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quencies, as depicted in Fig. 1(a). Under appropriate
driving, individual electrons near the Weyl nodes act as
an ensemble of topological frequency converters (as in
Ref. 52), with the (pseudo-)spin of each electron playing
the role of the spin, and the vector potential potential
inside the material playing the role of the magnetic field
(the “transduction” being provided by the Fermi veloc-
ity of the Weyl point). As a result, the system hosts
an ensemble of electrons that each convert energy from
mode 2 to mode 1 at the quantized rate ±hf1f2 per elec-
tron; the number of active frequency converters is con-
trolled by the magnitude of the vector potential. Impor-
tantly, topological frequency conversion can be realized
in Weyl semimetals at relatively modest radiation inten-
sities. This is because the effective spins interact directly
with the (strongly coupled) electric field of the radiation
rather the than the magnetic field. As another benefit,
Weyl semimetals host a macroscopic number of active
frequency converters, giving rise to very large conversion
rates.

As a bulk response, topological frequency conversion
is unique to Weyl semimetals, and constitutes a funda-
mentally new mechanism for optical amplification. The
phenomenon has novel features of intrinsic interest: first,
it is a 2-wave mixing effect that does not require an idler
beam or phase matching. Secondly, it is in essence a
nonperturbative effect, beyond the regime of standard
“χn” responses: in the ideal, fully adiabatic, limit, we
show that the rate of topological frequency conversion
is non-analytic as a function of the driving amplitude,
and hence cannot be captured through a standard Tay-
lor expansion. Away from this limit (i.e., in the presence
of finite driving frequency and relaxation), the nonper-
turbativeness persists in the form of a highly nonlinear
amplitude-dependence.

The novel features above, along with the modest ra-
diation intensities required and the macroscopic number
of active frequency converters give Weyl semimetals a
significant potential for optical amplification. This is
demonstrated in Fig. 1(b): here we plot the gain coef-
ficient (i.e., the exponential rate at which the intensity
of the amplified mode increases inside the material), ob-
tained from simulations with a somewhat optimized, but
feasible band structure of a Weyl semimetal. The mate-
rial is irradiated at frequencies in the “THz gap,” where
new effective amplifiers are in high demand, due to a lack
of powerful coherent radiation sources. Assuming suffi-
ciently slow relaxation, our simulations indicate gain co-
efficients of order 100 cm−1 can be achieved at intensities
of order 1W/m2. This value is comparable with current
methods such quantum cascade lasers [57–61], which re-
port gain coefficients, 20−50cm−1 range [57, 58]. We em-
phasize it may be possible to realize significantly larger
gain coefficients than O(100 cm−1) in other parameter
ranges; e.g., with stronger intensities.

There still are challenges that need to be overcome
before optical amplification can become reality: being a
conductor, Weyl semimetal respond with plasma oscilla-

tions to radiation which renormalize the vector potential
inside the material. It is therefore necessary to drive the
system above its plasma frequency to allow the vector po-
tential enter the material. The plasma oscillations on the
other hand provides an opportunity: driving the material
close to resonance with the plasma frequency amplifies
the internal vector potential, thus significantly enhanc-
ing the rate of energy conversion. Indeed, we exploit this
resonance effect to achieve the simulated gain coefficients
of ∼ 100 cm−1 for the data depicted in Fig. 1(b).

Another, more serious, challenge is electronic relax-
ation processes. These counteract the frequency conver-
sion by providing a channel for trivial energy dissipa-
tion – material heating. For the parameters consid-
ered in Fig. 1(b), net energy gain of the pumped mode
becomes possible for a characteristic relaxation time of
order 300 picosecond at THz frequencies. Such relax-
ation times are longer than the relaxation times that
have been mostly reported experimentally to date, which
range from 0.25 ps−3 ps [62–65] to 40 ps [66]. The nature
and timescales for scattering processes in Weyl semimet-
als is an interesting subject on its own which is still being
explored, however: some experiments report signatures
with much longer lifetimes [17, 67, 68] that can even ex-
ceed 1000 ps [69]. In addition experiments and theoreti-
cal studies indicate regimes dominated by non-standard,
momentum-conserving channels of dissipation, resulting
in hydrodynamical behavior [70, 71].

We speculate that slower relaxation rates can be
achieved, e.g. through improvement of materials quality
and bath/substrate engineering. As another example, we
show that dissipation is significantly reduced at commen-
surate frequencies, without affecting the energy transfer
from topological frequency conversion [see Fig. 1(c)]. Ex-
cessive heating can be countered through pulsed driving,
by allowing the system to dissipate away heat between
the pulses. If sufficiently slow relaxation can be reached
through such or similar incremental improvements, there
is a potential for significant benefits in the form of a new
and powerful mechanism for optical amplifcation.

The rest of this paper is structured as follows: in Sec. I
we review the characteristic properties of Weyl semimet-
als, which forms the basis for our discussion. In Sec. II,
we present the mechanism for frequency conversion from
a single-particle perspective. Sec. III shows how topolog-
ical frequency conversion arises in a realistic many-body
system, taking into account the effects of finite frequency
and dissipation. In Sec. IV, we support our conclusions
with numerical simulations. In Sec. V, we summarize
the conditions that a Weyl semimetal and driving modes
must satisfy to allow for topological frequency conversion.
In Sec. VI, we incorporate the effects of plasmons on the
single-grain frequency converter, calculate the work in
the context of Maxwell equations for the problem, and
propose a practical implementation of an amplifier based
on this effect using a “phase array” of Weyl grains. We
conclude with a general discussion in Sec. VII. Details of
derivations are provided in Appendices.
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I. REVIEW OF WEYL SEMIMETALS

We begin by reviewing the characteristic properties of
Weyl semimetals. This review forms the basis for our
subsequent discussion.
Weyl semimetals are 3-dimensional materials in which

two adjacent energy bands touch at isolated points in the
Brillouin zone [11, 12], as depicted in Fig. 2(a). These
band-touching points are known as Weyl points. To
understand Weyl points better, we consider the Bloch
Hamiltonian of the system, H(k), near one such Weyl
point, which we (without loss of generality) take to be
located at wave vector k = 0. When restricted to the
subspace spanned by the two touching bands, and lin-
earized in k around k = 0, H(k) takes the following
characteristic form:

H(k) = ε0 + ~

∑

i,j

σiRijkj + ~

∑

i

Viki +O(k2), (1)

where σx, σy and σz denote the Pauli matrices acting
on the subspace spanned by the two touching bands in
some given basis, R is a real-valued symmetric full-rank
3 × 3 matrix, while V = (V1, V2, V3) and ε0 is a real-
valued velocity and energy, respectively. Evidently, the
two energy bands of H(k) included above touch at the
Weyl point (k = 0). When the touching energy bands are
plotted in the plane ki = 0 (for i = x, y, or z), the bands
form a characteristic “touching cones” structure, as for
example in Fig. 2(a). ε0 determines the location of the
touching point on the energy axis, while V determines
the “tilt” of the cones. The eigenvectors and spectrum
of R determines the anisotropy (or “squeezing”) of the
band gap around the Weyl point.
Once it is present, a Weyl point is a very robust fea-

ture: as long R remains full-rank, any infinitesimal per-
turbation to the system can only shift the location of
the band-touching point, but not eliminate it. This
is straightforward to verify through direct calculation.
Hence, a smooth change of system parameters can only
cause Weyl points to continuously move around in the
Brillouin zone [72]. As a result of this robustness, Weyl
semimetals are a generic class of materials. Indeed, many
materials have recently been shown to be Weyl semimet-
als [10–12, 73–79].
Another novel feature of Weyl semimetals is the non-

trivial band topology associated with the eigenstates of
the Bloch Hamiltonian, {|ψα(k)〉}. These topological
properties are captured by the Berry curvature Ωα(k) =
(Ω1

α(k),Ω
2
α(k),Ω

3
α(k)) where

Ωiα(k) = i

3
∑

j,k=1

ǫijk〈∂jψα(k)|∂kψα(k)〉, (2)

with ǫijk denoting the Levi-Civita tensor and ∂i the par-
tial derivative with respect to the ith component of crys-
tal wave vector, ki (we discuss the physical significance
of the Berry curvature below). Weyl points act as point

sources for Berry curvature: for two bands, 1 and 2,
touching at an isolated Weyl node at k = ki, the Berry
curvature of the upper band, 2, satisfies

∇ ·Ω2(k) = 2π sgn(|R|)δ(k− ki), (3)

were | · | denotes the determinant, and ∇ the nabla op-
erator in k-space. The sign is reversed for the the lower
band. The relationship between Weyl points and Berry
curvature is in exact analogy to point charges and the
electric field. In this analogy, the index q ≡ sgn|R| deter-
mines the “charge”, or chirality, of the Weyl point [80].
The net charge of all Weyl points that appear within a
given gap is zero [1]; thus any gap must hold an even
number of Weyl points.
For a system with many bands and multiple Weyl

points, Eq. (3) generalizes to

∇ ·Ωα = 2π
∑

i

qisi,αδ(k− ki), (4)

where the sum runs over all Weyl points in the system, qi
denotes the chirality of Weyl point i, and si,α indicates
how the Weyl points of the system connect the bands:
specifically si,α = 1 if Weyl point i connects band α with
the adjacent band above, si,α = −1 if it connects band
α with the band below, and si,α = 0 if band α is not
involved at Weyl point i.
Eq. (4) can equivalently be expressed using the diver-

gence theorem: for a closed surface in the Brillouin zone,
C, the total Berry flux of band α,

∮

C d
2S ·Ωα(k) (which

is identical to the Chern number of band α when con-
stricted to the 2-dimensional closed surface C), is given
by

∑

ki∈C qisα,i where the sum runs over all Weyl points
contained within C.
Berry curvature acts as a magnetic field in reciprocal

space: an electron in band α with a relatively well-defined
position and wavevector, r and k, acquires a transverse
velocity proportional to Ωα(k) when subject to a weak

external force [81], k̇:

ṙα(k) =
1

~
∇kεα(k) + k̇×Ωα(k). (5)

This second term above is known as anomalous velocity,
and can be seen as a canonically-conjugate analog to the
Lorentz force: whereas a magnetic field B generates a ve-
locity in reciprocal space perpendicular to the real-space
velocity, k̇ = − e

~
B × ṙ (the Lorentz force), Berry cur-

vature generates a real-space velocity perpendicular to
the reciprocal space velocity, ṙ = k̇×Ωn (the anomalous
velocity); here e denotes the elementary charge.
Eq. (3) implies that the Berry curvature diverges near

Weyl points. Hence electrons with wavevectors near
a Weyl point experience a divergent anomalous veloc-
ity [82]. When subject to an applied electric field, E, such

that k̇ = −eE/~, Weyl semimetals can thus produce a
large current response which may be nonlinear as a func-
tion of E. This significant nonlinearity makes Weyl ma-
terials particularly attractive as nonlinear optical media,
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band α, in a wavepacket with some relatively well-defined
position, r, and wavevector, k. The rate of energy trans-
ferred to mode 1 by the wavepacket, Pα(k, t), is given by
Ohm’s law [86],

Pα(k, t) = −eE1(t) · ṙα(k, t). (7)

where ṙα(k, t) denotes the velocity of the wavepacket in
band α at wavevector k, given the Hamiltonian H(k, t).
When ω1 and ω2 are small enough so that the time-
dependence of H(k, t) is adiabatic [87], ṙα(k, t) is given
by Eq. (5), with the instantaneous reciprocal space ve-

locity given by k̇(t) = −eE(t)/~:

ṙα(k, t) =
1

~
∇kεα(k+eA(t))− e

~
E(t)×Ωα(k+eA(t)/~).

