX) for some deterministic
function h(·) and Z ⊥⊥ UX . Then, CCI(Z → Ŷ ) = 0 if and only if I(Z; (Ŷ , UX)) = 0.

Remark 2 (Advantage of our Information-Theoretic Quantification). One might wonder why such an information-theoretic
quantification of counterfactual causal influence (or, total disparity) is necessary. The information-theoretic quantification
of total disparity enables analytical decomposition into exempt and non-exempt components that better satisfy our intuitive
understanding. Our non-exempt disparity intuitively attempts to capture whether discriminatory proxies are formed inside the
black-box model that cannot be entirely attributed to the critical features Xc. The decomposition of counterfactual causal
influence (Definition 3) into exempt and non-exempt components is not straightforward. For instance, following the ideas of
path-specific counterfactual fairness [19], one might be tempted to examine specific causal paths from Z to Ŷ that pass (or
do not pass) through Xc, and deem those influences as the two measures. However, as the PID literature notes, disparity
can also arise from synergistic information about Z in both Xc and Xg, that cannot be attributed to any one of them alone,
i.e., I(Z;Xc) and I(Z;Xg) may both be 0 but I(Z;Xc, Xg) may not be (see Canonical Example 6). Purely causal measures
can attribute such disparity entirely to Xc. We contend that such synergistic information, if influencing the decision, must be
included in the non-exempt component of disparity because both Xc and Xg are contributors to the proxy. Information-theoretic
equivalences of other existing notions of fairness, e.g., statistical parity, equalized odds, etc. have also been used in the broader
literature on fairness [8], [10], [12], [27], [29], [57].
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TABLE II: Summary of Notations

Symbol Description Observable or Not

Xc Tuple of Critical features Observable
Xg Tuple of Non-critical or general features Observable
X Tuple of all input features (critical and general) Observable
Z Protected attribute (s) Observable
UX (Note that, Z ⊥⊥ UX ) Tuple of latent social factors that do not cause Z Not observable in general
Ŷ = r(X) = h(Z,UX) Model output Observable

For a better understanding of counterfactual fairness, we now consider an intuitive scenario (inspired from [16]).

Scenario 2 (Understanding Counterfactual Fairness). Suppose a company makes its decisions about hiring based on a feature
X1 which denotes an interview score. In the SCM, this feature X1 = Z+UX1

where Z denotes the protected attribute and UX1

denotes the inner ability which is independent of Z. An output Ŷ = X1 is not counterfactually fair because it has counterfactual
causal influence of the protected attribute Z (Fig. 3a). The total disparity I(Z; (Ŷ , UX)) is also non-zero, capturing the intuitive
notion that a proxy of Z influences the output. On the other hand, suppose the model now uses another feature X2 = Z and
produces the output Ŷ = X1 −X2 = UX1

. This model is now deemed counterfactually fair (Fig. 3b), and its total disparity
I(Z; (Ŷ , UX)) is zero. No proxy of Z influences the output any longer.

Remark 3 (Accuracy vs Counterfactual Fairness). The goals of fairness and accuracy on a given dataset are not always
aligned [9], [58]. For instance, suppose the model in Scenario 2 takes decisions only based on a new feature X3 = UX3 that
is derived entirely from some latent factor that is unrelated with the ability to perform the job (see Fig. 3c). Or, even worse,
suppose a model is hiring based on a random coin flip. Such a model may be highly inaccurate and absurd but it is still
counterfactually fair because it has no counterfactual causal influence of Z. In this work, we will assume that a model has
absolutely no disparity (exempt or non-exempt) if and only if there is no counterfactual causal influence of Z on Ŷ . We will
also run into some toy examples that might have lower accuracy, but from a counterfactual-fairness-point-of-view, it will be
desirable that they are deemed fair if there is no counterfactual causal influence of Z.

Next, we propose two definitions, namely, statistically visible disparity and masked disparity. Statistically visible disparity is an
information-theoretic quantification inspired from a well-known observational definition of fairness called statistical parity [6].

Definition 5 (Statistically Visible Disparity). The statistically visible disparity in a model is defined as I(Z; Ŷ ).

Statistical parity deems a model fair if and only if Z ⊥⊥ Ŷ , i.e.,

Pr(Ŷ = y|Z = z) = Pr(Ŷ = y|Z = z′) ∀y, z, z′.

Thus, a model is said to be fair by statistical parity if and only if its statistically visible disparity I(Z; Ŷ ) = 0.

Remark 4 (Statistical Parity vs Counterfactual Fairness). Statistical parity (or independence) does not imply absence of causal
effects. E.g., consider Ŷ = Z ⊕ UX where Z,UX ∼ i.i.d. Bern(1/2). Here, Ŷ ⊥⊥ Z, but Z still has a causal effect on Ŷ . If we
vary Z keeping all other sources of randomness in Ŷ constant (i.e., fixing UX = ux), then Ŷ also varies. This is, in fact, an
example of masked disparity, where I(Z; Ŷ ) = 0, but Z has counterfactual causal influence on Ŷ .

Definition 6 (Masked Disparity). The masked disparity in a model is defined as I(Z; (Ŷ , UX))− I(Z; Ŷ ).

The masked disparity is the difference between the total disparity and the statistically visible disparity. Notice that,
I(Z; Ŷ , UX)− I(Z; Ŷ ) = I(Z;UX | Ŷ ), implying that masked disparity is non-negative. We will revisit masked disparity in
Section IV.
Goal: In this work, I(Z; (Ŷ , UX)) will serve as our information-theoretic quantification of the total disparity (exempt and
non-exempt) as we discussed in Definition 4 (also recall Lemma 1 and Remark 2). Our goal is to appropriately decompose the
total disparity I(Z; (Ŷ , UX)) into an exempt component (ME) and a non-exempt component (MNE), which can and cannot
be explained by the critical features Xc (also see Fig. 4). Intuitively, the total disparity captures the idea of a virtual constituent
or proxy of Z that has a causal influence on the output Ŷ . We would like the exempt and non-exempt components of total
disparity to be able to capture and mathematically quantify our intuitive notion of what part of the virtual constituent or proxy
can and cannot be attributed to the critical features Xc alone.

Before proceeding further, we also clarify our terminology here. We say that there is no disparity when I(Z; Ŷ , UX) = 0.
Alternately, we call the disparity to be exempt if only the non-exempt component is 0, though I(Z; Ŷ , UX) may be zero or
non-zero. Table II summarizes all the important notations to help follow the rest of the paper.

III. MAIN RESULTS

In Section III-A, we first formally state the desirable properties that a measure of non-exempt disparity (MNE) should
satisfy. These properties were only intuitively stated in Section I. Next, we introduce our proposed measure that satisfies
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Fig. 4: Decomposition of Total Disparity: (Left) Total disparity (information-theoretic quantification of counterfactual causal
influence) is shown in blue. The statistically visible disparity and masked disparity are two sub-components of the total disparity.
(Right) Our goal is to decompose the total disparity into exempt and non-exempt components.
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Fig. 5: Thought experiments to motivate desirable properties of non-exempt disparity: In all the figures, Z denotes the protected
attribute, e.g., gender, race, etc., and UX1 , UX2 denotes other latent social factors independent of Z. The critical feature is
denoted by Xc, the non-critical/general feature is Xg , and the model output (hiring decision) is Ŷ .

all these properties (Theorem 1 in Section III-A). In Section III-B, we discuss in detail on how we arrive at these desirable
properties through several canonical examples (summarized in Table III and Fig. 5), that helps us quantify our intuitive notion
of non-exempt disparity. In Section III-C, we examine measures in existing literature that have some provision for exemptions,
namely, path-specific counterfactual fairness [19], conditional statistical parity [41], and justifiable fairness [42], and understand
their limitations.

A. Desirable Properties Leading to Our Proposed Measure of Non-Exempt Disparity

It is desirable that our measure of non-exempt disparity (MNE) is able to capture the intuition of a virtual constituent or
proxy of Z being formed inside a given black-box model that a) causally influences the output Ŷ ; and b) cannot be attributed
to the critical features Xc alone. To arrive at a set of desirable properties for a measure of non-exempt disparity (MNE), we
examine candidate measures and examine their utility and limitations through canonical examples (see Fig. 5). While we
discuss the rationale for each of these properties in more detail in Section III-B, here we state the properties and provide a
brief intuition for each of them. For simplicity, assume that the protected attribute Z as well as all the other independent latent
variables UX1

, UX2
, . . . are i.i.d. Bern(1/2) in our canonical examples.

Our first candidate measure of non-exempt disparity is based on conditional mutual information, and is: MNE = I(Z; Ŷ | Xc)
(Candidate Measure 1 in Section III-B). Inspired from the concept of conditional statistical parity [41], this measure assumes that
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there is no non-exempt disparity if and only if the hiring decision Ŷ and the protected attribute Z (e.g., gender) are independent,
conditioned on the critical feature Xc (e.g., coding-test score for a software engineering job). This measure might seem
intuitively appealing at first. In Canonical Example 1 (Fig. 5a), disparity only arises from the critical feature, namely, coding-test
score in a software-engineering job, and the general/non-critical feature aptitude-test score contributes to the decision making
without introducing disparity. Here, MNE = I(Z; Ŷ | Xc) = 0 as desired. In Canonical Example 2 (Fig. 5b), the disparity only
arises from the general/non-critical feature aptitude-test score, which is non-exempt. Here, MNE = I(Z; Ŷ | Xc) > 0 as desired.

However, this candidate measure has a limitation: it can sometimes falsely detect non-exempt disparity when there is none.
E.g., consider a scenario where the model is counterfactually fair (Canonical Example 3 in Section III-B; Fig. 5c), and hence
there is no disparity (exempt or non-exempt). The critical feature, namely, the coding-test score for a software engineering job
is biased, i.e., Xc = Z + UX1

with UX1
being the latent inner ability of a candidate. However, the model is able to distill

out the latent inner ability UX1
using all the features and take hiring decisions entirely based on them, i.e., Ŷ = UX1

. Here,
MNE = I(Z; Ŷ | Xc) > 0 when it is desirable that MNE be 0. This canonical example motivates the following property:

Property 1 (Zero Influence). MNE should be 0 if CCI(Z → Ŷ ) = 0 (or equivalently, I(Z; Ŷ , UX) = 0).

This limitation of I(Z; Ŷ | Xc) leads us to examine PID, decomposing I(Z; Ŷ | Xc) into two components: unique information
Uni(Z : Ŷ | Xc) and synergistic information Syn(Z : (Ŷ , Xc)). The sub-component Uni(Z : Ŷ | Xc) always satisfies Property 1
(proof in Lemma 13 in Appendix B), even though I(Z; Ŷ | Xc) sometimes may not do so because of the synergistic component
(which caused false detection of non-exempt disparity in the previous scenario). This leads us to examine another candidate
measure of non-exempt disparity, namely, MNE = Uni(Z : Ŷ | Xc) (Candidate Measure 2 in Section III-B). For example,
consider hiring for a software-engineering job using coding-test score (critical feature) and aptitude-test score (non-critical/general
feature). It is desirable that MNE be non-zero if Ŷ has any unique information about Z that is not present in Xc (coding test)
because then that information content is also attributed to Xg (also see Section III-B4 to further motivate this property).

Property 2 (Non-Exempt Statistically Visible Disparity). MNE should be strictly greater than 0 if Ŷ has any unique information
about Z not present in Xc. Thus, Uni(Z : Ŷ |Xc) > 0 should imply that MNE > 0.

However, this property alone does not capture all scenarios where MNE is desired to be non-zero. Statistical masking can
sometimes prevent the entire non-exempt disparity from exhibiting itself in Uni(Z : Ŷ |Xc) as demonstrated in the following
scenario. Suppose an ad for a job is shown selectively to: a) men with high coding-test scores and b) women with low coding-test
scores (Canonical Examples 4 and 5 in Section III-B; see Fig. 5d and 5e). Such a model might seem “statistically fair”, i.e.,
with no statistically visible dependence between Z and Ŷ (I(Z; Ŷ ) = 0), but is clearly unfair to high-scoring women candidates.
Since Uni(Z : Ŷ |Xc) ≤ I(Z; Ŷ ) (recall (2) in Section II-A and non-negativity of all PID terms), we have Uni(Z : Ŷ |Xc) = 0
for this canonical example, showing that it fails to capture such “non-exempt masked disparity.” In essence, Uni(Z : Ŷ |Xc) is
therefore a lower bound for non-exempt disparity MNE , i.e., Uni(Z : Ŷ |Xc) > 0 =⇒ MNE > 0 but not necessarily the other
way round (making this candidate measure a “lower bound” for MNE). The next property attempts to find an upper bound for
MNE .

Notice that, in the previous Canonical Examples 4 and 5, Ŷ has a virtual constituent Z influencing it, that is not due to
the critical features Xc. However, the influence of Z does not exhibit itself in the statistically visible disparity I(Z; Ŷ ). To
resolve this issue, we now consider a non-observational, causal candidate measure inspired from path-specific counterfactual
fairness [19] that specifically examines causal paths from Z to Ŷ in the SCM (Candidate Measure 3 in Section III-B). This
measure implies there is no non-exempt disparity if all paths from Z to Ŷ in the SCM pass through Xc. However, we identify
scenarios where this approach can also fail to quantify non-exempt disparity, e.g., in Canonical Example 6 in Section III-B
(Fig. 5f). Here the critical feature, coding-test score is Xc = Z + UX1

, and the non-critical feature, aptitude-test score is
Xg = UX1

. The model amplifies the disparity in the hiring decision by cancelling UX1
, i.e., Ŷ = Z. For this example, even

though we have the causal path from Z to Ŷ passing through Xc, we contend that here both Xc and Xg jointly have information
about Z that cannot be attributed to Xc alone. Therefore, it is desirable that we have a measure of non-exempt disparity MNE

which is non-zero for this example (Uni(Z : Ŷ |Xc) and I(Z; Ŷ |Xc) are also non-zero for this example).
From a causal point of view, here UX1

is a “confounder” for both Xc and Ŷ (separately influences both Xc and Ŷ along
different paths). Intuitively, a scenario when there is no non-exempt disparity would be: (i) All causal paths from Z to Ŷ in the
SCM pass through Xc; and also (ii) No UXi acts as a confounder for both Xc and Ŷ (also refer to Canonical Example 1 in
Fig. 5a). This leads to the intuition that to be able to say there is no non-exempt disparity, one might be able to split UX into
two subsets Ua and Ub (further functional generalizations discussed in Section VIII), such that: (i) Ua consists of the latent
factors that do not influence Ŷ at all, or influence it only through Xc without acting as confounder; (ii) Ub consists of the
remaining latent factors, that only influence Ŷ and not Xc; and (iii) The Markov chain (Z,Ua)−Xc − (Ŷ , Ub) holds7. This
leads to the following property (see Section III-B5 to further motivate this property).

7Notice that, this condition implies Z −Xc − Ŷ but not the other way round.
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Property 3 (Non-Exempt Masked Disparity). MNE should be non-zero in the canonical example of non-exempt masked
disparity: X1 = Z, X2 = UX , and Ŷ = Z ⊕ UX with Z,UX ∼ i.i.d. Bern(1/2) and X1 ∈ Xg. However, MNE should be 0 if
(Z,Ua)−Xc − (Ŷ , Ub) form a Markov chain for some subsets Ua, Ub ⊆ UX such that Ua = UX\Ub.

Properties 2 and 3 provide lower and upper bounds on our measure of non-exempt disparity, i.e., it is desirable that:

Uni(Z : Ŷ |Xc) ≤MNE ≤ min
Ua,Ub s.t. Ua=UX\Ub

I((Z,Ua); (Ŷ , Ub) | Xc). (9)

This observation is important in itself: the unique information measure, being a lower bound, never falsely detects non-exempt
disparity when there is none, and thus can serve as a conservative estimate of non-exempt disparity.

The next three properties are more intuitive. Consider the scenario where no feature is deemed critical (i.e., Xc = φ) and all
features are non-critical, e.g., hiring for a manager’s role using aptitude-test and coding-test scores. Here, one would like MNE

to be equal to the total disparity I(Z; (Ŷ , UX)), i.e., no disparity is exempt because no feature is deemed critical.

Property 4 (Absence of Exemptions). If no feature is deemed critical (Xc = φ), then a measure MNE should be equal to the
total disparity, i.e., I(Z; (Ŷ , UX)).

Next, suppose that the same model is being used for a software-engineering role where coding-test score is deemed as a
critical feature but aptitude-test score is not. For a fixed set of features and a fixed model Ŷ = h(Z,UX), it is desirable that
MNE either decreases or stays the same as more features are removed from the set Xg and added to Xc.

Property 5 (Non-Increasing with More Exemptions). For a fixed set of features X and a fixed model Ŷ = h(Z,UX), a measure
MNE should be non-increasing if a feature is removed from Xg and added to Xc.

Lastly, suppose that the model is used for an even more specific role where both coding test and aptitude test are deemed as
critical features. If all the features are in the exempt set Xc, we require the measure MNE to be 0.

Property 6 (Complete Exemption). MNE should be 0 if all features are exempt, i.e., Xc = X and Xg = φ.

These six properties lead to a novel measure of non-exempt disparity that satisfies all of them (proved in Theorem 1).

Definition 7 (Non-Exempt Disparity). Our proposed measure of non-exempt disparity is given by:

M∗NE = min
Ua,Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc)such that Ua = UX\Ub. (10)

Note that, for the rest of the paper, we use the notation MNE to denote any candidate measure of non-exempt disparity, and
M∗NE to specifically denote our proposed measure in Definition 7.

Theorem 1 (Properties). Properties 1-6 are satisfied by M∗NE = minUa,Ub
Uni((Z,Ua) : (Ŷ , Ub)|Xc) such that Ua = UX\Ub.

