PHYSICAL REVIEW X 12, 031031 (2022)

Stirring by Staring: Measurement-Induced Chirality

Matthew Wampler®," Brian J.J. Khor,' Gil Refael, and Israel Klich®"'
'Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA
2Depam‘ment of Physics, California Institute of Technology, Pasadena, California 91125, USA

SInstitute Sfor Quantum Information and Matter, California Institute of Technology,
Pasadena, California 91125, USA

® (Received 20 August 2021; accepted 7 July 2022; published 24 August 2022)

In quantum mechanics, the observer necessarily plays an active role in the dynamics of the system,
making it difficult to probe a system without disturbing it. Here, we leverage this apparent difficulty as a
tool for driving an initially trivial system into a chiral phase. In particular, we show that by utilizing a
pattern of repeated occupation measurements we can produce chiral edge transport of fermions hopping on
a Lieb lattice. The procedure is similar in spirit to the use of periodic driving to induce chiral edge transport
in Floquet topological insulators, while also exhibiting novel phenomena due to the nonunitary nature of
the quantum measurements. We study in detail the dependence of the procedure on measurement
frequency, showing that in the Zeno limit the system can be described by a classical stochastic dynamics,
yielding protected transport. As the frequency of measurements is reduced, the charge flow is reduced and

vanishes when no measurements are done.
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I. INTRODUCTION

One of the most exciting goals of the field of quantum
dynamics is to be able to control the microscopic motion of
particles in a reliable and universal way. Floquet engineering,
coupled with our knowledge of topological quantum phases,
presented one such route and brought about new paradigms
for the quantum control of atomic and electronic motion. A
periodic modulation of the Hamiltonian was shown to induce
Chern bands in nontopological semiconductors as well as
graphene, and this remarkable feat was observed in a variety
of solid-state and atomic systems [1-3].

The range of drive-induced topological phases kept
growing over the past decade to include states with no
static analogs. A prominent example is the anomalous
Floquet Anderson insulator [4—7]. In this 2D phase, a chiral
edge state emerges alongside completely trivial bulk bands
in stark contrast to standard topological edge states which
are spectrally connected to bulk bands. Thus, such an
insulator avoids issues associated with fermion anomalies.
The trick behind this phase is a Floquet Hamiltonian
modulation which alters the hopping along a square lattice
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in a sequence that stirs the particles [8] in such a way that
bulk motion is canceled and edge states emerge.

An additional tool for control, however, is measure-
ment (see, e.g., Refs. [9,10]). “Dark-state” engineering was
explored as a means to stabilize a variety of phases through
measurement or decay processes that eliminate unwanted
elements in the wave function in order to stabilize a desired
steady state [11-15]. The challenge in this approach is to
engineer the necessary projectors. The combination of
periodic driving and dissipation has also been discussed
[16,17]. More recently, it was discovered that a combination
of unitary evolution and measurement could actually induce a
transition between highly entangled quantum states into low
entanglement classical-looking states at high measurement
frequency [18-25]. The study of the competing effects of
projective measurement and unitary evolution has also been
intensely researched in the context of quantum circuit models
[26—40]. The physics of measurement-induced phase tran-
sitions has been studied in the context of measurement
protected quantum orders [33], symmetry-protected topo-
logical phases [38], geometric phase [41], many-body locali-
zation [42], and various aspects of entanglement measures
[26,28,37,39,40,43]. There are also recent works which study
the entanglement transitions with measurement and unitary
evolution for free fermions hopping on a 1D chain [19,44,45].
In Ref. [46] the competing effects of unitary evolution
and measurements were studied using a closed hierarchy
approach. This method was used to describe nonequilibrium
steady states of current [46] as well as density fluctuations
(quantum wakes) following a moving particle detector and
other disturbances [47].
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FIG. 1. Measurement protocol. Red vertices indicate the set of
repeatedly measured sites, while black sites are unmeasured (the
free evolving sets, A;). The adjacent pairs of black vertices trace
out an inherently chiral (in this case clockwise) path along a
decorated square inside the Lieb lattice. The path can be made
counterclockwise if the order of the eight steps is reversed.

In this paper we combine these developments to show
that measurements can stabilize protected edge transport.
All that is needed is a sequence of local occupation
measurements which serve to herd particles into circular
orbits. These circular orbits then play a somewhat similar
role to the semiclassical orbits used to illustrate the
quantum Hall effect [48,49] where particles take closed
trajectories in the bulk while the presence of an edge
induces chiral motion via “skipping orbits” [50]. The result,
so-called stirring by staring, combines the pioneering ideas
of dark-state engineering with Floquet engineering to
generate exotic protected edge dynamics. As a simple

FIG. 2. Particle trajectories on the Lieb lattice under the
measurement protocol in the infinite measurement (Zeno) limit
with the perfect switching cycle (7/8 = z/2). In this regime,
evolution becomes deterministic and particle trajectories can be
seen explicitly. Particles localized in the bulk (red) at the start of
the protocol and particles initialized at sites of type 3 or 4
(orange) on the edge trace out a closed loop after no more than
five measurement cycles. On the other hand, particles initialized
at sites of type 1 (green) or 6 on the boundary at the beginning of
the protocol propagate along the edge, shifting by 1 dynamical
unit cell every two measurement cycles (see Appendix H for
details).

example, we show how this can be accomplished on a
Lieb lattice where chirality is achieved via an eight-step
measurement pattern.

We show that our measurement scheme, illustrated in
Fig. 1 and explained in detail below, yields no net transport
of particles in the bulk of the lattice. However, when the
system has an edge, it will induce movement of particles
along the edge; see Fig. 2. We explore the evolution of
particle density in the system using the closed hierarchy
method [46] both by direct numerical simulation as well as
by analytically studying the Zeno limit of rapid measure-
ments. The transport in the Zeno limit, and in a perturbative
regime of large but finite measurement frequency near the
Zeno limit, can be conveniently described as a stochastic
process. In this regime, we prove that the boundary trans-
port is protected from a wide range of edge perturbations
including random potentials, hopping energies, edge defor-
mations, and site removal. It is critical to note that such
protection cannot be achieved in a 1D system (with a
strictly local Hamiltonian), where a removal of a small set
of sites can simply disconnect the system into disjoint parts
with no possibility of transport.

II. PROTOCOL

The measurement cycle consists of eight steps taking an
overall time 7. At each step, we take repeated snapshots of
the presence of particles throughout a subset of the lattice,
while the system is allowed to evolve freely between
the measurements. We denote the set of sites not being
measured at step i by A; as marked in Fig. 1, and enforce
periodicity by setting A;, g = A;. Within each step, the
following procedure is followed.

(1) Particle densities at all sites in (A; N A;_;)° are

measured.

(2) Free evolution under a free hopping Hamiltonian

H = —thop D er) ajay for a time 7= (T/8n).
Here, n is an integer describing the measurement
frequency.

(3) Particle densities at all sites in A are measured.

(4) Steps 2 and 3 are repeated n times.

For convenience, throughout the paper we set #,,, = 1 and
h = 1. For clarity, we note here that in the rest of the paper
we refer to one complete iteration of the full eight-step
procedure as a “full measurement cycle” or sometimes
just “measurement cycle.” On the other hand, each of the
individual steps within the eight-step procedure are referred
to as a “measurement step.”

The steps detailed above correspond to a sequence of
maps on the density matrix p of the system. Two distinct
elements are involved in the dynamics. First, the mea-
surement of the presence of a particle at a lattice site r;
can be represented by the Krauss map p — n;pn; +
(1 =n))p(1 =n;), with n; =ala; the number operator
for the site. In between such measurement steps we have
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unitary evolution, which is described, as usual, via
p — UpU', where U is a many-body evolution operator.

To describe the densities and correlations in the system,
we concentrate on the iterative evaluation of two-point
correlation operators:

Grr’(t) = Tr[p(t)a;[ar’]' (1)

The two-point correlation has a closed evolution equation
under particle density measurements and free evolution
operations, as long as the free evolution is noninteracting
[46]. The change in G due to the Krauss map associated
with single site particle density measurement can be shown
to imply eliminating correlations between the measured site
and other sites [46]. Explicitly, one can check that the
measurement of particle presence at a lattice site r is
described by the map,

G- (1-P.)G(1-P,)+ PGPy, (2)

where P, = |r)(r| is the (single-particle) projector onto
site r. For noninteracting evolution, fermion operators
transform as U'afd = U aq’ ajl,, where U is called a single-
particle evolution. In this case G transforms as

G - UGU". (3)
In the case of interest for us here, we take U = e~'*H  where
H =3y [r)(r], describing free hopping of the fermions
on the lattice.

To study the repeated application of these maps to G, it is
convenient to view G as a vector in Hyoype = CV * where
N is the total number of fermion sites. We write
G = er’ Grr’|r> <l'/| - G= er’ Grr’|r> ® |l'/>, and the
evolution of G under the maps above can be notated as

G(t+T) = AG(1), (4)

where A is the (super)operator acting on G corresponding
to the eight-step measurement protocol given in the pre-
vious section. To construct A, we write the transformation
associated with free evolution and with particle measure-
ment, respectively, as

G- (UQU)G, (5)
G - .G, (6)
where 7, = (1 —= P.) ® (1 — P;) + P, ® P,. If all the sites

in a set A° are measured simultaneously, we find (see
Appendix D) that the combined operation on G becomes

[[m=M=> P @P+P,®Ps (7)

reA¢ reA¢

where

Py=) P (8)

reA

Note that (ITyG),» = G if both sites rr’ are in the
unmeasured set A; on the other hand, if r or ¥’ are in
A°, we have (I1,G),,.6,y. In other words, the correlations
between the measured sites A and all other sites are
destroyed while acting as an identity on the subspace A of
unmeasured sites. It is important to note that I, is itself a
projection operator on Hyyupe- 10 see this, note that the
operators 7z, form a set of commuting orthogonal projec-
tors, and consequently their product is an orthogonal
projector. Another useful property that follows is that

I_IBI—IA = HAmB- (9)

We are now in position to write the evolution operator A
describing a cycle of measurements and evolution as
described by the measurement protocol above. Explicitly,
after each cycle, which involves eight steps each repeated n
times, G - AG with

A = [, (U @ U)y,]"[My, (U @ U)ILy, ]
My, (U @ O)IL ). (10)

We now turn to analyze the dynamics described by this
operator.

III. ZENO LIMIT

We first study the operator A, of Eq. (10), in the limit of
many measurements per cycle (i.e., n = o0). The dynamics
under high frequency repeated measurements is known
as the quantum Zeno limit. The signature characteristic of
this regime is the freezing of evolution in the subspace
of measured sites. The Zeno effect (and the closely related
anti-Zeno effect) has a long history [51] with broad
applications including, for example, counterfactual quan-
tum computing and communication [52,53] and loss
suppression in ultracold molecule experiments with
strong, long-range dipolar interactions [54,55]. Over the
past 30 years, the Zeno and related effects have been
observed experimentally across a variety of physical
systems [56—62].

Let us first consider one of the eight steps in Eq. (10).
Formally expanding in = = (7//8n), we find that

M, (U ® U)L]" =14 (U} ® U}, + O(r?n). (11
Here, U = e~ and U, = e~""4, where Hy = P,HP,.