(8)
Our goal is to compute the time-averaged rate of en-

ergy transfer into mode 1,

P̄α(k) ≡ lim
t→∞

1

t

∫ t

0

ds Pα(k, s). (9)

Here and throughout this work, we use the ·̄ accent to
indicate time-averaging, such that, for any function of
time and, possibly, other parameters f(t, x), f̄(x) ≡
limt→∞

1
t

∫ t

0
dsf(s, x).

To compute P̄α(k), we express ṙα(k, t) as a direct
function of φ1 and φ2: ṙα(k, t) = vα(k;ω1t, ω2t). Here
vα(k;φ1, φ2) is obtained from the expression for ṙα(k, t)
in Eq. (8) after replacing A(t) and E(t) with α(φ1, φ2)
and ǫ(φ1, φ2), respectively. Since we assume ω1 and
ω2 to be incommensurate, the time-averaged value of
E1(t) · ṙα(k, t) is identical to the phase-averaged value
of ǫ1(φ1) · vα(k;φ1, φ2). Hence,

P̄α(k) =
−e
4π2

∫ 2π

0

dφ1dφ2 ǫ1(φ1) · vα(k;φ1, φ2). (10)

Using the expression for v we described above, along with
ǫi = 2πfi∂φi

α, we obtain

P̄α(k) = f1f2
e2

~

∫ 2π

0

dφ1dφ2 (∂φ1
α×∂φ2

α)·Ωα(k−eα/~).
(11)

See Appendix A for detailed derivation. The in-
tegral above has a direct geometrical interpretation:
e2

~2 dφ1dφ2 (∂φ1
α × ∂φ2

α) gives the differential area el-
ement of the closed surface defined by eα(φ1, φ2)/~ in
reciprocal space,

B0 ≡ {eα(φ1, φ2)/~}, 0 ≤ φ1, φ2 < 2π, (12)

The direction of the differential area element (∂φ1
α ×

∂φ2
α) defines the orientation of B0. In Fig. 2(b) we depict

B0 for the case where modes 1 and 2 are circularly polar-
ized in the xz and yz planes respectively, and have elec-
tric field amplitudes E2 = 1000 kV/m, E1 = 740kV/m,

and frequencies f2 = 1THz, f1 =
√
5−1
2 f2. For in-

commensurate frequencies, the trajectory of eA(t)/~ fills

out B0 completely at long times, as also illustrated in
Fig. 2(b).
With the above geometric interpretation, we find

P̄α(k) = f1f2~

∮

B0

d2k′ ·Ωα(k+ k′), (13)

where
∮

B0

d2k′ denotes the surface integral of k′ over the
surface B0. From Sec. I we recall that this integral is
quantized as 2π times the net charge of Weyl points of
band α enclosed within the surface B0 after displacing
it by k from the origin in reciprocal space, Qα[k] (here
the enclosed charge is weighted by the orientation of B0

with respect to the volume in which the Weyl point is
enclosed):

P̄α(k) = hf1f2Qα[k] (14)

where we used h = 2π~.
For an isolated Weyl point with charge +1 located at

k = 0 in a two-band system, Qα[k] is given by the fol-
lowing for the upper band (α = 2):

Q2[k] = −W (k), (15)

where the function W (k) is integer-valued and denotes
the net winding number of B0 around k as a function of
φ1 and φ2. In Fig. 2(c) we plot W (k) for the configu-
ration of two circularly polarized modes also considered
in Fig. 2(b). The sign is reversed for mode 2 [i.e., when
replacing E1 with E2 in Eq. (7)]. Hence the electron acts
as a conversion medium that transfers energy between
mode 2 and 1.
For a system with multiple bands, Qα[k] =

∑

iW (k−
ki)qisi,α, where the index si,α encodes how Weyl point i
connects the bands of the system (see Sec. I). We hence
arrive at

P̄α(k) = hf1f2
∑

i

W (k− ki)qisi,α. (16)

This constitutes one of our main results.
Eq. (16) shows that each electron in the Weyl

semimetal transfers energy from mode 2 to mode 1 at
a rate which is quantized, as an integer multiple of hf1f2.
The value of the integer depends on the location of the
electron in the Brillouin zone, k. Specifically, the conver-
sion rate P̄α(k) is nonzero for electrons whose wavevec-
tors k are located within the surface B0 relative to a Weyl
point. Thus, a nonzero conversion power can be realized
for electrons near Weyl points.
The energy conversion predicted in Eq. (16) can be

seen as a realization of the topological frequency conver-
sion that was discovered in Ref. [52]. Ref. [52] showed
that a 2-level system (such as a spin-1/2) initialized in
its lower band and adiabatically driven by two modes
with frequencies f1 and f2 can transfer energy between
the modes at an average rate quantized as hf1f2z, where
z is an integer. Ref. [52] explained this conversion as an
anomalous velocity along the synthetic dimensions that
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correspond to the photon numbers of the two modes.
To understand the relationship between our result and
Ref. [52], note that for fixed k, H(k, t) is a Hamiltonian
of a 2-level system of the exact same form as considered
Ref. [52], with the pseudospin of the electron playing the
role of the physical spin in Ref. [52]. Indeed, the ar-
guments of Ref. [52] show that for the two-level system
described by H(k, t), z = W (k). In this way, each elec-
tron in a Weyl semimetal can be seen as a topological
frequency converter from Ref. [52], with the quantized
rate of conversion controlled by its location in the Bril-
louin zone.

A. Commensurate frequencies

The discussion above for simplicity assumed the fre-
quencies f1 and f2 incommensurate. Here we consider
the case where the frequencies of the modes are commen-
surate such that f1/f2 = p/q for some integers p and q. In
this case, E(t) and A(t) thus are time-periodic with the
extended period Text = pT1 = qT2. This time-periodicity
significantly affects the electron’s trajectory in the BZ
(relative to its equilibrium wavevector), eA(t)/~. For
incommensurate frequencies, the trajectory fills a closed
surface, namely B0, as illustrated in Fig. 2(b). In con-
trast, commensurate frequencies causes the trajectory to
form a closed curve, C0, as in Fig. 2(d). The curve C0 is
still located on the surface B0.

For commensurate frequencies, the driving experienced
by the electron depends on the initial phase difference be-
tween the modes, ∆φ; here nonzero ∆φ corresponds to
a shift of the phase of mode 2 such that E(t) = E1(t) +
E2(t+∆φ/ω2), resulting in E(t) = ǫ(ω1t, ω2t+∆φ) and
A(t) = α(ω1t, ω2t +∆φ). For incommensurate frequen-
cies, different values of ∆φ are equivalent to shifts in the
time origin and hence do not affect the long-term dy-
namics of the electron. In contrast, for commensurate
frequencies, each distinct value of ∆φ results in a dif-
ferent closed trajectory of A(t), C0. The surface B0 is
recovered by combining the curves C0 for all possible val-
ues of ∆φ.

For commensurate frequencies, the quantization of P̄
breaks down. The breakdown of quantization arises be-
cause the trajectory of the modes’ phases (φ1(t), φ2(t)) =
(ω1t, ω2t +∆φ) does not cover the whole 2d phase Bril-
louin zone over time, φ1, φ2 = [0, 2π), thus invalidating
the step leading to Eq. (10). However, quantization is re-
covered when averaging P̄ over all possible values of ∆φ:
for commensurate frequencies, Eq. (10) remains valid for
the average value of P̄ with respect to ∆φ. Thus, for
commensurate frequenices it is possible to enhance con-
version rates relative to the quantized value by tuning the
phase difference to a value where the conversion rate ex-
ceeds its average value. For uncontrolled (random) phase
differences, the conversion rate remains quantized on av-
erage.

III. FREQUENCY CONVERSION IN
MANY-BODY SYSTEMS

Our next goal is to show how topological frequency
conversion emerges in a realistic Weyl semimetal where
electrons are affected by interactions, impurities and
phonons. We focus on the rate of energy transfer to mode
1 per unit volume for a Weyl semimetal driven by two
modes, η(t). If η(t) is positive, there is a net flow of en-
ergy into mode 1, implying amplification of this mode.
This energy must originate from mode 2. The conversion
rate η(t) can be computed from the current density, j(t),
using Ohms law:

η(t) = −E1(t) · j(t). (17)

To obtain the current density j(t) we characterize the
many-body state of the Weyl semimetal in terms of the
momentum resolved density matrix,

ρ̂(k, t) ≡ Trk′ 6=k[ρ̂F(t)], (18)

where ρ̂F(t) denotes the full density matrix of the Weyl
semimetal at time t, which is subject to interactions, im-
purities, and phonons, while Trk′ 6=k[·] denotes the trace
over all possible occupations of electronic states with
crystal momentum other than k. ρ̂(k, t) is a matrix in
the 2d dimensional Fock space associated with the d or-
bitals (or bands) accessible by the electrons at wavevec-
tor k [88] Below, the “hat” accent ·̂ indicates operators
that act on many-body orbital Fock states. Operators
without the accent, such as the Bloch Hamiltonian from
Secs. I-II, H(k, t), are single-particle operators. ρ̂(k, t)
encodes the band occupancies alongside with inter-band
coherences and all multi-particle correlations of electrons
with the same wavevector k. The inter-band coherences
are crucial for capturing topological energy conversion,
since they give rise to the anomalous velocity in our for-
malism.
ρ̂(k, t) determines the current density in the system,

j(t), through

j(t) = − e
~

∫

d3k

(2π)3
Tr[ρ̂(k, t)∇kĤ(k, t)], (19)

where momentum integrals are taken over the full Bril-
louin zone, and Ĥ(k, t) denotes the second-quantized
Bloch Hamiltonian of the system:

Ĥ(k, t) =
∑

ij

Hij(k, t)ĉ
†
i ĉj , . (20)

Here Hij(k, t) ≡ 〈i|H(k, t)|j〉, and |i〉 denotes the ith
orbital state in the standard Bloch space.
In the presence of driving ρ̂(k, t) approaches to a time-

dependent steady state. We obtain this steady state by
solving a master equation for ρ̂(k, t), in which the effects
of interactions, impurities and disorder are included as a
dissipative term. The master equation and steady-state
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solution are summarized in Sec. IIIA below. The cal-
culation of the steady-state is straightforward, but in-
volved, and is detailed in Appendix B. A key feature
of the steady-state solution is that the current response
can be split into an energy-conserving “adiabatic com-
ponent”, j0(t), and a dissipative correction due to non-
adiabaticity and scattering, δj(t):

j(t) = j0(t) + δj(t). (21)

This decomposition allows us to identify an energy-
conserving and dissipative component of η(t):

η0(t) = −E1(t) · j0(t), ηdis(t) ≡ −E1(t) · δj(t). (22)

The component j0(t) is responsible for topological fre-
quency conversion, and we find that this term dominates
in the limit of adiabatic driving and slow relaxation. As
a central result, we find that

j0(t) ≡ −e
∫

d3k

(2π)3

∑

α

ρ̄α(k)ṙα(k, t) (23)

with ṙα(k, t) = 1
~
∇kεα(k + eA(t)) − e

~
E(t) × Ωα(k +

eA(t)/~) denoting the wavepacket velocity in band α;
ρ̄α(k) is the time-averaged occupation in the αth band
of the instantaneous Bloch Hamiltonian, H(k, t).