Proof Sketch: A detailed proof is provided in Appendix C-A. Here, we provide a brief proof sketch. For Property 1,

M∗NE ≤ Uni(Z : Ŷ , UX |Xc) ≤ I(Z; (Ŷ , UX)), (11)

where the last step holds as unique information is also a component of mutual information (see (2) in Section II-A). For
Property 2, we show that M∗NE≥Uni(Z : Ŷ |Xc) using a monotonicity property of unique information [59, Lemma 31]. Lastly,
for Property 3, we have I(Z,Ua; Ŷ , Ub|Xc) = 0 for some Ua, Ub, implying that Uni(Z,Ua : Ŷ , Ub|Xc) is also 0 for those
Ua, Ub because unique information is a component of conditional mutual information (see (3) in Section II-A). For Property 4,
we show that when Xc = φ, we have M∗NE = minUa,Ub s.t. Ua=UX\Ub

I(Z,Ua; Ŷ , Ub) = I(Z; (Ŷ , UX)). Property 5 is derived
using another monotonicity property of unique information [59, Lemma 32]. For Property 6,

M∗NE ≤ Uni(Z,UX : Ŷ |X)
(a)

≤ I(Z,UX ; Ŷ |X)
(b)
= 0, (12)

where (a) holds because unique information is a component of conditional mutual information (see (3) in Section II-A) and (b)
holds as Ŷ is a deterministic function of X .

Remark 5 (On Exhaustive Set of Properties leading to a Unique Measure). We note that our properties do not quantify how
exactly the non-exempt disparity should “scale” when the measure is nonzero since they are only conditions on when this
disparity is nonzero, or on the monotonicity of this disparity. Hence, these properties do not lead to a unique measure. Also,
note that this is an issue with all measures of fairness in that they go to zero based on an intuitive notion of fairness but their
exact scaling when they are non-zero is not unique. Neither do we claim that the proposed list of desirable properties (axioms)
are exhaustive. In general, it is difficult to prove that a proposed set of properties (or, axioms) is exhaustive for a problem. E.g.,
Shannon established uniqueness of entropy with respect to some properties in [60] but the needs of the application can still
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Canonical Example 6: 
• 𝑋! = 𝑍 + 𝑈"! , 𝑋# = 𝑈"!
• 𝑌- = 𝑍

Modified Canonical Example 1: 
• 𝑋! = 𝑍, 𝑋# = 𝑈"!
• 𝑌- = 𝑍

Canonical Example 3: 
• 𝑋! = 𝑍 + 𝑈"! , 𝑋# = 𝑈"!
• 𝑌- = 𝑈"!

Modified Canonical Example 1: 
• 𝑋! = 𝑍⊕𝑈"! , 𝑋# = 𝜙
• 𝑌- = 𝑍 ⊕𝑈"!

Canonical Examples 4 and 5: 
• 𝑋! = 𝑈"! , 𝑋# = 𝑍 or, 

𝑋! = 𝜙, 𝑋# = (𝑍, 𝑈"!)
• 𝑌- = 𝑍 ⊕𝑈"!

Fig. 6: Our examples isolate different kinds of scenarios, namely, masked non-exempt (MM,NE), masked exempt (MM,E),
visible non-exempt (MV,NE), and visible exempt (MV,E), as well as scenarios where there is no total disparity(more in
Section IV).

drive the use of alternate measures. E.g. Renyi measures [21], [57], [61]–[63] have been found to be useful in security and
privacy applications because they weigh outliers differently. Therefore, we believe, that there may be value in the measure
not being unique so that it can be tuned to the needs of the application, as well as, motivate future work in this direction.
Nonetheless, our properties do capture important aspects of the problem, e.g., non-exempt masked and non-exempt statistically
visible disparities, as discussed in Section IV and also in Remark 7.

Remark 6. We note that the proposed measure is counterfactual (non-observational/causal) in nature, i.e., it requires knowledge
of the true SCM. While we are able to compute the measure in our case study on artificial datasets (known SCM) in Section VII,
we acknowledge that even after knowledge of the true SCM, there may be computational challenges if the number of latent
variables is large. However, one must note that it is important to arrive at measures that satisfy all desirable properties,
however hard they might be to compute: (i) It makes the shortcomings of other measures more explicit, informing which
computable/estimable definition to choose in a given situation; (ii) It opens the avenue of obtaining relaxations that may
be easier to estimate; (iii) One can begin exploring research directions to reduce the difficulty/complexity (statistical and/or
computational) of estimating these measures.

Remark 7 (On Simplicity of Examples). We note that, at a first glance, our examples might seem simple, and real world models
will only be more complex due to a mix of causal and statistical relationships. These simple examples help us isolate many of
these individual causal and statistical relationships, and examine them carefully. E.g., scenarios where only one of non-exempt
masked, non-exempt visible, exempt masked or exempt visible disparity is present or none of them is present (see Fig. 6). When
both non-exempt masked and non-exempt statistically visible disparities are present together, we are able to quantify both of
them appropriately (discussed further in Section IV). Thus, developing an axiomatic understanding of such simple examples is
an essential first step in understanding the complex interplay of various relationships in a real dataset. Indeed, examining toy
examples (thought experiments) is a common practice in several works in existing fairness literature [16], [17], [26], [35],
[42], some of which have also inspired our examples in this work. Furthermore, our quantification of non-exempt disparity is
not limited to black-box models alone, but also applies to “white-box” models [20], e.g., decision trees, linear classifiers, etc.,
and also to non-AI-based decisions as long as the decision is as a deterministic function of the input features, i.e., Ŷ = h(X).

B. Detailed Rationale Behind the Desirable Properties Leading to A Measure of Non-Exempt Disparity

Here we provide detailed rationale8 behind all our desirable properties using canonical examples (summarized in Table III).
We start by examining two canonical examples that help us motivate the basic intuition behind non-exempt disparity. These
examples also help us understand the limitations of statistical parity [3], [6] and equalized odds [7] which are two popular
measures of fairness that do not have provision for critical feature exemptions.

1) Limitations of Statistical Parity: As discussed in Section II, a model is deemed fair by statistical parity if Z ⊥⊥ Ŷ , i.e.,
I(Z; Ŷ ) = 0. However, the following example exposes some of its limitations.

Canonical Example 1 (Hiring with Biased Critical Feature). Let Xc = Z + UX1
be a coding-test score9 and Xg = UX2

be
an aptitude-test score. Here the protected attribute Z ∼ Bern(1/2) denotes gender, UX1

∼ Bern(1/2) denotes inner ability to
code and UX2 ∼ Bern(1/2) denotes knowledge. An algorithm is deciding whether to hire software engineers based on a score
Ŷ = Z + UX1 + UX2 . This is shown in Fig. 5a. Here + denotes addition (not to be confused with the binary OR).

8Some of the arguments in this subsection have already been introduced briefly in Section III-A, and are being elaborated here.
9The influence of Z on score in the SCM can arise due to various factors, e.g., historical lack of opportunities or sampling bias due to candidates of one

protected group not applying enough etc. For instance, there may be a hidden node representing opportunity such that Z influences the score only though that
hidden node, and the score becomes independent of Z given opportunity. We adopt a simplistic representation here for ease of understanding (also see [64]).
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TABLE III: Summary of Canonical Examples and Candidate Measures of Non-Exempt Disparity

Canonical Examples Candidate
Measure 1:
I(Z; Ŷ |Xc)

Candidate
Measure 2:
Uni(Z : Ŷ |Xc)

Candidate
Measure 3: Path-
Specific Causality

Proposed Measure:
minUa,Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc)
such that Ua = UX\Ub.

1. Hiring with Biased Critical Feature
• Xc = Z + UX1

and Xg = UX2
.

• Ŷ = Z + UX1
+ UX2

.
Desirable: MNE = 0

X X X X

2. Hiring with Biased General Feature
• Xc = UX1

and Xg = Z + UX2
.

• Ŷ = Z + UX1
+ UX2

.
Desirable: MNE > 0

X X X X

3. Counterfactually Fair Hiring
• Xc = Z + UX1 and Xg = UX1 .
• Ŷ = UX1

.
Desirable: MNE = 0

× X X X

4. Non-Exempt Masked Disparity in Hir-
ing Ads I
• Xc = UX1

and Xg = Z.
• Ŷ = Z ⊕ UX1

.

Desirable: MNE > 0

X × X X

5. Non-Exempt Masked Disparity in Hir-
ing Ads II
• Xc = φ and Xg = (Z,UX1

).
• Ŷ = Z ⊕ UX1

.
Desirable: MNE > 0

× × X X

6. Disparity Amplification by Unmasking
• Xc = Z + UX1 and Xg = UX1 .
• Ŷ = Z.

Desirable: MNE > 0

X X × X

First notice that this model will be deemed unfair by both statistical parity and counterfactual fairness. Statistical parity
is violated because Z and Ŷ are not independent, i.e., the statistically visible disparity I(Z; Ŷ ) > 0. Consequently, the total
disparity I(Z; (Ŷ , UX)) is also non-zero since I(Z; (Ŷ , UX)) ≥ I(Z; Ŷ ) > 0, violating counterfactual fairness. However, for
this example, the coding-test score is a critical feature (bonafide requirement) for the job. Therefore, one may feel that any
disparity in Ŷ that is explainable by the coding-test score may be exempted. An attempt to ensure statistical parity for such
an example, e.g., by reducing the importance (weight) of the critical feature in the decision making, violates the bonafide
requirement of the job. Intuitively, even though the virtual constituent or proxy of Z, namely, Z + UX1 , influences the output
Ŷ , it is entirely explainable by Xc. Thus, for such an example, it is desirable that a measure of discrimination (non-exempt
disparity MNE) be 0.

2) Limitations of Equalized Odds: Equalized odds [7], [12] is another popular measure of fairness that attempts to address
this limitation of statistical parity by using the true labels (or true final-decision scores) to represent the job requirements.
Equalized odds states that a model is fair if

Pr(Ŷ = y|Z = z, Y = ỹ) = Pr(Ŷ = y|Z = z′, Y = ỹ)∀z, z′, y, ỹ. (13)

This criterion is also equivalent to Ŷ ⊥⊥ Z|Y , or, I(Z; Ŷ | Y ) = 0. Indeed, in the previous example (Canonical Example 1), if the
true final-decision scores already incorporate this critical requirement in them, e.g., Y = Z +UX1

+UX2
, then I(Z; Ŷ | Y ) = 0,

and the model is deemed fair by equalized odds. While equalized odds is a reasonable quantification in scenarios where the
true label (or true final-decision score) is indeed a justified representation of the job requirements, the measure I(Z; Ŷ | Y ) has
often been criticized to be affected by label bias, as we demonstrate through this example.

Canonical Example 2 (Hiring with Biased General Feature). Let Xc = UX1
denote the coding-test score and Xg ={

UX2
+ 1, Z = 0

UX2
, Z = 1

denote the aptitude-test score (biased). This can be rewritten as Xg = Z(UX2 +1)+(1−Z)UX2 = Z+UX2 ,

where Z ∼ Bern(1/2) denotes gender, UX1 ∼ Bern(1/2) denotes the inner ability to code and UX2 ∼ Bern(1/2) denotes knowledge.
Now suppose, the historic dataset has true decision scores given by Y = UX1

+ Z + UX2
. This is shown in Fig. 5b.

In this scenario, suppose we choose a perfect predictor, i.e., Ŷ = Y = UX1 +Z +UX2 . The perfect predictor always satisfies
equalized odds because I(Z; Ŷ | Y ) = 0 if Ŷ = Y . However, if examined deeply, this model is propagating disparity from
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aptitude-test score, a non-critical/general feature, which is discriminatory and non-exempt. Intuitively, a virtual constituent or
proxy of Z, i.e., Z + UX2 , is being formed from Xg that is influencing the output Ŷ . For such an example10, it is desirable
that a measure of discrimination (non-exempt disparity MNE) is not zero.

3) Motivation for Conditional Mutual Information and its Limitations: Next, we start out with the aim of finding a suitable
measure of non-exempt disparity (MNE) that resolves both these canonical examples. Notice that, both these examples can be
resolved by a notion of conditional statistical parity [41], which deems a model as fair if and only if Z ⊥⊥ Ŷ |Xc, i.e.,

Pr(Ŷ = y|Xc = xc, Z = z) = Pr(Ŷ = y|Xc = xc, Z = z′) ∀y, xc, z, z′. (14)

This idea also connects with Simpson’s paradox [36] which refers to a statistical trend that appears in several different groups
of data but disappears or reverses when these groups are combined. In Canonical Example 1, Z and Ŷ are not independent but
they become so when conditioned on Xc, i.e., I(Z; Ŷ ) > I(Z; Ŷ | Xc). In Canonical Example 2, I(Z; Ŷ ) < I(Z; Ŷ | Xc). This
notion of conditional statistical parity leads us to propose the following quantification of non-exempt disparity (MNE).

Candidate Measure of Non-Exempt Disparity 1. MNE = I(Z; Ŷ | Xc).

This measure resolves both Canonical Examples 1 and 2. However, the following example exposes some of its limitations.

Canonical Example 3 (Counterfactually Fair Hiring). Let Z ∼ Bern(1/2) be gender, UX1 ∼ Bern(1/2) be the inner ability

of a candidate, and Xc =

{
UX1 , Z = 0

UX1 + 1, Z = 1
be the coding-test score (critical feature). This can be rewritten as Xc =

Z(UX1 + 1) + (1− Z)UX1 = Z + UX1 . However, instead of only using the biased test score, suppose the company chooses to
conduct thorough evaluation of their online code samples, leading to another score that distills out their inner ability, i.e.,
Xg = UX1

. Suppose the model for hiring that maximizes accuracy turns out to be Ŷ = Xg = UX1
. This is shown in Fig. 5c.

Notice that, this model is deemed fair by counterfactual fairness because the total disparity I(Z; (Ŷ , UX)) = 0. This means
that the output Ŷ has no counterfactual causal influence of Z. Even though the disparity from Xc is legally exempt, the trained
black-box model happens to base its decisions on another available non-critical/general feature that has no counterfactual
causal influence of Z. Thus, there is no disparity in the outcome Ŷ (this is true even if the features in Xc were not exempt).
Therefore, it is desirable that the non-exempt disparity MNE is also 0. This is also consistent with the intuition that here no
virtual constituent or proxy of Z influences the output. However, the candidate measure I(Z; Ŷ | Xc) = I(Z;UX1 | Z + UX1)
is non-zero here, leading to a false positive conclusion in detecting non-exempt disparity.

Remark 8 (Cancellation of Paths). A similar situation arises if Xc = Z + UX1 , Xg = Z and Ŷ = Xc −Xg = UX1 . Even
though the disparity from Xc may be exempt, the trained model ends up removing the counterfactual causal influence of Z
from the decisions to make them counterfactually fair in a manner similar to the example of interviews (recall Scenario 2 in
Section II; also shown in Fig. 3b). The influences of Z along two different causal paths cancel each other in the final output,
so that CCI(Z → Ŷ ) = 0 (and, I(Z; (Ŷ , UX)) = 0). Since the total disparity I(Z; (Ŷ , UX)) = 0, the question of non-exempt
or exempt disparity does not arise. However, the candidate measure I(Z; Ŷ | Xc) is non-zero here.

This example also serves as a rationale for the property of zero influence, i.e., Property 1 which states that MNE should be
0 if the total disparity is 0. We aim to find a measure that resolves all of these examples (summarized in Fig. 5).

4) Motivation for Unique Information and its Limitations: We notice that conditioning on the critical feature Xc can increase
or decrease mutual information. For instance, in Canonical Example 1, we have I(Z; Ŷ ) > 0 but I(Z; Ŷ | Xc) = 0. In Canonical
Example 3, I(Z; Ŷ | Xc) > 0 but I(Z; Ŷ ) = 0. For both these examples, it is desirable that MNE = 0. This motivates us to
consider another candidate measure of non-exempt disparity that is equal to the information-theoretic sub-volume of intersection
between I(Z; Ŷ ) and I(Z; Ŷ | Xc) (recall Fig. 1b), that goes to 0 when any one of them is 0. This is a quantity that is derived
from the PID literature, and is called the unique information of Z in Ŷ that is not present in Xc.

Candidate Measure of Non-Exempt Disparity 2. MNE = Uni(Z : Ŷ |Xc).

This measure resolves the examples discussed so far, namely, Canonical Example 1 (Fig. 5a), Canonical Example 2
(Fig. 5b), Canonical Example 3 (Fig. 5c) and a (similar) example in Remark 8. We start with Canonical Example 1 (hiring
with biased critical feature), where Ŷ = Z + UX1

+ UX2
and Xc = Z + UX1

. Recall that the mutual information can
be decomposed as follows: I(Z; Ŷ ) = Uni(Z : Ŷ |Xc) + Red(Z : (Ŷ , Xc)) (from (2) in Section II-A). For this example, we
notice that even though I(Z; Ŷ ) > 0, we have Uni(Z : Ŷ |Xc) = 0. This is because, I(Z; Ŷ | Xc) = Uni(Z : Ŷ |Xc) +
Syn(Z : (Ŷ , Xc)) (from (3) in Section II-A), and I(Z; Ŷ | Xc) = 0 for Canonical Example 1. In Canonical Example 1, the
entire statistically visible disparity I(Z; Ŷ ) is essentially redundant information between Ŷ and Xc which is exempted.

10The example can be made more realistic if UX1
, UX2

are i.i.d. N (0, 1). Now suppose, the historic dataset has true labels given by Y =

sgn
(
Z + UX1

+ UX2
− 0.5

)
which is binary. A perfect classifier Ŷ = Y , that satisfies equalized odds, is still discriminatory because it is influenced by Z

in its decision, that is arising from a non-critical feature.
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Next, we revisit Canonical Example 2 (Ŷ = UX1
+Z+UX2

and Xc = UX1
) where it is intuitive that the measure of non-exempt

disparity should be non-zero. Uni(Z : Ŷ |Xc) is non-zero here (see Supporting Derivation 1 in Appendix C-B), consistent with
our intuition. As a proof sketch, recall the tabular representation in Fig. 1b. Red(Z : (Ŷ , Xc)) is the sub-volume of intersection
between I(Z;Xc) and I(Z; Ŷ ), and hence goes to zero because I(Z;Xc) = 0. This leads to Uni(Z : Ŷ |Xc) = I(Z; Ŷ ) which
is non-zero here.