To get Eq. (11), we first expand each measurement or
evolution step in 7:
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(U ® U)I, = I, (I — iz[H ® I — 1 ® H)I, + O(%)
— HAe—iTHA[H(X)I—I@H]HAHA + 0(1.2>. (12)

A short calculation (see Appendix D) shows that
My HQI-IQH|N,=H, Py —P, ®H,; (13)
hence,

(U@ U, =TI, (Uy @ Uy, + O(7%),  (14)

which, using [U, ® Uy, T14] =0, gives Eq. (11). The
expression (11) shows that, in the Zeno limit, the average
evolution is dominated by local evolution in the region A
and suppresses hopping into the measured sites A°. Finally,
plugging Eq. (11) into Eq. (10), we find

A =T, (Ux ® Uj My nn, (U @ U4 )
- Tyyeu, (UL, ® UL T, + O(e%n).  (15)

Next, we use this result to formally describe evolution for N
cycles, when Nnt?> < 1, and nr is kept constant.

IV. STOCHASTIC DESCRIPTION
OF THE ZENO LIMIT

The local nature of the evolution in the Zeno limit (15)
leads to a striking simplification that we now describe. We
observe that, if one only follows the local particle density
given by the diagonal elements G,,, the evolution is given
by a periodic classical stochastic process. To see this, note
that the evolution of G in the Zeno limit consists of steps of
the form

G - UL GUY'. (16)

Each set A; consists of the union of pairs of neighboring
sites, the black sites in Fig. 1. Since the pairs forming A; are
disjoint, the evolution U, can only develop nontrivial
correlations between the sites of the same pair. Consider a
pair of such sites. After the evolution, all sites are measured
except for sites in A; N A;,, which is a set of isolated
points on the lattice; in particular, any correlations (non-
diagonal terms in G) developed between the pair of sites in
A; would be set to zero once the site in A; but notin A;; is
measured (long-range correlations between sites in A; N
A, are not annihilated, but will be annihilated in the next
step, and cannot be generated by any of the Uy,). Thus, if
we start with a diagonal G, it will remain diagonal
throughout the evolution. Moreover, even if we start with
some nonzero off-diagonal terms, these will be quickly
annihilated by the measurements. Thus we should be able
to describe the evolution, in the Zeno limit, just in terms of
the dynamics of the diagonal of G. Indeed, note that G, are

real non-negative numbers and the total number of particles
>+ Gy is a constant of motion, and thus G,, can be treated
(up to normalization) as probabilities, and the process
describing the evolution is a classic stochastic process.

Explicitly, if we represent the density at time ¢ as a vector
lg(#)) defined via

[9()]; = Gre (1), (17)

then in the Zeno limit the density evolves via Markovian
dynamics as

|9) = Reyelg)- (18)

where the transition matrix Ry consists of the eight steps
of our process; namely,

Rcyc — R8R7R6R5R4R3R2R1. (19)

The transition matrices R; are defined as follows. Each
unmeasured set A; is associated with two site types a, f that
are not being measured, as described in Fig. 3 (e.g., A, is
the union of all sites of types 1,3; A, is the union of sites
3,4; etc.). The unitary evolution associated with a given
unmeasured set A;, breaks into a sum of pairs of nearest
neighbors:

UAi = IA‘.' @ e”""*. (20)
Hapea,

Next, we apply the evolution (16) and then measure all sites
exceptthosein A; N A, , which has the effect of eliminating
off-diagonal elements in G. Consider one of the pairs of sites
(a,p) € A; and an initially diagonal G = diag(g;, ).
Applying the evolution (20) to get e™°Ge~™ and

20 5e 2e 5e °
1e 30 4o Go||le 3o 4o BGo | o

"
S

N
<

N
o o {10 30 4o Go| o o o
° ° °
® ° @ ®
° ° °
o o o °

FIG. 3. The unit cell for the measurement driven Lieb lattice
dynamics consists of two Lieb lattice unit cells. A choice for such
a dynamical unit cell is depicted.
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then setting the of-diagonal elements to zero, we get
a new diagonal matrix G with G = diag[cos®(n7)g, +
sin?(n7)gs, cos?(nt)g, + sin®(nt)g;]. In other words, a
particle located in one of the sites jumps to the other site
with probability

p = sin’(nt) = sin? <§> (21)

or stays with probability 1 — p. A particle in any other
position will not move. Therefore,

I-p p

) ®0ther sites L. (22)
p 1-p

Ri = 69(0%/})@4; <

This defines a periodically driven random walk. We note that
the transition matrices R; are bistochastic matrices, and thus
80 is Reyc.

A remark is in order here about Eq. (22). In a system with
a boundary, a set A; may include isolated sites that do not
have an adjacent neighbor also in A;. For example, consider
the boundary of the lattice in Fig. 3. The set A5 as defined
includes sites of type 4 and 2; however, looking at the lower
boundary, we see that sites of type 4 on the boundary do not
have an adjacent site of type 2. Similarly to the measured
sites, the dynamics for these isolated elements of A; are
frozen in the Zeno limit. In Eq. (22), the isolated elements
of A; are included in “other sites” since they are not part of
an adjacent pair in A;.

The particular choice T = 4z leads to p = 1. We refer to
this choice as “perfect switching.” In this case, Ry is a
permutation matrix, and the motion of particles is deter-
ministic. Of course, on the other hand, when 7 = 8,
p = 0 and there is no evolution at all.

We now consider the counting statistics of transport to
the right per cycle. To do so, we attach a counting field e
to each horizontal link, by modifying the above transition
matrices of Ry, R,, Rs, R¢ to

1_p ei(ip

_io ) @other sites I, (23)
p 1-p

R; = Oapen, (

e

whenever a, f# are nearest neighbors on a horizontal line,
such that « is to the left of f.

With the counting field present, we can introduce the
moment generating function,

(@)= e®IProby(w)Gi(0)

ij wii=j

= Z[Rcyc(9>N ijGii(0) = (I|Rc(0)]g0).  (24)

where w:i — j is a sequence of hops from site i to site j,
Proby(w) is the probability for the path w after N

measurement cycles using the transition matrix R, and
I(w) is the net number of hops in the x direction. In the next
line, |go) is the initial density distribution at 7 = 0 and |I) is
a vector whose elements are all 1 (corresponding to G = I).

We can use yy to compute quantities of interest, most
important of which is the flow, defined as the total
displacement per cycle, per unit length. The flow in the
x direction is given by

F = lim Fy, (25)

where Fy is the average flow in the first N cycles,

11

Fy= L—xﬁiaﬁﬂm(a)bzm (26)

with L, the length in the x direction.

A. Absence of bulk transport

In a translation invariant situation, it iS convenient to
work in momentum space. Here, we must use the “dynami-
cal unit cell” where the periodic evolution happens, which
is double the Lieb lattice’s original unit cell (see Fig. 3).

The Bravais lattice for the dynamical unit cell is a rotated
square lattice whose primitive Bravais vectors are marked
as a, b in Fig. 3. Below, we use n, m to denote the position
of the unit cell and p,v € {1,...,6} to denote the indivi-
dual atom inside the cell. We can then write

d*k )
Rilm.psm.v) = / Rk ) (27)

For example, Rs, is associated with A5, which includes sites
1,6 in neighboring dynamic unit cells; hence,

1—p 0000 peirha=b)
0 1000 0
0 0100 0
Rs(k.0) = 0 0010 0
0 0001 0
Ppei®Hk@b) 0 0 0 0 1—p

In the deterministic case, p = 1, we find for the full cycle:

1 0 0 0 0 0

0 0 e 0 0 0

0 0 0 €9 0 0
Rcyc (kv 9) =

0 0 0 0 1 0

0 0 0 0 0 ekbei0

0 e kbe=i® o 0 0 0

(28)
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It is possible to check that in this case, with p =1,
Reyc(k,0)° = I. Therefore, the system returns to itself after
5 cycles without generating any transport at all. For p # 1,
we find that ReTrR.(k, 6)" is a symmetric function of 6,
and here too, there is no transport after an arbitrary number
of cycles. To do so, we computed the characteristic poly-
nomial of the matrix R, (k, @) and found that it is equal to
that of R.y.(—k,—6), implying equality of eigenvalues of
the matrices.

It is also possible to check that for any k,, k, #0
(mod 27), ||Reyc|| < 1, which implies the longtime behav-
ior will be dominated only by the kK = 0 component of the
initial distribution. For k, =k, =0 and 6 = 0 there is a
single left and right eigenvector with eigenvalue 1, which is
the uniform density state |), implying that up to exponen-
tially small corrections, the current density (26) vanishes.

B. Edge transport

We have concluded that there is no bulk transport
associated with the stochastic process defined by R,
for any p. In this section, we contrast the situation to when
an edge is present. We implement the dynamics by
removing all sites beyond the physical edges (e.g., sites
with y < 1) and removing any transitions involving sites
beyond the edges from the dynamics. We start with the
deterministic case, namely, p = 1. In Fig. 2, we exhibit a
half plane with an edge. For p = 1, we can track the motion
of each particle and conclude that bulk particles perform a
closed loop. On the other hand, particles starting at the edge
divide into two sets: some of the edge particles (6,1) per-
form a motion along the edge, while some (3,4) perform a
closed loop. Thus, if we start from an initial state where
particles are placed along the edge, we will have particle
transport along the edge (particles 6,1 will move to the
right). This behavior is clearly analogous to the familiar
skipping orbits in the semiclassical description of the
integer quantum Hall effect.

What will happen away from p = 1? Consider first the
case of a strip with periodic boundary conditions in the long
direction (say, x) and open boundary conditions in the y
direction with L, dynamical unit cells in the y direction. Let
us consider states that are translationally invariant in the x
direction, allowing us to analyze the behavior in Eq. (26) in
momentum space. For any momentum k,, the transition
operator R can then be written as a 6L, X 6L, matrix and
analyzed. For 0 < p < 1, any initially positioned particle
has a finite probability to get to any other site within a finite
time and the only steady state distribution of R with
eigenvalue 1 is that of uniform density (in contrast to
the p = 1 case where additional steady states are possible).
This distribution will be approached exponentially fast,
governed by 1,", where , is the second largest eigenvalue
of R. In the uniform density distribution, there is no net
charge transfer. Indeed in that case, the charge transfer of

FIG. 4. Lieb lattice with lower half plane filled with particles (in
blue). Trace is taken of the half plane to the right of the green
dashed line. The flow across the barrier is then given by the
difference between the right half trace before and after evolution.

the upper and lower edge is carried in opposite directions
and cancels.

To get net transfer, we initially place particles only close to
one of the edges. In a finite width system, away from the
perfect switching cycle, we expect the charge transport to be
transient: once the measuring protocol starts, it will transport
a finite amount of particles while also spreading particles
toward the second edge, rapidly approaching the uniform
density state. Thus, to study the net particle flow associated
with a given edge we must work in the thermodynamic limit
(Ly — o0), or, more precisely, L, > T,,, where T,, is the
typical time it may take a particle to diffuse from the middle
of the sample to one of the edges.

We now numerically compute the number of particles F
that flow across a slice through the Lieb lattice during
evolution (see Fig. 4). In other words, we compare the
number of particles to the left of the slice before and after
the application of A, computing

Fsirn = [(AG)rr - Grr]' (29)

r to the left of slice

Perfect switching in Zeno limit

14

12

10

Flow
[e¢]

0 20 40 60 80 100
Measurement step (8 is Full Cycle)

FIG. 5. Charge transfer of the left half filled plane in the Zeno
limit with (7/8) = (x/2); namely, p = 1. In this section, the
Lieb lattice size for all simulations is 33 x 33 unless otherwise
stated. Here, precisely one particle is transported across the flow
cut during the eight-step measurement cycle.
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This is done by initiating the system at G(t = 0) = G,,
where G, is a diagonal matrix corresponding to particles
placed on the bottom half of a square lattice, with open
boundary conditions. We then iterate the map (10), comput-
ing AN G, increasing N but being careful to limit the number
of cycles to remain within the regime that no significant
density has had time to build up close to the upper edge.
The combination of the Zeno limit with the perfect
switching point p = 1 leads to a clearly quantized flow,
as is clearly exhibited in Fig. 5, and can be understood by
tracking the trajectories of the particles (see Fig. 2 and
Appendix H for details of the motion). Next we will consider
both the cases of p # 1 as well as the non-Zeno limit.

