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In quantum mechanics, the observer necessarily plays an active role in the dynamics of the system,

making it difficult to probe a system without disturbing it. Here, we leverage this apparent difficulty as a

tool for driving an initially trivial system into a chiral phase. In particular, we show that by utilizing a

pattern of repeated occupation measurements we can produce chiral edge transport of fermions hopping on

a Lieb lattice. The procedure is similar in spirit to the use of periodic driving to induce chiral edge transport

in Floquet topological insulators, while also exhibiting novel phenomena due to the nonunitary nature of

the quantum measurements. We study in detail the dependence of the procedure on measurement

frequency, showing that in the Zeno limit the system can be described by a classical stochastic dynamics,

yielding protected transport. As the frequency of measurements is reduced, the charge flow is reduced and

vanishes when no measurements are done.
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I. INTRODUCTION

One of the most exciting goals of the field of quantum

dynamics is to be able to control the microscopic motion of

particles in a reliable and universalway. Floquet engineering,

coupled with our knowledge of topological quantum phases,

presented one such route and brought about new paradigms

for the quantum control of atomic and electronic motion. A

periodicmodulation of theHamiltonianwas shown to induce

Chern bands in nontopological semiconductors as well as

graphene, and this remarkable feat was observed in a variety

of solid-state and atomic systems [1–3].

The range of drive-induced topological phases kept

growing over the past decade to include states with no

static analogs. A prominent example is the anomalous

Floquet Anderson insulator [4–7]. In this 2D phase, a chiral

edge state emerges alongside completely trivial bulk bands

in stark contrast to standard topological edge states which

are spectrally connected to bulk bands. Thus, such an

insulator avoids issues associated with fermion anomalies.

The trick behind this phase is a Floquet Hamiltonian

modulation which alters the hopping along a square lattice

in a sequence that stirs the particles [8] in such a way that

bulk motion is canceled and edge states emerge.
An additional tool for control, however, is measure-

ment (see, e.g., Refs. [9,10]). “Dark-state” engineering was

explored as a means to stabilize a variety of phases through

measurement or decay processes that eliminate unwanted
elements in the wave function in order to stabilize a desired

steady state [11–15]. The challenge in this approach is to

engineer the necessary projectors. The combination of

periodic driving and dissipation has also been discussed

[16,17]. More recently, it was discovered that a combination

of unitary evolution andmeasurement could actually induce a

transition between highly entangled quantum states into low

entanglement classical-looking states at high measurement

frequency [18–25]. The study of the competing effects of

projective measurement and unitary evolution has also been
intensely researched in the context of quantum circuit models

[26–40]. The physics of measurement-induced phase tran-

sitions has been studied in the context of measurement

protected quantum orders [33], symmetry-protected topo-

logical phases [38], geometric phase [41], many-body locali-

zation [42], and various aspects of entanglement measures

[26,28,37,39,40,43]. There are also recentworkswhich study

the entanglement transitions with measurement and unitary

evolution for free fermions hopping on a 1D chain [19,44,45].
In Ref. [46] the competing effects of unitary evolution

and measurements were studied using a closed hierarchy

approach. This method was used to describe nonequilibrium

steady states of current [46] as well as density fluctuations

(quantum wakes) following a moving particle detector and

other disturbances [47].
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In this paper we combine these developments to show

that measurements can stabilize protected edge transport.

All that is needed is a sequence of local occupation

measurements which serve to herd particles into circular

orbits. These circular orbits then play a somewhat similar

role to the semiclassical orbits used to illustrate the

quantum Hall effect [48,49] where particles take closed

trajectories in the bulk while the presence of an edge

induces chiral motion via “skipping orbits” [50]. The result,

so-called stirring by staring, combines the pioneering ideas

of dark-state engineering with Floquet engineering to

generate exotic protected edge dynamics. As a simple

example, we show how this can be accomplished on a

Lieb lattice where chirality is achieved via an eight-step

measurement pattern.

We show that our measurement scheme, illustrated in

Fig. 1 and explained in detail below, yields no net transport

of particles in the bulk of the lattice. However, when the

system has an edge, it will induce movement of particles

along the edge; see Fig. 2. We explore the evolution of

particle density in the system using the closed hierarchy

method [46] both by direct numerical simulation as well as

by analytically studying the Zeno limit of rapid measure-

ments. The transport in the Zeno limit, and in a perturbative

regime of large but finite measurement frequency near the

Zeno limit, can be conveniently described as a stochastic

process. In this regime, we prove that the boundary trans-

port is protected from a wide range of edge perturbations

including random potentials, hopping energies, edge defor-

mations, and site removal. It is critical to note that such

protection cannot be achieved in a 1D system (with a

strictly local Hamiltonian), where a removal of a small set

of sites can simply disconnect the system into disjoint parts

with no possibility of transport.

II. PROTOCOL

The measurement cycle consists of eight steps taking an

overall time T. At each step, we take repeated snapshots of

the presence of particles throughout a subset of the lattice,

while the system is allowed to evolve freely between

the measurements. We denote the set of sites not being

measured at step i by Ai as marked in Fig. 1, and enforce

periodicity by setting Aiþ8 ¼ Ai. Within each step, the

following procedure is followed.

(1) Particle densities at all sites in ðAi ∩ Ai−1Þc are

measured.

(2) Free evolution under a free hopping Hamiltonian

H ¼ −thop
P

hrr0i a
†
rar0 for a time τ ¼ ðT=8nÞ.

Here, n is an integer describing the measurement

frequency.

(3) Particle densities at all sites in Ac
i are measured.

(4) Steps 2 and 3 are repeated n times.

For convenience, throughout the paper we set thop ¼ 1 and

ℏ ¼ 1. For clarity, we note here that in the rest of the paper

we refer to one complete iteration of the full eight-step

procedure as a “full measurement cycle” or sometimes

just “measurement cycle.” On the other hand, each of the

individual steps within the eight-step procedure are referred

to as a “measurement step.”

The steps detailed above correspond to a sequence of

maps on the density matrix ρ of the system. Two distinct

elements are involved in the dynamics. First, the mea-

surement of the presence of a particle at a lattice site ri
can be represented by the Krauss map ρ → niρni þ
ð1 − niÞρð1 − niÞ, with ni ¼ a†i ai the number operator

for the site. In between such measurement steps we have

FIG. 1. Measurement protocol. Red vertices indicate the set of

repeatedly measured sites, while black sites are unmeasured (the

free evolving sets, Ai). The adjacent pairs of black vertices trace

out an inherently chiral (in this case clockwise) path along a

decorated square inside the Lieb lattice. The path can be made

counterclockwise if the order of the eight steps is reversed.

FIG. 2. Particle trajectories on the Lieb lattice under the

measurement protocol in the infinite measurement (Zeno) limit

with the perfect switching cycle ðT=8 ¼ π=2Þ. In this regime,

evolution becomes deterministic and particle trajectories can be

seen explicitly. Particles localized in the bulk (red) at the start of

the protocol and particles initialized at sites of type 3 or 4

(orange) on the edge trace out a closed loop after no more than

five measurement cycles. On the other hand, particles initialized

at sites of type 1 (green) or 6 on the boundary at the beginning of

the protocol propagate along the edge, shifting by 1 dynamical

unit cell every two measurement cycles (see Appendix H for

details).
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unitary evolution, which is described, as usual, via

ρ → UρU†, where U is a many-body evolution operator.

To describe the densities and correlations in the system,

we concentrate on the iterative evaluation of two-point

correlation operators:

Grr0ðtÞ ¼ Tr½ρðtÞa†rar0 �: ð1Þ

The two-point correlation has a closed evolution equation

under particle density measurements and free evolution

operations, as long as the free evolution is noninteracting

[46]. The change in G due to the Krauss map associated

with single site particle density measurement can be shown

to imply eliminating correlations between the measured site

and other sites [46]. Explicitly, one can check that the

measurement of particle presence at a lattice site r is

described by the map,

G → ð1 − PrÞGð1 − PrÞ þ PrGPr; ð2Þ

where Pr ¼ jrihrj is the (single-particle) projector onto

site r. For noninteracting evolution, fermion operators

transform as U†a†qU ¼ Uqq0a
†

q0 , where U is called a single-

particle evolution. In this case G transforms as

G → UGU†: ð3Þ

In the case of interest for us here, we takeU ¼ e−iτH, where
H ¼ P

hr;r0i jrihr0j, describing free hopping of the fermions

on the lattice.

To study the repeated application of these maps toG, it is

convenient to view G as a vector in Hdouble ¼ C
N 2

, where

N is the total number of fermion sites. We write

G ¼
P

rr0 Grr0 jrihr0j → G ¼
P

rr0 Grr0 jri ⊗ jr0i, and the

evolution of G under the maps above can be notated as

Gðtþ TÞ ¼ ΛGðtÞ; ð4Þ

where Λ is the (super)operator acting on G corresponding

to the eight-step measurement protocol given in the pre-

vious section. To construct Λ, we write the transformation

associated with free evolution and with particle measure-

ment, respectively, as

G → ðU ⊗ ŪÞG; ð5Þ

G → πrG; ð6Þ

where πr ≡ ð1 − PrÞ ⊗ ð1 − PrÞ þ Pr ⊗ Pr. If all the sites

in a set Ac are measured simultaneously, we find (see

Appendix D) that the combined operation on G becomes

Y

r∈Ac

πr ≡ ΠA ¼
X

r∈Ac

Pr ⊗ Pr þ PA ⊗ PA; ð7Þ

where

PA ≡

X

r∈A

Pr: ð8Þ

Note that ðΠAGÞrr0 ¼ Grr0 if both sites rr0 are in the

unmeasured set A; on the other hand, if r or r0 are in

Ac, we have ðΠAGÞrr0δrr0 . In other words, the correlations

between the measured sites Ac and all other sites are

destroyed while acting as an identity on the subspace A of

unmeasured sites. It is important to note that ΠA is itself a

projection operator on Hdouble. To see this, note that the

operators πr form a set of commuting orthogonal projec-

tors, and consequently their product is an orthogonal

projector. Another useful property that follows is that

ΠBΠA ¼ ΠA∩B: ð9Þ

We are now in position to write the evolution operator Λ

describing a cycle of measurements and evolution as

described by the measurement protocol above. Explicitly,

after each cycle, which involves eight steps each repeated n
times, G → ΛG with

Λ ¼ ½ΠA8
ðU ⊗ ŪÞΠA8

�n½ΠA7
ðU ⊗ ŪÞΠA7

�n

� � � ½ΠA1
ðU ⊗ ŪÞΠA1

�n: ð10Þ

We now turn to analyze the dynamics described by this

operator.

III. ZENO LIMIT

We first study the operator Λ, of Eq. (10), in the limit of

many measurements per cycle (i.e., n → ∞). The dynamics

under high frequency repeated measurements is known

as the quantum Zeno limit. The signature characteristic of

this regime is the freezing of evolution in the subspace

of measured sites. The Zeno effect (and the closely related

anti-Zeno effect) has a long history [51] with broad

applications including, for example, counterfactual quan-

tum computing and communication [52,53] and loss

suppression in ultracold molecule experiments with

strong, long-range dipolar interactions [54,55]. Over the

past 30 years, the Zeno and related effects have been

observed experimentally across a variety of physical

systems [56–62].