Lastly, Uni(Z : Ŷ |Xc) is also 0 in Canonical Example 3 (counterfactually fair hiring) and the (similar) example of cancellation
of paths in Remark 8. More importantly, we note that, while conditional mutual information I(Z; Ŷ | Xc) may be non-zero
even if the the total disparity or counterfactual causal influence is 0 (as in Canonical Example 3), unique information is
not. In Lemma 13 in Appendix B, we show that Uni(Z : Ŷ |Xc) is always zero if the total disparity or counterfactual causal
influence is 0, i.e., I(Z; (Ŷ , UX)) = 0. In fact, Uni(Z : Ŷ |Xc) is a sub-volume or component of the previous candidate measure
I(Z; Ŷ | Xc), that is guaranteed to be 0 if the total disparity is zero.

These examples serve as our rationale for the property of non-exempt statistically visible disparity, i.e., Property 2 which
states that MNE should be 0 if Uni(Z : Ŷ |Xc) > 0. Uni(Z : Ŷ |Xc), however, is not sufficient as a candidate measure as it
fails to capture non-exempt masked disparity, as we will demonstrate in Canonical Example 4. Thus, Property 2 is only a
lower bound, i.e., sometimes MNE may still need to be non-zero even when Uni(Z : Ŷ |Xc) = 0. Property 2 only captures the
non-exempt statistically visible disparity that cannot be accounted for by Xc alone.

Canonical Example 4 (Non-Exempt Masked Disparity in Hiring Ads I). An ad for a software-engineering job is only presented
to men (Z = 1) with a coding-test score above a threshold (UX1 = 1), and to women (Z = 0) with a coding-test score below
a threshold (UX1

= 0) with Z and UX1
being i.i.d. Bern(1/2). Here, Xc = UX1

and Xg = Z. The model output is given by
Ŷ = Z ⊕ UX1

. This example is shown in Fig. 5d.

This model discriminates against half of the population (high-scoring women) for whom the ad may be relevant. This is
also supported by the fact that that the total disparity I(Z; (Ŷ , UX)) > 0. Intuitively, here a virtual constituent or proxy (Z) is
formed inside the black-box model that influences the output and that is derived entirely from Xg . For such an example, it is
desirable that the non-exempt disparity MNE should not be 0. In fact, this example demonstrates that there may be non-exempt
disparity even when the statistically visible disparity I(Z; Ŷ ) = 0. Here, Uni(Z : Ŷ |Xc) fails to capture the masked disparity
because it has to be zero whenever I(Z; Ŷ ) = 0 (using (2) in Section II-A).

Let us revisit the candidate measure I(Z; Ŷ | Xc). This measure resolves all the examples discussed so far (1-4) except
giving a false positive conclusion in Canonical Example 3. Notice that, I(Z; Ŷ | Xc) is zero if and only if Z −Xc − Ŷ form a
Markov chain. While the Markov chain Z −Xc − Ŷ may not always hold even when it is desirable for MNE to be zero as in
Canonical Example 3, we have seen that in all the examples so far (1-4) where the Markov chain Z −Xc − Ŷ holds, it has
been desirable that MNE be zero (possible one-way implication). Assuming that the Markov chain Z −Xc − Ŷ is a sufficient
condition for MNE to be zero, we proposed the following property of non-exempt masked disparity in our prior work [1].
MNE should be non-zero in the example of non-exempt masked disparity, i.e., Canonical Example 4 even if I(Z; Ŷ ) = 0. But,
MNE should be 0 if the Markov chain Z −Xc − Ŷ holds.

Remark 9 (Relation to our prior work [1]). In our prior work [1], this property, in conjunction with Properties 1, 2 and 6,
leads to a measure that quantifies only a sub-volume of I(Z; Ŷ | Xc) that no longer gives false positive conclusion in Canonical
Example 3 while still resolving all the other examples discussed so far. The measure proposed in [1] is essentially the
information-theoretic sub-volume of the intersection between I(Z; Ŷ | Xc) and total disparity I(Z; (Ŷ , UX)), which goes to 0
whenever either of them is 0 (details are provided in Appendix C-C)11.

The property of non-exempt masked disparity stated in [1] is built on the rationale that in the example of non-exempt masked
disparity in hiring ads (Canonical Example 4 where Ŷ = Z ⊕ UX1

), instead of UX1
being the coding-test score, if UX1

is a
random coin flip used to randomize the race, then this scenario may not necessarily be regarded as non-exempt. Then, we
would have Xc = φ and Xg = (Z,UX1), and the Markov chain Z −Xc − Ŷ would hold, deeming this example as exempt. In
[1], the goal was to only account for non-exempt masked disparity in MNE when the “mask” is either a critical feature or
arises exclusively from the critical features, e.g., Canonical Example 4 while any mask from the non-critical/general features
were viewed more like these random coin flips. But what if the user wishes to also account for masked disparity if the mask is
arising from Xg as well, as demonstrated in the following modified version of the example?

Canonical Example 5 (Non-Exempt Masked Disparity in Hiring Ads II). An ad for a job is only presented to men (Z = 1)
with a coding-test score above a threshold (UX1

= 1), and to women (Z = 0) with a coding-test score below a threshold
(UX1

= 0) with Z and UX1
being i.i.d. Bern(1/2). The model output is given by Ŷ = Z ⊕ UX1

. Here, Z ∈ Xg but UX1
is not

be a critical feature for the job.

Canonical Example 5 with Xc = φ and Xg = (Z,UX1
) will be deemed exempt by [1] because the Markov chain Z−Xc− Ŷ

holds. However, here the virtual constituent or proxy Z is arising from Xg and is being masked by another feature of Xg , i.e.,

11One might also wonder why a measure of the form of a product, i.e., MNE = I(Z; Ŷ | Xc) × I(Z; (Ŷ , UX)) does not work instead. We discuss a
counterexample for such a product measure in [1] that we also include in Appendix C-C here for completeness.
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(a) Path-specific quantification of non-exempt disparity: (Left) Original model with output h(Z,UX).
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plification by Unmasking

Fig. 7: Path-specific quantification of non-exempt disparity (Candidate Measure 3) and its limitation

UX1
. If UX1

denotes coding-test score and Ŷ denotes the decision of showing hiring ads, then the model is again unfair to
high-scoring women. This argument is also supported by the fact that the total disparity is non-zero (not counterfactually fair).
Since Xc = φ, no disparity is exempt, and a measure of non-exempt disparity should ideally capture the total disparity in this
model.

In this work, we would like to arrive at an alternate criterion (modification of the property of non-exempt masked disparity
in [1]) that can capture non-exempt masked disparity irrespective of whether the “mask” arises from the critical or general
features. What this means is that any scenario deemed exempt by the property of non-exempt masked disparity in [1] will
also be deemed exempt by our modified property12 but it is desirable that our modified property also accounts for scenarios,
such as Canonical Example 5, that is sometimes deemed exempt by the former property even though intuitively, it may not be
reasonable to do so.

5) Leveraging Latent Variables to Understand Non-Exempt Masked Disparity: One commonality that we notice in the
examples so far (1-5) is that whenever it is desirable that MNE be zero, either there is no counterfactual causal influence of Z
on Ŷ (i.e., CCI(Z → Ŷ ) = 0) or the influence of Z on Ŷ has propagated only along paths that pass through Xc. In scenarios
where CCI(Z → Ŷ ) 6= 0, one may choose to define another candidate measure of non-exempt disparity that is inspired from
the notion of path-specific counterfactual fairness [19] (also see [16], [17]). This candidate measure for quantifying non-exempt
disparity is a causal, path-specific quantification by varying Z only along the paths through Xg that do not pass through Xc

and comparing if it causes any change in the model output (also see Fig. 7a).

Candidate Measure of Non-Exempt Disparity 3. Let Ŷ = h(Z,UX) in the true causal model. Assume a new causal graph
with a new source node Z ′ having an independent and identical distribution as Z where we replace all relevant direct
edges from Z to Xg with an edge from Z ′ to Xg. Let Ŷ = h̃(Z,Z ′, UX) in the new causal graph. A candidate measure is
MNE = EZ,Z′,UX

[
|h(Z,UX)− h̃(Z,Z ′, UX)|

]
.

This measure, when used in conjunction with CCI(Z → Ŷ ) = 0, resolves the examples so far (1-5). For Canonical Example 1,
it is zero and for Canonical Example 2, it is non-zero, as desired. For Canonical Example 3, CCI(Z → Ŷ ) = 0, and hence
there is no need for a path-specific examination. For the example of non-exempt masked disparity (Canonical Examples 4 and
5), this measure is 0 in spite of the statistically visible disparity I(Z; Ŷ ) being 0. However, the following example exposes
some of its limitations.

Canonical Example 6 (Disparity Amplification by Unmasking). Let UX1
be the inner ability of a candidate, and suppose that

Xc = Z+UX1
denote the coding test score. Also let Xg = UX1

be the aptitude-test score where Z and UX1
are i.i.d. Bern(1/2).

Let the hiring decision be based on Ŷ = Xc −Xg = Z. This is shown in Fig. 5f with a more extreme modification in Fig. 7b.

The disparity in this example will be deemed exempt by a causal path-specific examination. However, this model has
statistically visible disparity (I(Z; Ŷ ) > 0) that cannot be attributed to Xc alone. Following the PID literature, here Xc and
Xg have synergistic information about Z that ultimately appears in Ŷ which in itself is the virtual constituent or proxy of Z
being formed in this model. This synergistic information cannot be attributed to Xc alone because I(Z;Xc) is much smaller
that I(Z; Ŷ ). This is further supported by the argument that Xg and Xc together lead to a better estimate of Z than Xc

alone which means Xg is definitely a contributor to the disparity. Thus, MNE should be greater than 0. Also, note that, here
Uni(Z : Ŷ |Xc) > 0 (Supporting Derivation 2 in Appendix C-B) because it is this “joint” information about Z in (Xc, Xg) that
ultimately appears in Ŷ that cannot be attributed to Xc alone.

12We show in Lemma 2 that the Markov chain in our modified property, i.e., (Z,Ua)−Xc− (Ŷ , Ub) also implies Z−Xc− Ŷ , but the opposite implication
is not true.
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Ideally, we would like a property and a measure that captures the intuition in this example. From a causal perspective, here
UX1 is a confounder [36] to both Xc and Ŷ , i.e., an extraneous variable that influences both of them along separate paths. A
scenario when there is no non-exempt disparity would be: (i) All causal paths from Z to Ŷ in the SCM pass through Xc; and
also (ii) No UXi

acts as a confounder for both Xc and Ŷ . This leads to the intuition that to be able to say MNE = 0, one
might be able to divide UX into two subsets Ua and Ub (further functional generalizations discussed in Section VIII), such that:
(i) Ua consists of the latent factors that do not influence Ŷ at all, or influence it only through Xc without acting as confounder;
(ii) On the other hand, Ub consists of the remaining latent factors, that only influence Ŷ and not Xc; and (iii) The Markov
chain (Z,Ua)−Xc − (Ŷ , Ub) holds.

To understand this better, we again revisit Canonical Example 1 (visualization in Fig. 5a). Intuitively, the total disparity in this
example is exempt because Z was already masked by UX1 in Xc, and the mask remained untampered in the final output Ŷ with
only additional independent masks added inside the black-box model. Here, neither Z −Xc − (Ŷ , UX) nor (Z,UX)−Xc − Ŷ
hold, but (Z,UX1

)−Xc − (Ŷ , UX2
) does. A Markov chain of the form (Z,Ua)−Xc − (Ŷ , Ub) also implies both the criterion

(Z,Ua) −Xc − Ŷ and Z −Xc − (Ŷ , Ub) (see Lemma 2 with proof in Appendix C-A). One can interpret Ua as the latent
variables that either do not influence Ŷ at all or already mask Z in Xc and remain untampered in the final output Ŷ . On the
other hand, Ub consists of the remaining latent variables that contribute to “additional masking inside the black-box model.”

This leads us to propose the following criterion for MNE that also serves as our main rationale for Property 3: MNE should
be 0 if (Z,Ua)−Xc − (Ŷ , Ub) form a Markov chain for some subsets Ua, Ub ⊆ UX such that Ua = UX\Ub.

Lemma 2. The Markov chain (Z,Ua)−Xc − (Ŷ , Ub) implies that the following Markov chains also hold: (i) Z −Xc − Ŷ ;
(ii) (Z,Ua)−Xc − Ŷ ; and (ii) Z −Xc − (Ŷ , Ub).

The Markov chain (Z,Ua)−Xc−(Ŷ , Ub) holding implies MNE=0, but the Markov chain not holding for all Ua, Ub such that
Ua = UX\Ub does not necessarily imply that MNE 6= 0. This criterion (Z,Ua)−Xc−(Ŷ , Ub) implying MNE = 0 only attempts
to provide an upper bound on MNE , i.e., it is desirable that MNE ≤ minUa,Ub s.t. Ua=UX\Ub

I((Z,Ua); (Ŷ , Ub) | Xc) such that
Ua = UX\Ub. The measure minUa,Ub s.t. Ua=UX\Ub

I((Z,Ua); (Ŷ , Ub) | Xc) does not suffice in itself as a measure of non-exempt
disparity because it again does not satisfy Property 1. To see this, notice that minUa,Ub s.t. Ua=UX\Ub

I((Z,Ua); (Ŷ , Ub) | Xc) ≥
I(Z; Ŷ | Xc) (see proof of Lemma 2), and thus, it also gives a false positive conclusion about non-exempt disparity in Canonical
Example 3 (counterfactually fair hiring). Instead, Uni((Z,Ua) : (Ŷ , Ub) | Xc) is a sub-component of I((Z,Ua); (Ŷ , Ub) | Xc)
that satisfies Property 1. Our desirable properties ultimately leads us to our proposed measure of non-exempt disparity, given by:

M∗NE = min
Ua,Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc)such that Ua = UX\Ub. (15)

6) Our Proposed Measure Resolves all the Canonical Examples: To develop intuition on what our proposed measure captures,
we will now discuss how this measure resolves all of the examples in this work. We group “similar” examples together.
• Scenarios where total disparity I(Z; (Ŷ , UX)) is zero: This applies to Canonical Example 3 and the related example in

Remark 8. Because minUa,Ub s.t. Ua=UX\Ub
Uni((Z,Ua) : (Ŷ , Ub)|Xc) ≤ Uni(Z : (Ŷ , UX)|Xc) ≤ I(Z; (Ŷ , UX)) (see proof

of Theorem 1 in Appendix C-A), it satisfies Property 1 and goes to 0 whenever total disparity is 0.
• Scenarios where Z is already masked in Xc and remains so in the output (with or without additional independent

masks): This applies to Canonical Example 1. We will examine the value of Uni((Z,Ua) : (Ŷ , Ub)|Xc) for different choices
of Ua ⊆ UX to find the minimum. First notice that, if Ua = φ (and Ub = UX ), we have

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni(Z : (Ŷ , UX)|Xc)
(a)

≥ Uni(Z : Z|Xc) > 0 (16)

(see Supporting Derivation 3 in Appendix C-B; (a) holds from a monotonicity property of unique information because Z
can be obtained from deterministic local operations on (Ŷ , UX)). This is in agreement with the intuition that UX1

should
not belong to the set of candidate masks (Ub) that need to be accounted for. Next, if Ua = UX1

(and Ub = UX2
), we have

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = 0 (implied from the Markov chain (Z,UX1
)−Xc − (Ŷ , UX2

)). Since unique information is
non-negative, we therefore have minUa,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = 0. In essence, the pair (U∗a , U
∗
b ) that

minimizes Uni((Z,Ua) : (Ŷ , Ub)|Xc) is such that U∗a = UX1 , and the candidate masks that need to be accounted for, i.e.,
U∗b = UX2 .
Now, what happens to the value of Uni((Z,Ua) : (Ŷ , Ub)|Xc) if the accountable mask UX2

is instead in Ua? We have

Uni((Z,Ua) : (Ŷ , Ub)|Xc)
(a)

≥ Uni(UX2
: Ŷ |Xc)

(b)
= I(UX2

; Ŷ ), (17)

which is strictly greater than 0. This agrees with the intuition that UX2
should belong to the candidate set of masks that one

should account for (Ub). Here (a) holds using two monotonicity properties of unique information (see Properties 10 and 9 in
Appendix B) and (b) holds because I(UX2

;Xc) = 0, leading to Red(UX2
: (Ŷ , Xc)) = 0.

• Scenarios where non-exempt statistically visible disparity is present, i.e., Uni(Z : Ŷ |Xc) > 0: This applies to Canonical
Example 2 and Canonical Example 6. Because Uni((Z,Ua) : (Ŷ , Ub)|Xc) ≥ Uni(Z : Ŷ |Xc) (see proof of Theorem 1 in
Appendix C-A), our proposed M∗NE satisfies Property 2, and is thus non-zero whenever Uni(Z : Ŷ |Xc) > 0.
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• Scenarios where non-exempt masked disparity is present: This applies to Canonical Example 4 and Canonical Example 5.
In the proof of Theorem 1 in Appendix C-A, we show that the proposed measure satisfies Property 3 (non-exempt masked
disparity), and is thus non-zero for these canonical examples of non-exempt masked disparity.
We note that Canonical Example 2 is an interesting case where both non-exempt statistically visible disparity and non-exempt
masked disparity are present. Here, M∗NE is strictly greater than the non-exempt statistically visible disparity (Uni(Z : Ŷ |Xc)),
and this difference can be interpreted as a quantification of the non-exempt masked disparity. First notice that,

Uni(Z : Ŷ |Xc)
(a)
= I(Z; Ŷ ) = H(Z)−H(Z|Ŷ ) = H(Z)−H(Z|UX1

+ Z + UX2
) = 1− 3

4
hb(1/3) bits. (18)

The full derivation is in Supporting Derivation 4 in Appendix C-B. Here hb(·) is the binary entropy function [65] given by
hb(p) = −p log2(p)− (1− p) log2(1− p) and (a) holds because I(Z;UX1) = 0, implying Red(Z : (Ŷ , UX1)) = 0 as well.
Now, we will examine the value of Uni((Z,Ua) : (Ŷ , Ub)|Xc) for different choices of Ua to find the minimum. The full
derivation for all of these cases is in Supporting Derivation 4 in Appendix C-B. Here, we only mention the key step. Let
Ua = φ (and Ub = UX ). Then,

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni(Z : (Ŷ , UX1
, UX2

)|UX1
)

(a)
= I(Z;UX1

+ Z + UX2
, UX1

, UX2
) = 1 bit. (19)

Here (a) holds again because I(Z;UX1
) = 0, implying the redundant information is 0 as well (using (2) in Section II-A).