V. CHARGE TRANSPORT: BULK-EDGE
DECOMPOSITION

We now turn to calculating the charge transport per
measurement cycle in the Zeno limit with arbitrary p. The
result is described in Fig. 6. Since the bulk transport
vanishes for any p, the flow will still be completely
localized near the edge. Below, we exhibit an analytical
formula for the flow, Eq. (30), achieved using a bulk-
boundary decomposition in the limit L, — oo (and verify it
by direct numerical simulations of the dynamics on finite
systems). The resulting dependence on p is shown in Fig. 6,
exhibiting a crossover behavior ranging from the integer
transport at p = 1 to no transport when p = 0 (where the
dynamics is trivial, since all hopping is blocked).

We show how the edge flow can be written in terms of
bulk operators. This correspondence between the bulk
properties of the system and the charge transport on the
edge both provides a direct, efficient method to calculate
the flow and implies the robustness of the flow to any
perturbations near the boundary of the system.

To observe the flow we imagine an infinite strip in the x
direction. We partition the strip into 3 regions as shown in
Fig. 7. The bottom region of the system (below height #) is
completely filled with particles, while the top (above £) is
empty. In between | and 75, the particle density is left

1.0

o
[

o
[

= Analytic

o
»

Flow per cycle

e Simulation

o
[N

o
o

©
o

0.2 0.4 0.6 0.8 1.0
Hopping probability

FIG. 6. Charge transport per measurement cycle in the Zeno
limit. The analytic formula given in Eq. (30) is compared with the
transport found from direct simulation for a selection of hopping
probabilities.

arbitrary and will have no effect on the particle transport.
This choice isolates the flow along just the bottom edge of
the system, removing the equal and opposite contribution
from the flow along the top edge. Charge distributions of
this type are analogously used as a tool to calculate charge
flow along an edge in the context of Floquet topological
insulators; see, for instance, Ref. [63]. In Appendix E we
prove that

F = Fpui + Fegges (30)

where

(31)

. 1
Foux = l%}: [JB(k)TB(k)akyRB(k)} o

ap
and

1

Fedge = L_
x

(I|Pys3JPyco|T). (32)

Here, Ry is a bulk transition operator, equal to R, except
with periodic instead of open boundary conditions to make
it translational invariant. The transition operators Rp, Ry,
are used to define appropriate currents J = —idyRy.(6)|s—9
and, similarly, Jz = —idgR(0)|,_- Above, for an operator
A, translational invariant in x and y with respect to the unit
cell of the dynamics and with matrix elements A4(r,1’),
we define A(k),; as in Eq. (27). In the edge contribution,
P, is a projection operator on sites with y < 2. The above
expressions are proven starting from the expression
Eq. (26) for the flow F, after a finite number of cycles
and then taking the limit of large N while maintaining
N < ¢ and keeping ¢, — ¢ constant.

X

FIG. 7. Initial particle density chosen for the flow analysis. All
sites below the line y = ¢ are filled with particles (shown in
blue). All sites above y = ¢, are empty. The probability of
finding a particle at sites in between y = ¢ and ¢, is left arbitrary
as the charge density in this region will not affect the flow.
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To compute Fq,c We can write, explicitly,

L, 2 3
Fan =72 Y 22 Jalryi ). (3)
y=1

x aff xx'=1y=1

Calculating Fogq in this form we find with our measure-
ment protocol

Fedge = p2 + p3 + p4- (34)

The contribution of Fy to the transport can also be
evaluated readily, as it is made up of products and an
inverse of 6 x 6 matrices and so can be easily computed for
any p. In Fig. 6, we combine these two terms and compare
with direct simulations of the dynamics which exhibit
excellent agreement.

We now make the following especially important remark
that both Fy and F 4., depend only on the bulk properties
of the system (assuming weak constraints to be described
below). This implies that the flow is completely insensitive
to the details of the structure of the edge or local
perturbations. This can be argued in the following way.
We first note that

(I]T) = 0; (35)

i.e., there is zero total current in a uniform density system.
Equation (35) can be seen from the form of the dynamics
generated by our R matrices, Eq. (23), since

p

. 0
—109|9:0R,-|I> - @((1,/})64,- <_ 0

> @other sites I|I> =0

Now, consider a modification of the stochastic dynamics
along the bottom edge of the system still obeying the no
total current condition (35), and that there is no explicit
bulk current introduced (the latter restriction of no added
bulk currents may be removed upon closer analysis; see
Appendix F). Assuming the current operator is short-
ranged (with range of at most one unit cell), one can
rewrite the expression (32) as

1 1
Fedge:L_<I|JPyS2‘I>:_L_<I|JPy>2|I>; (36)

the expression on the right-hand side for Fqg. is indepen-
dent of how we vary J on the lower boundary. In other
words, the global zero current condition together with the
fact that the two edges responsible for the transport are
physically separated means that the contribution of Fg to
the flow must be protected. Together with the bulk nature of
Fuuk, we see indeed a protected flow. A more detailed
proof can be constructed as follows (with details in the
Appendix F). Consider the following matrix, describing the
perturbed dynamics:

R f—N+1_r <ty +(N+1
RM(I', l’/) _ ~<:y<: 1 ( ) y 2 ( )

R’ >0+ (N+1)

0 otherwise,

(37)

where R, R’ are real matrices such that R,, is doubly
stochastic; i.e., Ry is identical to Ry in the bulk but
modified near the boundary.

In Appendix F, we prove that the flow of Ry, is
equivalent to the flow of R . assuming that

(URy(0=0)= (1| and Ry(0=0)1)=|1), (38)

(Il/y|T) = 0, (39)

where J), is the current operator associated with R;,. The
first condition requires that R, preserves particle number
and that a uniform density is a steady state of the evolution;
this implies that the transition matrix remains doubly
stochastic. The second condition is the requirement that
no net current can flow in the completely filled system.
Note that the conditions (38) and (39) are certainly satisfied
whenever R, is a product of symmetric, doubly stochastic
matrices which encapsulates a large class of physically
relevant perturbations including, for example, local poten-
tials, local variations of the hopping parameter, and
removal of sites from the lattice. Indeed, repeating the
argument leading to Eq. (21), including the presence of
local potential terms (or variation in fy,,) in the local
Hamiltonian will just locally change the hopping proba-
bility p, retaining the form of the dynamics as in Eq. (22)
with modified p’s (i.e., still made of doubly stochastic
building blocks). Removal of sites can similarly be
described by taking p = 0 for transitions to the removed
site. Because of its stability, the flow may be viewed as a
continuous topological invariant for the system. We empha-
size that such protection cannot be achieved in 1D systems,
which can be easily disconnected by the removal of a
few sites.

A technical remark is in order here. The simulation result
in Fig. 6 was computed using Eq. (29) with the cut defined
as shown in Fig. 5. Therefore, the quantity computed in the
simulations Fg, [Eq. (29)] is equivalent to placing the
counting field € only at a subset of the horizontal edges as
opposed to placing € on all horizontal edges as was used in
defining R..(60) through Eq. (23). Accounting for the
number of edges included in the simulations—these
include 2 edges per two dynamical unit cells—and that
each dynamical unit cell involves 4 edges and that no
charge accumulation occurs, we find simply
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F

Fsim = Z > (40)

which was used in the comparison Fig. 6.

At this point, we wish to further discuss and clarify the
nature of the protection of the flow in Eq. (30) and in what
sense it is localized on the edge. In our setup, the charge
density is constant in a thick neighborhood of the edge. It is
important to emphasize, however, that the protection is not
simply due to Pauli blocking, but a feature of the classical
stochastic dynamics. This is evident when we consider the
flow when the density in the occupied (blue) region in
Fig. 7 is uniformly reduced to a lower density p < 1. In this
case (especially at low density), Pauli blocking is not
important for the dynamics. However, the linearity of our
stochastic dynamics shows that the new flow will be
F(p) = pF(p =1). Thus, the flow is protected (in the
sense explained above) for any filling p, in sharp contrast
with most topological insulators.

Another interesting feature of the charge transport here is
that the flow we compute (for p # 1) is the result of the
collective contribution of fermions that approach the edge,
travel along it for a time, and then diffuse away, rather than
the result of single wave packets traveling along the edge
without dispersing. An alternative perspective that can help
clarify the edge nature of the flow can be obtained by
adding a particle sink (source) where holes (particles) can
be injected (extracted) from the system. In this case holes
injected in the bulk will only contribute to charge flow (for
a finite time) when they reach the edge. Note that the edge
flow is due to unbound charges which are only a partial
contribution to the local currents in the system. For
example, in the completely filled system, since the density
is uniform and the R matrices are symmetric, there can be
no current on any link in the system. The net zero current is
the result of two different cancellations in the bulk and on
the edges of the system. In the bulk, the zero current is the
result of local current loops that give rise to a uniform

magnetization and the net current is V x M = 0. On the
edge, the net current is zero as a result of cancellation
between the bound currents, as in the bulk, and unbound
currents that exist only on the edge. The distinction,
however, between charge transport (which is localized
on the edge) and current (which is not localized on the
edge) is largely independent of the present work and similar
distinctions must be made, for example, in discussions of
Floquet topological insulators [63].

For topological insulators, a bulk gap implies that small
alterations to the bulk Hamiltonian will not destroy an edge
mode so long as symmetries protecting the topological
phase are preserved [64]. The actual value of the current
will depend on the density and on the details of how the
bands are filled. Similarly, here, small changes in the carrier
density will lead to changes in the magnitude of the flow,
but not its existence. Interestingly, unlike topological

insulators, the existence of the flow and the protection
we discuss are independent of the initial filling, which
manifests itself in the off-diagonal part of G when the
process starts.

On the other hand, while here the flow is robust (in the
sense explained above) at any density, its value is not in
general robust to arbitrary global changes of the parameters.
In our system, it is possible to continuously change the flow
by small extensive perturbations, say, changing the total
period T. However, as stated, the exact value for the flow of
the system during N cycles is protected against even strong
perturbations as long as these are far enough (i.e., within a
distance atleast N) from the interface with the region which is
not of uniform density (see Appendix F). Perturbations
within the interface region may alter total charge transport
values by inducing bulk currents in the system (see Fig. 15).

It is interesting to compare the behavior in the Zeno limit
with a Floquet topological insulator evolution in our system
which is equivalent to the one introduced in Ref. [65]. There,
aperiodic driving protocol is used as the source of chirality in
the system, where hoppings between neighboring sites are
sequentially turned on, but without any measurements.
Explicitly, the analogous evolution for us, A, is

Apiog = (U3, @ U3 )(UR, @ UL ) -+ (Ux, @ Uy). (41)

where we have adapted the five-step procedure on a square
lattice of Ref. [65] to an analogous eight-step procedure on a

Floquet Measurement
16 16
14 14
12 12
10 10
s 8
L6 6
4 4
2 2
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Measurement step
(@)
Floquet Measurement
1.0 W\/ WWIWAMM] 1.0
2081 Lo 0.8
% —— Third step
s 0.6 Eighth step 0.6
204 —— All other steps 0.4 —~r —
f» A == o 5 —— Third step
() Eighth step
To.2 W/\/\/\/W\\/ 0.2 —— All other steps
0.0 V 0.0 = .
0 10 20

30 40 50 0 10 20 30 40 50
Full measurement cycles

(b)

FIG. 8. (a) Charge transfer for Floquet system (left) and
measurement protocol in the Zeno limit (right) where, in both
cases, the hopping probability p = 0.96. (b) Charge transfer after
each measurement step for the Floquet system and measurement
protocol with hopping probability p = 0.96. Note the conver-
gence of the third and eighth step to half the total flow per cycle.
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Hopping probability = 0.98

Hopping probability = 0.94

1.0 L0V L e~—m78n—

q‘g,_o.s 0.8

:f 0.6 0.6

o — = —

%0-4 — Third step 0.4 —— Third step

© Eighth step Eighth step

o2 —— All other steps 0.2 —— All other steps
0.0 —— Sum 1 0.0l —— Sum i

0 20 40 60 80 100 120 140 0 10 20 30 40 50
Full measurement cycles

FIG. 9. Flow after each measurement step for hopping prob-
abilities p = 0.98 (left) and p = 0.94 (right). Note that in the
longtime limit, the third and eighth measurement step of both
hopping probabilities converge to half the total flow per meas-
urement cycle.