In what follows, we first discuss the steady state so-
lution of the density matrix (Sec. IIIA). We then com-
pute the time-averaged energy pumping resulting from
the non-dissipative component of the current response,
η0. We finally consider the dissipative component of η,
ηdis in Sec. III C. It is crucial to estimate ηdis, since am-
plification is only achieved when η0 exceeds ηdis.

A. Steady state solution

We now discuss how we obtain the steady-state of
ρ̂(k, t). Details of this discussion are provided in Ap-
pendix B.
For a clean and non-interacting system, ρ̂(k, t) evolves

according to the von Neumann equation, ∂tρ̂(k, t) =

−(i/~)[Ĥ(k, t), ρ̂(k, t)]. Interactions, phonons, and impu-
rities cause a dissipative correction to this equation. For
sufficiently weak dissipation, this correction can be de-
rived approximately from first principles and takes the
form of a trace- and positivity-preserving linear operator
acting on ρ̂(k, t), D(k, t) [89]. Thus, ρ̂(k, t) is governed
by the following Lindblad-type quantum master equation

∂tρ̂(k, t) ≈
−i
~
[Ĥ(k, t), ρ̂(k, t)] +D(k, t) ◦ ρ̂(k, t). (24)

In Appendix. B, we obtain a solution to Eq. (24). The
solution ρ̂(k, t) is accurate as long as the driving is adia-
batic with respect to the energy gap of H(k, t), δε, and
much faster than the the magnitude of the dissipator
D [90]:

‖D(k, t)‖ ≪ ω1, ω2 ≪ δε. (25)

We term this limit, as the coherent adiabatic regime.
When the above conditions are satisfied, we find the-

steady state value of ρ̂(k, t) is diagonal in the eigenbasis

of the Hamiltonian, Ĥ(k, t), up to minor nonadiabatic
corrections. The corresponding eigenvalues (which de-
termine the the occupations of the instantaneous bands
of Ĥ(k, t)) are nearly stationary, except for minor fluctu-
ations of order ‖D‖/O(ω1, ω2). These fluctuations, along
with the subleading (second-order) nonadiabatic correc-
tions to ρ̂(k, t) give rise to the dissipative current δj(t).
The term j0(t) results from just keeping the (dominating)
time-independent component of the eigenvalues of ρ̂(k, t)
and including leading-order nonadiabatic correction to its
eigenbasis. Here the leading-order non-adiabatic correc-
tion to the eigenbasis is responsible for the anomalous
velocity which enters in j0(t).
Our solution to Eq. (24) applies to any dissipator

D, and this dissipator can be derived from first prin-
ciples [89]. However, for illustrative purposes, we now
demonstrate our solution for the concrete example where
D takes a particular phenomenological form: the “Boltz-
mann” form. In this approximation, the dissipator uni-
formly relaxes electrons towards their instantaneous equi-
librium state at some given ambient temperature 1/β and
chemical potential µ, and with some rate 1/τ :

DB(k, t) ◦ ρ̂ = −1

τ
[ρ̂− ρ̂eq(k, t)]. (26)

Here ρ̂eq(k, t) is the instantaneous equilib-
rium state described above, and is given by

e−β[Ĥ(k,t)−µn̂]/Tr(e−β[Ĥ(k,t)−µn̂]), where n̂ =
∑

i ĉ
†
i ĉi.

We also use this dissipator in our numerical simulations
(see Sec. IV).
The Boltzmann-form dissipator [Eq. (26)] leads to the

following steady state density matrix:

ρ̄α(k) ≈ lim
t→∞

1

t

∫ t

0

ds fβ [εα(k, t)− µ]. (27)

where fβ(E) denotes the Fermi-Dirac distribution at
temperature 1/β. This result (see also Appendix B) in-
dicates a steady state occupation which is the average
band-population on the trajectory k+ eA(t)/~, as if the
equilibrium distribution is “smeared” over a characteris-
tic wavevector scale eA/~, where A is the drive vector
potential magnitude. This smearing is confirmed in our
numerical simulations (see Sec. IV and Fig. 4 in particu-
lar).

B. Non-dissipative frequency conversion

We first compute the average rate of energy transfer in
the limit of adiabatic driving and zero dissipation. I.e.,
we compute the the time-average of the component η0(t),
η̄0. We find that η0(t) can have nonzero time-average
because of the mechanism of topological frequency con-
version that we discovered in the last section.



8

To compute η̄0 we first note η0 can be written

η0(t) =
∑

α

∫

d3k

(2π)3
ρ̄α(k)Pα(k, t) (28)

where Pα(k, t) ≡ eE(t) · ṙα(k, t) [see also Eq. (7)]. We
find the time-average of the above using the main re-
sult from Sec. III B, P̄α(k) = −hf1f2

∑

iW (k−ki)qisi,α
[Eq. (16)]. Here qi, si,α, and ki denote the charge, band
connectivity, and wave vector of Weyl point i in the sys-
tem, respectively, while W (k) measures the net winding
of the surface B0 around wavevector k (see Sec. III C for
further details). with this, Eq. (28) becomes:

η̄0 = −hf1f2
∑

α,i

∫

d3k

(2π)3
qisi,αρ̄α(k)W (k− ki). (29)

Thus, each Weyl point is surrounded by a region of recip-
rocal space (namely the region where W (k−ki) 6= 0), in
which electrons act as topological frequency converters.
In this region, each transfers energy to mode 1 at the
quantized rate ±hf1f2. This is a many-electron general-
ization of Eq. (16) and constitutes another main results
of this paper. In the following we thus refer to η̄0 as the
topological frequency conversion rate of the system, to
distinguish it from the dissipation rate, which is given by
the time-average of ηdis(t).
While the conversion rate from each electron is quan-

tized, the net number of electrons with nonzero conver-
sion rate is not fixed, but depends on the amplitude
and configuration of the driving field (through the func-
tionW (k)) and the steady-state distribution surrounding
each Weyl point, ρ̄α(k). This steady-state distribution is
in turn controlled by the band structure of the system,
as well as the configuration and intensity of the external
driving.
To explore how the band structure and driving con-

figuration controls the conversion rate, we first estimate
the “gross” rate of topological frequency conversion from
a Weyl point (i.e., not taking into account cancella-
tion between electrons that transfer energy at opposite
rates). Note that W (k) is positive within volume of

order ∼ 2e3

~3 A1A2(A1 + A2) in reciprocal space, with
Ai = Ei/ωi denoting the vector potential amplitude of
mode i. This volume corresponds to an electronic density

of ∼ e3

4~3A1A2(A1 +A2) for each Weyl point. Since each
electron contributes hf1f2 to η̄0, η̄gross is of order

ηgross ∼
e3E1E2

8π4~2

(

E1

ω1
+
E2

ω2

)

. (30)

As an example, for ωi ∼ 2πTHz and Ei ∼ 1500 kV/m.
the above estimate yields ηgross ∼ 500 kW/mm3.
The actual, net, topological conversion power, η̄0 is sig-

nificantly smaller than the gross rate we estimated above,
due to cancellation between electrons that convert energy
at rates hf1f2 and −hf1f2. Specifically, when modes 1
and 2 only contain a single harmonic each, the driving

induced vector potential satisfies Ai(t) = −Ai(t+Ti/2),
implying W (k) = −W (−k) [91] [this symmetry is
clearly evident in Fig. 2(c)]. Hence the regions of re-
ciprocal space characterized by conversion rates hf1f2
and −hf1f2 have equal net volumes. In realistic situa-
tions, both volumes will be occupied by electrons, imply-
ing η̄0 ≪ ηgross. However, because ηgross can be quite
large, even a small imbalance in the filling of the two
regions can lead to significant net frequency conversion.
To achieve a nonzero η̄0, the steady-state occupation of

the bands, ρ̄α(k), must be anisotropic around the Weyl
point to counteract the antisymmetryW (k) = −W (−k).
Such an anisotropy is generally achieved when the “Weyl
cone tilt”, V, is nonzero, since we expect the steady-state
inherits the same symmetry properties as the equilibrium
state [see Eq. (1)]. Additionally, the Weyl point must
be within a distance of order ∼ eAi/~ from the Fermi
surface to ensure that ρ̄α(k) does not take constant value
(1 or 0) within B0. Indeed, our numerical simulations
demonstrate that nonzero η̄0 can arise when V 6= 0 and
the Fermi surface lies close to the Weyl point.
Topological frequency conversion is in essence a non-

perturbative effect: it is controlled by the overlap of
the quantized (i.e., nonanalytic) function W (k) with the
steady-state distribution. Hence topological frequency
conversion does not have a simple power-law dependence
on A in the limit of small A, and is therefore beyond stan-
dard nonlinear response theory. In Sec. IV [Fig. 6(b)] we
provide data from numerical simulations indicating this
highly nonlinear nature of the phenomenon.