Next, for Ua = UX2
(and Ub = UX1

), we have,

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni((Z,UX2
) : (Ŷ , UX1

)|UX1
)

(a)
= I((Z,UX2

); (Ŷ , UX1
)) = 3/2 bit. (20)

Here (a) holds again because I((Z,UX2);UX1) = 0, implying the redundant information is 0 as well. Next, for Ua = UX1

(and Ub = UX2
), we have,

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni((Z,UX1) : (Ŷ , UX2)|UX1)
(b)
= I((Z,UX1); (Ŷ , UX2) | UX1) = 1 bit. (21)

Here (b) holds because Syn((Z,UX1
) : (A,B)) = 0 if one of the terms A or B is a deterministic function of (Z,UX1

)
(using Lemma 14 in Appendix B) and hence unique information becomes equal to the conditional mutual information (see
(3) in Section II-A). Lastly, for Ua = UX (and Ub = φ), we have,

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni((Z,UX1
, UX2

) : Ŷ |UX1
)

(b)
= I((Z,UX1

, UX2
); Ŷ | UX1

) = 3/2 bit. (22)

Here (b) holds again using Lemma 14 in Appendix B. Thus, we obtain that,

M∗NE = min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = 1 bit, (23)

which is strictly greater than Uni(Z : Ŷ |Xc) = 1− 3
4hb(

1/3) bits, accounting for both non-exempt statistically visible and
non-exempt masked disparities.
As noted in Remark 5, our properties are insufficient to arrive at a unique functional form for the measure of non-exempt

disparity. It is easiest to understand this issue by contrasting it with Shannon’s discussion on entropy as a measure for uncertainty.
First, we do not have a counterpart of “additivity” of entropy (see Property 3 in Section 6 of [60]) which allows Shannon to
arrive at the logarithmic scaling in entropy. Second, we also do not provide an operational meaning for this measure (such as
that provided by the lossless source coding theorem for entropy [65]), which further supports the logarithmic scaling. This is
a direction of meaningful future work (further functional generalizations discussed in Section VIII). We note that this is the
case with almost all existing measures of fairness (with the notable exceptions of [21], [57], [62]). Exploring more deeply the
desirable attributes of the influence of a virtual constituent or proxy of Z that influences the model output and that cannot be
attributed to the critical features Xc alone (inspired from the work on proxy-use [20]) could be a starting point towards deriving
an exact operational meaning for our proposed measure. Nonetheless, our measure does satisfy all six desirable properties,
and also captures important nuances of the problem, e.g., both non-exempt masked disparity and non-exempt statistically
visible disparity when they are present together (revisited in Section IV). Our examples also help us understand the utility and
limitations of some existing measures that have some provision for exemptions, as we discuss next.

C. Understanding Existing Measures of Fairness with Provision for Exemptions

Conditional Statistical Parity: This definition [41], [43] is equivalent to I(Z; Ŷ | Xc) = 0. Therefore, it has similar utility
and limitations as Candidate Measure 1 (I(Z; Ŷ | Xc)). It resolves some limitations of both statistical parity and equalized
odds. However, it gives a false positive conclusion in detecting non-exempt disparity in Canonical Example 3 (the example of
counterfactually fair hiring), where there is no causal influence of Z on Ŷ but I(Z; Ŷ | Xc) > 0. Because this is an observational
measure, it is not able to distinguish between scenarios where there is causal influence of Z on Ŷ (non-exempt masked disparity
in hiring ads; Canonical Example 4) and where there is not (Canonical Example 3), even if I(Z; Ŷ | Xc) > 0 in both (elaborated
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Fig. 8: Overall decomposition of total disparity I(Z; (Ŷ , Xc)) into four non-negative components, namely, non-exempt visible
disparity MV,NE , exempt visible disparity MV,E , non-exempt masked disparity MM,NE and exempt masked disparity MM,E .

further in relation to our impossibility result in Remark 12 Section V). It also fails to capture non-exempt masked disparity
when the mask arises from the general features as in Canonical Example 5.
Justifiable Fairness: A model is said to be justifiably fair [42] if I(Z; Ŷ | Xs) = 0 for all sets Xs ⊆ X such that Xc ⊆ Xs.
This measure addresses several concerns of the previously stated measures, including capturing several forms of non-exempt
masked disparity. However, it also gives false positive conclusion in Canonical Example 3 (counterfactually fair college
admissions), which shows no causal influence of Z on Ŷ but I(Z; Ŷ | Xc) > 0. Because this is an observational measure,
it is not able to distinguish between scenarios where there is causal influence of Z on Ŷ and where there is not, even if
I(Z; Ŷ | Xc) > 0 in both (elaborated further in relation to our impossibility result in Remark 12 Section V).

Another limitation of such an individual feature-based conditioning arises when the causal effects of both Z and an independent
latent factor are present in the same feature, e.g., different digits of a zip-code, and it is not known in advance whether to
condition on the entire zip-code or its sub-portions like the individual digits.

Scenario 3 (Special Case of Canonical Example 5). Let Xg = [Z,UX1
] be a single multivariate feature, e.g., two bits of a

number and Xc = φ, and the output be Ŷ = Z ⊕ UX1
where Z and UX1

are i.i.d. Bern(1/2).

In this example, as long as one treats Xg as a single feature, the model will be deemed justifiably fair because I(Z; Ŷ | Xg) = 0
and I(Z; Ŷ ) = 0. But, this is a case of non-exempt masked disparity. It is necessary to have an advance suspicion of this
possible nature of the true SCM to be able to condition on the two bits of Xg separately. This definition captures the non-exempt
masked disparity in this example if the sub-portions of any single feature are defined in advance.
Path-Specific Counterfactual Fairness: Path-specific counterfactual fairness [19] is a purely causal notion of fairness which
exempts the causal influence of Z along selected paths. Based on this idea, we proposed Candidate Measure 3 in Section III-B.
However, Canonical Example 6 (the example of discrimination by unmasking) captures some of its limitations, when there is
synergistic or joint information about Z present in Xc and Xg that appears in Ŷ that cannot be attributed to any one of them
alone. Furthermore, sometimes the influence of Z can cancel along two paths so that the final output has no influence of Z,
e.g., the example in Remark 8. For such scenarios, this measure alone can lead to false positive conclusions about non-exempt
disparity, and might need to be used in conjunction with a measure of total disparity (e.g., CCI(Z → Ŷ )).

IV. UNDERSTANDING THE OVERALL DECOMPOSITION

In this section, we demonstrate how our proposed quantification enables a non-negative information-theoretic decomposition
of the total disparity I(Z; (Ŷ , UX)) into four components, that can be interpreted as: statistically visible non-exempt disparity,
statistically visible exempt disparity, masked non-exempt disparity and masked exempt disparity (also see Fig. 8).

Theorem 2 (Non-negative Decomposition of Total Disparity). The total disparity can be decomposed into four components as
follows:

I(Z; (Ŷ , UX)) = MV,NE +MV,E +MM,NE +MM,E . (24)

Here MV,NE = Uni(Z : Ŷ |Xc) and MV,E = Red(Z : (Ŷ , Xc)). These two terms add to form I(Z; Ŷ ) which is the total
statistically visible disparity. Next, MM,NE = M∗NE −MV,NE where M∗NE is our proposed measure of non-exempt disparity
(Definition 7), and MM,E = I(Z; Ŷ , UX)− I(Z; Ŷ )−MM,NE . All of these components are non-negative.

The decomposition of total disparity into a summation of these four terms is trivial. What remains to be shown is that these
four terms are non-negative (details provided in Appendix D-A).
Interpretation of the four components: Here MV,NE = Uni(Z : Ŷ |Xc) can be interpreted as the non-exempt statistically
visible disparity (as also motivated in Section III-B). The remaining part of the statistically visible disparity (recall Definition 5),
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i.e., I(Z; Ŷ )−Uni(Z : Ŷ |Xc) = Red(Z : (Ŷ , Xc)) then becomes the exempt statistically visible disparity (MV,E). This also
agrees with the intuition that redundant information about Z visible in both Ŷ and Z represents the exempt statistically visible
disparity.

Now that we have a measure of non-exempt disparity (M∗NE) and a measure of non-exempt statistically visible disparity
(MV,NE), we can interpret their difference as the non-exempt masked disparity, i.e., MM,NE = M∗NE −MV,NE = M∗NE −
Uni(Z : Ŷ |Xc). It also agrees with the intuition that non-exempt masked disparity is the part of non-exempt disparity that
Uni(Z : Ŷ |Xc) alone fails to capture. For instance, recall Canonical Example 4 where Ŷ = Z ⊕ UX1

and Xc = UX1
. Here,

I(Z; Ŷ ) = 0, implying MV,NE = Uni(Z : Ŷ |Xc) = 0. But, M∗NE = 1 bit (supporting derivation in Appendix C-A; see the
proof of Theorem 1 under Property 3). Therefore, the non-exempt masked disparity MM,NE = M∗NE −MV,NE = 1 bit
here, which is in agreement with our intuition of non-exempt masked disparity. Lastly, the remaining component MM,E =
I(Z; Ŷ , UX) − I(Z; Ŷ ) −MM,NE is interpreted as the exempt masked disparity. For instance, recall Canonical Example 1
where Ŷ = Xc = Z + UX1

+ UX2
with Z,UX1

, UX2
∼ i.i.d. Bern(1/2). Here, the total disparity I(Z; Ŷ , UX) = 1 bit, but the

statistically visible disparity I(Z; Ŷ ) = 0.5 bits which means that there is masked disparity present. Our intuition is that this
masked disparity should be entirely exempt because there is no non-exempt disparity in this example. This is in agreement with
the value that we obtain, i.e., MM,E = I(Z; Ŷ , UX)− I(Z; Ŷ )−MM,NE = 0.5 bits. This is because MM,NE and MV,NE are
both non-negative sub-components of M∗NE , and M∗NE = 0 (from the Markov chain (Z,UX1

, UX2
)−Xc − Ŷ )).

Remark 10 (On conditioning to capture masked disparity). Conditioning on a random variable G leading to I(Z; Ŷ | G) >
I(Z; Ŷ ) can sometimes detect masked disparity, if conditioning exposes more disparity than what was already visible. For
example, I(Z; Ŷ | Xc) can detect masked disparity if the mask is of the form g(Xc), e.g., in Canonical Example 4 (a special
case of the canonical example of masking with Xc = UX1

and Ŷ = Z⊕UX1
). However, conditioning on any random variable G

leading to I(Z; Ŷ | G) > I(Z; Ŷ ) cannot always be interpreted as a case of masked disparity because this can sometimes lead
to a false positive conclusion in detecting masked disparity, e.g., in Canonical Example 3 where Ŷ = UX1

and Xc = Z +UX1
.

If G is chosen as Xc, then I(Z; Ŷ | Xc) > I(Z; Ŷ ) even though there is no disparity here at all (recall CCI(Z → Ŷ ) = 0).
For completeness, we therefore include another result here (Lemma 3) that clarifies when conditioning can correctly capture
masked disparity.

Lemma 3 (Conditioning to Capture Masked Disparity). The following two statements are equivalent:
• Masked disparity I(Z; (Ŷ , UX))− I(Z; Ŷ ) > 0.
• ∃ a random variable G of the form G = g(UX) such that I(Z; Ŷ | G)− I(Z; Ŷ ) > 0.

Without knowledge of the true causal model, such a G = g(UX) may be difficult to determine from observational data alone,
because the observational data can be a function of both Z and UX . This serves as the motivation behind our impossibility
result on observational measures, that we state next.

V. IMPOSSIBILITY RESULT

Theorem 3 (Impossibility of Observational Measures). No observational measure of non-exempt disparity simultaneously
satisfies all six desirable properties.

Proof of Theorem 3. Observe the two examples here:

Example 1 (A Case of No Disparity). Let Xc = Z ⊕ UX1
, Xg = Z and Ŷ = Xc ⊕Xg = UX1

where Z and UX1
are both

independent and identically distributed as Bern(1/2).

Example 2 (A Case of Non-Exempt Disparity). Let Xc = UX1
, Xg = Z and Ŷ = Xc ⊕Xg = Z ⊕ UX1

where Z and UX1

are both independent and identically distributed as Bern(1/2).

In Example 1, the influences of Z cancel each other and there is no total disparity. So, the non-exempt disparity should be
zero by Property 1 (Zero Influence). However, Example 2 is the canonical example of non-exempt masked disparity where
there is non-exempt disparity present, and hence the non-exempt disparity should be non-zero by Property 3 (Non-Exempt
Masked Disparity). But, for both of these examples, the joint distribution of the observables (Z,Xc, Xg, Ŷ ) is the same which
means that no observational measure can distinguish between these two cases. This proves the result.

Remark 11 (Alternative Examples). In fact, we can show that no observational measure can satisfy Property 3. Consider
a scenario of no disparity given by: Xc = φ, Xg = (Z ⊕ UX1

, Z) and Ŷ = UX1
. For this example, the Markov chain

Z −Xc − (Ŷ , UX1
) holds implying that MNE = 0 by Property 3. Alternatively, consider a scenario of non-exempt disparity

given by: Xc = φ, Xg = (UX1
, Z) and Ŷ = Z⊕UX1

which is again a variant of the canonical example of non-exempt masked
discrimination. Let Z and UX1

be independent and identically distributed as Bern(1/2). Then, no purely observational measure
can distinguish between these two scenarios because (Z,Xc, Xg, Ŷ ) have the same joint distribution.
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Remark 12 (Revisiting Conditional Statistical Parity and Justifiable Fairness). For both Examples 1 and 2, we observe that
conditional mutual information I(Z; Ŷ | Xc) > 0. Because I(Z; Ŷ | Xc) is an observational measure, it fails to distinguish
between whether there is causal influence of Z or not in Ŷ . Existing observational definitions of fairness, e.g., conditional
statistical parity and justifiable fairness would also not be able to distinguish between these two examples. One needs
counterfactual measures to be able to distinguish between them, such as the counterfactual measure proposed in this work.

Nevertheless, because counterfactual measures are difficult to realize in practice, we examine the following observational
measures of non-exempt disparity that satisfy only a few of Properties 1-6.

VI. OBSERVATIONAL RELAXATIONS OF OUR PROPOSED COUNTERFACTUAL MEASURE: UTILITY AND LIMITATIONS

In this section, we propose three observational measures of non-exempt disparity and discuss their utility and limitations.
Observational Measure 1. MNE = Uni(Z : Ŷ |Xc).
Utility: This measure satisfies several desirable properties as stated here:

Lemma 4. [Fairness Properties of Uni(Z : Ŷ |Xc)] The measure Uni(Z : Ŷ |Xc) satisfies Properties 1, 2, 5, and 6.

The proof is in Appendix E. Importantly, note that, Uni(Z : Ŷ |Xc) satisfies Property 1 which I(Z; Ŷ | Xc) does not (recall
Canonical Example 3). Thus, Uni(Z : Ŷ |Xc) does not give false positive conclusions in detecting non-exempt disparity if a
model is counterfactually fair.

This measure may be preferred over our other observational measures when one wants to prioritize avoiding false positive
quantification of non-exempt disparity when a model is counterfactually fair. Recall that, Uni(Z : Ŷ |Xc) is a measure of
non-exempt, statistically visible disparity. It correctly captures the entire non-exempt disparity when non-exempt masked disparity
is absent.
Limitations: It does not quantify any non-exempt masked disparity (Property 3). This is because Uni(Z : Ŷ |Xc) is a sub-
component of the statistically visible disparity I(Z; Ŷ ), and hence always goes to 0 whenever the statistically visible disparity
I(Z; Ŷ ) = 0 (recall Canonical Examples 4 and 5). It also does not satisfy Property 4 because when Xc = φ, we have
Uni(Z : Ŷ |Xc) = I(Z; Ŷ ), which is only the statistically visible disparity but not the total disparity in a counterfactual sense
(i.e., I(Z; Ŷ , UX)).
Observational Measure 2. MNE = I(Z; Ŷ | Xc).
Utility: This measure also satisfies several desirable properties, as stated here:

Lemma 5. [Fairness Properties of I(Z; Ŷ | Xc)] The measure I(Z; Ŷ | Xc) satisfies Properties 2 and 6.