Lieb lattice. To simplify the comparison, we have neglected
the fifth “holding period” step and sublattice potentials in the
original Rudner et al. procedure [65].

Note the measurement protocol in the Zeno limit
[Eq. (15)] is precisely the Floquet evolution interspersed
with measurements between each step. Markedly, when
p = 1, the two evolutions are equivalent since the meas-
urement projectors act trivially in the perfect switching case
(when the initial G is diagonal).

We now turn to investigate the simulated dynamics in
this regime. Away from the perfect switching cycle, p = 1,
we find an interesting distinction between the Floquet
evolution and the Zeno limit of the measurement or
evolution cycle as shown in Fig. 8. Examining the charge
transfer on the resolution of the eight steps per cycle,
we find a double step structure in the charge transfer which
is not present in the corresponding Floquet evolution.
Namely, the third and eighth step of the measurement
protocol each contribute half of the total flow per complete
cycle. The reason for this double step structure is the
following. The dynamics of particles in the lattice are
governed by a classical, chiral random walk determined by
Ryc. The third and the eighth step are the only two steps
that cross the slice through the Lieb lattice, and thus all
transport must occur within these two steps. For a particle
starting far away from the slice, all information about
whether the particle would cross the slice during the third or
eighth step in the deterministic p = 1 case is lost. Hence, in
the longtime dynamics, a particle is equally likely to cross
the slice on either step leading to the observed double step
structure. We emphasize that this double step structure
holds for all p # 1 (see Fig. 9). However, similar to the
Floquet evolution, the flow per full measurement cycle
decreases away from 1 for p < 1, as shown in Fig. 6.

VI. AWAY FROM THE ZENO LIMIT

We now turn to consider the important question of
whether the flow is still present when the frequency of
measurements is reduced; i.e., we study the evolution under

== Near-Zeno

o
'S
.

e Simulation

Flow per cycle

0.0 °
0 2 4 6 8 10 12
Log,(Measurements per step)

FIG. 10. Flow per cycle as the measurements per step moves
away from the Zeno limit. Compared are the values found from
the near-Zeno limit approximation, Eq. (30) with the trans-
formation Eq. (42), and the flow found from direct simulation.
Both analytics and simulations are done in the perfect switching
cycle, ie., (T/8) = (n/2).

our measurement protocol away from the Zeno limit. In
Fig. 10 we show the flow as a function of log(n). We see
that the flow is reduced, but still finite as the measurement
frequency is reduced, crossing over from near constant
behavior at high frequency, to roughly logarithmic behav-
ior, F ~0.2log,(n) — 0.4 at low frequency n, with F ~ 0.2
particles per cycle at n = 8§ measurements per step.

The blue line in Fig. 10 represents an analytic perturbative
near-Zeno correction which fits the simulations remarkably
well for n > 64. To arrive at it, we start with Eq. (15), now
retaining terms up to and including order O(nz?). We prove
in Appendix G that the resultant evolution, to order O(nz?),
can still be completely described in terms of the dynamics of
the diagonal of G, with the classically stochastic transfer
matrices R; replaced by the matrices R,,, ; given by

an,i = Ri - }’lfzkl‘, (42)

where R; is the near-Zeno correction to R;. As in the Zeno
case, we define

an = an,Sanﬂan,éan,San,4an,3an.lan.l s (43)

Zeno Measurement

Near-Zeno approximation

FIG. 11. A comparison of, from left to right, the Zeno limit, the
full measurement protocol with 500 measurements per measure-
ment step, and the near-Zeno approximation with 500 measure-
ments per measurement step—all with (7/8) = (z/2). Plotted
are the local particle densities for a 33 x 33 site Lieb lattice after
51 measurement steps for the lower half filled plane setup given
in Fig. 4.
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FIG. 12. Flow after each measurement step for n = 60 and
n = 200. For both, (T/8) = (n/2).

and, in treating R,, only terms up to O(nz?) are kept
after combining Egs. (42) and (43). Finally, the blue line of
Fig. 10 is obtained by substituting Eq. (43) into Eq. (30). In
Appendix G, we solve for Eq. (43) explicitly, but here
we focus only on the flow resulting from R,,. We also
note here that, similar to the Zeno limit case, the flow in
the near-Zeno limit is protected to perturbations local-
ized on the boundaries (see Appendix F). Furthermore,
numerical simulations suggest that this protection per-
sists even in the low frequency measurement regime. We
leave a detailed investigation of this observation to
future work.

In Fig. 11 we show what the evolution of density in the
system away from the Zeno limit looks like. The main
feature is clearly the ability of particles to spread faster into
the bulk, since the evolution is not confined as effectively to
a sequence of two-site evolution steps as in the Zeno case.
We emphasize, however, that there is still significant charge
transport even far away from the Zeno regime (Fig. 10). On
the other hand, the double step structure is broken with the
eighth step in the measurement cycle providing an increas-
ing percentage of the total flow per cycle as the number of
measurements per measurement step is reduced. This is
shown, for example, in Fig. 12. This is because particles on
the edge are less affected by the move away from the Zeno
limit (as they have fewer neighboring sites to spread to).
Since the eighth measurement step hops across the flow cut
at the edge, a larger percentage of the Zeno limit flow is
retained.

VII. CONCLUDING REMARKS

In this work we presented a framework for inducing edge
modes via measurement protocols. Our work is comple-
mentary to the many recent advances in studying time
periodic systems such as topological Floquet insulators
[1,65]. The resultant behavior is a remarkable demonstra-
tion of the role of an observer in quantum mechanics as
fundamentally different from a classical observer.

Several remarks are in order regarding open problems.
First, we emphasize that the behavior analyzed in this paper
is that of the average transport and dynamics of densities
over all possible measurement outcomes. While it is

reasonable to expect that such an average would well
represent the typical behavior of the system for a typical
history of measurement outcomes (a “quantum trajectory”),
it is of much interest to study how well this expectation
holds by studying both fluctuations and the behavior of the
quantum trajectories in our system.

While we have concentrated on the study of the two-point
function G, it would also be interesting to establish the
limiting behavior of the many-body density matrix p as the
system is observed. In particular, this would allow us to study
the development of entropy and nontrivial correlation in the
system. Indeed, in recent works, e.g., Refs. [26-28,43], it has
been shown that certain protocols of repeated measurements
interspersed with free unitary evolution induce a phase
transition in the Rényi entropy dependant on the rate of
measurement. In our model, we have found that no two-point
correlations are generated up to first order in the expansion
away from the Zeno limit, keeping the system close to a
product state at all times. However, for low measurement
rates, these correlations are clearly generated. This suggests
phase transitions of mutual information measures with the
measurement rate may be present.

It is important to note that, while in this work we have
focused mainly on the Lieb lattice, our procedure may be
easily generalized to other lattices. For example, we provide a
similar eight-step protocol on a square lattice and a six-step
protocol on a “modified” kagome lattice in Appendix C.
Furthermore, we describe some restrictions on the kinds of
protocols that can be implemented on a given lattice.

We note that while our dynamics is driven by non-
interacting evolution, the formalism (see Ref. [46]) allows
for an arbitrary initial state, including interesting highly
correlated ones. Moreover, we expect that in the Zeno limit,
the inclusion of certain interactions may be efficiently
implemented with a proper modification of the current
treatment, which we leave for future work.

Finally, we suggest that a measurement protocol such as
ours, while challenging, may be experimentally realizable.
One possibility is the use of quantum dot arrays as the
underlying lattice [66]. Another promising direction is
quantum gas microscopes. Here, experiments working with
ultracold ®Li fermions have established the ability to resolve
particle presence at single sites; see, e.g., Refs. [67-69].
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APPENDIX A: CLOSED HIERARCHY FRAMEWORK

We begin with the most general evolution of a density matrix:
p— Lp) = ApAl > AlA, =1 (A1)
v v

This form ensures that p remains non-negative and the normalization condition on the Krauss operators A,
preserves Trp = 1.
The evolution of a general correlation function,

= i T a .
= Trpai1 el iy oG g

(A2)

il
<ai, . 'ai/l al(f,+1) " 'a’(/|+fz)>

is given by
i ¥ i ¥ Tt ¥
(@, ai,  .ai, )= . a a,  ..a;, )+ E TipAlla;,...a;, ai, @i, . Al (A3)
v

where we have used the normalization condition of A, . Note that the £ + ¢, correlation function is taken to a, in general,
higher-order correlation function leading to a hierarchy of equations. A tractable subset of this general evolution can be
found by taking the two-point function G;; = <a?a ), and asking under what set of Krauss operators does the hierarchy
close, i.e., G - G' = K(G).

In Ref. [46], it is shown that, for fermions on a lattice, the following Krauss operators form the complete set of all possible
operations that close the hierarchy on the two-point function level:

noninteracting evolution: £,(p) = UplU", (Ada)
particle detection: Lp ;(p) = nipn; + (1 —n;)p(1 — n;), (A4b)

soft particle injection: L, ;.(p) = €(2 = €)a,pa; + [1 — (1 = n;)]p[1 —e(1 = n;)], (Adc)
soft particle extraction: Loy, .(p) = €(2 — €)apal + (1 —en;)p(1 — en;). (A4d)

Here, U is assumed to describe noninteracting evolution, under which fermion operators transform as Z/{Tafl/{ e

U ,-jajf, where U is called a single-particle evolution. We have also denoted n; = a;"ai the number operator, and € is a
real number between 0 and 1. It is then a straightforward task of applying the anticommutation relations of a', a to find the

corresponding transformations on the two-point function:

noninteracting evolution: Ky(G); = (UGU"),;, (A5a)
particle detection: Kp ;(G) = P,GP;+ (1 —P;)G(1—-P;), (A5D)

soft particle injection: K, ;.(G) = (1-P;)G(1=P;)+ (1 —e)P;G(1 = P;) + (1 —¢)(1 — P;)GP;
+(1-¢€)*P,GP; +¢(2 —€)P;, (A5c¢)
soft particle extraction: oy o(G) =Ky (G) —€(2—€)P;. (A5d)

Here, P; = |i){i] is the (single-particle) projector onto site i.