Let us first consider one of the eight steps in Eq. (10).

Formally expanding in τ ¼ ðT=8nÞ, we find that

½ΠAðU ⊗ ŪÞΠA�n ¼ ΠAðUn
A ⊗ Ūn

AÞΠA þOðτ2nÞ: ð11Þ

Here, U ¼ e−iτH and UA ¼ e−iτHA , where HA ≡ PAHPA.

To get Eq. (11), we first expand each measurement or

evolution step in τ:
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ΠAðU ⊗ ŪÞΠA ¼ ΠAðI − iτ½H ⊗ I − I ⊗ H�ÞΠA þOðτ2Þ
¼ ΠAe

−iτΠA½H⊗I−I⊗H�ΠAΠA þOðτ2Þ: ð12Þ

A short calculation (see Appendix D) shows that

ΠA½H ⊗ I − I ⊗ H�ΠA ¼ HA ⊗ PA − PA ⊗ HA; ð13Þ

hence,

ΠAðU ⊗ ŪÞΠA ¼ ΠAðUA ⊗ ŪAÞΠA þOðτ2Þ; ð14Þ

which, using ½UA ⊗ ŪA;ΠA� ¼ 0, gives Eq. (11). The

expression (11) shows that, in the Zeno limit, the average

evolution is dominated by local evolution in the region A
and suppresses hopping into the measured sites Ac. Finally,

plugging Eq. (11) into Eq. (10), we find

Λ ¼ ΠA8
ðUn

A8
⊗ Ūn

A8
ÞΠA8∩A7

ðUn
A7

⊗ Ūn
A7
Þ

� � �ΠA2∩A1
ðUn

A1
⊗ Ūn

A1
ÞΠA1

þOðτ2nÞ: ð15Þ

Next, we use this result to formally describe evolution forN

cycles, when Nnτ2 ≪ 1, and nτ is kept constant.

IV. STOCHASTIC DESCRIPTION

OF THE ZENO LIMIT

The local nature of the evolution in the Zeno limit (15)

leads to a striking simplification that we now describe. We

observe that, if one only follows the local particle density

given by the diagonal elements Grr, the evolution is given

by a periodic classical stochastic process. To see this, note

that the evolution of G in the Zeno limit consists of steps of

the form

G → Un
Ai
GUn†

Ai
: ð16Þ

Each set Ai consists of the union of pairs of neighboring

sites, the black sites in Fig. 1. Since the pairs forming Ai are

disjoint, the evolution UAi
can only develop nontrivial

correlations between the sites of the same pair. Consider a

pair of such sites. After the evolution, all sites are measured

except for sites in Ai ∩ Aiþ1, which is a set of isolated

points on the lattice; in particular, any correlations (non-

diagonal terms in G) developed between the pair of sites in
Ai would be set to zero once the site in Ai but not in Aiþ1 is

measured (long-range correlations between sites in Ai ∩

Aiþ1 are not annihilated, but will be annihilated in the next

step, and cannot be generated by any of the UAi
). Thus, if

we start with a diagonal G, it will remain diagonal

throughout the evolution. Moreover, even if we start with

some nonzero off-diagonal terms, these will be quickly

annihilated by the measurements. Thus we should be able

to describe the evolution, in the Zeno limit, just in terms of

the dynamics of the diagonal ofG. Indeed, note thatGrr are

real non-negative numbers and the total number of particles
P

rGrr is a constant of motion, and thus Grr can be treated

(up to normalization) as probabilities, and the process

describing the evolution is a classic stochastic process.

Explicitly, if we represent the density at time t as a vector
jgðtÞi defined via

½gðtÞ�r ≡GrrðtÞ; ð17Þ

then in the Zeno limit the density evolves via Markovian

dynamics as

jgi → Rcycjgi; ð18Þ

where the transition matrix Rcyc consists of the eight steps

of our process; namely,

Rcyc ¼ R8R7R6R5R4R3R2R1: ð19Þ

The transition matrices Ri are defined as follows. Each

unmeasured set Ai is associated with two site types α, β that

are not being measured, as described in Fig. 3 (e.g., A1 is

the union of all sites of types 1,3; A2 is the union of sites

3,4; etc.). The unitary evolution associated with a given

unmeasured set Ai, breaks into a sum of pairs of nearest

neighbors:

UAi
¼ IAc

i
⨁

hα;βi∈Ai

eiτnσx : ð20Þ

Next, we apply the evolution (16) and then measure all sites

except those inAi ∩ Aiþ1, which has the effect of eliminating

off-diagonal elements inG. Consider one of the pairs of sites
hα; βi ∈ Ai and an initially diagonal G ¼ diagðg1; g2Þ.
Applying the evolution (20) to get eiτnσxGe−iτnσx and

FIG. 3. The unit cell for the measurement driven Lieb lattice

dynamics consists of two Lieb lattice unit cells. A choice for such

a dynamical unit cell is depicted.
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then setting the of-diagonal elements to zero, we get

a new diagonal matrix G with G ¼ diag½cos2ðnτÞg1 þ
sin2ðnτÞg2; cos2ðnτÞg2 þ sin2ðnτÞg1�. In other words, a

particle located in one of the sites jumps to the other site

with probability

p ¼ sin2ðnτÞ ¼ sin2
�

T

8

�

; ð21Þ

or stays with probability 1 − p. A particle in any other

position will not move. Therefore,

Ri ¼ ⊕hα;βi∈Ai

�

1 − p p

p 1 − p

�

⊕other sites I: ð22Þ

This defines a periodically driven randomwalk.We note that

the transition matrices Ri are bistochastic matrices, and thus

so is Rcyc.

A remark is in order here about Eq. (22). In a system with

a boundary, a set Ai may include isolated sites that do not

have an adjacent neighbor also in Ai. For example, consider

the boundary of the lattice in Fig. 3. The set A3 as defined

includes sites of type 4 and 2; however, looking at the lower

boundary, we see that sites of type 4 on the boundary do not

have an adjacent site of type 2. Similarly to the measured

sites, the dynamics for these isolated elements of Ai are

frozen in the Zeno limit. In Eq. (22), the isolated elements

of Ai are included in “other sites” since they are not part of

an adjacent pair in Ai.

The particular choice T ¼ 4π leads to p ¼ 1. We refer to

this choice as “perfect switching.” In this case, Rcyc is a

permutation matrix, and the motion of particles is deter-

ministic. Of course, on the other hand, when T ¼ 8π,

p ¼ 0 and there is no evolution at all.

We now consider the counting statistics of transport to

the right per cycle. To do so, we attach a counting field eiθ

to each horizontal link, by modifying the above transition

matrices of R1, R2, R5, R6 to

Ri ¼ ⊕hα;βi∈Ai

�

1 − p eiθp

e−iθp 1 − p

�

⊕other sites I; ð23Þ

whenever α, β are nearest neighbors on a horizontal line,

such that α is to the left of β.

With the counting field present, we can introduce the

moment generating function,

χNðθÞ≡
X

ij

X

w∶i→j

eiθlðwÞProbNðwÞGiið0Þ

¼
X

ij

½RcycðθÞN �ijGiið0Þ ¼ hIjRN
cycðθÞjg0i; ð24Þ

where w∶i → j is a sequence of hops from site i to site j,
ProbNðwÞ is the probability for the path w after N

measurement cycles using the transition matrix Rcyc, and

lðwÞ is the net number of hops in the x direction. In the next
line, jg0i is the initial density distribution at t ¼ 0 and jIi is
a vector whose elements are all 1 (corresponding toG ¼ I).
We can use χN to compute quantities of interest, most

important of which is the flow, defined as the total

displacement per cycle, per unit length. The flow in the

x direction is given by

F ¼ lim
N→∞

FN ; ð25Þ

where FN is the average flow in the first N cycles,

FN ¼ 1

Lx

1

N
i∂θχNðθÞjθ¼0; ð26Þ

with Lx the length in the x direction.

A. Absence of bulk transport

In a translation invariant situation, it is convenient to

work in momentum space. Here, we must use the “dynami-

cal unit cell” where the periodic evolution happens, which

is double the Lieb lattice’s original unit cell (see Fig. 3).

The Bravais lattice for the dynamical unit cell is a rotated

square lattice whose primitive Bravais vectors are marked

as a, b in Fig. 3. Below, we use n;m to denote the position

of the unit cell and μ; ν ∈ f1;…; 6g to denote the indivi-

dual atom inside the cell. We can then write

Riðn; μ;m; νÞ ¼
Z

d2k

2π
Riðk; μ; νÞeik·ðn−mÞ: ð27Þ

For example, R5, is associated with A5, which includes sites

1,6 in neighboring dynamic unit cells; hence,

R5ðk;θÞ ¼

0

B

B

B

B

B

B

B

B

@

1−p 0 0 0 0 pe−iðθþk·ða−bÞÞ

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

peiðθþk·ða−bÞÞ 0 0 0 0 1−p

1

C

C

C

C

C

C

C

C

A

:

In the deterministic case, p ¼ 1, we find for the full cycle:

Rcycðk; θÞ ¼

0

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0

0 0 eiθ 0 0 0

0 0 0 eiθ 0 0

0 0 0 0 1 0

0 0 0 0 0 eik·be−iθ

0 e−ik·be−iθ 0 0 0 0

1

C

C

C

C

C

C

C

C

A

:

ð28Þ
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It is possible to check that in this case, with p ¼ 1,

Rcycðk; θÞ5 ¼ I. Therefore, the system returns to itself after

5 cycles without generating any transport at all. For p ≠ 1,

we find that ReTrRcycðk; θÞn is a symmetric function of θ,

and here too, there is no transport after an arbitrary number

of cycles. To do so, we computed the characteristic poly-

nomial of the matrix Rcycðk; θÞ and found that it is equal to

that of Rcycð−k;−θÞ, implying equality of eigenvalues of

the matrices.

It is also possible to check that for any kx; ky ≠ 0

ðmod 2πÞ, jjRcycjj < 1, which implies the longtime behav-

ior will be dominated only by the k ¼ 0 component of the

initial distribution. For kx ¼ ky ¼ 0 and θ ¼ 0 there is a

single left and right eigenvector with eigenvalue 1, which is

the uniform density state jIi, implying that up to exponen-

tially small corrections, the current density (26) vanishes.

B. Edge transport

We have concluded that there is no bulk transport

associated with the stochastic process defined by Rcyc,

for any p. In this section, we contrast the situation to when

an edge is present. We implement the dynamics by

removing all sites beyond the physical edges (e.g., sites

with y < 1) and removing any transitions involving sites

beyond the edges from the dynamics. We start with the

deterministic case, namely, p ¼ 1. In Fig. 2, we exhibit a

half plane with an edge. For p ¼ 1, we can track the motion

of each particle and conclude that bulk particles perform a

closed loop. On the other hand, particles starting at the edge

divide into two sets: some of the edge particles (6,1) per-

form a motion along the edge, while some (3,4) perform a

closed loop. Thus, if we start from an initial state where

particles are placed along the edge, we will have particle

transport along the edge (particles 6,1 will move to the

right). This behavior is clearly analogous to the familiar

skipping orbits in the semiclassical description of the

integer quantum Hall effect.