The proof is in Appendix E. We note that, while it does not satisfy Property 3 in its entirely, it does capture some scenarios of
non-exempt masked disparity. E.g., it can detect the non-exempt masked disparity in Canonical Example 4 which Uni(Z : Ŷ |Xc)
is not able to, even though they both fail to detect the non-exempt masked disparity in Canonical Example 5. In general,
I(Z; Ŷ | Xc) can detect non-exempt masked disparity when the “mask” is entirely derived from the critical features, i.e.,
G = g(Xc).
Limitations: It can sometimes lead to false positive conclusion about non-exempt disparity, e.g., in Canonical Example 3 (does
not satisfy Property 1). It also does not satisfy Property 5 because clearly I(Z; Ŷ | Xc) may be greater or less that I(Z; Ŷ )
(recall Canonical Example 4). It also does not satisfy Property 4 because when Xc = φ, we have I(Z; Ŷ | Xc) = I(Z; Ŷ ),
which is only the statistically visible disparity but not the total disparity in a counterfactual sense (i.e., I(Z; Ŷ , UX)).
Observational Measure 3. MNE = I(Z; Ŷ | Xc, X

′) where X ′ consists of certain features in Xg .
Utility and Limitations: This is somewhat of a heuristic relaxation that only satisfies Property 6. However, while it does not
satisfy any of the other properties in their entirety, it can still lead to the desirable quantification in several examples where the
previous two measures may not be successful if X ′ is chosen appropriately. For example, recall Canonical Example 5 where
Ŷ = Z ⊕ UX1 with Xg = (Z,UX1). With some partial knowledge or assumption about the SCM, if we choose X ′ = UX1 ,
then I(Z; Ŷ | Xc, X

′) > 0 for this example even though I(Z; Ŷ | Xc) = 0. Thus, this measure is able to detect some more
scenarios of non-exempt masked disparity that I(Z; Ŷ | Xc) cannot, i.e., when the mask is of the form G = g(Xc, X

′). It can
also sometimes avoid false positive quantification of non-exempt disparity if X ′ is chosen appropriately, e.g., in Canonical
Example 3 if X ′ = UX1

. Thus, under partial knowledge or assumption about the true SCM, this measure can correctly capture
the non-exempt disparity in many scenarios where the previous two measures may not be successful.

Lastly, one may also consider using various combinations of these measures, e.g., Uni(Z : Ŷ |Xc) + I(Z; Ŷ | X ′), or
I(Z; Ŷ | Xc)+I(Z; Ŷ | X ′), or Uni(Z : Ŷ |Xc)+Syn(Z : (Ŷ , X ′)), that can also approximate our proposed measure in several
scenarios if X ′ is chosen appropriately based on partial knowledge or assumptions about the true SCM.

VII. CASE STUDIES DEMONSTRATING PRACTICAL APPLICATION IN AUDITING AND TRAINING

Here, we discuss some case studies to demonstrate application of our proposed techniques on both simulated and real data.
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A. Case Study on Simulated Data
We present our case study on simulated data first. The benefit of using simulated data is that the true causal model (SCM)

is known. The knowledge of the SCM enables the following: (i) we can exactly compute our proposed causal measure of
non-exempt disparity (M∗NE), as well as, demonstrate the decomposition of total disparity into four components during auditing
a pre-trained model; (ii) we can also compare the performance of different observational measure of non-exempt disparity when
used as a regularizer during training. Assuming the SCM is not available during training (but available during auditing), we
examine the tradeoff between accuracy and the actual causal non-exempt disparity (M∗NE) when each of these observational
measures are used as a regularizer, under various experimental scenarios.

In this case study, an algorithm has to decide whether to show ads for a job using a score generated from internet activity.
We will consider four different experimental scenarios, each with a known SCM. To demonstrate application in auditing, we
first train a Deep-Neural-Network (DNN) model with no fairness regularizer for each of the four scenarios, and then use our
techniques for computing the total disparity (I(Z; (Ŷ , UX))), as well as, decompose the total disparity into four components,
namely, visible and masked, exempt and non-exempt disparities. We use the dit [45] package to compute all of these quantities
from the empirical distribution of the test data after the model has been trained, and after appropriately discretizing continuous
random variables as required. Note that, to compute unique information, the package solves an optimization problem [45].

To demonstrate application in training, we train a DNN model Ŷ = h(X) for classification with different observational
regularizers and examine the tradeoff between accuracy and the actual non-exempt disparity (as measured by our causal
measure of non-exempt disparity MNE∗), when each of these observational regularizers are used. For simplicity and ease of
computation during training, we rely on simple correlation-based estimates (inspired from [10]) of mutual information and
conditional mutual information. Further, we introduce a novel regularizer for approximating unique information, leveraging a
Gaussian approximation for PID in [46]. We train using the following loss functions:
• Loss L1 (Statistical Parity using Mutual Information regularizer I(Z; Ŷ ) (denoted as MI)):

min
w,b

LCross Entropy(Y, Ŷ ) + λ̃I(Z; Ŷ ),

where (i) λ is the regularization constant; and (ii) Ĩ(Z; Ŷ ) = − 1
2 log (1− ρ2

Z,Ŷ
) is an approximate expression of mutual

information where ρZ,Ŷ is the correlation between Z and Ŷ . This approximation is exact if Z and Ŷ are jointly Gaussian [65].
• Loss L2 (Proposed Unique Information-based (observational) regularizer Uni(Z : Ŷ |Xc) (denoted as Uniq)):

min
w,b

LCross Entropy(Y, Ŷ )+λŨni(Z : Ŷ |Xc),

where Ũni(Z : Ŷ |Xc) is given by:

Ũni(Z : Ŷ |Xc) = Ĩ(Z; Ŷ )−min{̃I(Z; Ŷ ), Ĩ(Z;Xc)}

= −1

2
log (1− ρ2

Z,Ŷ
)−min{−1

2
log (1− ρ2

Z,Ŷ
),−1

2
log (1− ρ2

Z,Xc
)}. (25)

We note that, in general, Uni(Z : Ŷ |Xc ≥ I(Z; Ŷ )−min{I(Z; Ŷ ), I(Z;Xc)}, where the lower bound is tight if all of the
random variables are jointly Gaussian [46]. Similarly, the correlation-based approximations are also exact under Gaussian
assumptions [65].

• Loss L3 (Proposed Conditional Mutual Information regularizer I(Z; Ŷ |Xc) (denoted as CMI)):

min
w,b

LCross Entropy(Y, Ŷ )+λ̃I(Z; Ŷ | Xc),

where again (i) λ is the regularization constant; and (ii) Ĩ(Z; Ŷ | Xc) is given by:

Ĩ(Z; Ŷ | Xc) =

n∑
i=1

Pr(Xc ∈ Bin i)̃I(Z; Ŷ | Xc ∈ Bin i) = −1

2

n∑
i=1

Pr(Xc ∈ Bin i) log (1− ρ2
Z,Ŷ ,i

), (26)

where the range of Xc is divided into n discrete bins, and ρZ,Ŷ ,i is the conditional correlation of Ŷ and Z given Xc is in
the i-th discrete bin.

• Loss L4 (Another Proposed Heuristic regularizer I(Z; Ŷ |Xc, X
′) (denoted as CMI’)):

min
w,b

LCross Entropy(Y, Ŷ )+λ̃I(Z; Ŷ | Xc, X
′),

where again (i) λ is the regularization constant; and (ii) Ĩ(Z; Ŷ | Xc, X
′) is given by:

Ĩ(Z; Ŷ | Xc, X
′) =

n∑
i=1

Pr(Xc, X
′ ∈ Bin i)̃I(Z; Ŷ | Xc, X

′ ∈ Bin i)

= −1

2

n∑
i=1

Pr(Xc, X
′ ∈ Bin i) log (1− ρ2

Z,Ŷ ,i
), (27)
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where the range of the joint random variables (Xc, X
′) is divided into n discrete bins, and ρZ,Ŷ ,i is the conditional correlation

of Ŷ and Z given (Xc, X
′) is in the i-th discrete bin. Note that, here X ′ consists of certain features in Xg , as discussed in

Section VI (Observational Measure 3).
• Loss L5 (Equalized Odds using regularizer I(Z; Ŷ |Y ) (denoted as EO)):

min
w,b

LCross Entropy(Y, Ŷ )+λ̃I(Z; Ŷ | Y ),

where again (i) λ is the regularization constant; and (ii) Ĩ(Z; Ŷ | Y ) is given by:

Ĩ(Z; Ŷ | Y ) =

n∑
i=1

Pr(Y ∈ Bin i)̃I(Z; Ŷ | Y ∈ Bin i)

= −1

2

n∑
i=1

Pr(Y ∈ Bin i) log (1− ρ2
Z,Ŷ ,i

). (28)

The range of Y is divided into n discrete bins, and ρZ,Ŷ ,i is the correlation of Ŷ and Z given Y is in the i-th bin.
Now, we discuss the four scenarios (SCMs) and the corresponding results.

Experimental Scenario 1 (All four disparities present): The decision of showing ads for a reporter’s job requiring English
proficiency, is based on three features X = (X1, X2, X3): (i) X1: a score based on online writing samples (critical feature
Xc = X1); (ii) X2: a score based on browsing history, e.g., interest in English websites as compared to websites of other
languages; and (iii) X3: a preference score based on geographical proximity. Z is a protected attribute denoting whether a
person is a native English speaker or not, distributed as Bern(1/2). Suppose that the true SCM is as follows: X1 = Z + UX1

,
X2 = Z+UX2

, and X3 = UX3
, where UX1

, UX2
, UX3

∼ i.i.d. N (0, σ2) denote latent writing ability, interests, and geographical
proximity, respectively. The true labels, based on previous candidates, are given by Y = 1(X1 + X2 + X3 ≥ 1). Here, the
critical feature Xc = X1 and the general features are Xg = (X2, X3). The results are provided in Fig. 9a and Fig. 10a.

Experimental Scenario 2 (Masking by critical feature): The decision of showing ads for an editor’s job in a newspaper
company is based on four features: (i) X1: a relevant score based on online writing samples (critical feature Xc = X1);
(ii) X2: a score based on browsing history, e.g., awareness of current events; (iii) X3: a score based on proofreading and
reviewing experience; and (iv) X4: a preference score based on activity in social media, e.g., political and ideological alignment
with the newspaper company. Let the protected attribute Z be political inclination, distributed as Bern(1/2). Suppose the true
SCM is as follows: X1 = UX1

+ UX3
, X2 = UX2

, X3 = UX3
, and X4 = UX2

− Z, where UX1
∼ Bern(1/2) denotes if the

writing ability is above a threshold, and UX2
, UX3

∼ i.i.d. N (0, σ2) denote interests and proofreading skill-level, respectively.
Suppose that the historic true labels are given by Y = 1((X1 +X4)2 ≥ 0.5), i.e., primarily high online-writing scores and high
social-media-based-preference scores, but to appear “facially neutral” with respect to political inclination, the ad is also shown
to candidates with low social-media-based-preference scores and low writing scores for whom the ad may be irrelevant. Here,
the critical feature Xc = X1 and the general features are Xg = (X2, X3, X4). The results are provided in Fig. 9b and Fig. 10b.

Experimental Scenario 3 (Masking by general feature): Consider another example similar to the previous one. The decision
of showing ads for a website-manager’s job in a newspaper company is based on three features, none of them critical: (i)
X1: a score based on online writing samples; (ii) X2: a score based on browsing history, e.g., awareness of current events;
and (iii) X3: a preference score based on activity in social media, e.g., political alignment with the newspaper. The protected
attribute Z is political inclination, distributed Bern(1/2). Suppose the true SCM is as follows: X1 = UX1 + U ′X1

, X2 = UX2 ,
and X3 = UX2

− Z, where UX1
∼ Bern(1/2) denotes if writing ability is above a threshold, and U ′X1

, UX2
∼ i.i.d. N (0, σ2)

denote proofreading skill and interests. Suppose that the true labels are given by Y = 1((X1 +X3)2 ≥ 0.5), i.e., primarily high
online-writing scores and high social-media-based-preference scores, but to appear “facially neutral” with respect to political
inclination, the ad is also shown to candidates with low social-media-based-preference scores and low writing scores. Here, all
the features are non-critical: Xg = (X1, X2, X3). The results are provided in Fig. 9c and Fig. 10c.

Experimental Scenario 4 (No label bias): The decision of showing ads for an editor’s job is based on four features: (i) X1:
a score based on online writing samples (critical feature Xc = X1); (ii) X2: a score based on browsing history, e.g., awareness
of current events; (iii) X3: a preference score based on geographical proximity; and (iv) X4: a score based on browsing history,
e.g., interest in English websites as compared to websites of other languages. Let Z ∼ Bern(1/2) be the protected attribute
denoting whether the candidate is a native English speaker. Suppose the true SCM is as follows: X1 = Z + UX1 + U ′X1

,
X2 = UX2 , X3 = UX3 , and X4 = Z + UX2 , where UX1 ∼ Bern(1/2) denotes whether writing skill is above a threshold, and
U ′X1

, UX2
, UX3

∼ i.i.d. N (0, σ2) denote proofreading skill, interests, and proximity. Suppose that the true labels do not have
label disparityand are given by Y = 1(UX1

+ UX2
≥ 0.5). Here, the critical feature is Xc = X1 and the general features are

Xg = (X2, X3, X4). The results are provided in Fig. 9d and Fig. 10d.
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(a) Experimental Scenario 1 (All four disparities present)
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(b) Experimental Scenario 2 (Masking by critical feature)
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(c) Experimental Scenario 3 (Masking by general feature)
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(d) Experimental Scenario 4 (No label bias)

Fig. 9: Observations from Auditing. The different types of disparities after training a model with no fairness regularizer for
all the experimental scenarios: ME and MNE(= MNE∗) denote the exempt and non-exempt disparities, respectively. MV,E ,
MM,E , MV,NE , and MM,NE denote the visible and masked exempt disparity and visible and masked non-exempt disparity,
respectively. Because the SCM is known, all of these quantities can be computed. For each of the four experimental scenarios,
the test accuracy is close to 99% (model output is very similar to the true label). We observe that the disparity decomposition for
the model output Ŷ is also quite similar to what one might intuitively expect for the true label Y . In Experimental Scenario 1,
biased critical and general features are used in the true label. We also observe all four disparities MV,E , MM,E , MV,NE , and
MM,NE are present in output Ŷ . In Experimental Scenarios 2 and 3, the disparity in Ŷ is dominated by non-exempt, masked
disparity MM,NE , and the other components are negligible. In Experimental Scenario 4, the total disparity is significantly less
in comparison to the other three scenarios (intuitively agrees with the fact that the true labels that have no bias at all).

Summary of Results: We present results for auditing and training in Fig. 9 and Fig. 10 with detailed explanations. Our
proposed regularizers, namely, Uniq, CMI and CMI’ attain better trade-off between accuracy and non-exempt disparity than MI
(Statistical Parity) and EO (Equalized Odds) in Experimental Scenario 1. CMI and CMI’ are also able to detect certain scenarios
of non-exempt, masked disparity that Uniq, MI and EO fail to detect, e.g., in Experimental Scenario 2 where the masking
is by the critical feature Xc. Experimental Scenario 3 demonstrates additional scenarios of non-exempt, masked disparity,
e.g., masking by Xg, where even CMI is unable to detect this disparity, and only CMI’ succeeds (by choosing X ′ based on
certain knowledge/suspicion of the causal model). However, Experimental Scenario 4 denotes a scenario of false detection of
disparity by CMI and CMI’. In essence, Uniq is a somewhat conservative measure of non-exempt disparity which can miss
non-exempt, masked disparity, but never does false detection of disparity. On the other hand, CMI and CMI’ can sometimes
detect certain scenarios of non-exempt, masked disparity, but can also sometimes falsely detect disparity. This is expected:
these are observational measures attempting to approximate a causal measure, a fundamentally impossible task. However, these
examples illustrate how knowledge of aspects of the SCM (e.g., whether the disparity is predominantly masked disparity) can
be used to inform the choice of the observational measure.

B. Case Study on Real Data: Adult Dataset

The Adult dataset [66], also known as the Census income dataset, consists of 14 features (e.g. age, educational qualification),
and the true labels denote whether the income is greater than $50k. This dataset is widely used in existing fairness literature
(e.g., [22]), because it is representative of data used in highly consequential applications, such as, lending, showing expensive
ads, etc. Here, we choose gender as the protected attribute (Z) for analyzing the Adult dataset. Our set of input features (X)
consists of all the other features except gender, and our critical feature (Xc) is working-hours per-week.

We train a deep neural network (multi-layer perceptron) on this dataset, with all features, except gender, as input (with one
hot encoding of all categorical variables). The input layer is followed by three hidden layers, each having 32 neurons with
ReLu activation and dropout probability 0.2. Finally, the output layer consists of a single neuron with sigmoidal activation that
produces an output value between 0 and 1 (likelihood of income being > 50k possibly leading to a loan decision).