We emphasize that no approximations are used in the derivation of Eq. (A5). The resulting simplicity arises completely
from the restricted set of allowed Krauss operations. Equations (A5a) and (A5b) are the starting point for our analysis of the
evolution of G in the paper.
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APPENDIX B: REMARKS ABOUT
STEADY STATES

What kind of steady states can we expect in a system like
ours where evolution and density measurements are inter-
twined? Here it is convenient to look at the steady states
of the correlation matrix G rather then the full density
matrix p. Let us consider how the Hilbert-Schmidt norm of
G changes under unitary evolution and measurements
Egs. (A5a) and (ASb) above. The Hilbert-Schmidt norm
is defined as

Gl i = TrG7G = |Gy, (B1)

ij

Clearly, ||G||yg is invariant under unitary evolution of G.
Particle measurements of G, as described by Eq. (2), on the
other hand, set to zero some of the matrix elements of G
and thus can only decrease ||G||;;- A necessary (though not
sufficient) condition for some Ggaqy to be a steady state of
some superoperator A, i.€., AGgeagy = Ggeady» 18 that the
Hilbert-Schmidt norm remains constant. This provides a
restriction on A. Any particle detection measurement
contained in A must act trivially, i.e., not eliminate any
matrix elements. Thus, without loss of generality writing
A =[], 1I;U; we require that

AGsteady = HHiUiGsteady = HUiGsteady' <B2)
i 1

Note that for our measurement procedure, this is clearly
true for any scalar matrix Geaqy. FOr @ Ggeaay With a
nonuniform diagonal (such as that of a single localized
particle) to be a steady state of the measurement protocol,
we can only satisfy Eq. (B2) in the Zeno limit with 7//8
fine-tuned to /2.

One possibility to find nonequilibrium steady states in
the system, as well as offer an insight into larger systems, is
to use particle injection and removal as was previously
done in Ref. [46]. To stabilize the system where the left half
is filled with particles, we may use a strip of width L, where
we start where we constantly try to inject particles from the
left, and extract any particle that arrives to the right of the
sample.

In the context of the present paper, we instead look at the
effective behavior of the system, when it is partially filled
and evolve over times which are long, but short compared
to the time it would take to arrive at the real uniform density
steady state.

APPENDIX C: MEASUREMENT PROTOCOL
ON OTHER LATTICES

In this appendix, we remark on lattices on which one can
perform the measurement protocol outlined above. Our
protocol is directly inspired by Floquet cycles where a

collection of pairs of neighboring sites are activated
at any given step. To mimic this type of dynamics, we
require the ability to isolate the activated pairs by per-
forming rapid measurements on neighboring sites. Thus, to
apply our protocol directly, we require that there is no
hopping amplitude to go between two distinct pairs.
For a Hamiltonian describing nearest neighbor hopping
on a lattice, this means that the edge distance between un-
measured pairs is at least two (see upper left-hand panel
in Fig. 13).

This restriction then rules out the simple cycle on a
square lattice originally introduced in Ref. [65], where
individual squares are traced out in four steps, as in this
case the edge distance between isolated pairs is only one.
This does not, however, mean a measurement protocol
cannot be implemented on a square lattice. A solution is to
increase the size of the cycle to an eight-step process that
traces out a path around clusters of four squares (see right-
hand panel in Fig. 13). Here, the edge distance between
activated pairs is 3, and thus they can be isolated using
rapid measurements. Note in this example protocol, there is
a site at the center of the cycle that is never activated, i.e.,
always measured. If this site is removed, we find precisely
the eight-step protocol on a Lieb lattice introduced in this
paper. This choice was made to minimize the number of
required measurements and to remove any spreading of
particles through these unactivated sites away from the
Zeno limit. We also here give an example of another
measurement protocol with six measurement steps on a
“modified” kagome lattice, as opposed to the eight steps for
our protocol on a Lieb lattice, as shown in Fig. 14.

o—0—% O

N N

N
A L/

VvV VvV V

FIG. 13. Upper left: the measurement protocols require the
bonds (red) between unmeasured sites (green) to be separated by
at least two edges. This allows for at least one measured site
(crossed) between them. Lower left: the naive attempt to perform
the measurement protocol on the kagome lattice does not work
because two of the surrounding measured sites around the
unmeasured sites (circled with red) overlap with other unmeas-
ured sites (denoted as the ends of black links). Right: An example
of a measurement protocol on a square lattice that satisfies the
requirement that the edge distance between unmeasured pairs
must be at least 2. If the unactivated (always measured) sites in
this protocol are removed, we have exactly the eight-step protocol
on a Lieb lattice introduced in this paper.
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FIG. 14. An example measurement protocol on a “modified” kagome lattice that utilizes six measurement steps (as opposed to the
eight-step procedure used on the Lieb lattice). The black bonds indicate free hopping pairs and measurement is indicated by blue
colored sites.

APPENDIX D: SOME DERIVATION DETAILS

In this appendix, we supply a few more details about the formulas used in the main text.
(I Proof of Eq. (7).

[[z=>_ P.®P.,+P,®P,

acA” acA”

We first note that if a # b, then p,p, =0, p,(1 — p,) = p,. Thus in the product,

Hﬂa:H[Pa®Pa+(1_Pa)®(l_Pa)]? (Dl)

a€A” a€A”

the term of the form P, ® P, can only appear in a product of the form (P, ® P,) [[secac.vza(l = Pu) ®
(1-P,)=P,® P, Nextnote that [ [,cac(1 — P,) = [[,es Pa- Therefore, [[,csc(1-P,) @ (1—P,) =P, QP,.
Combining these we get Eq. (7).

(IT) Derivation of Eq. (13).

M, HQ®I—1® HI,

= (ZPa®Pa+PA®PA)[H®I—I®H](ZP1,®Pb+PA®PA>

a€A* beA®
=(Py@P,)HQI—1QH|(PsQ P,)
:HA®PA_PA®HA’ (D2)

where Hy = P,HP,, and we used that if a,b € A°, then P,P, = P,P, = 0 and that P, P, = 6,,P,.

APPENDIX E: BULK-EDGE DECOMPOSITION: PROOF OF EQ. (30)

Our starting point is Eq. (26). Taking the d; derivative and using the doubly stochastic nature of Ry, (when 6 = 0), i.e.,
(I|R¢ye (0 = 0) = (I] and Ry (0 = 0)[I) = [T), we find
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1 ) 1 N-1
Fy = N—Lxlaaﬂ(lv(g)b:o = NL, lae<I|Rcyc( )G|I>|9:o = NL, ’;)HURcyc(e = 0)G|I>
1 & 1
= > (II[RE(6 = 0), GI[T) + - (11/G]1), (E1)
|
where we have defined J = —idyR.y.(6)|p— and G is a  if [r — 1’| > m. Therefore, looking at the matrix elements,

diagonal matrix representing the initial density distribution,
i.e., if written in matrix elements, G, 4(r. 1) = 430, v gu(T)
with r = (x,y) and r’ coordinates of the unit cell, a, f
internal sites, and g, (r) the initial probability for a particle
at a site indexed by (r, @). Below we suppress the angle
when describing R, (6 = 0), and will just write Rey..

In our setup (see Fig. 7), we fill the system in such a way
that g,(r) = 1 for y < ¢, and g,(r) = 0 for y > £,. Let us
define the set

Sp=A{ri¢,—m<y<& +m}. (E2)
The set §,, contains the interface between empty and full
region, “thickened” by a height m below and above. Let
also Pg be the projection on the set S, defined as in
Eq. (8). Explicitly,
1 Z,—-m<y,y<t,+m
P r,Y') =08,0. v
Smap ( ) apTrr { 0 otherwise.
(E3)

We now prove that we can freely move the projection
P to either side of the commutator [Rg’;c,G]; namely,
taking the range of R, to be short, range(R.,.) < 1, then
[REe. Gl

:PSm[R{:”yc,G] [RQ”YC,G}PSW =Pg, [R{:”yc,G]PSm.

(E4)
Proof.—Consider the commutator [Rf}.,G|. Note that

since R,p(r, 1) = 0if [r —r'| > 1, we have R (r,r') =0
|

we have ([Rye, G]) 5 (r, 1) = RE, (1, 17)[g5(r') = ga(r)] = 0
when |r — 1’| > m or gs(r') — g,(r) = 0. Thus, the matrix
elements of [R{|., G] can only be nonzero when simulta-
neously |r—r'| <m and g4(r') — g,(r) # 0. Let us check
when the matrix elements can be nonvanishing.

Since the system is filled in such a way that g,(r) = 1 for
y<?;, we see that if y <, —m, the condition that
r—r'| <m implies y’ < ¢, and in particular gs(r') =
ge(r) = 1, making the commutator vanish. Similarly, the
commutator will vanish if y > ¢, + m. And of course the
same considerations can be applied to y’. We conclude that
nonzero matrix elements are only possible if

¢y —m<y, v <t + m, (ES)

which implies Eq. (E4). [

Since the boundaries of the system are not included in
the §,, region, we may also replace the open boundary
conditions of R{j. with periodic ones, denoted by R, to get

[Rg;/cv G} PS [Rcych} = [R?;’ G]PS,n (E6)

Similarly, since J is short-ranged, far from the boundaries,
the matrix elements of J are identical to those of Jz=
—i0pRp(0)]g—o; namely, JPg = JpPg . This behavior
holds when m < min[¢; —range(J), L, — ¢, — range(J)],
which will always be assumed in the following treatment.
Thus, we have

(I[J[R&e. GI|T) = (I|J P, [Reye. G]|T) = (I|JpPs [RE. GI[T). (E7)
Substituting in Eq. (EIl), we get
& 1
(1125, (R G)IT) + - (1JGI1)
=0 X
1 N-1 1 N—-1 1
= NL. m=0<I|JBPS,,,R;’31G|I> ~NL E<I|JBPSH,G|I> +Z<I|JG|I>
N-1
(IJ5Ps, REGIT) + > (1|J(G - Py, G)|T), (E8)
= X m=0
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where in the last line we used that in the bulk (I|/zPs G|I) =
(IlJPs, G|T).
To proceed we note that

G_PS,,,G:(I_PS,,,)G:(Py<f]—m+Py>z,’2+m)G:Py<f]—m7

(E9)

where Py_s _,, Py~z, ., are projectors onto the regions
with y below y=¢,—m and y above y=7¢,+ m,
respectively. Also, we used that Py, _,G = Py_p _,
and P,_,,.,,G =0, which follow immediately from the
definition of G. Therefore,

| Nl | M=l
Py = D WP, REGI) S (0Pl

(E10)

We can further simplify as follows. Let us assume
there is no bulk current per unit cell. Then, if averaged
over a bulk strip whose width is a unit cell, we have
(IJ(Py<p,—m = Py<,—(m-1))|I) = 0, which, finally, taking
range(J) = 1, yields the form

N-1

> (1|JpPs, REGT)

1
Fy = £ (IP,l)
X

NL,

= Fpuik + Fedge- (E11)

In other words, we have split the charge transport into a
term that depends only on the bulk properties of the system,

] Nl
Foa = - 2 (WP, REGID). (B12)
and a term that can be computed near the edge,
1
Fedge = L_<I|JPVS2|I> (E13)

Let us consider the two terms separately.

Edge term F o4,. —We can efficiently compute (I|JR, o, |I),
which can be done explicitly by writing the transition
matrix for a ladder geometry of small extension in the y
direction. Note that due to the short-range nature of J, the
edge expression can be further reduced to (I|Py 3Py |1).

Doing so for our system on Mathematica we find with our
measurement protocol Fegee = p>+p’+ph

Bulk term Fy,;.—Assuming the translational invariance
of R, we can write F; expressed in k space by defining

the momentum states,
. a) / d*k
,a) = [ —=e
(27)*

1 :
k) =—) %
L2y
where V = L, L, is the number of unit cells. To proceed, let
us write the uniform density vector |I) as

=Y Ira) = VVY k= 0),

r.a

—ik'r|k>

(E14)

(E15)

Therefore, using the momentum representation in Eq. (E12)
we arrive at

Foux =57 ZZ IB) ay(

= 0|Ps, RyGlk =0)) .