What will happen away from p ¼ 1? Consider first the

case of a strip with periodic boundary conditions in the long

direction (say, x) and open boundary conditions in the y
direction with Ly dynamical unit cells in the y direction. Let

us consider states that are translationally invariant in the x
direction, allowing us to analyze the behavior in Eq. (26) in

momentum space. For any momentum kx, the transition

operator R can then be written as a 6Ly × 6Ly matrix and

analyzed. For 0 < p < 1, any initially positioned particle

has a finite probability to get to any other site within a finite

time and the only steady state distribution of R with

eigenvalue 1 is that of uniform density (in contrast to

the p ¼ 1 case where additional steady states are possible).

This distribution will be approached exponentially fast,

governed by λ2
N, where λ2 is the second largest eigenvalue

of R. In the uniform density distribution, there is no net

charge transfer. Indeed in that case, the charge transfer of

the upper and lower edge is carried in opposite directions

and cancels.

To get net transfer, we initially place particles only close to

one of the edges. In a finite width system, away from the

perfect switching cycle, we expect the charge transport to be

transient: once the measuring protocol starts, it will transport

a finite amount of particles while also spreading particles

toward the second edge, rapidly approaching the uniform

density state. Thus, to study the net particle flow associated

with a given edge we must work in the thermodynamic limit

(Ly → ∞), or, more precisely, Ly ≫ Tw, where Tw is the

typical time it may take a particle to diffuse from the middle

of the sample to one of the edges.

We now numerically compute the number of particles F
that flow across a slice through the Lieb lattice during

evolution (see Fig. 4). In other words, we compare the

number of particles to the left of the slice before and after

the application of Λ, computing

Fsim ≡

X

r to the left of slice

½ðΛGÞrr − Grr�: ð29Þ

FIG. 4. Lieb lattice with lower half plane filled with particles (in

blue). Trace is taken of the half plane to the right of the green

dashed line. The flow across the barrier is then given by the

difference between the right half trace before and after evolution.

FIG. 5. Charge transfer of the left half filled plane in the Zeno

limit with ðT=8Þ ¼ ðπ=2Þ; namely, p ¼ 1. In this section, the

Lieb lattice size for all simulations is 33 × 33 unless otherwise

stated. Here, precisely one particle is transported across the flow

cut during the eight-step measurement cycle.
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This is done by initiating the system at Gðt ¼ 0Þ ¼ G0,

where G0 is a diagonal matrix corresponding to particles

placed on the bottom half of a square lattice, with open

boundary conditions. We then iterate the map (10), comput-

ingΛNG0, increasingN but being careful to limit the number

of cycles to remain within the regime that no significant

density has had time to build up close to the upper edge.

The combination of the Zeno limit with the perfect

switching point p ¼ 1 leads to a clearly quantized flow,

as is clearly exhibited in Fig. 5, and can be understood by

tracking the trajectories of the particles (see Fig. 2 and

AppendixH for details of the motion). Next wewill consider

both the cases of p ≠ 1 as well as the non-Zeno limit.

V. CHARGE TRANSPORT: BULK-EDGE

DECOMPOSITION

We now turn to calculating the charge transport per

measurement cycle in the Zeno limit with arbitrary p. The
result is described in Fig. 6. Since the bulk transport

vanishes for any p, the flow will still be completely

localized near the edge. Below, we exhibit an analytical

formula for the flow, Eq. (30), achieved using a bulk-

boundary decomposition in the limit Ly → ∞ (and verify it

by direct numerical simulations of the dynamics on finite

systems). The resulting dependence on p is shown in Fig. 6,

exhibiting a crossover behavior ranging from the integer

transport at p ¼ 1 to no transport when p ¼ 0 (where the

dynamics is trivial, since all hopping is blocked).

We show how the edge flow can be written in terms of

bulk operators. This correspondence between the bulk

properties of the system and the charge transport on the

edge both provides a direct, efficient method to calculate

the flow and implies the robustness of the flow to any

perturbations near the boundary of the system.

To observe the flow we imagine an infinite strip in the x
direction. We partition the strip into 3 regions as shown in

Fig. 7. The bottom region of the system (below height l1) is

completely filled with particles, while the top (above l2) is

empty. In between l1 and l2, the particle density is left

arbitrary and will have no effect on the particle transport.

This choice isolates the flow along just the bottom edge of

the system, removing the equal and opposite contribution

from the flow along the top edge. Charge distributions of

this type are analogously used as a tool to calculate charge

flow along an edge in the context of Floquet topological

insulators; see, for instance, Ref. [63]. In Appendix E we

prove that

F ¼ Fbulk þ Fedge; ð30Þ

where

Fbulk ¼ i
X

αβ

�

JBðkÞ
1

I − RBðkÞ
∂ky

RBðkÞ
�

αβ

�

�

�

�

k¼0

ð31Þ

and

Fedge ¼
1

Lx

hIjPy≤3JPy≤2jIi: ð32Þ

Here, RB is a bulk transition operator, equal to Rcyc except

with periodic instead of open boundary conditions to make

it translational invariant. The transition operators RB; Rcyc

are used to define appropriate currents J ¼ −i∂θRcycðθÞjθ¼0

and, similarly, JB ¼ −i∂θRBðθÞjθ¼0. Above, for an operator

A, translational invariant in x and y with respect to the unit

cell of the dynamics and with matrix elements Aαβðr; r0Þ,
we define AðkÞαβ as in Eq. (27). In the edge contribution,

Py≤2 is a projection operator on sites with y ≤ 2. The above

expressions are proven starting from the expression

Eq. (26) for the flow FN after a finite number of cycles

and then taking the limit of large N while maintaining

N ≪ l1 and keeping l2 − l1 constant.

FIG. 6. Charge transport per measurement cycle in the Zeno

limit. The analytic formula given in Eq. (30) is compared with the

transport found from direct simulation for a selection of hopping

probabilities.

FIG. 7. Initial particle density chosen for the flow analysis. All

sites below the line y ¼ l1 are filled with particles (shown in

blue). All sites above y ¼ l2 are empty. The probability of

finding a particle at sites in between y ¼ l1 and l2 is left arbitrary

as the charge density in this region will not affect the flow.
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To compute Fedge we can write, explicitly,

Fedge ¼
1

Lx

X

αβ

X

Lx

x;x0¼1

X

2

y0¼1

X

3

y¼1

Jαβðx; y; x0; y0Þ: ð33Þ

Calculating Fedge in this form we find with our measure-

ment protocol

Fedge ¼ p2 þ p3 þ p4: ð34Þ

The contribution of Fbulk to the transport can also be

evaluated readily, as it is made up of products and an

inverse of 6 × 6matrices and so can be easily computed for

any p. In Fig. 6, we combine these two terms and compare

with direct simulations of the dynamics which exhibit

excellent agreement.

We now make the following especially important remark

that both Fbulk and Fedge depend only on the bulk properties

of the system (assuming weak constraints to be described

below). This implies that the flow is completely insensitive

to the details of the structure of the edge or local

perturbations. This can be argued in the following way.

We first note that

hIjJjIi ¼ 0; ð35Þ

i.e., there is zero total current in a uniform density system.

Equation (35) can be seen from the form of the dynamics

generated by our R matrices, Eq. (23), since

−i∂θjθ¼0RijIi ¼ ⊕hα;βi∈Ai

�

0 p

−p 0

�

⊕other sites IjIi ¼ 0:

Now, consider a modification of the stochastic dynamics

along the bottom edge of the system still obeying the no

total current condition (35), and that there is no explicit

bulk current introduced (the latter restriction of no added

bulk currents may be removed upon closer analysis; see

Appendix F). Assuming the current operator is short-

ranged (with range of at most one unit cell), one can

rewrite the expression (32) as

Fedge ¼
1

Lx

hIjJPy≤2jIi ¼ −
1

Lx

hIjJPy>2jIi; ð36Þ

the expression on the right-hand side for Fedge is indepen-

dent of how we vary J on the lower boundary. In other

words, the global zero current condition together with the

fact that the two edges responsible for the transport are

physically separated means that the contribution of Fedge to

the flow must be protected. Together with the bulk nature of

Fbulk, we see indeed a protected flow. A more detailed

proof can be constructed as follows (with details in the

Appendix F). Consider the following matrix, describing the

perturbed dynamics:

RMðr; r0Þ ¼

8

>

>

>

<

>

>

>

:

R̃ ry; r
0
y ≤ l1 − ðNþ 1Þ

Rcyc l1 − ðNþ 1Þ ≤ ry; r
0
y ≤ l2 þ ðN þ 1Þ

R̃0 ry; r
0
y ≥ l2 þ ðNþ 1Þ

0 otherwise;

ð37Þ

where R̃; R̃0 are real matrices such that RM is doubly

stochastic; i.e., RM is identical to Rcyc in the bulk but

modified near the boundary.

In Appendix F, we prove that the flow of RM is

equivalent to the flow of Rcyc assuming that

hIjRMðθ ¼ 0Þ ¼ hIj and RMðθ ¼ 0ÞjIi ¼ jIi; ð38Þ

hIjJMjIi ¼ 0; ð39Þ

where JM is the current operator associated with RM. The

first condition requires that RM preserves particle number

and that a uniform density is a steady state of the evolution;

this implies that the transition matrix remains doubly

stochastic. The second condition is the requirement that

no net current can flow in the completely filled system.

Note that the conditions (38) and (39) are certainly satisfied

whenever RM is a product of symmetric, doubly stochastic

matrices which encapsulates a large class of physically

relevant perturbations including, for example, local poten-

tials, local variations of the hopping parameter, and

removal of sites from the lattice. Indeed, repeating the

argument leading to Eq. (21), including the presence of

local potential terms (or variation in thop) in the local

Hamiltonian will just locally change the hopping proba-

bility p, retaining the form of the dynamics as in Eq. (22)

with modified p’s (i.e., still made of doubly stochastic

building blocks). Removal of sites can similarly be

described by taking p ¼ 0 for transitions to the removed

site. Because of its stability, the flow may be viewed as a

continuous topological invariant for the system. We empha-

size that such protection cannot be achieved in 1D systems,

which can be easily disconnected by the removal of a

few sites.

A technical remark is in order here. The simulation result

in Fig. 6 was computed using Eq. (29) with the cut defined

as shown in Fig. 5. Therefore, the quantity computed in the

simulations Fsim [Eq. (29)] is equivalent to placing the

counting field θ only at a subset of the horizontal edges as

opposed to placing θ on all horizontal edges as was used in

defining RcycðθÞ through Eq. (23). Accounting for the

number of edges included in the simulations—these

include 2 edges per two dynamical unit cells—and that

each dynamical unit cell involves 4 edges and that no

charge accumulation occurs, we find simply
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Fsim ¼ F

4
; ð40Þ

which was used in the comparison Fig. 6.