C. Dissipative energy loss

For topological frequency conversion to cause a net am-
plification of mode 1, η̄0 must exceed the rate of energy
loss due to dissipation, ηdis. It is therefore crucial to
estimate this dissipation rate. This is the goal of this
subsection.
Our solution of the master equation in Appendix B

shows that the dissipative current response, δj(t) [see Eq.
(21)], contains two components:

δj(t) = δjmr(t) + δjna(t), (31)

which we interpret as arising from momentum-relaxation
(δjmr) and nonadiabaticity-induced particle-hole pair cre-
ation (δjna); see discussion below. Consequently, ηdis(t)
can also be separated into these two components:

ηdis(t) = ηmr(t) + ηna(t). (32)

where ηmr(t) ≡ E1(t) · jmr(t), and ηna is defined likewise.
While ηmr and ηna are given in Appendix B, here we

discuss their origin and estimate their magnitudes based
on a phenomenological discussion.
Energy loss due to momentum relaxation, ηmr, arises

when perturbed electrons in the close vicinity the
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we term this region of reciprocal space as the “non-
adiabatic” region and denote it by Vna. The Landau-
Zener formula [92, 93] states that time-dependence of
H(k, t) is non-adiabatic if, for some t,

~‖∂tH(k+ eA(t))‖ & δε2(k+ eA(t))/~, (35)

where δε(k) ≡ ε2(k)− ε1(k), and εα(k) denotes the αth
energy band of H(k). Using the linearized form of H(k)
in Eq. (1), a straightforward derivation (see Appendix C)
shows that this condition is satisfied at k-points for which
mint |k+ eA(t)/~| . d0 where

d0 ≡
√

eE‖R‖
~v20

, (36)

while ‖R‖ and v0 denotes the largest and smallest
eigenvalue of the velocity matrix R, respectively [see
Eq. (1)] [94]. For incommensurate frequencies, Vna thus
consists of all k-points within a distance d0 from the topo-
logical phase boundary B0 by our estimate. For com-
mensurate frequencies Vna consists all k-points within a
distance d0 from C0, which forms a closed curve on B0,
as in Fig. 2(d).
Electrons with wave vectors k within Vna encounter a

vanishing gap of Ĥ(k, t) at times t where |k+eA(t)/~| .
d0. These electrons then undergo Landau-Zener tunnel-
ing, which effectively heats them to a high-temperature
state, as explained in the beginning of this subsection.
These high-temperature electrons then relax back to
equilibrium after a characteristic time 1/Γ. ηna(t) is then
the rate of energy loss, or heating, (per unit volume) aris-
ing from this relaxation. We estimate

ηna ∼ ∆εnannaΓ/2, (37)

where nna is the concentration of excited electrons within
Vna, and ∆εna denotes the characteristic average value of
δε(k+eA(t)) for k within Vna. Here the factor of 2 comes
because we estimate that the other half of the dissipated
energy comes from mode 2.
We obtain ∆εna using that Vna is located a distance

∼ eA/~ from the Weyl node, such that ∆εna ∼ eA‖R‖,
and ‖R‖ is the largest velocity implied by the velocity
tensor R. Using A ∼ E/Ω, we obtain

∆εna . eE‖R‖/Ω. (38)

To estimate nna, it is crucial to know the characteristic
time interval between successive gap-closing events expe-
rienced by electrons with a given wavevector within Vna,
∆t. To build intuition, let us first consider what happens
when ∆t ≫ 1/Γ, i.e., when electrons have time to fully
relax between successive gap-closing events [95]. Elec-
trons at wavevector k are taken to a high-temperature
state whenever k comes within a sphere of radius ∼ d0
from eA(t)/~. Electrons are in equilibrium as they “en-
ter” the sphere (due to our assumption ∆t ≫ 1/Γ), and
we estimate that half of them are excited to the conduc-
tion band as they “leave” the sphere. The concentration

of electrons per unit time that are heated by this pro-
cess is hence given by the cross-section of this sphere
times 0.5

(2π)3 e|∂tA|/~. Therefore, we expect the concen-

tration of electrons heated per unit time to be given by
ed20|∂tA(t)|/16π2

~. Assuming the electrons relax with
characteristic rate Γ, we estimate nna as the fixed point
of ∂tnna = eπd20|∂tA(t)|/16π2

~− Γnna. Using ∂tA = E,
we thus find nna ∼ ed20E/16π

2
~Γ.

Next, we consider the case where ∆t . 1/Γ. In
this case, a significant fraction of electrons are already
in a high-temperature state when they experience a
gap-closing event (i.e., when they “enter” the sphere
with radius d0 centered at eA(t)/~). Assuming that
the gap-closing event effectively randomizes the state
of the electrons (i.e., the electrons are in a infinite-
temperature state right after “leaving” the sphere, re-
gardless of their initial state), a subsequent gap-closing
event only re-heats a reduced number of electrons to a
high-temperature state. We estimate the fraction of pre-
excited electrons to be of order 0.5 e−Γ∆t right before the
gap closing and 0.5 right after; thus the heating rate is
reduced by a factor O(1− e−Γ∆t), resulting in

nna ∼ ed20E

16π2~Γ
(1− e−Γ∆t). (39)

Combining this result with Eqs. (36)-(38), we obtain

ηna ∼ e3E3‖R‖2
32π2~2Ωv20

(1− e−Γ∆t). (40)

Below we estimate ∆t (i.e., the characteristic time be-
tween gap closing events) for the two cases incommensu-
rate and commensurate frequencies; as we find these two
situations lead to significantly different ∆t, and hence
also different values of ηna.

Evidently, the bound above is controlled by the ra-
tio between the largest and smallest eigenvalues of the
matrix R, ‖R‖/v0. As we argued in Sec. I, this num-
ber quantifies the anisotropy of the band gap around the
Weyl point.

Note that the first factor in Eq. (40) is larger than the
gross rate of topological frequency conversion in Eq. (30)
(this follows from ‖R‖/v0 ≥ 1, and π2 > 8). Thus, ∆t
needs to be much shorter than Γ−1 for nonadiabatic heat-
ing not to overwhelm the net rate of topological frequency
conversion. In particular, since ∆t is at least 2π/Ω, we
expect Γ ≪ Ω to be a necessary condition for topological
frequency conversion.

To illustrate the above result, we estimate ηna for
the same parameters as gave us the estimates ηgross =
500 kW/mm3 and ηmr ∼ 100 kW/mm3, namely, E ∼
1500 kV/m, Ω = 2πTHz, ‖R‖ ∼ v0 ∼ 5 · 105m/s [see
text below Eqs. (30) and Eq. (34)]. With these param-
eters Eq. (40) yields ηna ∼ 650kW/mm3(1 − e−Γ∆t). In
the case of fast relaxation Γ, ηna is clearly the dominant
heating mechanism.
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bands. The electrons are subject to the linearized Bloch
Hamiltonian

H(k) = ~vk · σ + ~k ·V. (44)

We also introduce two electromagnetic modes that are
circularly-polarizedthat propagate in the yz- and xz-
planes, respectively. For i = 1, 2, mode i has angular
frequency ωi and electric field amplitude Ei inside the ma-
terial. It thus induces the time-dependent electric field
Ei(t), where

E1(t) = E1(cosω1t, 0, sinω1t), (45)

E2(t) = E2(0, cosω2t, sinω2t). (46)

The irradiated electrons are governed by the time-
dependent Bloch Hamiltonian H(k, t) = H(k+eA(t)/~),
where A(t) denotes the driving-induced vector potential
and is defined through ∂tA(t) = E1(t) + E2(t) (see also
Sec. II). As in the previous sections, we work in a gauge
where A(t) has vanishing time-average.
We numerically obtain the evolution of the

momentum-resolved density matrix of the system,
ρ̂(k, t) (see Sec. III for definition), using the mas-
ter equation in Eq. (24). We take the dissipator
D to be given by the Boltzmann form [Eq. (26)]:
D(k, t) ◦ ρ̂ = − 1

τ [ρ̂− ρ̂eq(k, t)]. Here ρ̂eq(k, t) denotes the
instantaneous equilibrium state of electrons with crystal
momentum k at time t at some given temperature T
and chemical potential µ [see text below Eq. (26) for
explicit definition]. Since Eq. (24) describes evolution in
the 4-dimensional second-quantized Bloch space of the
system, its numerical solution is relatively inexpensive.
For each k, we numerically solve Eq. (24) to obtain the

steady-state evolution of ρ̂(k, t). From this steady state
we extract the quantity

P̄ (k) ≡ lim
t→∞

1

t

∫ t

0

ds
e

~
E1(s) · Tr[∇Ĥ(k, s)ρ̂(k, s)]. (47)

P̄ (k) gives the time-averaged total rate of energy trans-
fer to mode 1 from electrons with wavevector k. The
total time-averaged rate of energy transferred to mode 1
per unit volume of the whole system, η̄, is obtained by
integrating P (k) over all wavevectors:

η̄ =

∫

d3k

(2π)3
P̄ (k). (48)

In our simulation, we evaluate the k-integral above by
sampling P̄ (k) over a large number of uniformly dis-
tributed values of k [97].
We solve the master equation for ρ̂(k, t) through direct

integration, not making use of any of the approximations
of Sec. III C. In particular, our simulation does not dis-
tinguish between coherent and incoherent dynamics, and
our obtained value for η̄ thus includes both contributions
both from topological frequency conversion and dissipa-
tion. Hence our simulation can be used to test the con-
clusions in Sec. III.

We probe different values of f1 and τ , while keeping
all other parameters fixed at values f2 = 1.23THz, v =
3.87 · 105 m/s, V = (0, 0, 3.1 · 105 m/s), µ = 115meV,
T = 20K, E1 = 0.9MV/m, and E2 = 1800 kV/m. Our
chosen values of v and V have magnitudes comparable to
those in real materials [98, 99]. The values of µ andV are
chosen to maximize the imbalance between the number
of electrons acting as frequency converters at rates hf1f2
and −hf1f2, as discussed in Sec. III B (see also Sec. IVB
below).

A. Identification of amplification regime

In Sec. III, we showed that the time-averaged rate
of energy transfer to mode 1 can be decomposed as
η̄ = η̄0 + η̄dis. Here η̄0 can be positive due to topological
frequency conversion, while η̄dis is negative and measures
the time-averaged rate of energy dissipated from mode 1
due to heating in the system. We expect |η̄dis| to decrease
with increasing relaxation time τ , while η̄0 remains con-
stant. Thus, η̄ should increase with τ . There should
also exist a critical value of τ for which η̄ = 0. When τ
is larger than this “amplification threshold”, the system
will amplify mode 1 (η̄ > 0). We expect the amplifica-
tion threshold to be significantly lower in the Lissajous
conversion regime (i.e., at rational frequency ratios) than
for irrational frequency ratios due to the suppression of
nonadiabatic heating in the former case (see Sec. IVC
and Sec. IVC below).

To identify the amplification threshold for the system,
we computed η̄ as a function of τ for three representative
choices of f1/f2; namely, irrational f1 = 1

ϕf2, rational

f1 = 2
3f2, and nearly-rational f1 = 2

3+ǫf2, where ϕ is

given by the “golden mean”, 1
2 (1+

√
5), and ǫ = π/1000.

We keep all other parameters fixed at the values we
specified earlier. The two latter values of f1 are chosen
to demonstrate the mechanism of Lissajous conversion:
Whereas f1 = 2

3f2 is commensurate with f2, f1 = 2
3+ǫf2

is not, and hence the former value of f1 is expected to
yield more efficient—Lissajous—conversion.

In Fig. 1(c) we plot η̄ as a function of τ for the three
values of f1 above. As we expect, η̄ increases as a func-
tion of τ for all choices of f1, and attains positive value
for sufficiently large τ . For the irrational frequency ra-
tio f1 = f2/ϕ, the amplification threshold is reached
at τ ≈ 1000 ps, for f1 = 2f2/3 at τ ≈ 300 ps and for
f1 = 2f2/(3 + ǫ) above τ = 1200 ps.