X m=0 af
(E16)
To evaluate this expression, we need, explicitly,
(ke = 0. k|, G|k, = 0,K,); = "/"Zga e~ (kK
(E17)

where g,(y) = L7!' >~ g4(r). For the evolution, let us write
R% in the form

(ki = 0, ky| Rp |y = 0,K) 5 = i 11511 Z Capmoe™",

v=—m

(E18)

where the coefficients C,g,,, depend on the model. The
restriction —m < v < m follows from the range of R being
limited to m. Also note that

6(1/} 5k K
L

y C\—m<y<tr+m

(k| Ps, [K")5 = e"k=K)  (E19)

Putting these together, we have
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dk;,

(k=0lPs, REGk = 0)),, =— [ =2 > & Z Capmoe™ ngﬁ Je
i C1—m<y<tr+m v=—m
. S Y ([ Boemorin ) g
- L affmv gply
y —m<y<tr+m \/ v=—m
=7 Z Caﬂm1 Z gﬂ(y + U)
)’b——m £1—m<y<t£r+m
=7 Z Caﬂmt z gﬂ(y)
‘ v=—m C1—m~+v<y<tr+m+v
2
£ 3 | (St +m) -]
} v=—m y==C
1
=7 [zak (R (K)],p + (Z g5y ) R’”(k)]aﬂ} ‘ . (E20)
y y==¢, k=
Therefore, we have
N—
Foux = = 0|Pst§LG|k = O>)yﬂ
X m=f aﬁy
1 V=
_NZOZ}{ ak (RB(k))]aﬂ\k o+ <Zg gﬁ >[JB(k)(Rgl(k))]aﬂ|k0}' (E21)
m Y=t
Next, we note that in Eq. (E21) above, we can use
Zm Jp(K)(RE( maﬂ|k:0 =0. (E22)

This follows from the fact that R is a stochastic matrix, with Rz|I) = |I), and the assumption that there is no net current in
the uniform density system:

0 = (I|Jp|I) = (I|JpRE[T) = VZ Jp(k)(Rg (k Ll/)’|k=0 =0. (E23)
Let us define ¢, = 52: ¢, 9a(¥). We then have
Fru = ZZ{ i[Jp(K)0y, (RE (K))]apli—o + [/ (k) (R (K))]apcpli—o}- (E24)
m 0 af

Now, using repeatedly that Rg|I) = |I), we write

—ZZ{ /5 (k) 9, (R (k)] gplic=o + [/5(K) (R (K))]gpcplic—o}

m=0 ap
zﬁ;z{{ jz(‘; RY(K), Ry )Lﬂ o [JB(k)%Lﬂcﬁ H}
z,;{ aata (% [I_R[f(_kgik];fyz(k)_I>akyRB<k)Lﬁ R CE = ol )
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We now consider the large N limit. If we assume that ¢y
does not scale with N, the dominant term becomes

. (E26)

P = 15[ 70(0) ;g s Rat0)] |

ap ap

which is Eq. (31).

APPENDIX F: ROBUSTNESS OF FLOW

In this appendix, we show that the results of Appendix E
are robust to perturbations near the boundary (see Fig. 15).
Consider a perturbation of our stochastic dynamics Ry,
affecting regions away from the bulk of the sample where
we have our interface between the occupied and unoccu-
pied regions. Let us take it as described by a modified
dynamics given by R;,; of the form:

R r.r<t6—(N+1)

Rcyc fl_(N"Fl)Sry’r/ysz—F(N-l-l)
R rr2t6,+(N+1)

0

otherwise,

RM(r’ r/) =

(F1)

where R, R’ are real matrices such that R,, is doubly
stochastic; i.e., R, is identical to Reye in the bulk but
modified near the boundary. We now calculate the flow for

(a) (b)

4 =

(c) (d)

FIG. 15. An illustration of the stability of the flow. When the
initial state has uniform density below the line ¢, our N cycle
flow is only sensitive to perturbations occurring in the region
above 7; — N. For large N, the initial density configurations (a),
(b), and (c) will have the same N cycle transport despite having
drastic differences in R matrices (e.g., by introducing new edges
in the system drawn in black above). On the other hand, panel
(d) will have a reduced N cycle flow, since, in contrast with panel
(b), the partially filled area on the upper part of the new edge will
not be enough to cancel the flow below it.

this new matrix R, and show it is equivalent to that of R.
The situation is illustrated in Fig. 15.
Following Eq. (E1), we find the flow for R,, is

Fy

= NL. 10y (T|R}; (0)GIT). (F2)
where we have added the counting field such that [Ry, (6)] .5 =
[Ryf]gpe™P=)0 with a = (a,.a,) and f = (B,.f,). De-
fining a matrix which is only modified in the bottom edge,

ry.ry <€ —(N+1)
ryry2¢ —(N+1) (F3)

R
R;VI (I’, l'/) = Rcyc
0 otherwise,

we note that
R%G = R;{,}’ G. (F4)

This is because the only nonzero contributions to R};G come
from terms at Iy, r’y < ¢, + N; hence, we are free to replace
R — Ry intheregion ry, r, > £, 4 N without changing the
result. Combining Eq. (F2) with Eq. (F4) and following the
rest of the steps in Eq. (E1), we find

1 1
Fy= NTme:OHIJMR’M (0 =0),GJ|I) + L (117}, G|T),
(FS)

where J), is the current associated with R),.
Similar to Eq. (E4), we find

[Ry7 (0 =0),G] = [Rj7(0 = 0),G]Ps,.  (F6)

Note that in the region S,,, R}, is identical to R.,. We
therefore have

[Ry7 (0 = 0), G|Ps, = [R&ye(6 = 0),G|Ps,
= [R5(0 = 0),G]Ps, . (F7)

Repeating the steps that led to Eq. (E10), we find

1 N-1

> (1[J5Ps, REGIT)

* m=0

N-1

Z<I|J§V1Py<fl—m|l>' (FS)

m=0

+

NL,

Note that the first term in Eq. (F8) is equivalent to the Fy
contribution for R.,.. We now show that (1/NL,) >N~ x
(I} Py<r,—m|1) is equivalent to the Fq, contribution
from Ry.
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Note,
N-1 e 1
D WPy D) = = > (W3 Pe gy w1 + 7= (I3 Py, D)
X m=0 X =0 .
1 Nl .
= NL, 70<I|JPf1—N+m>y>fl—N|I> +L_X <I|J§‘4Py<f]_N|I>
1
et L—<I|J;WP);<,{1_N|I>, (F9)

where in the second and third lines we have used the
fact that J), is identical to J for y > #; — N and that Ry,
has no bulk transport implies (I|JP; _y. sz, —n|I) = 0.
Furthermore,

We now restrict ourselves to the case where (I|J},|I) =0,
i.e., no net current in the uniform density state. Note that
this is the case when R is a product of bistochastic
symmetric matrices, which includes many of the most

natural perturbations near the boundary (random potentials,

1 1 . T . .
— (4 Pyer,n|L) = — (LT (I = Pyoy _y)|1).  (F10) removed sites, variation in holpplng amplitude or measure-
L, L, ment step timing, etc.). In this case, we find

|
1 , 1 , 1
L_<I|JM(I - Py>f]—N)|I> = _L_<I|JMPy>f|—N|I> = _L_<I|JPy>f,—N|I>
1
= L_<I|JP}'32|I> = Fedge- (Fll)
X

We thus have that flow is unaffected by arbitrary evolution near the boundary. It is only dependent on the bulk properties
of the evolution. Note this argument also holds if Ry is replaced by R,,., the dynamics in the near-Zeno case. In other
words, transport is completely protected even (to first order) away from the Zeno limit. In fact, numerical simulations
suggest that edge transport is unaffected by perturbations near the boundary even in the low frequency measurement regime.
Proof of this, however, is still a work in progress.

APPENDIX G: NEAR-ZENO APPROXIMATION: DERIVATION OF R,,

Our starting point is Eq. (12). Let us now include terms of order up to O(z?), and rewrite it as

2
_ . T
My (U @ O)Ly, =Ty, = it[Hy, ® Pa, = Pa, ® Hy] =S T [H ® I =1 ® HP'TL, + O(7)

=TIy, (Uy, ® Uy )y, — %84 (H) + O(7), (G1)
where
£ (H) = %HA,- H®1+1® H —2H @ HI, — % H3 @ Py, + Py ® H), —2H, ® H,]. (G2)
From this we find
Iy, [y, (U ® Uy ", =Ty, [y (Uy, ® Uy )y, — 7284 (H)|'T,_, + O(n7?)
= HA,nA,-H(UX,» ® UAin)HA;nAi,l - TzHA,-nA,-H nilo(UTi ® UTi)gAi(H)
X (UG @ UMy na,, + O(°n). _ (G3)
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Adjacent

wElements ofA3 not #
in adjacent pair

FIG. 16. For any given A;, here we take without loss of
generality i = 3, some elements of A; have a neighbor also in
A;. Other sites in A; have no such nearest neighbor. As described
in Appendix G, all sites evolve in the near-Zeno approximation in
one of two ways. Lone sites in A; and nearest neighbors to lone
sites in A; (as shown in orange) exhibit an evolution given by
case 1 of the near-Zeno term of Eq. (G3). However, the evolution
for sites that are in an adjacent pair in A; or neighboring an
adjacent pair in A; (shown in purple) are governed by case 2.

The first term in Eq. (G3) corresponds to the evolution in
the Zeno limit and generates the operation R; on the
diagonal of G (as is explained in the Zeno limit
Sec. IV). The second term, as will be shown, corresponds
to the R; operations on the diagonal of G.

To see this, we start by noting that the operator Iy 4, ,
kills the correlations between every pair of sites, unless both
sites are within A; N A;, ;. Hence, off-diagonal elements
of G are only generated if (U} ® Uy )¢a,(H)(UA'™ ®
U Zl_‘l‘m) can generate correlations between the elements of
A; N A; . The operators (U, ® U, ) can only generate
correlations within the neighboring pairs inside of A;. Now,
note that the neighboring pairs within A; are separated by at

|

n—1

—D_(Pa®Pa) Y La(H)) _(Py @ Py)

a 0 b

We now simplify to find

a,b a,b

least three edges. Therefore, to generate correlations between
the neighboring pairs using a power of H, i.e., H”, we must
have at least v > 3. {4 (H), on the other hand, contains H
with a power of at most 2. It follows then that neither {4 (H)
nor (Uy, ® Uy,) can generate correlations between the
adjacent pairs in A;. Hence, any correlations generated by
(UL ®@UR )a,(H) (UL " ®@U~'~™) will be subsequently
killed by I4,4,, - We thus again have that the evolution of G
may be described fully by the dynamics of the diagonal of G.
Furthermore, we may replace Ilyn4,,, in Eq. (G3) with
an operator that simply kills all correlations, namely,
Zu P a ® P a

At this point in the analysis, there are two cases for the
action of (U,, ® U,,) which we now consider. For sites in
A¢ and for sites in A; without a neighboring site also in A;
(see Fig. 16), (U,, ® U,,) simply acts as an identity. On
the other hand, for sites in A; with a neighboring site also in
A;, (Uy, ® Uy)) will induce Rabi oscillations within the
neighboring pair inside of A;.

We further note that, for any given site b, the near-Zeno
term in Eq. (G3) only induces an interaction between b, the
closest element or pair in A; to b, and other nearest
neighbors to this element or pair in A; (see Fig. 16).
This is by nature of the fact that the H*> ® I and I ® H?
terms (the only terms that act nontrivially on sites outside of
A;)in {4 (H) are sandwiched by IT, , and so can only affect
nearest neighbors to any given element of A;. We therefore
find that we have two disjoint sets of sites, as given in
Fig. 16, that are affected by the near-Zeno term in Eq. (G3)
differently.