At this point, we wish to further discuss and clarify the

nature of the protection of the flow in Eq. (30) and in what

sense it is localized on the edge. In our setup, the charge

density is constant in a thick neighborhood of the edge. It is

important to emphasize, however, that the protection is not

simply due to Pauli blocking, but a feature of the classical

stochastic dynamics. This is evident when we consider the

flow when the density in the occupied (blue) region in

Fig. 7 is uniformly reduced to a lower density ρ < 1. In this

case (especially at low density), Pauli blocking is not

important for the dynamics. However, the linearity of our

stochastic dynamics shows that the new flow will be

FðρÞ ¼ ρFðρ ¼ 1Þ. Thus, the flow is protected (in the

sense explained above) for any filling ρ, in sharp contrast

with most topological insulators.

Another interesting feature of the charge transport here is

that the flow we compute (for p ≠ 1) is the result of the

collective contribution of fermions that approach the edge,

travel along it for a time, and then diffuse away, rather than

the result of single wave packets traveling along the edge

without dispersing. An alternative perspective that can help

clarify the edge nature of the flow can be obtained by

adding a particle sink (source) where holes (particles) can

be injected (extracted) from the system. In this case holes

injected in the bulk will only contribute to charge flow (for

a finite time) when they reach the edge. Note that the edge

flow is due to unbound charges which are only a partial

contribution to the local currents in the system. For

example, in the completely filled system, since the density

is uniform and the R matrices are symmetric, there can be

no current on any link in the system. The net zero current is

the result of two different cancellations in the bulk and on

the edges of the system. In the bulk, the zero current is the

result of local current loops that give rise to a uniform

magnetization and the net current is ∇⃗ ×M ¼ 0. On the

edge, the net current is zero as a result of cancellation

between the bound currents, as in the bulk, and unbound

currents that exist only on the edge. The distinction,

however, between charge transport (which is localized

on the edge) and current (which is not localized on the

edge) is largely independent of the present work and similar

distinctions must be made, for example, in discussions of

Floquet topological insulators [63].

For topological insulators, a bulk gap implies that small

alterations to the bulk Hamiltonian will not destroy an edge

mode so long as symmetries protecting the topological

phase are preserved [64]. The actual value of the current

will depend on the density and on the details of how the

bands are filled. Similarly, here, small changes in the carrier

density will lead to changes in the magnitude of the flow,

but not its existence. Interestingly, unlike topological

insulators, the existence of the flow and the protection

we discuss are independent of the initial filling, which

manifests itself in the off-diagonal part of G when the

process starts.

On the other hand, while here the flow is robust (in the

sense explained above) at any density, its value is not in

general robust to arbitrary global changes of the parameters.

In our system, it is possible to continuously change the flow

by small extensive perturbations, say, changing the total

period T. However, as stated, the exact value for the flow of

the system during N cycles is protected against even strong

perturbations as long as these are far enough (i.e., within a

distance at leastN) from the interfacewith the regionwhich is

not of uniform density (see Appendix F). Perturbations

within the interface region may alter total charge transport

values by inducing bulk currents in the system (see Fig. 15).

It is interesting to compare the behavior in the Zeno limit

with a Floquet topological insulator evolution in our system

which is equivalent to the one introduced in Ref. [65]. There,

a periodic driving protocol is used as the source of chirality in

the system, where hoppings between neighboring sites are

sequentially turned on, but without any measurements.

Explicitly, the analogous evolution for us, ΛFloq, is

ΛFloq ¼ ðUn
A8

⊗ Ūn
A8
ÞðUn

A7
⊗ Ūn

A7
Þ � � � ðUn

A1
⊗ Ūn

A1
Þ; ð41Þ

where we have adapted the five-step procedure on a square

lattice of Ref. [65] to an analogous eight-step procedure on a

FIG. 8. (a) Charge transfer for Floquet system (left) and

measurement protocol in the Zeno limit (right) where, in both

cases, the hopping probability p ¼ 0.96. (b) Charge transfer after

each measurement step for the Floquet system and measurement

protocol with hopping probability p ¼ 0.96. Note the conver-

gence of the third and eighth step to half the total flow per cycle.
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Lieb lattice. To simplify the comparison, we have neglected

the fifth “holding period” step and sublattice potentials in the

original Rudner et al. procedure [65].

Note the measurement protocol in the Zeno limit

[Eq. (15)] is precisely the Floquet evolution interspersed

with measurements between each step. Markedly, when

p ¼ 1, the two evolutions are equivalent since the meas-

urement projectors act trivially in the perfect switching case

(when the initial G is diagonal).

We now turn to investigate the simulated dynamics in

this regime. Away from the perfect switching cycle, p ¼ 1,

we find an interesting distinction between the Floquet

evolution and the Zeno limit of the measurement or

evolution cycle as shown in Fig. 8. Examining the charge

transfer on the resolution of the eight steps per cycle,

we find a double step structure in the charge transfer which

is not present in the corresponding Floquet evolution.

Namely, the third and eighth step of the measurement

protocol each contribute half of the total flow per complete

cycle. The reason for this double step structure is the

following. The dynamics of particles in the lattice are

governed by a classical, chiral random walk determined by

Rcyc. The third and the eighth step are the only two steps

that cross the slice through the Lieb lattice, and thus all

transport must occur within these two steps. For a particle

starting far away from the slice, all information about

whether the particle would cross the slice during the third or

eighth step in the deterministic p ¼ 1 case is lost. Hence, in

the longtime dynamics, a particle is equally likely to cross

the slice on either step leading to the observed double step

structure. We emphasize that this double step structure

holds for all p ≠ 1 (see Fig. 9). However, similar to the

Floquet evolution, the flow per full measurement cycle

decreases away from 1 for p < 1, as shown in Fig. 6.

VI. AWAY FROM THE ZENO LIMIT

We now turn to consider the important question of

whether the flow is still present when the frequency of

measurements is reduced; i.e., we study the evolution under

our measurement protocol away from the Zeno limit. In

Fig. 10 we show the flow as a function of logðnÞ. We see

that the flow is reduced, but still finite as the measurement

frequency is reduced, crossing over from near constant

behavior at high frequency, to roughly logarithmic behav-

ior, F ∼ 0.2 log2ðnÞ − 0.4 at low frequency n, with F ∼ 0.2

particles per cycle at n ¼ 8 measurements per step.

The blue line in Fig. 10 represents an analytic perturbative

near-Zeno correction which fits the simulations remarkably

well for n > 64. To arrive at it, we start with Eq. (15), now

retaining terms up to and including orderOðnτ2Þ. We prove

in Appendix G that the resultant evolution, to order Oðnτ2Þ,
can still be completely described in terms of the dynamics of

the diagonal of G, with the classically stochastic transfer

matrices Ri replaced by the matrices Rnz;i given by

Rnz;i ¼ Ri − nτ2R̃i; ð42Þ

where R̃i is the near-Zeno correction to Ri. As in the Zeno

case, we define

Rnz ¼ Rnz;8Rnz;7Rnz;6Rnz;5Rnz;4Rnz;3Rnz;2Rnz;1; ð43Þ

FIG. 9. Flow after each measurement step for hopping prob-

abilities p ¼ 0.98 (left) and p ¼ 0.94 (right). Note that in the

longtime limit, the third and eighth measurement step of both

hopping probabilities converge to half the total flow per meas-

urement cycle.

FIG. 10. Flow per cycle as the measurements per step moves

away from the Zeno limit. Compared are the values found from

the near-Zeno limit approximation, Eq. (30) with the trans-

formation Eq. (42), and the flow found from direct simulation.

Both analytics and simulations are done in the perfect switching

cycle, i.e., ðT=8Þ ¼ ðπ=2Þ.

FIG. 11. A comparison of, from left to right, the Zeno limit, the

full measurement protocol with 500 measurements per measure-

ment step, and the near-Zeno approximation with 500 measure-

ments per measurement step—all with ðT=8Þ ¼ ðπ=2Þ. Plotted
are the local particle densities for a 33 × 33 site Lieb lattice after

51 measurement steps for the lower half filled plane setup given

in Fig. 4.
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and, in treating Rnz, only terms up to Oðnτ2Þ are kept

after combining Eqs. (42) and (43). Finally, the blue line of

Fig. 10 is obtained by substituting Eq. (43) into Eq. (30). In

Appendix G, we solve for Eq. (43) explicitly, but here

we focus only on the flow resulting from Rnz. We also

note here that, similar to the Zeno limit case, the flow in

the near-Zeno limit is protected to perturbations local-

ized on the boundaries (see Appendix F). Furthermore,

numerical simulations suggest that this protection per-

sists even in the low frequency measurement regime. We

leave a detailed investigation of this observation to

future work.

In Fig. 11 we show what the evolution of density in the

system away from the Zeno limit looks like. The main

feature is clearly the ability of particles to spread faster into

the bulk, since the evolution is not confined as effectively to

a sequence of two-site evolution steps as in the Zeno case.

We emphasize, however, that there is still significant charge

transport even far away from the Zeno regime (Fig. 10). On

the other hand, the double step structure is broken with the

eighth step in the measurement cycle providing an increas-

ing percentage of the total flow per cycle as the number of

measurements per measurement step is reduced. This is

shown, for example, in Fig. 12. This is because particles on

the edge are less affected by the move away from the Zeno

limit (as they have fewer neighboring sites to spread to).

Since the eighth measurement step hops across the flow cut

at the edge, a larger percentage of the Zeno limit flow is

retained.

VII. CONCLUDING REMARKS

In this work we presented a framework for inducing edge

modes via measurement protocols. Our work is comple-

mentary to the many recent advances in studying time

periodic systems such as topological Floquet insulators

[1,65]. The resultant behavior is a remarkable demonstra-

tion of the role of an observer in quantum mechanics as

fundamentally different from a classical observer.

Several remarks are in order regarding open problems.

First, we emphasize that the behavior analyzed in this paper

is that of the average transport and dynamics of densities

over all possible measurement outcomes. While it is

reasonable to expect that such an average would well

represent the typical behavior of the system for a typical

history of measurement outcomes (a “quantum trajectory”),

it is of much interest to study how well this expectation

holds by studying both fluctuations and the behavior of the

quantum trajectories in our system.

While we have concentrated on the study of the two-point

function G, it would also be interesting to establish the

limiting behavior of the many-body density matrix ρ as the

system is observed. In particular, this would allow us to study

the development of entropy and nontrivial correlation in the

system. Indeed, in recent works, e.g., Refs. [26–28,43], it has

been shown that certain protocols of repeated measurements

interspersed with free unitary evolution induce a phase

transition in the Rényi entropy dependant on the rate of

measurement. In ourmodel, we have found that no two-point

correlations are generated up to first order in the expansion

away from the Zeno limit, keeping the system close to a

product state at all times. However, for low measurement

rates, these correlations are clearly generated. This suggests

phase transitions of mutual information measures with the

measurement rate may be present.

It is important to note that, while in this work we have

focused mainly on the Lieb lattice, our procedure may be

easily generalized to other lattices. For example,weprovide a

similar eight-step protocol on a square lattice and a six-step

protocol on a “modified” kagome lattice in Appendix C.