Note that the weak detuning of f1 from 2f2/3 (green
curve) to 2f2/(3 + ǫ) (orange curve) reduces η̄ by more
than 100 kW/mm3, and pushes the amplification thresh-
old from 300 to 1200 ps. This demonstrates the strong
dependence of the net conversion rate on the commensu-
rability of f1 and f2 that we discussed in Sec. IIID.
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B. Origin of energy conversion

Next, we confirm that the amplification of mode 1 (i.e,
the positive values of η̄ > 0) we observed is due to topo-
logical frequency conversion. To this end, we compute
P̄ (k) as a function of k around the Weyl point.
We first review the signatures of topological frequency

conversion we expect to see. For k-points where H(k, t)
changes adiabatically in time, electrons should act as
topological frequency converters (as in Ref. [52]) that
transfer energy to mode 1 at an average rate quantized
as ±hf1f2W (k), where the W (k) denotes the integer-
valued net winding number of the surface B0 around k

[see Fig. 2(c)]. Here + and − result from electrons in
band 1 and 2, respectively. We hence expect

P̄ (k) = hf1f2W (k)[ρ̄1(k)− ρ̄2(k)] + Pdis(k), (49)

where ρ̄α(k) denotes the time-averaged occupancy of
band α, and Pdis(k) denotes the rate of energy loss from
mode 1 due to dissipation. We expect the latter is always
negative, but only significant around the Fermi surface
(due to momentum relaxation), and within the nonadia-
batic region (due to nonadiabatic heating).
In Fig. 4(a) we plot W (k) in the plane ky = 0, for

f1 = f2/ϕ and with all other parameters specified be-
low Eq. (48). We also indicate the Fermi surface (dashed
line) and schematically indicate the nonadiabatic region
(shaded region), which surrounds the topological phase
boundary (solid line). Since µ > 0, band 1 is fully oc-
cupied in equilibrium. We therefore expect ρ̄1(k) ≈ 1
[see Eq. (27)] for all k away from the nonadiabatic re-
gion (where Landau-Zener tunneling can induce holes).
We hence expect topological frequency conversion causes
P̄ (k) to approximately take value hf1f2[1− ρ̄2(k)] within
the red region of Fig. 4(a), value −hf1f2[1− ρ̄2(k)] in the
blue region, and value 0 in the white region.
In Fig. 4(b), we plot P̄ (k) in the plane ky = 0 in for

parameters f1 = f2/ϕ and τ = 51.6 ps [100]. The data
shows clear signatures of topological frequency conver-
sion, in the form of two “topological plateaux” of the
Brillouin zone where P̄ (k) takes positive and negative
values, respectively. These plateaus coincide closely with
the regions in Fig. 4(a) where W (k) = ±1. P̄ (k) approx-
imately takes value hf1f2 within the red plateau (away
from the Weyl point), and value between 0 and −hf1f2
within the blue plateau (close to the Weyl point).

We expect P̄ (k) differs from ±hf1f2 in the topological
plateaux due to the finite value of ρ̄2(k)− ρ̄1(k). To con-
firm this, we computed the time-averaged number of elec-

trons per k-point, 〈n̂(k)〉 ≡ limt→∞
1
t

∫ t

0
ds Tr[n̂ρ̂(k, s)],

where n̂ = ĉ†1ĉ1 + ĉ†2ĉ2. Our expectation that ρ̄1(k) ≈ 1
implies that 2 − 〈n̂(k)〉 should be a good proxy for
[ρ̄2(k) − ρ̄1(k)] away from the nonadiabatic region. In
Fig. 4(d) we plot 〈n̂(k)〉. Taken in combination with
Figs. 4(ab), our data are thus consistent with P̄ (k) tak-
ing value ±hf1f2[ρ̄2(k) − ρ̄1(k)] within the topological
plateaux.

In addition to topological frequency conversion, the
data in Fig. 4(b) also shows clear signatures of the two
distinct mechanisms for dissipation that we identified
in Sec. III C, i.e., momentum relaxation and nonadia-
batic heating: P̄ (k) takes large negative values within
the nonadiabatic region, as we expect from nonadiabatic
heating, and moderate negative values around the Fermi
surface, as we expect from momentum relaxation.
Note also that the data in Fig. 4(d) are in good

agreement with our prediction that in the regime τ ≫
1/Ω, the steady state band populations are effectively
“smeared” versions of their equilibrium counterparts [see
Eq. (27)]: The distribution in Fig. 4(d) clearly resembles
a “smeared” version of the ellipsoid-profile that occurs in
equilibrium [plotted in Fig. 4(c)].
Finally, the data in Figs. 4(cd) demonstrate how a

nonzero value of the “Weyl cone tilt” V is needed to
nonzero net rate of topological frequency conversion, η̄0,
as we discussed in Sec. III B. The nonzero value of V,
which causes an ellipsoid-profile of 〈n̂(k)〉 in equilibrium
[Fig. 4(c)], results in a “smeared ellipsoid” profile of
〈n̂(k)〉 in the steady state. As a result of this smeared el-
lipsoid profile, the region characterized by W (k) = 1 has
a larger volume in which [ρ̄2(k)− ρ̄1(k)] > 0 (〈n̂(k)〉 ≤ 2)
than than the volume where W (k) = −1, allowing for a
nonzero value of η̄0.

C. Lissajous Conversion

We finally verify that the enhancement of η̄ in the Lis-
sajous regime (i.e., at commensurate frequencies) is due
to the suppression of nonadiabatic heating. To this end,
we plot in Fig. 5 P̄ (k) for the parameters τ = 516 ps and
f1 = 2f2/3 (a) and f1 = 2f2/(3+ ǫ) (b). The two choices
of f1 are very close, but whereas the former choice of f1
is commensurate with f2, the latter choice is not. The
negative values of P̄ (k) within the nonadiabatic region
(which we attribute to nonadiabatic heating), are much
fainter in panel (a) than in panel (b). This is consistent
with our expectation that nonadiabatic heating is indeed
significantly suppressed for f1 = 2

3f2 compared to 2
3+ǫf2.

We also compute the total dissipated power in
the system due to both driving modes, P̄dis(k) =

− limt→∞
∫ t

0
ds
t Tr[∇Ĥ(k, s)ρ̂(k, s)] · (E1(s) +E2(s)), for

the same parameters as in panels (a) and (b). P̄dis(k)
measures the time-averaged rate of work done on elec-
trons with wavevector k by the two driving modes in
combination; hence it measures the total rate of dissipa-
tion, and is guaranteed to be positive due to the second
law of thermodynamics. In Fig. 5(c) and (d) we plot
P̄dis(k) for the parameter sets we considered in panels
(a) and (b), respectively. While outside the nonadia-
batic region, P̄ (k) and P̄dis(k) effectively take the same
values for the two frequency ratios, nonadiabatic heat-
ing is much weaker in panel (d) than in panel (c). The
very different values of η̄ at frequencies f1 = 2

3f2 and

f1 = 2
3+ǫf2 must therefore be due to this suppression of
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The two symmetries that are central to the Weyl
semimetals are the inversion and the time-reversal sym-
metry [12]; at least one of these symmetries must be bro-
ken for the Weyl nodes to exist. Both inversion and time-
reversal symmetry results in inversion-symmetric energy
bands, εα(k) = εα(−k) (with α denoting the band index
after indexing them according to their energy). Thus, for
both symmetries, a Weyl point at wavevector k implies
the existence of a Weyl point at wavevector −k. The con-
jugate Weyl nodes at k and −k have equal charges for
time-reversal symmetric Weyl semimetals, and opposite
charges for inversion-symmetric Weyl semimetals [12].
We expect the steady-state to approximately inherit the
same inversion symmetry, such that ρ̄α(k) = ρ̄α(−k). For
the most natural case where modes 1 and 2 each contain
a single harmonic, W (k) = −W (−k). Hence the contri-
butions to η̄0 from symmetry-conjugate nodes cancel out
for Weyl semimetals with time-reversal symmetry, but
not for Weyl semimetals with inversion symmetry.
We conclude that broken time-reversal symmetry is

required for topological frequency conversion, while in-
version symmetry does not need to be broken. Other
crystal symmetries, such as reflection and discrete rota-
tion symmetry, do also not preclude frequency conver-
sion, since the incoming modes (and hence W (k)) can
be configured in a way that breaks these symmetries.
Hence magnetic Weyl semimetals, such as Co3Sn2S or
Co2MnGa [77, 79], intrinsically support topological fre-
quency conversion, while non-magnetic Weyl semimet-
als (such as TaAs) require an externally-provided time-
reversal symmetry breaking. This external symmetry
breaking is already achieved with the circularly-polarized
driving; a higher degree of asymmetry can further be
achieved with e.g. a current bias or externally applied
magnetic field.

C. Condition on driving

Next, we identify the conditions that the driving ampli-
tudes and frequencies must satisfy to support frequency
conversion for a given Weyl semimetal.
Sec. III C 2 concluded that the dynamics of electrons is

non-adiabatic within a distance d0 from the boundary B0,

where d0 ∼
√

eE
~v0

, and v0 is the smallest singular value

of the matrix R in Eq. (1) [see Eq. (36)]. For a nonzero
number electrons to act as frequency converters, d0 must
hence be smaller than the linear dimension of B0, which
we estimate to be of order eA/~. These considerations
imply that

E ≫ ~Ω2

ev0
(52)

is required for frequency conversion.
Hence, “steep” Weyl points (i.e., Weyl points with

large v0) are most useful for frequency conversion, as
they support topological frequency conversion at lower
intensities.

Weyl points in known compounds support topologi-
cal frequency conversion at experimentally accessible pa-
rameters: for example, TaAs has Weyl points for which
v0 ∼ 105 m/s [98, 99] At frequency Ω ∼ 2πTHz, we
hence expect these Weyl points can support topologi-
cal frequency conversion at moderate intensities of order
100W/mm2 and above.
Finally, we require that the bandwidth of the bands

containing the Weyl node be larger than the driving fre-
quency; otherwise, driving cannot be considered adia-
batic anywhere in the system. This puts an upper limit
for the frequencies that could achieve frequency conver-
sion in a given Weyl semimetal. As an example, for TaAs
the characteristic band gap between Weyl points is of or-
der 20meV [98], corresponding to a maximum frequency
limit of ∼ 5THz.

D. Condition on relaxation

A final condition for amplification, is that the rate
of topological energy conversion, η̄0, must overcome the
(negative) rate of dissipation, η̄dis. Our analysis and nu-
merical simulations identified two sources of dissipation:
momentum relaxation (ηmr) and nonadiabatic heating
(ηna): ηdis = ηmr + ηna. Amplification of mode 1 thus
requires

η̄0 + ηmr + ηna > 0, (53)

In Sec. III C 2 we concluded that the gross rate of topo-
logical frequency conversion, ηgross (i.e., the rate that re-
sults when not taking into account cancellation between
electrons that convert energy in opposite directions), can
only exceed ηna if τ & 1/Ω. Since the net rate of topo-
logical frequency conversion, η̄0, is just a small fraction
of ηgross, and since energy is also lost to momentum re-
laxation, we hence expect net amplification (η̄ > 0) can
only be achieved when

τ ≪ 1/Ω (54)

The phenomenological discussion in Sec. III C 2 shows
that ηna ∝ (1 − e−Γ∆t) where ∆t denotes the charac-
teristic time between instances where a given wavevec-
tor k is taken to the Weyl point by the applied drive
(k → k + eA(t)/~). Here ∆t is significantly smaller
for Lissajous conversion (highly rational frequency ra-
tios) than for incommensurate frequency ratios. Thus,
the threshold for net amplification is significantly lower
at commensurate frequencies. Indeed, in our simulations,
a small adjustment of f1 from 2f2/(3 + ǫ) to 2f2/3 low-
ered the amplification threshold from above 1200 ps to
∼ 300 ps.