Case 1.—Here (orange sites in Fig. 16), the second term
in Eq. (G3) becomes

= —nt2) (P, ® P,){u,(H)(Py ® Py). (G4)
a,b
1
S0 ® PP ® ) = S (P, ® ) ST 12 ©1 419 12 =21 © HIN,
1
S [H3, ® Py + Py, ® H3 —2H, ® HAi]}(P,, ® P,)
(©5)

= deg(a)(P, ® P,) = > _P,HP, ® P HP,,
a ab

where we have used the fact that H, = P4, HP,, = 0 since in case 1 no element of A; has a nearest neighbor also in A;.

This implies that R; is given by

deg(a)

case 1: [Rj],, = { —1
0

fora=>
for a, b nearest neighbors (G6)

otherwise.
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Case 2.—Here (purple sites in Fig. 16), note that U, ® U A= e~"0, where we have defined

O=H, @ Py, — Py, @ Hy,. (G7)

Furthermore, the following relations hold,
0*=2(P,, @ Py, —Hy, ® Hy ) =2E, (G8)
OFE =20, (G9)

where we have defined E in the first line and used the fact that H 4, simply acts like the Pauli matrix o, for nearest neighbors
in the subspace A, i.e., H/Z‘i =P,.
It then follows that

_ . E E (0] E i (0]
— —lTO: - _ = 1_2 — 2 27 _ 2 32 ..
Uy, Uy =e (2 2>+ it (27) 2—1—3!(1) >+
E E o
= <I_E> +§cos21—i5sin21. (G10)
We therefore find
n—1 B _
(U3 @ U%)Ca, (H)(U = @ T
m=0
n—1
E E (0] E E 0] _
= 2 {(1 —§> +§COSZmT— iEsin2m1} $a(H) {(1 —§> —|—§cos2m1—|— iisin2m1 (UX,-_I ® Uzi—l)
E E nk E no o
= 1-—— H)(1-—= —— H)—+-— H)—|(l1-F 1 11
n(1-5)enn(1-3) +556 05 +53e S| 1B+ o), (G1)

where in the last line we have restricted ourselves to the perfect switching cycle, i.e., nz = (z/2), and neglected any terms in
the sum that are not at least O(n).
It is now convenient to rewrite {4 (H):

I I
{a(H) = ST [H? @ 1 +1 @ H? —2H @ HIly, — 5 [H}, ® Py, + Pa, ® H} —2H,, ® Hy |

1
=5 ZWH*®I+1QH?*-2HQ®H|Il,—-E=Z—-E, (G12)

where Z has been defined in the last line. We may now combine Egs. (G11) and (G12) to find

n—1
_ - E E nE E noO (0]
m m n—1—m n—1-m\ _ _ _ i _= _ — - — —_ —

> wre opmwr @ vt = |a(1-3)@-5(1-3) 155 z-p3 55 E-n5|0-p)

+0(1)
EZ ZE 3 1
1 1 1

- n{Z—i—E—E{E,Z} +§EZE—gOZO] +0(1), (G13)

where {E,Z} = EZ + ZE is the anticommutator.
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Now, combining Egs. (G3) and (G13), we find that the near-Zeno term in Eq. (G3) becomes

1 1 1
—n®y (P, ® P,)|Z+ E—{E.Z} + S EZE - _0ZO|(P, ® P},). (G14)
a.b 2 8 8
Considering each of the terms in Eq. (G14), we have
D> (P.®P)Z(P, ® Py) = Zdeg )Py ® Py) =Y  PHP, ® P HP), (G15)
a,b a,b
Y (Pa®PIEP, @ Py) =Y Py ®P,— > PHP, ® P HP,, (Gl16)

ab a€A;

S| E2)| (P @ Py =~

a,b

Z [deg(a) +

a€A;

1j(P,®P,)+

a,beA;

d deg(b
3 (HW%U)&H&@P“,{P}?
a,beA; 2

1
+= > (P,HP,®P,HP,+H.c.)

a€A° bEA;
1
= (P,HH, P, ® P,HH, P, +H.c.). (G17)
2 . i i
a€AC bEA;
> (P,®P,) [ EZE} P,®Py) =2 P,®P,—2 Y PHP,® P,HP,. (G18)
a.b a,beA;
1
> (P.®P,) {—gazo] (P,®P,)=-2> P,®P,+2 > P,HP,® P,HP,. (G19)
a.b a€A; a,beA;
Finally, we therefore have that R; becomes
deg(a) for a = b € A§
-1 for a, b € A{ and nearest neighbors
case 2: [ie lop = —% for (a € A; and b neighbors the adjacent pair in A; that includes a) or vice versa
w for a, b € A; and nearest neighbors
0 otherwise.
(G20)

Now, Egs. (G6) and (G20) may be combined to find the
full R;. Note that on the seam between case 1 and case 2, for
example, the element [R;],, with a as an orange site in
Fig. 16 and b as a blue site, case 1 and case 2 match as
required for consistency. Namely, the element [R;],, = —1
if a, b are nearest neighbors, and 0 otherwise. Furthermore,
note that R ; 1s a zero line-sum matrix. Hence, the rows and
columns of R, ; = R; — nz’R; sum to 1. Furthermore, this
implies the rows and columns of R,, also sum to 1 as
required for the usage of Eq. (30).

APPENDIX H: DETERMINISTIC HOPPING

Evolution in the Zeno limit with perfect swapping is
deterministic. Thus, edge transport and bulk localization
can be seen directly.

Figure 17 shows a Lieb lattice with two layers of
dynamical unit cells in the y direction and infinitely many
in the x direction. The following gives the transport of a
particle beginning at any given site after one complete
measurement cycle (represented by arrows). Note that after
no more than five measurement cycles, each particle returns
to either its initial position or its initial position shifted by
one dynamical unit cell to the right or left.

(a) Periodic boundary conditions

H 1-1

(i) 2—-12¢% 55545352

(iii)) 6 > 11 - 10-9->8—-6

@iv) 717
where e~ indicates a shift by one unit cell to the
right. Note that after five measurement cycles every
particle returns to its initial position in agreement with
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FIG. 17. Lieb lattice with two layers of dynamical unit cells in
the y direction. The bottom and top of the lattice represent a “flat”
and “jagged” edge configuration, respectively.

Rcyc(k, 0)> = I, as described below Eq. (28). Now we turn
to open boundary conditions.
(b) Open boundary conditions

i 1-6-le’

() 2—- 12¢ 55545352

(iii) 7 — 7

(iv) 8 = 1le’* — 10e’* — 9eks — Beiks

Note here that, in contrast to the periodic boundary

conditions, there is particle transport in the x direction.
Namely, particles at sites 1 and 6 shift to the right by one
unit cell every two measurement cycles, and particles at 8,
9, 10, and 11 shift to the left one unit cell every four
measurement cycles.

[1] Netanel H. Lindner, Gil Refael, and Victor Galitski, Floquet
Topological Insulator in Semiconductor Quantum wells,
Nat. Phys. 7, 490 (2011).

[2] J. W. Mclver, B. Schulte, F.-U. Stein, T. Matsuyama, G.
Jotzu, G. Meier, and A. Cavalleri, Light-Induced Anomalous
Hall Effect in Graphene, Nat. Phys. 16, 38 (2020)

[3] M. Nuske, L. Broers, B. Schulte, G. Jotzu, S. A. Sato, A.
Cavalleri, A. Rubio, J. W. Mclver, and L. Mathey, Floguet
Dynamics in Light-Driven Solids, Phys. Rev. Research 2,
043408 (2020).

[4] Paraj Titum, Netanel H. Lindner, Mikael C. Rechtsman, and
Gil Refael, Disorder-Induced Floquet Topological Insula-
tors, Phys. Rev. Lett. 114, 056801 (2015).

[5] Arijit Kundu, Mark Rudner, Erez Berg, and Netanel H.
Lindner, Quantized Large-Bias Current in the Anomalous
Floquet-Anderson Insulator, Phys. Rev. B 101, 041403(R)
(2020).

[6] Frederik Nathan, Dmitry Abanin, Erez Berg, Netanel H.
Lindner, and Mark S. Rudner, Anomalous Floquet Insula-
tors, Phys. Rev. B 99, 195133 (2019).

[7] Hoi Chun Po, Lukasz Fidkowski, Takahiro Morimoto,
Andrew C. Potter, and Ashvin Vishwanath, Chiral Floquet
Phases of Many-Body Localized Bosons, Phys. Rev. X 6,
041070 (2016).

[8] Mark S. Rudner, Netanel H. Lindner, Erez Berg, and
Michael Levin, Anomalous Edge States and the Bulk-Edge
Correspondence for Periodically Driven Two-Dimensional
Systems, Phys. Rev. X 3, 031005 (2013).

[9] Sthitadhi Roy, J. T. Chalker, I. V. Gornyi, and Yuval Gefen,
Measurement-Induced Steering of Quantum Systems, Phys.
Rev. Research 2, 033347 (2020).

[10] Simon Lieu, Max McGinley, and Nigel R. Cooper, Tenfold
Way for Quadratic Lindbladians, Phys. Rev. Lett. 124,
040401 (2020).

[11] T. Miiller, S. Diehl, and M. Buchhold, Measurement-
Induced Dark State Phase Transitions in Long-Ranged
Fermion Systems, Phys. Rev. Lett. 128, 010605 (2022).

[12] Shengqgi Sang and Timothy H. Hsieh, Measurement-
Protected Quantum Phases, Phys. Rev. Research 3,
023200 (2021).

[13] Jan Carl Budich, Peter Zoller, and Sebastian Diehl, Dis-
sipative Preparation of Chern Insulators, Phys. Rev. A 91,
xxx (2015).

[14] C.-E. Bardyn, M. A. Baranov, C.V. Kraus, E. Rico, A.
Imamoglu, P. Zoller, and S. Diehl, Topology by Dissipation,
New J. Phys. 15, 085001 (2013).

[15] A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller,
Reservoir Engineering and Dynamical Phase Transitions in
Optomechanical Arrays, Phys. Rev. A 86, 033821 (2012).

[16] Piotr Sierant, Giuliano ChiriacO, Federica M. Surace,
Shraddha Sharma, Xhek Turkeshi, Marcello Dalmonte,
Rosario Fazio, and Guido Pagano, Dissipative Floquet
Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-Ion Chains, Quantum 6, 638 (2022).

[17] Longwen Zhou and Jiangbin Gong, Non-Hermitian
Floguet Topological Phases with Arbitrarily Many Real-
Quasienergy Edge States, Phys. Rev. B 98, 205417 (2018).

[18] Yaodong Li and Matthew P. A. Fisher, Statistical Mechanics
of Quantum Error Correcting Codes, Phys. Rev. B 103,
104306 (2021).

[19] M. Buchhold, Y. Minoguchi, A. Altland, and S. Diehl,
Effective Theory for the Measurement-Induced Phase Tran-
sition of Dirac Fermions, Phys. Rev. X 11, 041004 (2021).

[20] Yimu Bao, Soonwon Choi, and Ehud Altman, Theory of the
Phase Transition in Random Unitary Circuits with Mea-
surements, Phys. Rev. B 101, 104301 (2020).

[21] Amos Chan, Rahul M. Nandkishore, Michael Pretko, and
Graeme Smith, Unitary-Projective Entanglement Dynam-
ics, Phys. Rev. B 99, 224307 (2019).

[22] Michael J. Gullans and David A. Huse, Dynamical Puri-
fication Phase Transition Induced by Quantum Measure-
ments, Phys. Rev. X 10, 041020 (2020).

[23] Chao-Ming Jian, Yi-Zhuang You, Romain Vasseur, and
Andreas W. W. Ludwig, Measurement-Induced Criticality
in Random Quantum Circuits, Phys. Rev. B 101, 104302
(2020).