Furthermore, we describe some restrictions on the kinds of

protocols that can be implemented on a given lattice.

We note that while our dynamics is driven by non-

interacting evolution, the formalism (see Ref. [46]) allows

for an arbitrary initial state, including interesting highly

correlated ones. Moreover, we expect that in the Zeno limit,

the inclusion of certain interactions may be efficiently

implemented with a proper modification of the current

treatment, which we leave for future work.

Finally, we suggest that a measurement protocol such as

ours, while challenging, may be experimentally realizable.

One possibility is the use of quantum dot arrays as the

underlying lattice [66]. Another promising direction is

quantum gas microscopes. Here, experiments working with

ultracold 6Li fermions have established the ability to resolve

particle presence at single sites; see, e.g., Refs. [67–69].
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FIG. 12. Flow after each measurement step for n ¼ 60 and

n ¼ 200. For both, ðT=8Þ ¼ ðπ=2Þ.
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APPENDIX A: CLOSED HIERARCHY FRAMEWORK

We begin with the most general evolution of a density matrix:

ρ → LðρÞ ¼
X

ν

AνρA
†
ν;

X

ν

A†
νAν ¼ 1: ðA1Þ

This form ensures that ρ remains non-negative and the normalization condition on the Krauss operators Aν

preserves Trρ ¼ 1.

The evolution of a general correlation function,

ha†i1…a†il1
aiðl1þ1Þ…aiðl1þl2Þ

i ¼ Trρa†i1…a†il1
aiðl1þ1Þ…aiðl1þl2Þ

; ðA2Þ

is given by

ha†i1…a†il1
aiðl1þ1Þ…aiðl1þl2Þ

i → ha†i1…a†il1
aiðl1þ1Þ…aiðl1þl2Þ

i þ
X

ν

TrρA†
ν½a†i1…a†il1

aiðl1þ1Þ…aiðl1þl2Þ
; Aν�; ðA3Þ

where we have used the normalization condition of Aν. Note that the l1 þ l2 correlation function is taken to a, in general,

higher-order correlation function leading to a hierarchy of equations. A tractable subset of this general evolution can be

found by taking the two-point function Gij ≡ ha†i aji, and asking under what set of Krauss operators does the hierarchy

close, i.e., G → G0 ¼ KðGÞ.
In Ref. [46], it is shown that, for fermions on a lattice, the following Krauss operators form the complete set of all possible

operations that close the hierarchy on the two-point function level:

noninteracting evolution∶ LuðρÞ ¼ UρU†; ðA4aÞ

particle detection∶ LD;iðρÞ ¼ niρni þ ð1 − niÞρð1 − niÞ; ðA4bÞ

soft particle injection∶ Lin;i;ϵðρÞ ¼ ϵð2 − ϵÞa†i ρai þ ½1 − ϵð1 − niÞ�ρ½1 − ϵð1 − niÞ�; ðA4cÞ

soft particle extraction∶ Lout;i;ϵðρÞ ¼ ϵð2 − ϵÞaiρa†i þ ð1 − ϵniÞρð1 − ϵniÞ: ðA4dÞ

Here, U is assumed to describe noninteracting evolution, under which fermion operators transform as U†a†iU ¼
Uija

†
j , where U is called a single-particle evolution. We have also denoted ni ¼ a†i ai the number operator, and ϵ is a

real number between 0 and 1. It is then a straightforward task of applying the anticommutation relations of a†; a to find the

corresponding transformations on the two-point function:

noninteracting evolution∶ KUðGÞij ¼ ðUGU†Þij; ðA5aÞ

particle detection∶ KD;iðGÞ ¼PiGPiþð1−PiÞGð1−PiÞ; ðA5bÞ

soft particle injection∶ Kin;i;ϵðGÞ ¼ ð1 − PiÞGð1 − PiÞ þ ð1 − ϵÞPiGð1 − PiÞ þ ð1 − ϵÞð1 − PiÞGPi

þ ð1 − ϵÞ2PiGPi þ ϵð2 − ϵÞPi; ðA5cÞ

soft particle extraction∶Kout;i;ϵðGÞ¼Kin;i;ϵðGÞ−ϵð2−ϵÞPi: ðA5dÞ

Here, Pi ¼ jiihij is the (single-particle) projector onto site i.
We emphasize that no approximations are used in the derivation of Eq. (A5). The resulting simplicity arises completely

from the restricted set of allowed Krauss operations. Equations (A5a) and (A5b) are the starting point for our analysis of the

evolution of G in the paper.
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APPENDIX B: REMARKS ABOUT

STEADY STATES

What kind of steady states can we expect in a system like

ours where evolution and density measurements are inter-

twined? Here it is convenient to look at the steady states

of the correlation matrix G rather then the full density

matrix ρ. Let us consider how the Hilbert-Schmidt norm of

G changes under unitary evolution and measurements

Eqs. (A5a) and (A5b) above. The Hilbert-Schmidt norm

is defined as

jjGjj2HS ≡ TrG†G ¼
X

ij

jGijj2: ðB1Þ

Clearly, jjGjjHS is invariant under unitary evolution of G.
Particle measurements of G, as described by Eq. (2), on the
other hand, set to zero some of the matrix elements of G
and thus can only decrease jjGjjHS. A necessary (though not

sufficient) condition for some Gsteady to be a steady state of

some superoperator Λ, i.e., ΛGsteady ¼ Gsteady, is that the

Hilbert-Schmidt norm remains constant. This provides a

restriction on Λ. Any particle detection measurement

contained in Λ must act trivially, i.e., not eliminate any

matrix elements. Thus, without loss of generality writing

Λ≡
Q

i ΠiUi we require that

ΛGsteady ¼
Y

i

ΠiUiGsteady ¼
Y

I

UiGsteady: ðB2Þ

Note that for our measurement procedure, this is clearly

true for any scalar matrix Gsteady. For a Gsteady with a

nonuniform diagonal (such as that of a single localized

particle) to be a steady state of the measurement protocol,

we can only satisfy Eq. (B2) in the Zeno limit with T=8
fine-tuned to π=2.
One possibility to find nonequilibrium steady states in

the system, as well as offer an insight into larger systems, is

to use particle injection and removal as was previously

done in Ref. [46]. To stabilize the system where the left half

is filled with particles, we may use a strip of width L, where
we start where we constantly try to inject particles from the

left, and extract any particle that arrives to the right of the

sample.

In the context of the present paper, we instead look at the

effective behavior of the system, when it is partially filled

and evolve over times which are long, but short compared

to the time it would take to arrive at the real uniform density

steady state.

APPENDIX C: MEASUREMENT PROTOCOL

ON OTHER LATTICES

In this appendix, we remark on lattices on which one can

perform the measurement protocol outlined above. Our

protocol is directly inspired by Floquet cycles where a

collection of pairs of neighboring sites are activated

at any given step. To mimic this type of dynamics, we

require the ability to isolate the activated pairs by per-

forming rapid measurements on neighboring sites. Thus, to

apply our protocol directly, we require that there is no

hopping amplitude to go between two distinct pairs.

For a Hamiltonian describing nearest neighbor hopping

on a lattice, this means that the edge distance between un-

measured pairs is at least two (see upper left-hand panel

in Fig. 13).

This restriction then rules out the simple cycle on a

square lattice originally introduced in Ref. [65], where

individual squares are traced out in four steps, as in this

case the edge distance between isolated pairs is only one.

This does not, however, mean a measurement protocol

cannot be implemented on a square lattice. A solution is to

increase the size of the cycle to an eight-step process that

traces out a path around clusters of four squares (see right-

hand panel in Fig. 13). Here, the edge distance between

activated pairs is 3, and thus they can be isolated using

rapid measurements. Note in this example protocol, there is

a site at the center of the cycle that is never activated, i.e.,

always measured. If this site is removed, we find precisely

the eight-step protocol on a Lieb lattice introduced in this

paper. This choice was made to minimize the number of

required measurements and to remove any spreading of

particles through these unactivated sites away from the

Zeno limit. We also here give an example of another

measurement protocol with six measurement steps on a

“modified” kagome lattice, as opposed to the eight steps for

our protocol on a Lieb lattice, as shown in Fig. 14.

FIG. 13. Upper left: the measurement protocols require the

bonds (red) between unmeasured sites (green) to be separated by

at least two edges. This allows for at least one measured site

(crossed) between them. Lower left: the naive attempt to perform

the measurement protocol on the kagome lattice does not work

because two of the surrounding measured sites around the

unmeasured sites (circled with red) overlap with other unmeas-

ured sites (denoted as the ends of black links). Right: An example

of a measurement protocol on a square lattice that satisfies the

requirement that the edge distance between unmeasured pairs

must be at least 2. If the unactivated (always measured) sites in

this protocol are removed, we have exactly the eight-step protocol

on a Lieb lattice introduced in this paper.
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APPENDIX D: SOME DERIVATION DETAILS

In this appendix, we supply a few more details about the formulas used in the main text.

(I) Proof of Eq. (7).

Y

a∈Ac

πa ¼
X

a∈Ac

Pa ⊗ Pa þ PA ⊗ PA:

We first note that if a ≠ b, then papb ¼ 0, pað1 − pbÞ ¼ pa. Thus in the product,

Y

a∈Ac

πa ¼
Y

a∈Ac

½Pa ⊗ Pa þ ð1 − PaÞ ⊗ ð1 − PaÞ�; ðD1Þ

the term of the form Pa ⊗ Pa can only appear in a product of the form ðPa ⊗ PaÞ
Q

a0∈Ac;a0≠að1 − Pa0Þ ⊗
ð1 − Pa0Þ ¼ Pa ⊗ Pa. Next note that

Q

a∈Acð1 − PaÞ ¼
Q

a∈A Pa. Therefore,
Q

a∈Acð1−PaÞ⊗ ð1−PaÞ¼PA⊗PA.

Combining these we get Eq. (7).

(II) Derivation of Eq. (13).

ΠA½H ⊗ I − I ⊗ H�ΠA

¼
�

X

a∈Ac

Pa ⊗ Pa þ PA ⊗ PA

�

½H ⊗ I − I ⊗ H�
�

X

b∈Ac

Pb ⊗ Pb þ PA ⊗ PA

�

¼ ðPA ⊗ PAÞ½H ⊗ I − I ⊗ H�ðPA ⊗ PAÞ
¼ HA ⊗ PA − PA ⊗ HA; ðD2Þ

where HA ≡ PAHPA, and we used that if a; b ∈ Ac, then PAPa ¼ PAPb ¼ 0 and that PaPb ¼ δabPa.