Our quoted values in Sec. III provide an example of
how to estimate the break-even relaxation rate. For in-
tensity E ∼ 1600 kV/m and Ω ∼ 2πTHz, we estimated
ηgross ∼ 500 kW/mm3. The net rate η̄0 will be only a
fraction of this value. For the same parameters, and with
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isotropic band gap matrix R of order 5·105 m/s and Fermi

surface area 0.06 Å
−2

, we found ηmr ∼ 5 ·10−8 kJ/mm3τ ,
and ηna ∼ 5 · 10−8 kJ/mm3τ (for incommensurate fre-
quencies) or 3.5 ·10−9 kJ/mm3τ (for Lissajous conversion
at frequency ratio 2/3). Hence, we expect topological
frequency conversion can exceed the rate of dissipation
when τ are several times larger than 100ps. We more-
over expect the threshold to be significantly lower for Lis-
sajous conversion (i.e. commensurate frequencies), than
for incommensurate frequencies. This is in good agree-
ment with our data in Fig. 1(b) which indicate that τ
must exceed 300 ps in order to achieve net frequency con-
version in the Lissajous regime for the parameters above,
and 1000ps for incommensurate frequencies.

The different scaling behaviors of dissipation and topo-
logical frequency conversion point toward the parameter
regimes beneficial for amplification.

First, note that (at a fixed area of the Fermi surface),
ηmr scales linearly with electric field E, while ηna and
ηgross scales as E

3 (specifically, ηna ∼ I3 in the Lissajous
regime) [see Eqs. (34),(37), and (30)]. Thus, we expect
that the relative contribution of ηmr decreases at high
intensity, while the ratio of ηna and ηgross remains fixed,
implying that frequency conversion becomes more effi-
cient at higher intensities.

Second, for a given intensity, the topological frequency
conversion rate scales as 1/Ω, while ηna scales as 1/Ω3

(for incommensurate frequencies) or 1/Ω2 (for commen-
surate frequencies). Similarly, momentum relaxation
scales as 1/Ω2. Thus, we expect amplification is most
easily reached at the top of the frequency range that sup-
ports topological frequency conversion, given the driving
intensity and band structure of the system.

The requirements on the relaxation rate pose the
biggest current challenge to realizing topological fre-
quency conversion. Relaxation times in known Weyl
semimetals have been reported to be in the range 0.25−
3ps [62–64, 67], although transient signatures with life-
times above 100 [67, 68] and 1000 [69] ps have also been
reported in some compounds. Thus further improve-
ments in the quality of materials are needed to fulfill the
requirements of topological frequency conversation in the
practically interesting THz range.

VI. THINKING OUTSIDE THE GRAIN:
GLOBAL ELECTRODYNAMICS

CONSIDERATIONS AND IMPLEMENTATION
USING PHASE ARRAYS

The full understanding of the frequency conversion ef-
fect requires thinking about the global electromagnetic
field, and the material response of the Weyl grains to an
external drive. Specifically, in this section we incorpo-
rate the dielectric response to our analysis, and propose
a phase-array geometry of the Weyl grains as a prototype
for a Weyl topological amplifier.

A. Renormalization of electric field by plasma
oscillations

Let us begin with considering the macroscopic response
of a single grain to external driving. For i = 1, 2, we
let Ei(r, t) denote the (plane-wave) electric field from
mode i as a function of position r and time t and let
E0(r, t) = E1(r, t) + E2(r, t) denote the net “incoming”
field resulting from the driving. The current and charge
oscillations in the grain induced by the external driv-
ing creates an additional electric field, Eind(r, t). The
total electric field inside the sample is thus given by
E(r, t) ≡ E0(r, t)+Eind(r, t); this is the field driving the
response of the material, and is the one we considered
in the calculation in the previous sections. Evidently,
the internal field in the sample gets renormalized by the
charge and current in the material.
Our first order of business is to find the internal field

E(r, t) (which we used in our analysis above) in terms of
the external fields. We can find E(r, t) self-consistently
by solving Maxwell’s equations, taking account the cur-
rent and charge dynamics in the grain induced by E(r, t).
While an exact (geometry-dependent) analysis is in prin-
ciple possible, the small size of the grain allows us to
make some simplifications, such as ignoring the skin ef-
fect. Thus, inside the grain Eind(r, t) is approximately
given by the electrostatic field resulting from the instan-
taneous charge configuration in the system. These in
turn arises from the driving-induced oscillations of the
grain’s bulk plasmonic mode [102].
For a small spherical grain, we can assume E0(r, t)

uniform within the grain, and moreover ignore retarda-
tion effects of the electromagnetic field (this is equiv-
alent to neglecting the skin effect). Inside the grain,
Eind(r, t) is thus given by the electrostatic field arising
from the instantaneous charge distribution at time t.
The charge distribution is nontrivial due to the oscillat-
ing currents, which produce surface charges. Specifically,
∂tρ(r, t) = ∇ · j(r, t), implying ρ(r, ω) = i

ω∇ · j(r, ω).
We now show that the equations of motion above have a
solution in which the current density and Eind(r, t) are
also uniform within the sample. To show this, note that
a uniform current density in the grain, j(r, t) = j(t), im-
plies that the charge accumulates on the surface. The
surface charge density at the angle specified by unit vec-
tor r̂ on the sphere, is given by ∂tλ(r̂, t) = j(t) · r̂.
Hence λ(r̂, t) = r̂ · λ0(t), with λ0(t) denoting the unique
zero-mean solution to ∂tλ0(t) = j(t). Inside the sphere,
the electrostatic field from a surface charge distribution

λ(r̂) = r̂ · λ0 is uniform and given by Eind(t) = λ0(t)
3ǫ0

.
Hence, the electric field is uniform within the sample and

given by E(t) = E0(t) +
λ0(t)
3ǫ0

. Thus, a uniform current

density j(t) and E(t) solves the dynamics of the grain.
Transforming to frequency domain, and using that

j(ω) = −iωλ0(ω), we finally arrive at

E(ω) = E0(ω)−
ij(ω)

3ǫ0ω
. (55)
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This gives the frequency-dependent renormalization of
the electric field inside the grain, and is an exact solu-
tion in the limit where the grain size is smaller than the
wavelength of the driving modes.
In linear response theory, the time-derivative of the

current response is assumed proportional to the elec-
tric field, implying j(ω) ≈ −iκE(ω)/ω for some con-
stant κ. The resulting solution leads to a frequency de-
pendent relative permittivity, E(ω) ≈ ǫ(ω)E0(ω) with

ǫ(ω) = (1 − ω2
p/ω

2)−1 with ωp =
√

σ/3ǫ0 denonting
the plasma frequency of the system. The plasma fre-
quency omegap is estimated for generic Weyl semimet-
als, in Ref. [103]: it is typically given by an O(1) constant
times the Fermi energy.
The linear response analysis above is useful for eluci-

dating the qualitative features of the plasmonic response.
However, the regime we consider potentially supports a
significant nonlinear response due to the nonquadratic
dispersion and large Berry curvature surrounding Weyl
nodes – indeed, topological frequency conversion is a non-
linear response phenomenon. We thus go beyond the lin-
ear response regime in our analysis below: for a given
internal field configuration, E(t), the current response
j(t) can be easily computed in the limit of weak relax-
ation and adiabatic driving without any linear response
approximation, using Eq. (21), j(t) = j0(t) + δj(t) with
j0(t) given in Eq. (23) and the dissipative component
δj(t) is negligble in the limit we consider [104].
The driving frequency controls whether the plasma os-

cillations amplify or screen the electric field from the in-
coming radiation. This qualitative behavior is evident
in the linear response result we quoted above, but also
endures after taking into account the nonlinear response.
To see this, consider what external electric field E0(ω)
is needed to cause a given internal field E(ω) [which de-
termines the current response j(ω)]. As in the linear re-
sponse regime, j(ω) is controlled by vector potential, and
thus scales with E(ω)/ω [see Eq. (23)]. The plasmon-
induced electric field hence is negligible in the limit of
large ω (but grain size still smaller than the wavelength),
meaning the grain is effectively transparent to the radi-
ation: E(ω) ≈ E0(ω). Conversely, for small ω, j(ω)/ωǫ0
will be considerably larger than E(ω), implying that E0

in turn has to be much larger in E(ω) for Eq. (55) to
hold. Thus, for small frequencies, the plasma oscilla-
tions severely screens the electric field inside the sample
relative to the external field. At some intermediate fre-
quency, E(ω) ≈ − ij(ω)

3ǫ0ω
, and a very weak external field

thus causes a large internal field. In this case, driving res-
onates with the plasma oscillations, causing significantly
enhanced amplitude of the electric field. As we will see,
this mechanism allows for significant enhancement of the
topological frequency conversion rate.

B. Radiation output of grain

Next, we want to compute E(r, t) outside the grain,

to determine the profile of the emitted radiation. Here,
the grain’s small size means that Eind(r, t) to a good
approximation takes the form of dipole radiation gener-
ated by some nontrivial trajectory of the dipole moment.
Using that the surface charge distribution we obtained
above, we find the dipole moment to simply be given by

p(ω) = 4π
3 ir

3 j(ω)
ω .