Since the true causal model is not known, we cannot compute the exact value of the total disparity or non-exempt disparity
(M∗NE) as in the previous case study. However, our observational measures can still provide valuable insights as we demonstrate
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(b) Experimental Scenario 2 (Masking by critical feature)

0.1 0.15 0.2 0.25 0.3 0.35
0.75

0.8

0.85

0.9

0.95

1

MI
Uniq
CMI
CMI'
EO

A
cc

ur
ac

y 
(%

) No Fairness Regularizer

Non-Exempt Disparity 𝑴𝑵𝑬
∗ (Bits)

(c) Experimental Scenario 3 (Masking by general feature)
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(d) Experimental Scenario 4 (No label bias)

Fig. 10: Observations from training: For each experimental scenario, we train a model using each of the five observational
regularizers: MI (Statistical Parity), Uniq, CMI, CMI’, and EO (Equalized Odds) for different values of regularization constant
λ. The tradeoff between test accuracy and the actual non-exempt disparity (MNE∗) computed using the dit package is
shown. In Experimental Scenario 1, the model output (no fairness) has all four types of disparities, MV,E , MM,E , MV,NE ,
and MM,NE . We observe that, all three of Uniq, CMI, and CMI’ attain better tradeoff between accuracy and non-exempt
disparity as compared to EO (Equalized Odds) and MI (Statistical Parity). Equalized Odds does not affect the accuracy or
the non-exempt disparity much, even for high values of the regularization constant. Statistical Parity attempts to reduce both
exempt and non-exempt disparities, and ends up reducing accuracy a lot for same values of non-exempt disparity as compared
to Uniq, CMI, and CMI’. CMI and CMI’ are slightly better than Uniq because they also partially quantify non-exempt, masked
disparity. For CMI’(= I(Z; Ŷ |Xc, X

′)), we choose X ′ = X3 (location, a general feature that has no causal influence of Z, but
is suspected to “mask” Z in the final output) which leads to a better trade-off than CMI. In Experimental Scenarios 2 and 3,
the disparity in the model output (no fairness) is dominated by non-exempt, masked disparity. This disparity is missed by MI
(Statistical Parity), EO (Equalized Odds), and Uniq. Consequently, they do not affect the accuracy or the non-exempt disparity
much, even for high values of regularization constant. For Experimental Scenario 2, only CMI and CMI’ (with X ′ = X3)
are able to detect the non-exempt, masked disparity, and lead to alternate models with reduced accuracy and also reduced
non-exempt disparity. For Experimental Scenario 3, only CMI’ (with X ′ = X1, the general feature that masks Z in the final
output) detects the non-exempt disparity, and reduces it. In Experimental Scenario 4, the model output (no fairness) has almost
negligible non-exempt disparity because the true labels do not have any bias at all. We observe that, MI, EO, and Uniq also do
not affect the accuracy much even for high values of regularization constant (which is desirable). However, CMI, and CMI’
(with X ′ = X2) falsely detect disparity here, when there is no non-exempt disparity actually present. In an attempt to reduce the
falsely detected disparity, they lead to alternate models with significantly reduced accuracy, and slightly increased non-exempt
disparity.
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Fig. 11: For the model with no fairness, we see a high value of MI as well as CMI (consisting of both Uniq and Syn). When
the model is trained for statistical parity, the MI reduces as expected, but interestingly CMI is now higher than MI. Next,
when CMI is used as a regularizer, we notice that CMI (and its sub-components Uniq and Syn) reduce as expected, but MI is
higher than CMI. For Uniq as a regularizer, we notice that MI or CMI are not reduced that much, but only Uniq is minimized
selectively. Lastly, for equalized odds, we observe that the trained model still has some Uniq (non-exempt, visible disparity).
These experiments also demonstrate that the correlation-based estimates for the regularizers are relatively good approximations
for this real dataset and actually reduce the respective statistical dependences as one would intuitively expect.

here (see Fig. 11). We consider five setups for auditing: (i) No fairness: model trained with no fairness regularizer; (ii) Statistical
Parity: model trained with I(Z; Ŷ ) as regularizer; (iii) CMI Regularizer: model trained with I(Z; Ŷ |Xc) regularizer; (iv)
Uniq Regularizer: model trained with Uni(Z : Ŷ |Xc) as regularizer; and (iv) Equalized Odds: model trained with I(Z; Ŷ |Y )
regularizer. For each of these setups, we choose the same value of the regularization constant λ = 4, and similar correlation-based
estimates for the regularizers as in the previous case study.

After training these models, we audit/evaluate the trained models by computing the following observational quantities
on the empirical distribution of the test data using the dit [45] package: MI (statistically visible disparity:I(Z; Ŷ )), CMI
(conditional mutual information I(Z; Ŷ |Xc)), as well as, the decomposition of CMI into Unique Information (Uniq) given by
Uni(Z : Ŷ |Xc)) and Synergistic Information (Syn) given by Syn(Z : (Ŷ , Xc))). Recall that Uniq is the non-exempt statistically
visible disparity, while Syn can correspond to either non-exempt masked disparity or false detection of disparity (recall our
impossibility result; one might need some knowledge of the causal model to be certain). As discussed in the caption of Fig. 11,
the correlation-based estimates serve as relatively good approximations and reduce the respective statistical dependences as one
would intuitively expect to see.

C. Case Study on Real Data: German Credit Dataset

We also perform a similar case study on the German Credit Dataset [66]. This dataset consists of 20 features (e.g., status of
a checking account, credit amount, present employment, etc.), and the true labels denote whether a customer is good or bad.
Our critical feature (Xc) is the number of existing credits at this bank, and the protected attribute (Z) is gender. Our set of all
features (X) consist of all features except gender and marital status.

We train a deep neural network (multi-layer perceptron) on this dataset, with all features, except gender and marital status
as input (with one hot encoding of categorical variables). The input layer is followed by two hidden layers, each having 124
neurons with ReLu activation and dropout probability 0.5. Finally, the output layer consists of a single neuron with sigmoidal
activation that produces an output value between 0 and 1 (likelihood of being a good customer).

The causal model is again not known, similar to the previous case. However, similar to the case study on the Adult dataset,
we train the model using different observational regularizers, and audit/evaluate the trained models. As discussed in the caption
of Fig. 12, the correlation-based estimates reduce the respective statistical dependences as one would intuitively expect to see.



FAIRNESS UNDER FEATURE EXEMPTIONS: COUNTERFACTUAL AND OBSERVATIONAL MEASURES 27

0

0.01

0.02

0.03

0.04
No fairness,
Acc: 75.9%

Syn

Uniq

MI
CMI

0

0.01

0.02

0.03

0.04
Statistical Parity,

Acc: 74.0%

Syn

Uniq
MI

CMI

0

0.01

0.02

0.03

0.04 CMI Regularizer,
Acc: 75.3%

Syn

Uniq
MI CMI

0

0.01

0.02

0.03

0.04 Uniq Regularizer,
Acc: 74.3%

Syn

Uniq
MI

CMI

0

0.01

0.02

0.03

0.04
Equalized Odds,

Acc: 75.5 %

Syn

Uniq
MI

CMI

Fig. 12: The experimental results demonstrate that the correlation-based estimates for the regularizers behave as expected. When
the model is trained for statistical parity, MI reduces as expected without significantly reducing CMI. Next, when CMI is used
as a regularizer, we notice that CMI (and its sub-components Uniq and Syn) reduce as expected. For Uniq as a regularizer,
we notice that MI or CMI are not reduced that much, but only Uniq is minimized selectively. Lastly, for equalized odds, we
observe that the trained model still retains quite a bit of MI, CMI, Uniq and Syn, as compared to the model with no fairness.

VIII. DISCUSSION AND CONCLUSION

On Choice of Critical Features and Connections with Explainability: In this work, as also in some existing works on
fairness [4], [17], we assume that the critical features are known. We adopt a viewpoint stated in [67] which suggests that “We
can’t just rely on the math; we still need a human person applying human judgements.” Since most of these exemptions are
embedded in law and social science [31]–[33], we believe that fairness researchers need to collaborate with social scientists and
lawyers in order to determine which set of features can be designated as critical for a particular application.

This work also shares close connections with the field of explainability in machine learning [15], [53], [68], and motivates
several related research problems, e.g., how to check or explain if certain features contributed to the disparity in a model, or
how to incorporate exemptions in applications, such as, image processing, where certain neurons in an intermediate hidden
layer might need to be exempted instead of the input layer because they often have more interpretability [68].

On Better Understanding of Observational Measures: Our proposed counterfactual measure and the desirable properties
help in evaluation of observational measures in practice, and understand their utility and limitation, i.e., what they capture and
miss. Finally, in applications where when the true SCM is known or can be evaluated from the data [36, Chapters 4,7], the
proposed measure exactly captures the non-exempt disparity.

On Uniqueness, Operational Meaning and Further Generalizations: We acknowledge that we do not prove uniqueness
of our measure with respect to the desirable properties, and neither do we show that the properties are exhaustive (recall
Remark 5 in Section III-B). This is an interesting direction of future work. However, there may also be value in the fact that the
properties do not yield a unique measure: this allows for tuning the measure based on the application. E.g., Shannon established
uniqueness on entropy with respect to some properties in [60] but subsequent applications have still led to the use of modified
measures, e.g. Renyi entropy [21], [57], [61], [62].

Deriving the exact operational meaning of our proposed counterfactual measure is also an interesting direction of future
work. Nonetheless, the proposed measure does satisfy our stated desirable properties and capture important aspects of the
problem, e.g., statistically visible and masked disparities. Furthermore, our measure can also be modified to account for further
functional generalizations. First notice, that our proposed Property 3 is a special case of the following statement:

If (Z, fa(UX))−Xc−(Ŷ , fb(UX)) form a Markov chain for any deterministic functions fa(·) and fb(·) such that fa(UX) ⊥⊥
fb(UX) and H(UX)=H(fa(UX)) + H(fb(UX)), then MNE=0.

To account for this more general property, our proposed measure might be modified as follows:

min
fa(UX),fb(UX)

Uni((Z, fa(UX)) : (Ŷ , fb(UX))|Xc), (29)

such that fa(UX) ⊥⊥ fb(UX) and H(UX) = H(fa(UX)) + H(fb(UX)). This measure also satisfies all the other desirable
properties. In this work, we restrict ourselves to fa(UX) and fb(UX) being disjoint subsets of UX for simplicity, computability
and ease of understanding. Future work will explore how different assumptions on the SCM restrict the class of fa and fb.



FAIRNESS UNDER FEATURE EXEMPTIONS: COUNTERFACTUAL AND OBSERVATIONAL MEASURES 28

On Understanding Other Forms of Masked Disparity: Let us revisit the discussion from Section III-B that not all forms
of masked discrimination are necessarily undesirable. E.g., if UX1 is a random coin flip in Canonical Example 5, then performing
Ŷ = Z ⊕UX1 randomizes the race, and can even be regarded as a preventive measure against discrimination. However, keeping
the mathematics of the example same, if UX1

instead denotes whether one’s income is above a threshold, then the model is
unfair. It is an interesting future direction to examine how to quantify non-exempt discrimination while allowing the user with
more flexibility on what latent factors are allowed to mask Z.

On Estimation of Mutual Information, Conditional Mutual Information and Unique Information: In general, it is
difficult to directly incorporate these information-theoretic measures as a regularizer with the loss function (see [69], [70] and
the references therein). Examining alternate methods of incorporating our proposed measures as regularizer (using or building
upon techniques proposed in [21], [27], [29], [43], [44], [57], [70]) is an interesting direction of future work.

APPENDIX A
COUNTERFACTUAL CAUSAL INFLUENCE (CCI) AND ITS CONNECTION TO COUNTERFACTUAL FAIRNESS

A. Proof of Lemma 1

Here, we first provide a proof of Lemma 1 which shows that our proposed quantification of total disparity is zero if and only
if CCI(Z → Ŷ ) = 0. For ease of reading, we repeat the statement of the lemma here again.

Lemma 1 (Equivalences of CCI). Consider the aforementioned system model. Let Ŷ = h(Z,UX) for some deterministic
function h(·) and Z ⊥⊥ UX . Then, CCI(Z → Ŷ ) = 0 if and only if I(Z; (Ŷ , UX)) = 0.

Proof of Lemma 1. From the definition of CCI (Definition 3 in Section II-B),

CCI(Z → Ŷ ) = EZ,Z′,UX
[|h(Z,UX)− h(Z ′, UX)|]

=
∑

z1,z2,ux

Pr(Z = z1, Z
′ = z2, UX = ux)|h(z1, ux)− h(z2, ux)|

=
∑

z1,z2,ux

Pr(Z = z1) Pr(Z ′ = z2) Pr(UX = ux)|h(z1, ux)− h(z2, ux)|. (30)

Here, the last line holds due to independence. The summation consist of non-negative terms. Therefore, CCI(Z → Ŷ ) = 0, if
and only if all the terms in the summation are zero, i.e., for all z1, z2 and ux with Pr(Z = z1),Pr(Z = z2),Pr(UX = ux) > 0,
|h(z1, ux)− h(z2, ux)| = 0. This is equivalent to h(z, ux) being constant over all possible values of z with Pr(Z = z) > 0
given a fixed value of ux, and this should happen over all values of ux with Pr(UX = ux).

Now, observe that,

I(Z; (Ŷ , UX)) = I(Z; Ŷ | UX) + I(Z;UX) (31)

= I(Z; Ŷ | UX) [Z ⊥⊥ UX ] (32)

= H(Ŷ | UX)−H(Ŷ | UX , Z) [By Definition] (33)

= H(Ŷ | UX). [Ŷ determined by Z,UX ] (34)

H(Ŷ | UX) can be 0 if and only if h(z, ux) is constant over all possible values of z with Pr(Z = z) > 0 given a fixed value of
ux, and this should happen over all ux with Pr(UX = ux) > 0. Thus, CCI(Z → Ŷ ) = 0 if and only if I(Z; (Ŷ , UX)) = 0.

B. Connections to Counterfactual Fairness

We note that the concept of counterfactual causal influence (often referred to as only “influence”) is derived from a separate
body of work [52]–[56]) outside the fairness literature. The original definition of counterfactual fairness in [16] was stated
differently (without using CCI), although the connection with CCI has been hinted at in [18]. Here, for the sake of completeness,
we will formally show in Lemma 6 that CCI(Z → Ŷ ) = 0 is equivalent to the counterfactual fairness criterion proposed in [16].
What this means is that, our proposed quantification of total disparity is also 0 if and only if a model is counterfactually fair.

First, we clarify the differences in notation between our work and [16]. In our work, X = f(Z,UX) and Ŷ = r(X) =
r ◦ f(Z,UX) = h(Z,UX) where h = r ◦ f . In [16], ŶZ←z1(U) denotes the random variable Ŷ when the value of Z is fixed as
z1 by an intervention, i.e., ŶZ←z1(U) = h(z1, UX). Alongside, we also clarify that the event that X takes the value x when Z
is fixed as z1 refers to the event that UX takes a value from the set S(x, z1) = {ux : x = f(z1, ux), Pr(UX = ux) > 0}
because X = f(Z,UX).

Definition 8 (Counterfactual Fairness given X = x and Z = z1 [16]). A predictor Ŷ is counterfactually fair given the protected
attribute Z = z1 and the observed variable X = x, if we have,

Pr(ŶZ←z1(U) = y|X takes value x when Z fixed as z1)

= Pr(ŶZ←z2(U) = y|X takes value x when Z fixed as z1), (35)
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for all attainable y and z2. In our notations, this definition is equivalent to the following: Given the sensitive attribute Z = z1

and the observed variable X = x,

Pr(h(z1, UX) = y | UX ∈ S(x, z1)) = Pr(h(z2, UX)) = y | UX ∈ S(x, z1)), (36)

for all attainable y and z2, where S(x, z1) = {ux : x = f(z1, ux), Pr(UX = ux) > 0}.

Next, we show that CCI(Z → Ŷ ) = 0 is equivalent to the counterfactual fairness criterion of [16].

Lemma 6. CCI(Z → Ŷ ) = 0 is equivalent to counterfactual fairness (Definition 8) for all X = x and Z = z1 with
Pr(X = x, Z = z1) > 0.

Proof of Lemma 6. Suppose that, CCI(Z → Ŷ ) = 0. Recall from Lemma 1, that CCI(Z → Ŷ ) = 0 is equivalent to the
criterion that h(z1, ux) = h(z2, ux) for all attainable z1, z2 given a particular value of ux, and this should hold for all ux with
Pr(UX = ux) > 0. Therefore, for any particular X = x and Z = z1 with Pr(X = x, Z = z1) > 0,

Pr(h(z1, UX) = y | UX ∈ S(x, z1)) = Pr(h(z2, UX)) = y | UX ∈ S(x, z1)), (37)

because h(z1, ux) = h(z2, ux) for all ux ∈ S(x, z1). Thus, we show that CCI(Z → Ŷ ) = 0 implies counterfactual fairness.
Now, we prove the implication in the other direction. Suppose that the counterfactual fairness criterion (36) holds for all

X = x and Z = z1 with Pr(X = x, Z = z1) > 0.
First consider any particular X = x and Z = z1 with Pr(X = x, Z = z1) > 0. Since Pr(X = x, Z = z1) > 0, there exists

at least one ux with Pr(UX = ux) > 0 such that x = f(z1, ux). So, the set S(x, z1) is non-empty. Equation (36) implies that,

Pr(h(z1, UX) = y| UX ∈ S(x, z1)) = Pr(h(z2, UX)) = y| UX ∈ S(x, z1))∀attainable y, z2. (38)

This leads to,

Pr(h(z1, UX) = y, UX ∈ S(x, z1)) = Pr(h(z2, UX) = y, UX ∈ S(x, z1)) ∀ attainable y, z2. (39)

Or, ∑
ux∈S(x,z1)

Pr(UX = ux)1(h(z1, ux) = y) =
∑

ux∈S(x,z1)

Pr(UX = ux)1(h(z2, ux) = y). (40)

Now, observe that, f(z1, ux) = x for all ux ∈ S(x, z1), and thus h(z1, ux) = r ◦ f(z1, ux) takes the same value for all
ux ∈ S(x, z1). Let h(z1, ux) = ỹ for all ux ∈ S(x, z1). Then, for (40) to hold, we need,∑

ux∈S(x,z1)

Pr(UX = ux)(1− 1(h(z2, ux) = ỹ)) = 0 ∀ attainable z2. (41)

This holds if and only if 1(h(z2, ux) = ỹ) = 1 for all ux ∈ S(x, z1) and for all attainable z2. Thus, the counterfactual fairness
criterion (36) for a particular X = x, Z = z1 with Pr(X = x, Z = z1) > 0 implies that for all ux ∈ S(x, z1),

h(z2, ux) = h(z1, ux) ∀ attainable z2. (42)

Because the counterfactual criterion (36) holds for all X = x, Z = z1 with Pr(X = x, Z = z1) > 0, we therefore have (42)
hold for all

ux ∈ ∪{x,z1:Pr(X=x,Z=z1)>0}S(x, z1).

Now, because UX is independent of Z, for any u∗x with Pr(UX = u∗x) > 0, there always exists some x∗ such that
x∗ = f(z1, u

∗
x), and Pr(X = x∗, Z = z1) ≥ Pr(UX = u∗x, Z = z1) > 0. Thus, u∗x ∈ S(x∗, z1) for some (x∗, z1) with

Pr(X = x∗, Z = z1) > 0. Thus,

{ux : Pr(UX = ux) > 0} ⊆ ∪{x,z1:Pr(X=x,Z=z1)>0}S(x, z1),

implying that h(z2, ux) = h(z1, ux) for all attainable z1, z2 given a particular value of ux, and this holds for all ux with
Pr(UX = ux) > 0. This is equivalent to CCI(Z → Ŷ ) = 0 (recall Lemma 1).
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APPENDIX B
RELEVANT INFORMATION-THEORETIC PROPERTIES

Lemma 7 (Conditional DPI). For all (A,A′, B,Xc) such that (B,Xc)−A−A′ form a Markov chain, we have the following
conditional form of the Data Processing Inequality (DPI): I(A;B | Xc) ≥ I(A′;B | Xc).