APPENDIX E: BULK-EDGE DECOMPOSITION: PROOF OF EQ. (30)

Our starting point is Eq. (26). Taking the ∂θ derivative and using the doubly stochastic nature of Rcyc (when θ ¼ 0), i.e.,

hIjRcycðθ ¼ 0Þ ¼ hIj and Rcycðθ ¼ 0ÞjIi ¼ jIi, we find

FIG. 14. An example measurement protocol on a “modified” kagome lattice that utilizes six measurement steps (as opposed to the

eight-step procedure used on the Lieb lattice). The black bonds indicate free hopping pairs and measurement is indicated by blue

colored sites.
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FN ¼ 1

NLx

i∂θχNðθÞjθ¼0 ¼
1

NLx

i∂θhIjRN
cycðθÞGjIijθ¼0 ¼

1

NLx

X

N−1

m¼0

hIjJRm
cycðθ ¼ 0ÞGjIi

¼ 1

NLx

X

N−1

m¼0

hIjJ½Rm
cycðθ ¼ 0Þ; G�jIi þ 1

Lx

hIjJGjIi; ðE1Þ

where we have defined J ¼ −i∂θRcycðθÞjθ¼0 and G is a

diagonal matrix representing the initial density distribution,

i.e., if written in matrix elements,Gα;βðr; r0Þ ¼ δαβδr;r0gαðrÞ
with r ¼ ðx; yÞ and r0 coordinates of the unit cell, α, β

internal sites, and gαðrÞ the initial probability for a particle

at a site indexed by (r, α). Below we suppress the angle

when describing Rcycðθ ¼ 0Þ, and will just write Rcyc.

In our setup (see Fig. 7), we fill the system in such a way

that gαðrÞ ¼ 1 for y < l1 and gαðrÞ ¼ 0 for y > l2. Let us

define the set

Sm ¼ fr∶l1 −m ≤ y ≤ l2 þmg: ðE2Þ

The set Sm contains the interface between empty and full

region, “thickened” by a height m below and above. Let

also PSm
be the projection on the set Sm defined as in

Eq. (8). Explicitly,

PSm;α;β
ðr; r0Þ ¼ δαβδr;r0

�

1 l1 −m ≤ y; y0 ≤ l2 þm

0 otherwise:

ðE3Þ

We now prove that we can freely move the projection

PSm
to either side of the commutator ½Rm

cyc; G�; namely,

taking the range of Rcyc to be short, rangeðRcycÞ ≤ 1, then

½Rm
cyc;G� ¼ PSm

½Rm
cyc;G� ¼ ½Rm

cyc;G�PSm
¼ PSm

½Rm
cyc;G�PSm

:

ðE4Þ

Proof.—Consider the commutator ½Rm
cyc; G�. Note that

since Rαβðr; r0Þ ¼ 0 if jr − r0j > 1, we have Rm
αβðr; r0Þ ¼ 0

if jr − r0j > m. Therefore, looking at the matrix elements,

we have ð½Rm
cyc;G�Þαβðr;r0Þ ¼ Rm

αβðr;r0Þ½gβðr0Þ− gαðrÞ� ¼ 0

when jr − r0j > m or gβðr0Þ − gαðrÞ ¼ 0. Thus, the matrix

elements of ½Rm
cyc; G� can only be nonzero when simulta-

neously jr − r0j ≤ m and gβðr0Þ − gαðrÞ ≠ 0. Let us check

when the matrix elements can be nonvanishing.

Since the system is filled in such a way that gαðrÞ ¼ 1 for

y < l1, we see that if y < l1 −m, the condition that

jr − r0j ≤ m implies y0 ≤ l1, and in particular gβðr0Þ ¼
gαðrÞ ¼ 1, making the commutator vanish. Similarly, the

commutator will vanish if y > l2 þm. And of course the

same considerations can be applied to y0. We conclude that

nonzero matrix elements are only possible if

l1 −m ≤ y; y0 ≤ l2 þm; ðE5Þ

which implies Eq. (E4). ▪

Since the boundaries of the system are not included in

the Sm region, we may also replace the open boundary

conditions of Rm
cyc with periodic ones, denoted by R

m
B, to get

½Rm
cyc; G� ¼ PSm

½Rm
cyc; G� ¼ ½Rm

B ; G�PSm
: ðE6Þ

Similarly, since J is short-ranged, far from the boundaries,

the matrix elements of J are identical to those of JB≡
−i∂θRBðθÞjθ¼0; namely, JPSm

¼ JBPSm
. This behavior

holds when m < min½l1 − rangeðJÞ; Ly − l2 − rangeðJÞ�,
which will always be assumed in the following treatment.

Thus, we have

hIjJ½Rm
cyc; G�jIi ¼ hIjJPSm

½Rm
cyc; G�jIi ¼ hIjJBPSm

½Rm
B ; G�jIi: ðE7Þ

Substituting in Eq. (E1), we get

FN ¼ 1

NLx

X

N−1

m¼0

hIjJBPSm
½Rm

B ; G�jIi þ
1

Lx

hIjJGjIi

¼ 1

NLx

X

N−1

m¼0

hIjJBPSm
Rm
BGjIi −

1

NLx

X

N−1

m¼0

hIjJBPSm
GjIi þ 1

Lx

hIjJGjIi

¼ 1

NLx

X

N−1

m¼0

hIjJBPSm
Rm
BGjIi þ

1

NLx

X

N−1

m¼0

hIjJðG − PSm
GÞjIi; ðE8Þ
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where in the last lineweused that in the bulk hIjJBPSm
GjIi ¼

hIjJPSm
GjIi.

To proceed we note that

G−PSm
G¼ð1−PSm

ÞG¼ðPy<l1−m
þPy>l2þmÞG¼Py<l1−m

;

ðE9Þ

where Py<l1−m
, Py>l2þm are projectors onto the regions

with y below y ¼ l1 −m and y above y ¼ l2 þm,

respectively. Also, we used that Py<l1−m
G ¼ Py<l1−m

and Py<l2þmG ¼ 0, which follow immediately from the

definition of G. Therefore,

FN ¼ 1

NLx

X

N−1

m¼0

hIjJBPSm
Rm
BGjIiþ

1

NLx

X

N−1

m¼0

hIjJPy<l1−m
jIi:

ðE10Þ

We can further simplify as follows. Let us assume

there is no bulk current per unit cell. Then, if averaged

over a bulk strip whose width is a unit cell, we have

hIjJðPy<l1−m
− Py<l1−ðm−1ÞÞjIi ¼ 0, which, finally, taking

rangeðJÞ ¼ 1, yields the form

FN ¼ 1

NLx

X

N−1

m¼0

hIjJBPSm
Rm
BGjIi þ

1

Lx

hIjJPy≤2jIi

≡ Fbulk þ Fedge: ðE11Þ

In other words, we have split the charge transport into a

term that depends only on the bulk properties of the system,

Fbulk ¼
1

NLx

X

N−1

m¼0

hIjJBPSm
Rm
BGjIi; ðE12Þ

and a term that can be computed near the edge,

Fedge ¼
1

Lx

hIjJPy≤2jIi: ðE13Þ

Let us consider the two terms separately.

Edge termFedge.—We can efficiently compute hIjJPy≤2jIi,
which can be done explicitly by writing the transition

matrix for a ladder geometry of small extension in the y
direction. Note that due to the short-range nature of J, the
edge expression can be further reduced to hIjPy≤3JPy≤2jIi.

Doing so for our system on Mathematica we find with our

measurement protocol Fedge ¼ p2 þ p3 þ p4.

Bulk term Fbulk.—Assuming the translational invariance

of RB, we can write Fbulk expressed in k space by defining

the momentum states,

jkiα ¼
1
ffiffiffiffi

V
p

X

r

eik·rjr;αi; jr; αi ¼
Z

d2k

ð2πÞ2 e
−ik·rjkiα;

ðE14Þ

where V ¼ LxLy is the number of unit cells. To proceed, let

us write the uniform density vector jIi as

jIi ¼
X

r;α

jr; αi ¼
ffiffiffiffi

V
p X

α

jk ¼ 0iα: ðE15Þ

Therefore, using the momentum representation in Eq. (E12)

we arrive at

Fbulk ¼
V

NLx

X

N−1

m¼0

X

αβ

ðJBÞαγðhk ¼ 0jPSm
Rm
BGjk ¼ 0iÞ

γβ
:

ðE16Þ

To evaluate this expression, we need, explicitly,

hkx ¼ 0; kyjαGjk0x ¼ 0; k0yiβ ¼
δαβ

Ly

X

y

gαðyÞe−iyðky−k
0
yÞ;

ðE17Þ

where gαðyÞ ¼ L−1
x

P

x gαðrÞ. For the evolution, let us write
Rm
B in the form

hkx ¼ 0; kyjαRm
B jk0x ¼ 0; k0yiβ ¼ δkxk0xδkyk0y

X

m

v¼−m

Cαβmve
ikyv;

ðE18Þ

where the coefficients Cαβmv depend on the model. The

restriction −m ≤ v ≤ m follows from the range of Rm
B being

limited to m. Also note that

hkjαPSm
jk0iβ ¼

δαβδkxk0x
Ly

X

l1−m≤y≤l2þm

e−iyðky−k
0
yÞ: ðE19Þ

Putting these together, we have
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ðhk ¼ 0jPSm
Rm
BGjk ¼ 0iÞ

αβ
¼ 1

Ly

Z

dk0y
2π

X

l1−m≤y≤l2þm

eik
0
yy

X

m

v¼−m

Cαβmve
ik0yv

X

y0
gβðy0Þe−ik

0
yy

0

¼ 1

Ly

X

l1−m≤y≤l2þm

X

y0

X

m

v¼−m

Cαβmv

�
Z

dk0y
2π

eik
0
yðy−y0þvÞ

�

gβðy0Þ

¼ 1

Ly

X

m

v¼−m

Cαβmv

X

l1−m≤y≤l2þm

gβðyþ vÞ

¼ 1

Ly

X

m

v¼−m

Cαβmv

X

l1−mþv≤y≤l2þmþv

gβðyÞ

¼ 1

Ly

X

m

v¼−m

Cαβmv

��

X

l2

y¼l1
gβðyÞ þm

�

− v

�

¼ 1

Ly

�

i∂ky ½Rm
B ðkÞ�αβ þ

�

X

l2

y¼l1
gβðyÞ þm

�

½Rm
B ðkÞ�αβ

��

�

�

�

k¼0

: ðE20Þ

Therefore, we have

Fbulk ¼
V

NLx

X

N−1

m¼0

X

αβγ

ðJBÞαγðhk ¼ 0jPSm
Rm
BGjk ¼ 0iÞ

γβ

¼ 1

N

X

N−1

m¼0

X

αβ

�

i½JBðkÞ∂ky(Rm
B ðkÞ)�αβjk¼0 þ

�

X

l2

y¼l1
gβðyÞ þm

�

½JBðkÞ(Rm
B ðkÞ)�αβjk¼0

	

: ðE21Þ

Next, we note that in Eq. (E21) above, we can use

X

αβ

m½JBðkÞ(Rm
B ðkÞ)�αβjk¼0 ¼ 0: ðE22Þ

This follows from the fact that RB is a stochastic matrix, with RBjIi ¼ jIi, and the assumption that there is no net current in

the uniform density system:

0 ¼ hIjJBjIi ¼ hIjJBRm
B jIi ¼ V

X

αβ

½JBðkÞ(Rm
B ðkÞ)�αβjk¼0 ¼ 0: ðE23Þ

Let us define cα ≡
P

l2

y¼l1 gαðyÞ. We then have

Fbulk ¼
1

N

X

N−1

m¼0

X

αβ

fi½JBðkÞ∂ky(Rm
B ðkÞ)�αβjk¼0 þ ½JBðkÞ(Rm

B ðkÞ)�αβcβjk¼0g: ðE24Þ

Now, using repeatedly that RBjIi ¼ jIi, we write

1

N

X

N−1

m¼0

X

αβ

fi½JBðkÞ∂ky(Rm
B ðkÞ)�αβjk¼0 þ ½JBðkÞ(Rm

B ðkÞ)�αβcβjk¼0g

¼ i

N

X

N−1

m¼1

X

αβ

��

JBðkÞ
X

m−1

q¼0

R
q
BðkÞ∂kyRBðkÞ

�

αβ

�

�

�

�

k¼0

þ
�

JBðkÞ
RBðkÞN − I

RBðkÞ − I

�

αβ

cβ

�

�

�

�

k¼0

	

¼ 1

N

X

αβ

�

i

�

JBðkÞ
�

N½I − RBðkÞ� þ RN
B ðkÞ − I

½I − RBðkÞ�2
�

∂ky
RBðkÞ

�

αβ

�

�

�

�

k¼0

þ
�

JBðkÞ
RBðkÞN − I

RBðkÞ − I

�

αβ

cβ

�

�

�

�

k¼0

	

: ðE25Þ
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We now consider the large N limit. If we assume that cβ
does not scale with N, the dominant term becomes

Fbulk ¼ i
X

αβ

�

JBðkÞ
1

I − RBðkÞ
∂ky

RBðkÞ
�

αβ

�

�

�

�

k¼0

; ðE26Þ

which is Eq. (31).