The energy converted to mode 1 leaves the grain as ra-
diation energy at frequency ω1. The bulk of the emitted
radiation energy comes from constructive interference be-
tween the incoming plane wave E0(r, ω1) and the emitted
dipole radiation Eind(r, ω1) (i.e., the ω1-Fourier compo-
nents of Eind(r, t) and E0(r, t), respectively).
To compute the frequency-resolved radiation energy

emanating from the grain, we consider the total en-
ergy flux density, given by the Poynting vector field,
S(r, t) = 1

µ0

E(r, t) × B(r, t). By using the Fourier

decomposition E(r, t) =
∫

dωE(r, ω)e−iωt along with
E(r, ω) = E∗(r,−ω) [and likewise for B(r, t)], we find
that the time-averaged energy flux density, S̄(r), is thus
given by

S̄(r) =
2

µ0

∫

dωRe [E(r, ω)×B∗(r, ω)] (56)

We identify S(r, ω) ≡ 1
µ0

Re [E(r, ω)×B∗(r, ω)] as the
energy flux density from modes with frequency ω. The
total radiation power from the grain at frequency ω is
given by

P (ω) =

∮

C

dA · S(r, ω) (57)

where C is some surface containing the grain.
To compute P (ω), we use the divergence theorem

to find P (ω) = 2
µ0

∫

C
dV Re [∇ · (E(ω) × B∗(ω)], with

∫

C
dV denoting the integral over the volume contained

in C. Next, we apply the cross product identity ∇ ·
(E × B∗) = −E · (∇ × B∗). Using Ampere’s law
∇×B(r, ω) = −iµ0ǫ0ωE(r, ω)− µ0j(r, ω), where j(r, ω)
is the Fourier transform of the current density, yields
P (ω) = 2

µ0

∫

dV Re [iωǫ0|E2(ω)|+E(ω) · j∗(ω)]. The first

term in the parenthesis evidently is fully imaginary, and
thus gives a vanishing contribution to the integral. This
leave us with P (ω) = 2

∫

dV Re [E(r, ω) · j∗(r, ω)]. Since
E(r, ω) and j(r, ω) are uniform within the grain, we find

P (ω) = 2V Re [E(ω) · j∗(ω)], (58)

which is exactly the quantity we calculated in Sec. III. In-
terestingly, the plasma-induced electric field does not di-
rectly contribute to the power output, since it is propor-
tional to −ij(ω); rather it indirectly modifies the power
output through its effect on the current response. We
thus arrive at

P (ω1) = η̄V. (59)

with η̄ denoting the frequency conversion rate within the
grain. This gives the output intensity of the dipole radi-
ation emitted with frequency ω1.
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begin to significantly excite modes other than the pump
and signal modes. Here, the frequency conversion rate is
significantly reduced. Furthermore, a more careful anal-
ysis is needed in this regime to account for the higher
harmonics of E(t) induced by the nonlinear plasma oscil-
lations.
In the range 2meV . µ . 4meV, the internal field is

significantly enhanced by the plasma oscillations, with-
out nonlinear corrections playing a role. This plasma res-
onance dramatically enhances topological frequency con-
version: we first compute the frequency conversion rate
for the same parameters considered for Fig. 6(b), using
the approach of Sec. IV. From our obtained frequency
conversion rate, η̄, we compute the gain coefficient of the
material, g = η̄/I1 with I1 = cε0|E0(ω1)|2 denoting the
intensity of mode 1 outside the material; we use the data
from Fig. 6(b) to compute E0(ω1) (recall we consider
a fixed value of the internal field, E(ω1), but allow E0

to vary). The gain coefficient has dimension of inverse
length, and gives the characteristic rate at which mode 1
gets amplified inside the material. In Fig. 1(b), we plot
the gain coefficient as a function of chemical potential, us-
ing τ = 200 ps (blue), 400 ps (orange) and 600 ps (green).
When the plasmon resonance is reached at µ ≈ 4meV,
the gain coefficient increases dramatically, reaching val-
ues of order 100 cm−1, exceeding, e.g., the THz gain co-
efficients of 20-50 cm−1 reported in Refs. [57, 58].

VII. DISCUSSION

In this manuscript, we showed that Weyl semimetals
can efficiently convert energy between two driving modes,
through the mechanism of topological frequency conver-
sion [52]. This effect makes Weyl semimetals promising
media for THz and possibly even infrared amplification.
Our analysis shows that Weyl semimetal with feasible
band dispersions support topological frequency conver-
sion in the “THz gap” at experimentally accessible inten-
sities of order ∼ 50W/mm2, or even less (∼ 1W/mm2)
if one drives near the plasma frequency. Topological fre-
quency conversion is supported both for incommensurate
frequencies and commensurate frequencies, but is most
efficient in the latter case, due to the mechanism of Lis-
sajous conversion. Our numerics and estimates focused
on topological frequency conversion in the THz regime,
where there is the biggest need for new photonic control
elements, but the effect may also be supported at other
frequency ranges.
The primary obstacle to Weyl semimetals operating as

topological frequency converters is drive-induced heating.
Heating both wastes energy from the beams we would like
to amplify, and may even damage the material. Phonons,
interactions and impurities all lead to electron relaxation
processes which cause this heating.
Through phenomenological arguments and numerical

simulations, we identified two important mechanisms
for dissipation: momentum relaxation and nonadiabatic

heating. Momentum relaxation occurs when electrons
near the Fermi surface relax their energy by changing
their momentum, and which is common to all irradiated
materials. Nonadiabatic heating emerges when electrons
undergo Landau-Zener transitions between the valence
and the conduction band. This mechanism is particularly
relevant in topological semimetals, due to the existence
of gap-closing points in these materials. Even so, non-
adiabatic heating is strongly suppressed in the Lissajous
regime, which makes it much preferred for amplification.

In our simulations and phenomenological discussion,
relaxation was parameterized through a single relaxation
time, τ . In particular, we took electron-hole recombi-
nation, and intra-band momentum relaxation (which is
supported by phonons) to have the same characteristic
rates. Needless to say this treatment could be made
more realistic by considering separate relaxation rates for
these processes, as suggested by experiments [64, 67, 68].
Nonetheless, we believe our simple dynamical model cap-
tures the conditions for amplification.

To achieve amplification, where energy gain due to
topological frequency conversion exceeds the loss due to
dissipation, the characteristic relaxation time τ must be
sufficiently long. To limit non-adiabatic heating as well
as momentum relaxation we need τf ≫ 1. This con-
dition was clearly evident in our simulations: even for
optimal parameters, and in the Lissajous regime, break-
even was only reached when 1/τ & 300f ,(for incommen-
surate frequencies, amplification required τf > 1000).
So far, τ ’s were reported in the range 0.25− 5 ps [62–64]
in pump-probe experiments. This suggests net amplifi-
cation of continuous-wave THz frequencies is currently
beyond reach. That said, transient experimental signa-
tures with τ > 100 ps have been seen in Weyl semimet-
als [67, 68], emphasizing that a more discriminating anal-
ysis may reveal a broader amplification regime.

Notwithstanding, signatures of topological frequency
conversion effect could be observed even if the re-
laxation time is too short to allow for amplification.
That is because the direction of energy conversion of a
Weyl semimetal driven bichromatically by two circularly-
polarized modes is determined by the product of the two
mode’s polarizations. Hence a reversal of the circular po-
larization of either mode should will lead to an increase in
the output intensity of one mode, and a decrease for the
other mode. This topological effect could be accessed ex-
perimentally. Another group recently proposed to utilize
this chirality-sensitive intensity shift to extract enantios-
elective information from a gas of chiral molecules [106].

Furthermore, we can suggest several strategies to ap-
proach the amplification regime. Commensurate fre-
quency conversion, i.e. Lissajous conversion, already
provides a dramatic improvement by suppressing non-
adiabatic effects by an order of magnitude. Momentum
relaxation is harder to control. Note, however, that mo-
mentum relaxation energy loss scales linearly with radia-
tion intensity, I. In contrast, topological energy conver-
sion (and nonadiabatic heating) scale as I3/2. Therefore
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the relative significance of momentum relaxation should
decrease at larger intensities. Moreover, at a given in-
tensity, topological frequency conversion scales inversely
with the driving frequency, f , while dissipative energy
absorption decreases as f−2 (specifically, ηna ∼ f−2

in the Lissajous conversion regime). The amplification
threshold of τf will therefore be lower at higher frequen-
cies.
If an issue, driving-induced heating can possibly be cir-

cumvented by using pulsed lasers instead of continuous
wave beams: by allowing the system to dissipate heat
between pulses, such a scheme would allow us to reach
the high-intensity regime without causing material dam-
age; while a detailed investigation would be an interest-
ing topic for future studies, we expect pulses with dura-
tions more than a few periods, or randomly-timed pulses,
will yield conversion rates consistent with topological fre-
quency conversion at continuous-wave operation. This
way the large-amplitude regime required for frequency
conversion could be realized while allowing time for the
system to dissipate absorbed heat between pulses even if
relaxation times are short. In addition to these consider-
ations, materials with a steeper velocity makes realizing
the large frequency regime easier, as the velocity at the
Weyl point is the “coupling constant” that converts the
electric-field amplitude into an energy scale.
Weyl nodes need to be located near the Fermi surface

to support topological frequency conversion, and more-
over need to be surrounded by an asymmetric electron
distribution, in order to ensure an imbalance in the num-
bers of electrons that convert energy at opposite rates.
Optimal imbalance can be reached in the presence of
a “Weyl cone tilt”, and through appropriate tuning of
the chemical potential. Additionally, our analysis indi-

cates that time-reversal symmetry needs to be broken to
acheive frequency conversion. Hence, we expect magnetic
Weyl semimetals, such as Co3Sn2S or Co2MnGa [77, 79]
are best-suited for topological frequency conversion.
Topological frequency conversion could also be

achieved in non-magnetic Weyl semimetals, or even be
enhanced in magnetic Weyl semimetals, by “priming”
the particle distribution into an out-of-equilibrium state.
Such priming could e.g. be achived by driving the system
with ultrashort laser pulses or with a DC current, and
would create a transient state more suited for frequency
conversion than the steady states we have considered in
this work. Similarly, purification of the material, along-
side bath or substrate engineering are other potentially
important directions for realizing amplification by sup-
pressing dissipation. Indeed, these research directions
are also important for the general nonlinear response of
Weyl semimetals (e.g., chiral photogalvanic effect) [20].
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Appendix A: Derivation of Eq. (11)

In this Appendix, we derive the expression for the time-
averaged energy conversion rate from a single electron in
band α, P̄α(k), that we quote in Eq. (11) in the main
text.

To recapitulate, the equation we aim to derive
[Eq. (11)] reads

P̄α(k) = f1f2
e2

4π2~

∫ 2π

0

dφ1dφ2 (∂φ1
α×∂φ2

α)·Ωα(k+eα/~).

(A1)
where we suppressed the (φ1, φ2)-dependence of the in-
tegrand. The quantities above are defined in the main
text. For brevity, we will use the shorthand notation
φ = (φ1, φ2) and Ωα(k, φ) ≡ Ωα(k+eα/~) in the follow-
ing.

We derive Eq. (A1) starting from Eq.(10) in the main
text:

P̄α(k) =
−e
4π2

∫ 2π

0

d2φ ǫ1(φ) · vα(k;φ). (A2)

Here ǫi(φ) denotes the electric field of mode i as a func-
tion of φ [107], while vα(k;φ) denotes the wavepacket
velocity in band α as a function of φ, and is given by

vα(k;φ) =
1

~
∇εα(k, φ)−

e

~
ǫ(φ)×Ωα(k, φ) (A3)

with ǫ(φ) = ǫ1(φ) + ǫ2(φ), εα(k, φ) ≡ εα(k + eα(φ)/~)
and εα(k) denoting the energy of band α.
First, we consider the contribution to P̄α(k) from the

group velocity component of vα:

P̄α;gv(k) ≡
−e
4π2~

∫ 2π

0

d2φ ǫ1(φ) · ∇εα(k, φ) (A4)

Using ǫi(φ) = ωi∂φi
α(φ) along with the chain rule, one

can verify that

− eǫ1(φ) · ∇εα(k, φ) = ~ω1∂φ1
εα(k, φ). (A5)

Since εα(k, φ) is 2π-periodic in φ1, we conclude
P̄α;gv(k) = 0, implying that

P̄α(k) =
−e2
4π2~

∫ 2π

0

d2φ ǫ1(φ) · [ǫ(φ)×Ωα(k, φ)] (A6)

To evaluate Eq. (A6), we use that ǫ(φ) = ǫ1(φ)+ǫ2(φ),
along with a · (b× c) = c · (a× b), we obtain

P̄α(k) =
−e2
4π2~

∫ 2π

0

d2φ [ǫ1(φ)× ǫ2(φ)] ·Ωα(k, φ)· (A7)

Using ǫi = ωi∂φi
α and ωi = 2πfi, we identify

ǫ1(φ)× ǫ2(φ) = ω1ω2∂φ1
α× ∂φ2

α. (A8)

Inserting this in the above establishes Eq. (A1).