Proof of Lemma 7. From the Markov chain, we have I(A′; (B,Xc) | A) = 0. Because, I(A′; (B,Xc) | A) = I(A′;Xc | A) +
I(A′;B | A,Xc) by chain rule and mutual information is non-negative, we also have I(A′;B | A,Xc) = 0. Now, similar to the
proof of DPI, we have:

I(A′;B | Xc) + I(A;B | A′, Xc) = I(A;B | Xc) + I(A′;B | A,Xc) = I(A;B | Xc), (43)

because I(A′;B | A,Xc) = 0. This leads to I(A;B | Xc) ≥ I(A′;B | Xc).

Lemma 8 (Triangle Inequality of Unique Information). For all (Z,B,A,Xc), we have:

Uni(Z : A|Xc) ≤ Uni(Z : A|B) + Uni(Z : B|Xc).

This result is derived in [71, Proposition 2].

Lemma 9 (Monotonicity under local operations on Z). Let Z ′ = f(Z) where f(·) is a deterministic function. Then, we have:

Uni(Z : B|Xc) ≥ Uni(Z ′ : B|Xc).

This result is derived in [59, Lemma 31]. We include a proof for completeness.

Proof of Lemma 9. Let P ′ be the true joint distribution of (Z ′, B,Xc) and P be the true joint distribution of (Z,B,Xc). Also
let Q∗ = arg minQ∈∆P

IQ(Z;B | Xc) where ∆P is the set of all joint distributions of (Z,B,Xc) with the same marginals
between (Z,B) and (Z,Xc) as the true joint distribution P . Let us also define

Q′∗(z′, b, xc) =
∑
z

Pr(z′ | z)Q∗(z, b, xc),

where Pr(z′ | z) is the true conditional distribution of Z ′ = f(Z) given Z.
Now, observe that,

Uni(Z : B|Xc) = min
Q∈∆P

IQ(Z;B | Xc) [By Definition]

= IQ∗(Z;B | Xc) [By Definition of Q∗]
(a)

≥ IQ′∗(Z
′;B | Xc)

(b)

≥ min
Q′∈∆P ′

IQ′(Z
′;B | Xc)

= Uni(Z ′ : B|Xc) [By Definition]. (44)

Here (a) holds using the conditional form of the Data Processing inequality (Lemma 7) as follows. Consider the random
variables (Z,B,Xc) following distribution Q∗ and Z ′ = f(Z). Then, (B,Xc)− Z − Z ′ form a Markov chain. Also note that
(b) holds because Q′∗ belongs to ∆P ′ which is the set of all joint distributions of (Z ′, B,Xc) with the same marginals between
(Z ′, B) and (Z ′, Xc) as the true joint distribution P ′.

Lemma 10 (Monotonicity under local operations on B). Let B′ = f(B) where f(·) is a deterministic function. Then, we have:

Uni(Z : B|Xc) ≥ Uni(Z : B′|Xc).

This result is derived in [59, Lemma 31]. We include a proof for completeness.

Proof of Lemma 10. Let P ′ be the true joint distribution of (Z,B′, Xc) and P be the true joint distribution of (Z,B,Xc). Also
let Q∗ = arg minQ∈∆P

IQ(Z;B | Xc) where ∆P is the set of all joint distributions of (Z,B,Xc) with the same marginals
between (Z,B) and (Z,Xc) as the true joint distribution P . Let us also define

Q′∗(z, b′, xc) =
∑
b

Pr(b′ | b)Q∗(z, b, xc),

where Pr(b′ | b) is the true conditional distribution of B′ = f(B) given B.
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Now, observe that,

Uni(Z : B|Xc) = min
Q∈∆P

IQ(Z;B | Xc) [By Definition]

= IQ∗(Z;B | Xc) [By Definition of Q∗]
(a)

≥ IQ′∗(Z;B′ | Xc)

(b)

≥ min
Q′∈∆P ′

IQ′(Z;B′ | Xc)

= Uni(Z : B′|Xc) [By Definition]. (45)

Here (a) holds using the conditional form of the Data Processing inequality (Lemma 7) as follows. Consider the random
variables (Z,B,Xc) following distribution Q∗ and B′ = f(B). Then, (Z,Xc)−B −B′ form a Markov chain. Also note that
(b) holds because Q′∗ belongs to ∆P ′ which is the set of all joint distributions of (Z,B′, Xc) with the same marginals between
(Z,B′) and (Z,Xc) as the true joint distribution P ′.

Lemma 11 (Monotonicity under adversarial side information). For all (A,B,Xc, X
′
c), we have:

Uni(A : B|(Xc, X
′
c)) ≤ Uni(A : B|Xc).

This result is derived in [59, Lemma 32].

Lemma 12 (Maximal conditional mutual information). Let A = f(Z,UX) where Z ⊥⊥ UX and B = g(UX) for some
deterministic functions f(·) and g(·) respectively. Then,

I(Z;A | UX) ≥ I(Z;A | B). (46)

Proof of Lemma 12. Observe that,

I(Z;UX | A,B)) ≥ 0 [non-negativity property]
=⇒ H(Z | A,B)−H(Z | A,B,UX) ≥ 0 [by definition]
=⇒ H(Z | A,B)−H(Z | A,UX) ≥ 0 [B = g(UX)]
=⇒ H(Z)−H(Z | A,UX) ≥ H(Z)−H(Z | A,B)

=⇒ H(Z|UX)−H(Z|A,UX) ≥ H(Z|B)−H(Z|A,B) [Z ⊥⊥ UX and Z ⊥⊥ B]
=⇒ I(Z;A | UX) ≥ I(Z;A | B). (47)

Lemma 13 (Absence of counterfactual causal influence). Let Ŷ = h(Z,UX) where Z ⊥⊥ UX and Xc = g(Z,UX) for
some deterministic functions h(·) and g(·) respectively. Then CCI(Z → Ŷ ) = 0 implies Uni(Z : (Ŷ , UX)|Xc) = 0 and also
Uni(Z : Ŷ |Xc) = 0.

Proof of Lemma 13. CCI(Z → Ŷ ) = 0 is equivalent to I(Z; (Ŷ , UX)) = 0 (using Lemma 1). Now,

Uni(Z : (Ŷ , UX)|Xc)
(a)

≤ I(Z; (Ŷ , UX)) = 0,

where (a) holds from (2) in Section II-A and non-negativity of PID. Also,

Uni(Z : Ŷ |Xc)
(a)

≤ I(Z; Ŷ )
(b)

≤ I(Z; (Ŷ , UX)) = 0,

where (a) holds from (2) in Section II-A and non-negativity of PID terms, and (b) holds from the chain rule and non-negativity
of mutual information.

Lemma 14 (Zero-synergy property of deterministic functions). Let f(Z) be any deterministic function of Z, and let Xc be
any random variable. Then,

Syn(Z : (f(Z), Xc)) = Syn(Z : (Xc, f(Z))) = 0. (48)

This leads to Uni(Z : f(Z)|Xc) = I(Z; f(Z)|Xc) and Uni(Z : Xc|f(Z)) = I(Z;Xc|f(Z)).
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Proof of Lemma 14:. Recall from the definition of Uni(Z : B|Xc) that ∆ denotes the set of all joint distributions of (Z,B,Xc)
and ∆p is the set of all such joint distributions that have the same marginals for (Z,B) and (Z,Xc) as the true distribution, i.e.,

∆p = {Q ∈ ∆ : q(z, b) = Pr(Z = z,B = b) and q(z, xc) = Pr(Z = z,Xc = xc)}. (49)

We first show that if B = f(Z), then ∆p is only a singleton set which only consists of the true distribution. Observe that, for
any Q ∈ ∆p,

q(z, b, xc) = q(z)q(b|z)q(xc|b, z) [chain rule of probability]
= Pr(Z = z) Pr(B = b|Z = z)q(xc|b, z) [q(z, b) = Pr(Z = z,B = b)]

=

{
Pr(Z = z)q(xc|b, z), if b = f(z)

0, otherwise
[Pr(B = b|Z = z) = 1 only if b = f(z)]

=

{
Pr(Z = z)q(xc|z), if b = f(z)

0, otherwise
[b is entirely determined by z]

=

{
Pr(Z = z) Pr(Xc = xc|Z = z), if y = f(z)

0, otherwise
[q(xc|z) = Pr(Xc = xc|Z = z)]

= Pr(Z = z,B = b,Xc = xc). (50)

Thus, for B = f(Z),
Uni(Z : B|Xc) = min

Q∈∆p

IQ(Z;B|Xc) = I(Z;B|Xc). (51)

This leads to Syn(Z : (f(Z), Xc)) = I(Z; f(Z)|Xc) − Uni(Z : f(Z)|Xc) = 0 (using (3) in Section II-A). Note that,
Syn(Z : (f(Z), Xc)) is symmetric between f(Z) and Xc.

APPENDIX C
APPENDIX TO SECTION III

Here, we provide the proofs of the results as well as additional discussion to supplement Section III. For convenience, we
repeat the statements of the results.

A. Proof of Theorem 1 and Lemma 2

Theorem 1 (Properties). Properties 1-6 are satisfied by M∗NE = minUa,Ub
Uni((Z,Ua) : (Ŷ , Ub)|Xc) such that Ua = UX\Ub.

Proof of Theorem 1. Here, we formally show that our proposed measure satisfies all the four desirable properties. We restate
each of the properties again and then show that they are is satisfied.

Property 1 (Zero Influence). MNE should be 0 if CCI(Z → Ŷ ) = 0 (or equivalently, I(Z; Ŷ , UX) = 0).

M∗NE = min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc)

≤ Uni(Z : (Ŷ , UX)|Xc)

≤ I(Z; (Ŷ , UX)). [(2) in Section II-A and non-negativity of PID terms] (52)

Thus, I(Z; (Ŷ , UX)) = 0 implies MNE = 0.

Property 2 (Non-Exempt Statistically Visible Disparity). MNE should be strictly greater than 0 if Ŷ has any unique information
about Z not present in Xc. Thus, Uni(Z : Ŷ |Xc) > 0 should imply that MNE > 0.

M∗NE = min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc)

= Uni((Z,U∗a ) : (Ŷ , U∗b )|Xc) [for some (U∗a , U
∗
b )]

≥ Uni(Z : (Ŷ , U∗b )|Xc) [Using Lemma 9]

≥ Uni(Z : Ŷ |Xc). [Using Lemma 10] (53)

Thus, Uni(Z : Ŷ |Xc) > 0 implies that MNE > 0.
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Property 3 (Non-Exempt Masked Disparity). MNE should be non-zero in the canonical example of non-exempt masked
disparity: X1 = Z, X2 = UX , and Ŷ = Z ⊕ UX with Z,UX ∼ i.i.d. Bern(1/2) and X1 ∈ Xg. However, MNE should be 0 if
(Z,Ua)−Xc − (Ŷ , Ub) form a Markov chain for some subsets Ua, Ub ⊆ UX such that Ua = UX\Ub.

First we will show that M∗NE > 0 for the canonical example of non-exempt disparity where Ŷ = Z ⊕ UX1
where Z lies in

the non-critical/general features and UX1
can be either critical or non-critical.

Case 1: Xc = UX1
, Xg = Z and Ŷ = Z ⊕ UX1

with Z,UX1
∼ i.i.d. Bern(1/2).

We will check the value of Uni((Z,Ua) : (Ŷ , Ub)|Xc) for different choices of Ua to find the minimum.
For Ua = φ and Ub = UX1

, we have

Uni((Z,Ua) : (Ŷ , Ub)|Xc)

= Uni(Z : (Ŷ , UX1
)|Xc) [Substituting the variables]

= I(Z; (Ŷ , UX1
))− Red(Z : ((Ŷ , UX1

), Xc)) [Using (2) in Section II-A]

(a)
= I(Z; (Ŷ , UX1

))

= 1 bit. (54)

Here (a) holds because Red(Z : ((Ŷ , UX1
), Xc)) ≤ I(Z;Xc) (using (2) in Section II-A and non-negativity of PID terms), and

here I(Z;Xc) = 0.
For Ua = UX1

and Ub = φ, we have

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni((Z,UX1
) : Ŷ |Xc) [Substituting the variables]

= I((Z,UX1); Ŷ | Xc) [Lemma 14 as Ŷ is deterministic in Z,UX1 ]

= 1 bit. (55)

Thus, M∗NE = minUa,Ubs.t. Ua=UX\Ub
Uni((Z,Ua) : (Ŷ , Ub)|Xc) = 1 bit, which is strictly greater than 0.

Case 2: Xc = φ, Xg = (Z,UX1
) and Ŷ = Z ⊕ UX1

with Z,UX1
∼ i.i.d. Bern(1/2).

Since Xc = φ, we can use Property 4 (proved above) to compute

M∗NE = I(Z; (Ŷ , UX)) = 1 bit,

which is strictly greater than 0. Thus, our proposed measure is non-zero in the canonical example of non-exempt masked
disparity. Now, we move on to the proof of the next part of this property.

Suppose that (Z,Ua)−Xc − (Ŷ , Ub) form a Markov chain for some subsets Ua, Ub ⊆ UX such that Ua = UX\Ub. Then,
I((Z,Ua); (Ŷ , Ub) | Xc) = 0, implying that Uni((Z,Ua) : (Ŷ , Ub)|Xc) = 0 for those subsets Ua, Ub ⊆ UX because unique
information is a sub-component of conditional mutual information. Therefore,

M∗NE = min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc) ≤ 0.

Again, using the fact that unique information is non-negative, we have,

M∗NE = min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc) ≥ 0.

Thus, M∗NE = 0.

Property 4 (Absence of Exemptions). If no feature is deemed critical (Xc = φ), then a measure MNE should be equal to the
total disparity, i.e., I(Z; (Ŷ , UX)).

When Xc = φ, we have Uni(Z,Ua : Ŷ , Ub|Xc) = I(Z,Ua; Ŷ , Ub). We are required to show that

min
Ua,Ub s.t. Ua=UX\Ub

I(Z,Ua; Ŷ , Ub)

is equal to I(Z; (Ŷ , UX)). Note that,

I(Z,Ua; Ŷ , Ub) = H(Ŷ , Ub)−H(Ŷ , Ub | Z,Ua) [By Definition]

= H(Ŷ | Ub) + H(Ub)−H(Ub | Z,Ua)−H(Ŷ | Ub, Z, Ua) [Chain Rule]

= H(Ŷ | Ub) + H(Ub)−H(Ub | Z,Ua) [Ŷ is entirely determined by Z,Ua, Ub]

= H(Ŷ | Ub) [Z,Ua, Ub are mutually independent]

≥ H(Ŷ | UX) [conditioning reduces entropy]

= H(Ŷ | UX)−H(Ŷ | Z,UX) + I(Z;UX) [Ŷ entirely determined by Z,UX , and Z ⊥⊥ UX ]

= I(Z; Ŷ | UX) + I(Z;UX) [By Definition]

= I(Z; (Ŷ , UX)). [By Chain Rule] (56)
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Thus, I(Z,Ua; Ŷ , Ub) ≥ I(Z; (Ŷ , UX)) with equality when Ub = UX , Ua = φ.

Property 5 (Non-Increasing with More Exemptions). For a fixed set of features X and a fixed model Ŷ = h(Z,UX), a measure
MNE should be non-increasing if a feature is removed from Xg and added to Xc.

Let X ′c denote the additional feature that is to be removed from Xg and is to be added to Xc. From Lemma 11, we have,

Uni((Z,Ua) : (Ŷ , Ub)|(Xc, X
′
c)) ≤ Uni((Z,Ua) : (Ŷ , Ub)|Xc), (57)

for any Ua, Ub. Thus,

min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|(Xc, X
′
c)) ≤ min

Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc). (58)

Property 6 (Complete Exemption). MNE should be 0 if all features are exempt, i.e., Xc = X and Xg = φ.

Observe that, when X = Xc,

M∗NE = min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|X)

≤ Uni(Z,UX : Ŷ |X)

≤ I(Z,UX ; Ŷ | X) [(3) in Section II-A and non-negativity of PID terms]

= H(Ŷ | X)−H(Ŷ | Z,UX , X) [By Definition]

= 0. [Ŷ is a deterministic function of X] (59)

Lemma 2. The Markov chain (Z,Ua)−Xc − (Ŷ , Ub) implies that the following Markov chains also hold: (i) Z −Xc − Ŷ ;
(ii) (Z,Ua)−Xc − Ŷ ; and (ii) Z −Xc − (Ŷ , Ub).

Proof of Lemma 2. We note that the terms I(Z; Ŷ | Xc), I(Z; (Ŷ , Ub) | Xc) and I((Z,Ua); Ŷ | Xc) are all less than or equal
to I((Z,Ua); (Ŷ , Ub) | Xc) using the chain rule and non-negativity of conditional mutual information.

Thus, if I((Z,Ua); (Ŷ , Ub) | Xc) = 0, then all those three terms are also 0.

B. Supporting Derivations

Here, we include the supporting derivations for some of our statements in Section III-A and Section III-B.
Supporting Derivation 1: Uni(Z : Ŷ |Xc) > 0 for Canonical Example 2 (discrimination in admissions).