APPENDIX F: ROBUSTNESS OF FLOW

In this appendix, we show that the results of Appendix E

are robust to perturbations near the boundary (see Fig. 15).

Consider a perturbation of our stochastic dynamics Rcyc,

affecting regions away from the bulk of the sample where

we have our interface between the occupied and unoccu-

pied regions. Let us take it as described by a modified

dynamics given by RM of the form:

RMðr; r0Þ ¼

8

>

>

>

<

>

>

>

:

R̃ ry; r
0
y ≤ l1 − ðNþ 1Þ

Rcyc l1 − ðNþ 1Þ ≤ ry; r
0
y ≤ l2 þ ðN þ 1Þ

R̃0 ry; r
0
y ≥ l2 þ ðNþ 1Þ

0 otherwise;

ðF1Þ

where R̃; R̃0 are real matrices such that RM is doubly

stochastic; i.e., RM is identical to Rcyc in the bulk but

modified near the boundary. We now calculate the flow for

this new matrix RM and show it is equivalent to that of Rcyc.

The situation is illustrated in Fig. 15.

Following Eq. (E1), we find the flow for RM is

FN ¼ 1

NLx

i∂θhIjRN
MðθÞGjIi; ðF2Þ

wherewehave added the counting field such that ½RMðθÞ�αβ ¼
½RM�αβe−iðβx−αxÞθ with α ¼ ðαx; αyÞ and β ¼ ðβx; βyÞ. De-
fining a matrix which is only modified in the bottom edge,

R0
Mðr; r0Þ ¼

8

>

>

<

>

>

:

R̃ ry; r
0
y ≤ l1 − ðN þ 1Þ

Rcyc ry; r
0
y ≥ l1 − ðN þ 1Þ

0 otherwise;

ðF3Þ

we note that

RN
MG ¼ R0N

MG: ðF4Þ

This is because the only nonzero contributions to RN
MG come

from terms at ry; r
0
y ≤ l2 þ N; hence, we are free to replace

R̃0
→ Rcyc in the region ry; r

0
y > l2 þ Nwithout changing the

result. Combining Eq. (F2) with Eq. (F4) and following the

rest of the steps in Eq. (E1), we find

FN ¼ 1

NLx

X

N−1

m¼0

hIjJ0M½R0m
M ðθ ¼ 0Þ; G�jIi þ 1

Lx

hIjJ0MGjIi;

ðF5Þ

where J0M is the current associated with R0
M.

Similar to Eq. (E4), we find

½R0m
M ðθ ¼ 0Þ; G� ¼ ½R0m

M ðθ ¼ 0Þ; G�PSm
: ðF6Þ

Note that in the region Sm, R
0
M is identical to Rcyc. We

therefore have

½R0m
M ðθ ¼ 0Þ; G�PSm

¼ ½Rm
cycðθ ¼ 0Þ; G�PSm

¼ ½Rm
B ðθ ¼ 0Þ; G�PSm

: ðF7Þ

Repeating the steps that led to Eq. (E10), we find

FN ¼ 1

NLx

X

N−1

m¼0

hIjJBPSm
Rm
BGjIi

þ 1

NLx

X

N−1

m¼0

hIjJ0MPy<l1−m
jIi: ðF8Þ

Note that the first term in Eq. (F8) is equivalent to the Fbulk

contribution for Rcyc. We now show that ð1=NLxÞ
P

N−1
m¼0 ×

hIjJ0MPy<l1−m
jIi is equivalent to the Fedge contribution

from Rcyc.

FIG. 15. An illustration of the stability of the flow. When the

initial state has uniform density below the line l1, our N cycle

flow is only sensitive to perturbations occurring in the region

above l1 − N. For large N, the initial density configurations (a),

(b), and (c) will have the same N cycle transport despite having

drastic differences in R matrices (e.g., by introducing new edges

in the system drawn in black above). On the other hand, panel

(d) will have a reduced N cycle flow, since, in contrast with panel

(b), the partially filled area on the upper part of the new edge will

not be enough to cancel the flow below it.
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Note,

1

NLx

X

N−1

m¼0

hIjJ0MPy<l1−m
jIi ¼ 1

NLx

X

N−1

m¼0

hIjJ0MPl1−Nþm>y>l1−N
jIi þ 1

Lx

hIjJ0MPy<l1−N
jIi

¼ 1

NLx

X

N−1

m¼0

hIjJPl1−Nþm>y>l1−N
jIi þ 1

Lx

hIjJ0MPy<l1−N
jIi

¼ 1

Lx

hIjJ0MPy<l1−N
jIi; ðF9Þ

where in the second and third lines we have used the

fact that J0M is identical to J for y > l1 − N and that Rcyc

has no bulk transport implies hIjJPl1−Nþm>y>l1−N
jIi ¼ 0.

Furthermore,

1

Lx

hIjJ0MPy<l1−N
jIi ¼ 1

Lx

hIjJ0MðI − Py>l1−N
ÞjIi: ðF10Þ

We now restrict ourselves to the case where hIjJ0MjIi¼0,

i.e., no net current in the uniform density state. Note that

this is the case when R is a product of bistochastic

symmetric matrices, which includes many of the most

natural perturbations near the boundary (random potentials,

removed sites, variation in hopping amplitude or measure-

ment step timing, etc.). In this case, we find

1

Lx

hIjJ0MðI − Py>l1−N
ÞjIi ¼ −

1

Lx

hIjJ0MPy>l1−N
jIi ¼ −

1

Lx

hIjJPy>l1−N
jIi

¼ 1

Lx

hIjJPy≤2jIi ¼ Fedge: ðF11Þ

We thus have that flow is unaffected by arbitrary evolution near the boundary. It is only dependent on the bulk properties

of the evolution. Note this argument also holds if Rcyc is replaced by Rnz, the dynamics in the near-Zeno case. In other

words, transport is completely protected even (to first order) away from the Zeno limit. In fact, numerical simulations

suggest that edge transport is unaffected by perturbations near the boundary even in the low frequency measurement regime.

Proof of this, however, is still a work in progress.

APPENDIX G: NEAR-ZENO APPROXIMATION: DERIVATION OF Rnz

Our starting point is Eq. (12). Let us now include terms of order up to Oðτ2Þ, and rewrite it as

ΠAi
ðU ⊗ ŪÞΠAi

¼ ΠAi
− iτ½HAi

⊗ PAi
− PAi

⊗ HAi
� − τ2

2
ΠAi

½H ⊗ I − I ⊗ H�2ΠAi
þOðτ3Þ

¼ ΠAi
ðUAi

⊗ ŪAi
ÞΠAi

− τ2ζAi
ðHÞ þOðτ3Þ; ðG1Þ

where

ζAi
ðHÞ ¼ 1

2
ΠAi

½H2 ⊗ I þ I ⊗ H2 − 2H ⊗ H�ΠAi
−
1

2
½H2

Ai
⊗ PAi

þ PAi
⊗ H2

Ai
− 2HAi

⊗ HAi
�: ðG2Þ

From this we find

ΠAiþ1
½ΠAi

ðU ⊗ ŪÞΠAi
�nΠAi−1

¼ ΠAiþ1
½ΠAi

ðUAi
⊗ ŪAi

ÞΠAi
− τ2ζAi

ðHÞ�nΠAi−1
þOðnτ3Þ

¼ ΠAi∩Aiþ1
ðUn

Ai
⊗ ŪAi

nÞΠAi∩Ai−1
− τ2ΠAi∩Aiþ1

X

n−1

m¼0

ðUm
Ai
⊗ Ūm

Ai
ÞζAi

ðHÞ

× ðUn−1−m
Ai

⊗ Ūn−1−m
Ai

ÞΠAi∩Ai−1
þOðτ3nÞ: ðG3Þ
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The first term in Eq. (G3) corresponds to the evolution in

the Zeno limit and generates the operation Ri on the

diagonal of G (as is explained in the Zeno limit

Sec. IV). The second term, as will be shown, corresponds

to the R̃i operations on the diagonal of G.
To see this, we start by noting that the operator ΠAi∩Aiþ1

kills the correlations between every pair of sites, unless both

sites are within Ai ∩ Aiþ1. Hence, off-diagonal elements

of G are only generated if ðUm
Ai
⊗ Ūm

Ai
ÞζAi

ðHÞðUn−1−m
Ai

⊗

Ūn−1−m
Ai

Þ can generate correlations between the elements of

Ai ∩ Aiþ1. The operators ðUAi
⊗ ŪAi

Þ can only generate

correlations within the neighboring pairs inside of Ai. Now,

note that the neighboring pairs within Ai are separated by at

least three edges. Therefore, to generate correlations between

the neighboring pairs using a power of H, i.e., Hν, we must

have at least ν ≥ 3. ζAi
ðHÞ, on the other hand, contains H

with a power of at most 2. It follows then that neither ζAi
ðHÞ

nor ðUAi
⊗ ŪAi

Þ can generate correlations between the

adjacent pairs in Ai. Hence, any correlations generated by

ðUm
Ai
⊗Ūm

Ai
ÞζAi

ðHÞðUn−1−m
Ai

⊗Ūn−1−m
Ai

Þwill be subsequently
killed byΠAi∩Aiþ1

. We thus again have that the evolution ofG

may be described fully by the dynamics of the diagonal ofG.
Furthermore, we may replace ΠAi∩Aiþ1

in Eq. (G3) with

an operator that simply kills all correlations, namely,
P

a Pa ⊗ Pa.