[24] M. Szyniszewski, A. Romito, and H. Schomerus, Entangle-
ment Transition from Variable-Strength Weak Measure-
ments, Phys. Rev. B 100, 064204 (2019).

[25] A.Zabalo, M. J. Gullans, J. H. Wilson, R. Vasseur, A. W. W.
Ludwig, S. Gopalakrishnan, David A. Huse, and J. H.
Pixley, Operator Scaling Dimensions and Multifractality
at Measurement-Induced Transitions, Phys. Rev. Lett. 128,
050602 (2022).

[26] Brian Skinner, Jonathan Ruhman, and Adam Nahum,
Measurement-Induced Phase Transitions in the Dynamics
of Entanglement, Phys. Rev. X 9, 031009 (2019).

031031-23



WAMPLER, KHOR, REFAEL, and KLICH

PHYS. REV. X 12, 031031 (2022)

[27] Yaodong Li, Xiao Chen, and Matthew P.A. Fisher,
Quantum Zeno Effect and the Many-Body Entanglement
Transition, Phys. Rev. B 98, 205136 (2018).

[28] Yaodong Li, Xiao Chen, and Matthew P. A. Fisher,
Measurement-Driven Entanglement Transition in Hybrid
Quantum Circuits, Phys. Rev. B 100, 134306 (2019).

[29] Michael J. Gullans and David A. Huse, Scalable Probes of
Measurement-Induced Criticality, Phys. Rev. Lett. 125,
070606 (2020).

[30] Soonwon Choi, Yimu Bao, Xiao-Liang Qi, and Ehud
Altman, Quantum Error Correction in Scrambling
Dynamics and Measurement-Induced Phase Transition,
Phys. Rev. Lett. 125, 030505 (2020).

[31] Romain Vasseur, Andrew C. Potter, Yi-Zhuang You, and
Andreas W.W. Ludwig, Entanglement Transitions from
Holographic Random Tensor Networks, Phys. Rev. B 100,
134203 (2019).

[32] Chao-Ming Jian, Yi-Zhuang You, Romain Vasseur, and
Andreas W. W. Ludwig, Measurement-Induced Criticality
in Random Quantum Circuits, Phys. Rev. B 101, 104302
(2020).

[33] Shengqgi Sang and Timothy H. Hsieh, Measurement-
Protected Quantum Phases, Phys. Rev. Research 3,
023200 (2021).

[34] Davide Rossini and Ettore Vicari, Measurement-Induced
Dynamics of Many-Body Systems at Quantum Criticality,
Phys. Rev. B 102, 035119 (2020).

[35] Aidan Zabalo, Michael J. Gullans, Justin H. Wilson, Sarang
Gopalakrishnan, David A. Huse, and J. H. Pixley, Critical
Properties of the Measurement-Induced Transition in
Random Quantum Circuits, Phys. Rev. B 101, 060301(R)
(2020).

[36] Ruihua Fan, Sagar Vijay, Ashvin Vishwanath, and
Yi-Zhuang You, Self-Organized Error Correction in
Random Unitary Circuits with Measurement, Phys. Rev.
B 103, 174309 (2021).

[37] Matteo Ippoliti, Michael J. Gullans, Sarang Gopalakrishnan,
David A. Huse, and Vedika Khemani, Entanglement Phase
Transitions in Measurement-Only Dynamics, Phys. Rev. X
11, 011030 (2021).

[38] Ali Lavasani, Yahya Alavirad, and Maissam Barkeshli,
Measurement-Induced Topological Entanglement Transi-
tions in Symmetric Random Quantum Circuits, Nat. Phys.
17, 342 (2021).

[39] Shengqi Sang, Yaodong Li, Tianci Zhou, Xiao Chen,
Timothy H. Hsieh, and Matthew P. A. Fisher, Entanglement
Negativity at Measurement-Induced Criticality, PRX Quan-
tum 2, 030313 (2021).

[40] Bowen Shi, Xin Dai, and Yuan-Ming Lu, Entanglement
Negativity at the Critical Point of Measurement-Driven
Transition, arXiv:2012.00040.

[41] Valentin Gebhart, Kyrylo Snizhko, Thomas Wellens,
Andreas Buchleitner, Alessandro Romito, and Yuval
Gefen, Topological Transition in Measurement-Induced
Geometric Phases, Proc. Natl. Acad. Sci. U.S.A. 117,
5706 (2020).

[42] Oliver Lunt and Arijeet Pal, Measurement-Induced
Entanglement Transitions in Many-Body Localized Systems,
Phys. Rev. Research 2, 043072 (2020).

[43] Amos Chan, Rahul M. Nandkishore, Michael Pretko, and
Graeme  Smith, Unitary-Projective ~ Entanglement
Dynamics, Phys. Rev. B 99, 224307 (2019).

[44] Xiangyu Cao, Antoine Tilloy, and Andrea De Luca,
Entanglement in a Fermion Chain under Continuous
Monitoring, SciPost Phys. 7, 24 (2019).

[45] O. Alberton, M. Buchhold, and S. Diehl, Entanglement
Transition in a Monitored Free-Fermion Chain: From
Extended Criticality to Area Law, Phys. Rev. Lett. 126,
170602 (2021).

[46] Israel Klich, Closed Hierarchies and Non-Equilibrium
Steady States of Driven Systems, Ann. Phys. (Amsterdam)
2019) 66 ,404).

[47] Matthew Wampler, Peter Schauss, Eugene B. Kolomeisky,
and Israel Klich, Quantum Wakes in Lattice Fermions,
Phys. Rev. Research 3, 033112 (2021).

[48] K.v. Klitzing, G. Dorda, and M. Pepper, New Method for
High-Accuracy Determination of the Fine-Structure
Constant Based on Quantized Hall Resistance, Phys.
Rev. Lett. 45, 494 (1980).

[49] Jainendra K. Jain, Composite Fermions
University Press, Cambridge, England, 2007).

[50] The analogy is incomplete, however, in the Zeno limit of
rapid measurements where the measurement-induced chi-
rality is a completely classical effect (as opposed to the
quantum Hall effect where coherence plays a key role). The
effect, however, does persist in the regime of less frequent
measurements where the consequences of quantum co-
herence become important.

[51] P. Facchi and S. Pascazio, Quantum Zeno Dynamics:
Mathematical and Physical Aspects, J. Phys. A 41,
493001 (2008).

[52] Onur Hosten, Matthew T. Rakher, Julio T. Barreiro,
Nicholas A. Peters, and Paul G. Kwiat, Counterfactual
Quantum Computation through Quantum Interrogation,
Nature (London) 439, 949 (2006).

[53] Yuan Cao, Yu-Huai Li, Zhu Cao, Juan Yin, Yu-Ao Chen,
Hua-Lei Yin, Teng-Yun Chen, Xiongfeng Ma, Cheng-Zhi
Peng, and Jian-Wei Pan, Direct Counterfactual Communi-
cation via Quantum Zeno Effect, Proc. Natl. Acad. Sci.
U.S.A. 114, 4920 (2017).

[54] Bo Yan, Steven A. Moses, Bryce Gadway, Jacob P. Covey,
Kaden R. A. Hazzard, Ana Maria Rey, Deborah S. Jin, and
Jun Ye, Observation of Dipolar Spin-Exchange Interactions
with Lattice-Confined Polar Molecules, Nature (London)
501, 521 (2013).

[55] B. Zhu, B. Gadway, M. Foss-Feig, J. Schachenmayer,
M. L. Wall, K.R. A. Hazzard, B. Yan, S. A. Moses, J.P.
Covey, D.S. Jin, J. Ye, M. Holland, and A.M. Rey,
Suppressing the Loss of Ultracold Molecules via the
Continuous Quantum Zeno Effect, Phys. Rev. Lett. 112,
070404 (2014).

[56] Wayne M. Itano, D.J. Heinzen, J.J. Bollinger, and D.J.
Wineland, Quantum Zeno Effect, Phys. Rev. A 41, 2295
(1990).

[57] M. C. Fischer, B. Gutiérrez-Medina, and M. G. Raizen,
Observation of the Quantum Zeno and Anti-Zeno
Effects in an Unstable System, Phys. Rev. Lett. 87,
040402 (2001).

(Cambridge

031031-24



STIRRING BY STARING: MEASUREMENT INDUCED ...

PHYS. REV. X 12, 031031 (2022)

[58] Erik W. Streed, Jongchul Mun, Micah Boyd, Gretchen
K. Campbell, Patrick Medley, Wolfgang Ketterle, and
David E. Pritchard, Continuous and Pulsed Quantum Zeno
Effect, Phys. Rev. Lett. 97, 260402 (2006).

[59] Svetlana V. Kilina, Amanda J. Neukirch, Bradley F.
Habenicht, Dmitri S. Kilin, and Oleg V. Prezhdo, Quantum
Zeno Effect Rationalizes the Phonon Bottleneck in Semi-
conductor Quantum Dots, Phys. Rev. Lett. 110, 180404
(2013).

[60] E. Schifer, 1. Herrera, S. Cherukattil, C. Lovecchio, F.S.
Cataliotti, F. Caruso, and A. Smerzi, Experimental Reali-
zation of Quantum Zeno Dynamics, Nat. Commun. 5, 3194
(2014).

[61] Adrien Signoles, Adrien Facon, Dorian Grosso, Igor
Dotsenko, Serge Haroche, Jean-Michel Raimond, Michel
Brune, and Sébastien Gleyzes, Confined Quantum Zeno
Dynamics of a Watched Atomic Arrow, Nat. Phys. 10, 715
(2014).

[62] P. M. Harrington, J. T. Monroe, and K. W. Murch, Quantum
Zeno Effects from Measurement Controlled Qubit-Bath
Interactions, Phys. Rev. Lett. 118, 240401 (2017).

[63] Paraj Titum, Erez Berg, Mark S. Rudner, Gil Refael, and
Netanel H. Lindner, Anomalous Floquet-Anderson Insula-
tor as a Nonadiabatic Quantized Charge Pump, Phys. Rev.
X 6, 021013 (2016).

[64] Yoichi Ando, Topological Insulator Materials, J. Phys. Soc.
Jpn. 82, 102001 (2013).

[65] Mark S. Rudner, Netanel H. Lindner, Erez Berg, and
Michael Levin, Anomalous Edge States and the Bulk-Edge
Correspondence for Periodically Driven Two-Dimensional
Systems, Phys. Rev. X 3, 031005 (2013).

[66] Cherie R. Kagan, Efrat Lifshitz, Edward H. Sargent, and
Dmitri V. Talapin, Building Devices from Colloidal
Quantum Dots, Science 353, 6302 (2016).

[67] Maxwell E. Parsons, Florian Huber, Anton Mazurenko,
Christie S. Chiu, Widagdo Setiawan, Katherine Wooley-
Brown, Sebastian Blatt, and Markus Greiner, Site-Resolved
Imaging of Fermionic °Li in an Optical Lattice, Phys. Rev.
Lett. 114, 213002 (2015).

[68] Peter T. Brown, Debayan Mitra, Elmer Guardado-Sanchez,
Reza Nourafkan, Alexis Reymbaut, Charles-David Hébert,
Simon Bergeron, A.-M. S. Tremblay, Jure Kokalj, David A.
Huse, Peter Schauf3, and Waseem S. Bakr, Bad Metallic
Transport in a Cold Atom Fermi-Hubbard System, Science
363, 379 (2019).

[69] Jayadev Vijayan, Pimonpan Sompet, Guillaume Salomon,
Joannis Koepsell, Sarah Hirthe, Annabelle Bohrdt, Fabian
Grusdt, Immanuel Bloch, and Christian Gross, Time-
Resolved Observation of Spin-Charge Deconfinement in
Fermionic Hubbard Chains, Science 367, 186 (2020).

031031-25