Proof. Recall that for this example, Xc = UX1 , Xg = Z ⊕UX2 , and Ŷ = UX1 +Z +UX2 with Z,UX1 , UX2 ∼ i.i.d. Bern(1/2).
The claim can be verified as follows:

Uni(Z : Ŷ |Xc) = I(Z; Ŷ )− Red(Z : (Ŷ , Xc)) [using (2) in Section II-A]

(a)

≥ I(Z; Ŷ )− I(Z;Xc)

(b)
= I(Z; Ŷ )

(c)
> 0,

where (a) holds because Red(Z : (Ŷ , Xc)) ≤ I(Z;Xc) (using (2) in Section II-A and non-negativity of all PID terms) and (b)
holds because I(Z;Xc) = 0. Lastly, (c) holds because Ŷ and Z are not independent of each other for this specific example.

Supporting Derivation 2: Uni(Z : Ŷ |Xc) > 0 for Canonical Example 6 (discrimination by unmasking).

Proof. Recall that for this example, Xc = Z ⊕ UX1 , Xg = UX1 and Ŷ = Z with Z,UX1 ∼ i.i.d. Bern(1/2).
The claim can be verified as follows:

Uni(Z : Ŷ |Xc) = I(Z; Ŷ )− Red(Z : (Ŷ , Xc)) [using (2) in Section II-A]

(a)

≥ I(Z; Ŷ )− I(Z;Xc)

(b)
= 1 bit,

where (a) holds because Red(Z : (Ŷ , Xc)) ≤ I(Z;Xc) (using (2) in Section II-A and non-negativity of all PID terms) and (b)
holds because I(Z;Xc) = 0.

Supporting Derivation 3: Uni(Z : (Ŷ , UX)|Xc) > 0 in Canonical Example 1.
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Proof. Consider Canonical Example 1.

Uni(Z : (Ŷ , UX)|Xc) = Uni(Z : (Z + UX1
+ UX2

, UX)|Z + UX1
) [Substituting the variables]

(a)

≥ Uni(Z : Z|Z + UX1)

(b)
= I(Z;Z | Z + UX1

)

(c)
> 0.

Here, (a) holds because Z is a deterministic function of (Z + UX1
+ UX2

, UX) and unique information is non-increasing
under local operations of B (see Lemma 10 in Appendix B). Next, (b) holds because if we consider ∆p, the set of joint
distributions of (Z,Z,Z + UX1), such that the marginals (Z,Z) and (Z,Z + UX1) are the same as the marginals of the
true joint distribution, we find that there is only one distribution in this set, which is exactly the true distribution. Thus,
Uni(Z : Z|Z + UX1

) = minQ∈∆p
IQ(Z;Z | Z + UX1

) = I(Z;Z | Z + UX1
). Lastly (c) holds because,

I(Z;Z | Z + UX1
) = H(Z|Z + UX1

)−H(Z|Z,Z + UX1
)

= H(Z|Z + UX1
)

=
∑

t=0,1,2

H(Z|Z + UX1
= t) Pr(Z + UX1

=t). (60)

Using the fact that Z,UX1
∼ i.i.d. Bern(1/2), we can compute H(Z|Z +UX1

= 0) = 0, H(Z|Z +UX1
= 1) = hb(1/2) = 1, and

H(Z|Z + UX1
= 2) = 0. Here, hb(·) is the binary entropy function [65] given by hb(p) = −p log2(p)− (1− p) log2(1− p).

Also note that, Pr(Z + UX1
= 1) = 1/2. So, I(Z;Z | Z + UX1

) = 0.5 bits.

Supporting Derivation 4: Exact computation of Uni(Z : Ŷ |Xc) and M∗NE for Canonical Example 2.

Uni(Z : Ŷ |Xc)
(a)
= I(Z; Ŷ )

= H(Z)−H(Z|Ŷ )

= H(Z)−H(Z|UX1
+ Z + UX2

)

= H(Z)−
∑

t=0,1,2,3

H(Z|UX1
+ Z + UX2

= t) Pr(UX1
+ Z + UX2

= t)

(b)
= 1− 3/4hb(1/3) bits. (61)

Here (a) holds because I(Z;UX1) = 0, implying Red(Z : (Ŷ , UX1)) = 0 as well (using (2) in Section II-A and non-negativity of
PID terms). Lastly, (b) holds because Z,UX1 , UX2 ∼ i.i.d. Bern(1/2). So, we can exactly compute H(Z|UX1 +Z+UX2 = 0) = 0,
H(Z|UX1

+ Z + UX2
= 1) = hb(1/3), H(Z|UX1

+ Z + UX2
= 2) = hb(1/3), and H(Z|UX1

+ Z + UX2
= 3) = 0. Here, hb(·)

is the binary entropy function [65] given by hb(p) = −p log2(p)− (1− p) log2(1− p). Also note that, Pr(UX1
+ Z + UX2

=
1) = Pr(UX1

+ Z + UX2
= 2) = 3/8.

Now, we will examine the value of Uni((Z,Ua) : (Ŷ , Ub)|Xc) for different choices of Ua to find the minimum.
Let Ua = φ (and Ub = UX ). Then,

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni(Z : (Ŷ , UX1 , UX2)|UX1)

(a)
= I(Z;UX1

+ Z + UX2
, UX1

, UX2
)

= I(Z;UX1
, UX2

) + I(Z;UX1
+ Z + UX2

| UX1
, UX2

)[Chain Rule]

= I(Z;UX1
+ Z + UX2

| UX1
, UX2

) [Z is independent of UX1
, UX2

]

= H(UX1
+ Z + UX2

| UX1
, UX2

)

−H(UX1
+ Z + UX2

| Z,UX1
, UX2

) [By Definition]

= H(UX1
+ Z + UX2

| UX1
, UX2

) [Deterministic Function]

=
∑

u1,u2∈{0,1}

H(UX1
+ Z + UX2

| UX1
= u1, UX2

= u2) Pr(UX1
= u1, UX2

= u2)

=
∑

u1,u2∈{0,1}

hb(1/2) Pr(UX1
= u1, UX2

= u2)

= 1 bit. (62)

Here (a) holds again because I(Z;UX1
) = 0, implying the redundant information is 0 as well (using (2) in Section II-A).
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Next, for Ua = UX2
(and Ub = UX1

), we have,

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni((Z,UX2
) : (Ŷ , UX1

)|UX1
)

(a)
= I((Z,UX2); (Ŷ , UX1))

= I((Z,UX2
);UX1

) + I((Z,UX2
); Ŷ | UX1

) [Chain Rule]

= I((Z,UX2
); Ŷ | UX1

) [Z,UX2
is independent of UX1

]

= H(UX1
+ Z + UX2

| UX1
)−H(UX1

+ Z + UX2
| UX1

, (Z,UX2
)) [By Definition]

= H(UX1
+ Z + UX2

| UX1
) [Deterministic Function]

=
∑

u1=0,1

H(UX1 + Z + UX2 | UX1 = u1) Pr(UX1 = u1)

= 1/4 log2 4 + 1/2 log2 2 + 1/4 log2 4

= 3/2 bit. (63)

Here (a) holds again because I((Z,UX2
);UX1

) = 0, implying the redundant information is 0 as well (using (2) in Section II-A).
Next, for Ua = UX1

(and Ub = UX2
), we have,

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni((Z,UX1
) : (Ŷ , UX2

)|UX1
)

(b)
= I((Z,UX1); (Ŷ , UX2) | UX1)

= I((Z,UX1
);UX2

| UX1
) + I((Z,UX1

); Ŷ | UX1
, UX2

) [Chain Rule]

= I((Z,UX1
); Ŷ | UX1

, UX2
) [Mutual Independence]

= H(Ŷ | UX1
, UX2

)−H(Ŷ | (Z,UX1
), UX1

, UX2
) [By Definition]

= H(Ŷ | UX1 , UX2) [Deterministic Function]

= H(UX1 + Z + UX2 | UX1 , UX2)

= 1 bit. (64)

Here (b) holds because Syn((Z,UX1
) : (A,B)) = 0 if one of the terms A or B is a deterministic function of (Z,UX1

) (using
Lemma 14 in Appendix B) and hence unique information becomes equal to the conditional mutual information (see (3) in
Section II-A).

Lastly, for Ua = UX (and Ub = φ), we have,

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = Uni((Z,UX1 , UX2) : Ŷ |UX1)

(b)
= I((Z,UX1

, UX2
); Ŷ | UX1

)

= H(Ŷ | UX1
)−H(Ŷ | (Z,UX1

, UX2
), UX1

) [By Definition]

= H(Ŷ | UX1) [Deterministic Function]

= 1/4 log2 4 + 1/2 log2 2 + 1/4 log2 4

= 3/2 bit. (65)

Here (b) holds again using Lemma 14 in Appendix B.
Thus, we obtain that,

M∗NE = min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc) = 1 bit. (66)

This is strictly greater than Uni(Z : Ŷ |Xc) = 1 − 3
4hb(

1/3) bits, accounting for both non-exempt statistically visible and
non-exempt masked disparities.

C. Discussion on Other Candidate Measures

Why the product of the two measures I(Z; Ŷ | Xc) and I(Z; (Ŷ , UX)) does not work?
One might recall that the measure I(Z; Ŷ | Xc) resolved most of the examples except in Canonical Example 3 where the

output Ŷ had no counterfactual causal influence of Z and yet this measure gave a false positive conclusion about non-exempt
disparity. This leads us to examine another candidate measure, i.e., product of I(Z; Ŷ | Xc) and I(Z; (Ŷ , UX)) where the latter
is always 0 whenever there is no counterfactual causal influence of Z on Ŷ .

Candidate Measure of Non-Exempt Disparity 4. MNE = I(Z; Ŷ | Xc)× I(Z; (Ŷ , UX)).
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Fig. 13: (Top) Notice that the blue full-circle denotes I(Z; (Ŷ , UX)) and the red full-circle denotes I(Z; (Ŷ , Xc)). The term
I(Z; (Ŷ , Xc)) is equal to the sum of I(Z;Xc) (green half-circle) and I(Z; Ŷ | Xc) (orange half-circle). The candidate measure
(MNE) is the intersecting volume between I(Z; (Ŷ , UX)) and I(Z; Ŷ | Xc). Next, we show pictorially that this intersecting
volume is given by R1−R2 where R1 is shown in the middle figure and R2 is shown in the rightmost figure. (Middle) Notice
that R1 = Uni(Z : (Ŷ , UX)|Xc). (Bottom) Notice that R2 = Uni(Z : (Ŷ , UX)|(Ŷ , Xc)).

Canonical Example 7. Let Z = (Z1, Z2), Xc = (Z1 ⊕ UX1
, Z2), Xg = (Z1, UX2

) and Ŷ = (UX1
, Z2 ⊕ UX2

) where
Z1, Z2, UX1 , UX2 are i.i.d. Bern(1/2).

This example should be exempt because Z2 already appears in Xc, and is hence exempt. However, both I(Z; (Ŷ , UX)) and
I(Z; Ŷ | Xc) are non-zero for this example. This leads us to examine another candidate measure, which is essentially the
common information-theoretic volume between I(Z; (Ŷ , UX)) and I(Z; Ŷ | Xc), i.e., a measure of the common reason that can
make both I(Z; (Ŷ , UX)) > 0 and I(Z; Ŷ | Xc) > 0 (overlapping volume).

Measure proposed in [1]: Information-theoretic sub-volume of the intersection between I(Z; Ŷ | Xc) and I(Z; (Ŷ , UX)):
The previous Canonical Example demonstrates that both these measures I(Z; Ŷ | Xc) and I(Z; (Ŷ , UX)) can be non-zero for

different reasons leading to a false positive conclusion using Candidate Measure 4. Intuitively, we need to identify the common
reason that makes them non-zero, if any. This motivates us to examine another candidate (Candidate Measure 5) which is the
information-theoretic sub-volume of the intersection between these two measures, as shown in Fig. 13.

Candidate Measure of Non-Exempt Disparity 5. MNE = Uni(Z : (Ŷ , UX)|Xc)−Uni(Z : (Ŷ , UX)|(Xc, Ŷ )).

Limitations of Candidate Measure 5: This measure does resolve many of the examples and satisfies several desirable properties
(discussed more in [1]). However, it fails to capture certain types of non-exempt masked disparity when the mask arises from
Xg, e.g., scenarios like Canonical Example 5 in Section III-B, where non-exempt masked disparity is present even though
Z −Xc − Ŷ form a Markov chain.

APPENDIX D
APPENDIX TO SECTION IV

A. Proof of Theorem 2 and Lemma 3

Theorem 2 (Non-negative Decomposition of Total Disparity). The total disparity can be decomposed into four components as
follows:

I(Z; (Ŷ , UX)) = MV,NE +MV,E +MM,NE +MM,E . (24)

Here MV,NE = Uni(Z : Ŷ |Xc) and MV,E = Red(Z : (Ŷ , Xc)). These two terms add to form I(Z; Ŷ ) which is the total
statistically visible disparity. Next, MM,NE = M∗NE −MV,NE where M∗NE is our proposed measure of non-exempt disparity
(Definition 7), and MM,E = I(Z; Ŷ , UX)− I(Z; Ŷ )−MM,NE . All of these components are non-negative.

Proof of Theorem 2. First consider MV,NE = Uni(Z : Ŷ |Xc) and MV,E = Red(Z : (Ŷ , Xc)). Because all PID terms are
non-negative by definition, both MV,NE and MV,E are non-negative.
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Now, consider MM,E . Observe that,

MM,E = I(Z; (Ŷ , UX))− I(Z; Ŷ )−MM,NE

= I(Z; Ŷ ) + I(Z;UX | Ŷ )− I(Z; Ŷ )−MM,NE [Chain Rule for mutual information]

= I(Z;UX | Ŷ )−MM,NE

= I(Z;UX | Ŷ )−M∗NE +MV,NE [By Definition]

= I(Z;UX | Ŷ )− min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc) + Uni(Z : Ŷ |Xc) [By Definition]

≥ I(Z;UX | Ŷ )−Uni(Z : (Ŷ , UX)|Xc) + Uni(Z : Ŷ |Xc)

≥ I(Z;UX | Ŷ )−Uni(Z : (Ŷ , UX)|Ŷ ) [Triangle Inequality (Lemma 8)]

≥ I(Z;UX | Ŷ )− I(Z; (Ŷ , UX) | Ŷ ) [(3) in Section II-A]

= I(Z;UX | Ŷ )− I(Z;UX | Ŷ )− I(Z; Ŷ | UX , Ŷ ) [Chain Rule for mutual information]
= 0. (67)

Lastly, we consider MM,NE .

MNE = min
Ua,Ub s.t. Ua=UX\Ub

Uni((Z,Ua) : (Ŷ , Ub)|Xc)−Uni(Z : Ŷ |Xc)

= Uni((Z,U∗a ) : (Ŷ , U∗b )|Xc)−Uni(Z : Ŷ |Xc) [for some (U∗a , U
∗
b )]

≥ Uni(Z : (Ŷ , U∗b )|Xc)−Uni(Z : Ŷ |Xc) [Using Lemma 9]

≥ Uni(Z : Ŷ |Xc)−Uni(Z : Ŷ |Xc) [Using Lemma 10]
= 0. (68)

Lemma 3 (Conditioning to Capture Masked Disparity). The following two statements are equivalent:
• Masked disparity I(Z; (Ŷ , UX))− I(Z; Ŷ ) > 0.
• ∃ a random variable G of the form G = g(UX) such that I(Z; Ŷ | G)− I(Z; Ŷ ) > 0.

Proof of Lemma 3. Before proceeding, note that, I(Z; Ŷ , UX) = I(Z;UX) + I(Z; Ŷ | UX) = I(Z; Ŷ | UX) because Z is
independent of UX . This also leads to the masked disparity being equal to I(Z; Ŷ | UX)− I(Z; Ŷ ).

First, we show that the first statement implies the second statement. Suppose that, masked disparity I(Z; Ŷ | UX)−I(Z; Ŷ ) > 0.
Then, we can choose the function G = UX such that I(Z; Ŷ | G)− I(Z; Ŷ ) > 0. Thus, the implication holds.

We will now show that the second statement also implies the first statement. First note that, using Lemma 12, for any
deterministic g(·), we always have I(Z; Ŷ | UX) ≥ I(Z; Ŷ | g(UX)). Now, suppose there exists a G = g(UX) such that
I(Z; Ŷ | G) > I(Z; Ŷ ). Then, I(Z; Ŷ | UX) ≥ I(Z; Ŷ | g(UX)) > I(Z; Ŷ ), implying masked disparity is present.

Thus, we prove that the first and second statements are equivalent.

APPENDIX E
APPENDIX TO SECTION VI

Lemma 4. [Fairness Properties of Uni(Z : Ŷ |Xc)] The measure Uni(Z : Ŷ |Xc) satisfies Properties 1, 2, 5, and 6.

Proof of Lemma 4. For Property 1, observe that,

CCI(Z → Ŷ ) = 0

=⇒ I(Z; Ŷ ) = 0

=⇒ Uni(Z : Ŷ |Xc) + Red(Z : (Ŷ , Xc)) = 0 [Using (2) in Section II-A]

=⇒ Uni(Z : Ŷ |Xc) = 0 [Non-negativity of PID terms]. (69)

Property 2 is trivially satisfied because the property itself requires that Uni(Z : Ŷ |Xc) > 0.
Property 5 is satisfied using Lemma 11 in Appendix B (originally derived in [59, Lemma 32]).
Property 6 is satisfied because Ŷ is a deterministic function of the entire X , and hence the Markov chain Z −X − Ŷ holds.

Thus I(Z; Ŷ | Xc) = 0, also implying Uni(Z : Ŷ |Xc) = 0.

Lemma 5. [Fairness Properties of I(Z; Ŷ | Xc)] The measure I(Z; Ŷ | Xc) satisfies Properties 2 and 6.
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Proof of Lemma 5. For Property 2, observe that

Uni(Z : Ŷ |Xc) > 0

=⇒ I(Z; Ŷ | Xc) > 0 [Using (3) in Section II-A and non-negativity of PID terms]. (70)

Property 6 is satisfied because Ŷ is a deterministic function of the entire X , and hence the Markov chain Z −X − Ŷ holds.
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