At this point in the analysis, there are two cases for the

action of ðUAi
⊗ ŪAi

Þ which we now consider. For sites in

Ac
i and for sites in Ai without a neighboring site also in Ai

(see Fig. 16), ðUAi
⊗ ŪAi

Þ simply acts as an identity. On

the other hand, for sites in Ai with a neighboring site also in

Ai, ðUAi
⊗ ŪAi

Þ will induce Rabi oscillations within the

neighboring pair inside of Ai.

We further note that, for any given site b, the near-Zeno
term in Eq. (G3) only induces an interaction between b, the
closest element or pair in Ai to b, and other nearest

neighbors to this element or pair in Ai (see Fig. 16).

This is by nature of the fact that the H2 ⊗ I and I ⊗ H2

terms (the only terms that act nontrivially on sites outside of

Ai) in ζAi
ðHÞ are sandwiched by ΠAi

, and so can only affect

nearest neighbors to any given element of Ai. We therefore

find that we have two disjoint sets of sites, as given in

Fig. 16, that are affected by the near-Zeno term in Eq. (G3)

differently.

Case 1.—Here (orange sites in Fig. 16), the second term

in Eq. (G3) becomes

−τ2
X

a

ðPa ⊗ PaÞ
X

n−1

m¼0

ζAi
ðHÞ

X

b

ðPb ⊗ PbÞ ¼ −nτ2
X

a;b

ðPa ⊗ PaÞζAi
ðHÞðPb ⊗ PbÞ: ðG4Þ

We now simplify to find

X

a;b

ðPa ⊗ PaÞζAi
ðHÞðPb ⊗ PbÞ ¼

X

a;b

ðPa ⊗ PaÞ
�

1

2
ΠAi

½H2 ⊗ I þ I ⊗ H2 − 2H ⊗ H�ΠAi

−
1

2
½H2

Ai
⊗ PAi

þ PAi
⊗ H2

Ai
− 2HAi

⊗ HAi
�
	

ðPb ⊗ PbÞ

¼
X

a

degðaÞðPa ⊗ PaÞ −
X

a;b

PaHPb ⊗ PaHPb; ðG5Þ

where we have used the fact that HAi
¼ PAi

HPAi
¼ 0 since in case 1 no element of Ai has a nearest neighbor also in Ai.

This implies that R̃i is given by

case 1∶ ½R̃i�ab ¼

8

<

:

degðaÞ for a ¼ b

−1 for a; b nearest neighbors

0 otherwise:

ðG6Þ

FIG. 16. For any given Ai, here we take without loss of

generality i ¼ 3, some elements of Ai have a neighbor also in

Ai. Other sites in Ai have no such nearest neighbor. As described

in Appendix G, all sites evolve in the near-Zeno approximation in

one of two ways. Lone sites in Ai and nearest neighbors to lone

sites in Ai (as shown in orange) exhibit an evolution given by

case 1 of the near-Zeno term of Eq. (G3). However, the evolution

for sites that are in an adjacent pair in Ai or neighboring an

adjacent pair in Ai (shown in purple) are governed by case 2.
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Case 2.—Here (purple sites in Fig. 16), note that UAi
⊗ ŪAi

¼ e−iτO, where we have defined

O≡HAi
⊗ PAi

− PAi
⊗ HAi

: ðG7Þ

Furthermore, the following relations hold,

O2 ¼ 2ðPAi
⊗ PAi

−HAi
⊗ HAi

Þ≡ 2E; ðG8Þ

OE ¼ 2O; ðG9Þ

where we have defined E in the first line and used the fact thatHAi
simply acts like the Pauli matrix σx for nearest neighbors

in the subspace Ai, i.e., H
2
Ai
¼ PA.

It then follows that

UAi
⊗ ŪAi

¼ e−iτO ¼
�

E

2
−
E

2

�

þ 1 − 2iτ
O

2
− ð2τÞ2 E

2
þ i

3!
ð2τÞ3O

2
þ � � �

¼
�

1 −
E

2

�

þ E

2
cos 2τ − i

O

2
sin 2τ: ðG10Þ

We therefore find

X

n−1

m¼0

ðUm
Ai
⊗ Ūm

Ai
ÞζAi

ðHÞðUn−1−m
Ai

⊗ Ūn−1−m
Ai

Þ

¼
X

n−1

m¼0

��

1 −
E

2

�

þ E

2
cos 2mτ − i

O

2
sin 2mτ

�

ζAi
ðHÞ

��

1 −
E

2

�

þ E

2
cos 2mτ þ i

O

2
sin 2mτ

�

ðUn−1
Ai

⊗ Ūn−1
Ai

Þ

¼
�

n

�

1 −
E

2

�

ζAi
ðHÞ

�

1 −
E

2

�

þ n

2

E

2
ζAi

ðHÞE
2
þ n

2

O

2
ζAi

ðHÞO
2

�

ð1 − EÞ þOð1Þ; ðG11Þ

where in the last line we have restricted ourselves to the perfect switching cycle, i.e., nτ ¼ ðπ=2Þ, and neglected any terms in

the sum that are not at least OðnÞ.
It is now convenient to rewrite ζAi

ðHÞ:

ζAi
ðHÞ ¼ 1

2
ΠAi

½H2 ⊗ I þ I ⊗ H2 − 2H ⊗ H�ΠAi
−
1

2
½H2

Ai
⊗ PAi

þ PAi
⊗ H2

Ai
− 2HAi

⊗ HAi
�

¼ 1

2
ΠAi

½H2 ⊗ I þ I ⊗ H2 − 2H ⊗ H�ΠA − E≡ Z − E; ðG12Þ

where Z has been defined in the last line. We may now combine Eqs. (G11) and (G12) to find

X

n−1

m¼0

ðUm
A ⊗ Ūm

A ÞζðHÞðUn−1−m
A ⊗ Ūn−1−m

A Þ ¼
�

n

�

1 −
E

2

�

ðZ − EÞ
�

1 −
E

2

�

þ n

2

E

2
ðZ − EÞE

2
þ n

2

O

2
ðZ − EÞO

2

�

ð1 − EÞ

þOð1Þ

¼ n

�

Z −
EZ

2
−
ZE

2
þ 3

8
EZEþ 1

8
OZO − E

�

ð1 − EÞ þOð1Þ

¼ n

�

Z þ E −
1

2
fE; Zg þ 1

8
EZE −

1

8
OZO

�

þOð1Þ; ðG13Þ

where fE; Zg ¼ EZ þ ZE is the anticommutator.
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Now, combining Eqs. (G3) and (G13), we find that the near-Zeno term in Eq. (G3) becomes

−nτ2
X

a;b

ðPa ⊗ PaÞ
�

Z þ E −
1

2
fE; Zg þ 1

8
EZE −

1

8
OZO

�

ðPb ⊗ PbÞ: ðG14Þ

Considering each of the terms in Eq. (G14), we have

X

a;b

ðPa ⊗ PaÞZðPb ⊗ PbÞ ¼
X

a

degðaÞðPa ⊗ PaÞ −
X

a;b

PaHPb ⊗ PaHPb; ðG15Þ

X

a;b

ðPa ⊗ PaÞEðPb ⊗ PbÞ ¼
X

a∈Ai

Pa ⊗ Pa −
X

a;b∈Ai

PaHPb ⊗ PaHPb; ðG16Þ

X

a;b

ðPa ⊗ PaÞ
�

−
1

2
fE;Zg

�

ðPb ⊗ PbÞ ¼ −
X

a∈Ai

½degðaÞ þ 1�ðPa ⊗ PaÞ þ
X

a;b∈Ai

�

2þ degðaÞ þ degðbÞ
2

�

PaHPb ⊗ PaHPb

þ 1

2

X

a∈Ac
i
;b∈Ai

ðPaHPb ⊗ PaHPb þH:c:Þ

−
1

2

X

a∈Ac
i
;b∈Ai

ðPaHHAi
Pb ⊗ PaHHAi

Pb þH:c:Þ: ðG17Þ

X

a;b

ðPa ⊗ PaÞ
�

1

8
EZE

�

ðPb ⊗ PbÞ ¼ 2
X

a∈Ai

Pa ⊗ Pa − 2
X

a;b∈Ai

PaHPb ⊗ PaHPb: ðG18Þ

X

a;b

ðPa ⊗ PaÞ
�

−
1

8
OZO

�

ðPb ⊗ PbÞ ¼ −2
X

a∈Ai

Pa ⊗ Pa þ 2
X

a;b∈Ai

PaHPb ⊗ PaHPb: ðG19Þ

Finally, we therefore have that R̃i becomes

case 2∶ ½R̃i�ab ¼

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

degðaÞ for a ¼ b ∈ Ac
i

−1 for a; b ∈ Ac
i and nearest neighbors

− 1
2

for ða ∈ Ai and b neighbors the adjacent pair in Ai that includes aÞ or vice versa

degðaÞþdegðbÞ
2

for a; b ∈ Ai and nearest neighbors

0 otherwise:

ðG20Þ

Now, Eqs. (G6) and (G20) may be combined to find the

full R̃i. Note that on the seam between case 1 and case 2, for

example, the element ½R̃i�ab with a as an orange site in

Fig. 16 and b as a blue site, case 1 and case 2 match as

required for consistency. Namely, the element ½R̃i�ab ¼ −1

if a, b are nearest neighbors, and 0 otherwise. Furthermore,

note that R̃i is a zero line-sum matrix. Hence, the rows and

columns of Rnz;i ¼ Ri − nτ2R̃i sum to 1. Furthermore, this

implies the rows and columns of Rnz also sum to 1 as

required for the usage of Eq. (30).

APPENDIX H: DETERMINISTIC HOPPING

Evolution in the Zeno limit with perfect swapping is

deterministic. Thus, edge transport and bulk localization

can be seen directly.

Figure 17 shows a Lieb lattice with two layers of
dynamical unit cells in the y direction and infinitely many
in the x direction. The following gives the transport of a
particle beginning at any given site after one complete
measurement cycle (represented by arrows). Note that after
no more than five measurement cycles, each particle returns
to either its initial position or its initial position shifted by
one dynamical unit cell to the right or left.

(a) Periodic boundary conditions

(i) 1 → 1

(ii) 2 → 12eikx → 5 → 4 → 3 → 2

(iii) 6 → 11 → 10 → 9 → 8 → 6

(iv) 7 → 7

where e−ikx indicates a shift by one unit cell to the

right. Note that after five measurement cycles every

particle returns to its initial position in agreement with
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Rcycðk; θÞ5 ¼ I, as described below Eq. (28). Now we turn

to open boundary conditions.

(b) Open boundary conditions

(i) 1 → 6 → 1e−ikx

(ii) 2 → 12eikx → 5 → 4 → 3 → 2

(iii) 7 → 7

(iv) 8 → 11eikx → 10eikx → 9eikx → 8eikx

Note here that, in contrast to the periodic boundary

conditions, there is particle transport in the x direction.

Namely, particles at sites 1 and 6 shift to the right by one

unit cell every two measurement cycles, and particles at 8,

9, 10, and 11 shift to the left one unit cell every four

measurement cycles.
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