Appendix B: Solution of master equation

Here solve the master equation in Eq. (24), and use the
solution to obtain the expression for the current density
in Eq. (21).
The Appendix is structured as follows: We provide a

summary of the results in Sec. B 1. In Sec. B 2 we de-
rive the steady state solution to the master equation. We
demonstrate our solution for the Boltzmann-form dissi-
pator in Sec. B 3. Using our steady state solution, in
Sec. B 4 we obtain the current density, while Sec. B 5
contains derivations of auxiliary results which enter in
our calculation.

1. Summary of solution

Our goal is to obtain the steady-state of the master
equation

∂tρ̂(k, t) = − i

~
[Ĥ(k, t), ρ̂(k, t)] +D(k, t) ◦ ρ̂(k, t). (B1)
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Here ρ̂(k, t) and Ĥ(k, t) denote the momentum-resolved
density matrix and Hamiltonian in the second-quantized
Bloch space of the system, H2, while D(k, t) is

Lindblad-form superoperator. Ĥ(k, t) is given by
∑

ij〈i|H(k, t)|j〉ĉ†i ĉj , where H(k, t) denotes the ordinary

(first-quantized) Bloch Hamiltonian of the system, and ĉi
annihilates a fermion in orbital α; see Sec. III for further
details of the notation.
We solve Eq. (B1) in the limit where dynamics are

adiabatic, and the characteristic relaxation rate Γ =
‖D(k, t)‖ is slower than the characteristic angular driv-
ing frequency, Ω. This limit is summarized through the
following conditions:

Γ ≪ Ω, ~Ω ≪ δε(k, t), ~∂tH(k, t) ≪ δε2(k, t),
(B2)

where δε(k, t) denotes the (smallest) spectral gap of
H(k, t). The second and third inequality are indepen-
dent conditions that are both needed to ensure adiabatic
dynamics.
To quantify the extent to which the system satisfies

the conditions in Eq. (B2), we use the dimensionless pa-
rameter

λ(k) ≡ max
t

(

Γ

Ω
,

~Ω

δε(k, t)
,
~∂tH(k, t)

δε2(k, t)

)

. (B3)

The system satisfies the conditions in Eq. (B2) for
wavevectors k where λ(k) ≪ 1. In Sec. B 2, we derive
the steady-state solution of Eq. (B1) up to a correction
of order λ2(k).
From our steady-state solution we obtain the current

density using

j(t) = − e
~

∫

d3k

(2π)3
Tr[∇Ĥ(k, t)ρ̂(k, t)]. (B4)

The relevant property of the steady state in this com-
putation are the band occupancies of the instantaneous
Hamiltonian:

ρα(k, t) ≡ Tr[ρ̂(k, t)ψ̂†
α(k, t)ψ̂α(k, t)], (B5)

where ψ̂α(k, t) =
∑

i〈i|ψα(k, t)〉ĉi, denotes the αth eigen-

mode of Ĥ(k, t), with |ψα(k, t)〉 denoting the αth eigen-
state of H(k, t) with associated energy εα(k, t). In
Sec. B 4, we show that the integrand in Eq. (B4) can
be expressed in terms of ρα as follows:

1

~
Tr[∇Ĥ(k, t)ρ̂(k, t)] =

∑

α

ρα(k, t)ṙα(k, t)+O
(

λ2(k)vF
)

,

(B6)
where ṙα(k, t) ≡ ∇εα(k, t)− e

~
E(t)×Ωα(k, t) denotes the

group velocity in band α, and and vF denotes the char-
acteristic magnitude of ‖∇H(k, t)‖/~. This constitutes
the main result of this appendix.
We provide a prescription for computing ρα(k, t) in

Sec. B 2 d, and demonstrate the computation for the case
of a Boltzmann-type dissipator in Sec. B 3.

a. Decomposition of current density

We now show how Eq. (B6) allows us to decompose
the current density as

j(t) = j0(t) + δj(t), (B7)

where

j0(t) = −e
∫

d3k

(2π)3

∑

α

ρ̄α(k)ṙα(k, t), (B8)

with ρ̄α(k) denoting the time-average of ρ̄α(k, t), and
δj(t) denotes a dissipative component of the current den-
sity, which we define below, and which is small in the
limit λ(k) ≪ 1. This result was quoted in Eq. (21) of the
main text.
As our first step, we find that ρα(k, t) is nearly sta-

tionary in the limit Γ ≪ Ω:

ρα(k, t) = ρ̄α(k) +O(Γ/Ω) +O(λ2(k)). (B9)

This result is established in Sec. B 5 a. Note that Γ/Ω ≤
λ(k), such that vmr(k, t) . λ(k)vF. However, we ex-
pressed this O(λ) correction as above to make it explic-
itly clear that it is controlled by Γ/Ω.
Next, we use that the two components of the group

velocity satisfy

1

~
∇εα(k, t) . vF,

e

~
|E(t)×Ωα(k, t)| . λ(k)vF. (B10)

These results are established in Sec. B 5 b.
The above two results motivate us to decompose

Eq. (B6) as

1

~
Tr[∇Ĥ(k, t)ρ̂(k, t)] = v0(k, t) + vmr(k, t) + vna(k, t).

(B11)
where

v0(k, t) ≡
∑

α

ρ̄α(k)ṙα(k, t) (B12)

vmr(k, t) ≡
1

~

∑

α

(ρα(k, t)− ρ̄α(k))∇εα(k, t)

vna(k, t) ≡
1

~
Tr[∇Ĥ(k, t)ρ̂(k, t)]− v0(k, t)− vmr(k, t)

Due to Eqs. (B9) and (B10), the latter two components
in particular satisfy

vmr(k, t) . O(vFΓ/Ω) +O(λ2(k)vF), (B13)

vna(k, t) . O(λ2(k)vF). (B14)

The decomposition above allows us to express the cur-
rent density as

j(t) = j0(t) + jmr(t) + jna(t) (B15)

where

jmr(t) = − e
~

∫

d3k

(2π)3
vmr(k, t), (B16)

jna(t) = − e
~

∫

d3k

(2π)3
vna(k, t). (B17)
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We identify δj(t) = jna(t) + jmr(t). Evidently, j0 domi-
nates in the limit of adiabatic driving and coherent dy-
namics, where λ(k) ≪ 1.
jmr is the current density correction due to relaxation-

induced fluctuations in the band-occupancy, while jna as
the correction due to the finite driving frequency and re-
laxation rate (relative to the band gap). Note that jna(t)
is only significant for k-points where dynamics are non-
adiabatic, while jmr(t) can be nonzero for all k-points
where the electron density fluctuates. For this reason,
we heuristically identify jmr and jna as the components
of δj(t) that arise due to momentum relaxation and nona-
diabatic heating, respectively.

2. Derivation of steady state

In this subsection we derive the steady state solution
of Eq. (B1).
We first show that such a steady state exists. Given an

initial condition specified at some time t0, the solution of
Eq. (B1) can formally be written as

ρ̂(k, t) = T e
∫

t

t0
dsL(s) ◦ ρ̂(k, t0). (B18)

where T denotes time-ordering, and L(k, t) denotes the

Liouvillian generating the time-evolution: L(k, t) ◦ Ô =

−(i/~)[Ĥ(k, t), Ô] +D(k, t) ◦ Ô.
Due to its Lindblad form, L(k, t) is negative semidef-

inite. Except in cases of fine-tuning or in the pres-
ence of conserved integrals of motion (which we do
not consider here), all eigenvalues of L(k, t) except for
one are negative; the last eigenvalue takes value 0.
The left eigenvector corresponding to this unique zero-
eigenvalue is the identity operator, Î [108] It follows that

limt0→−∞ T e
∫

t

t0
dsL(k,s)

has a single left eigenvector with

eigenvalue 1 (namely Î), while all other eigenvalues van-
ish. Letting ρ̂(k, t; t0) denote the corresponding right
eigenvector, we hence have

lim
t0→−∞

T e
∫

t

t0
dsL(k,s) ◦ M̂ = ρ̂0(k, t; t0)Tr[M̂ ] (B19)

L(k, t) preserves the trace and positivity of any operator

and we may choose M̂ positive-definite. Hence ρ̂0(k, t; t0)
must be positive-definite and have unit trace. In other
words, ρ̂0(k, t; t0) corresponds to a physical density ma-
trix.
The semigroup property, T e

∫
t

t0
dsL(k,s) ◦ M =

T e
∫

t

t1
dsL(k,s)◦(T e

∫ t1
t0
dsL(k,s)◦M) implies that ρ̂0(k, t; t0)

must be independent of t0 in the limit t0 → −∞. We thus
simply refer to this operator as ρ̂0(k, t). This operator
defines the time-dependent steady state of the system.
Our goal is to obtain this steady state.
Eq. (B19) implies we can obtain the steady state by

evolving Eq. (B1) from any initial state with unit trace;
for our purpose it is convenient to choose the initial state

ρ̂(k, t0) = Î/2d, where Î denotes the identity opera-
tor. Our derivation proceeds as follows: we first identify
a time-dependent unitary transformation (or “comoving
frame transformation”) that maps Eq. (B1) into a new
master equation of the same form in which the eigenba-
sis of the Hamiltonian is constant up to a correction of
order λ2; this approach was e.g. also used in Ref. [109].
We then solve the master equation in this new frame us-
ing a rotating wave approximation, by exploiting that
the spectral gap of the Hamiltonian is the largest energy
scale of the system in the limit λ(k) ≪ 1 [110, 111].
In the following, we consider the dynamics of electrons

with a fixed given wavevector, k. For brevity, we suppress
all quantities’ dependence on k, unless otherwise noted.

a. Rotating frame transformation

Here we map the master equation in Eq. (B1) into
one where the Hamiltonian has an effectively time-
independent eigenbasis. To this end, we sequentially ap-
ply two comoving frame transformations that each reduce
the time-dependence of the Hamiltonian’s eigenstates by
a factor λ [109]. The first transformation, Q̂1(t), maps

ψ̂α(t) into the orbital annihilation operator ĉα, for all α:

Q̂†
1(t)ψ̂α(t)Q̂1(t) = ĉα (B20)

As we show in Sec. B 5 c, the above is realized when

Q̂1(t) = T e−i
∫

t

0
ds

∑
αβ Mαβ(s)ψ̂

†
α(s)ψ̂β(s)V̂1, (B21)

where

Mαβ(t) = i〈ψα(t)|∂tψβ(t)〉 (B22)

and V̂1 = exp(
∑

ij ĉ
†
i ĉj log(M)ij), with log(M) denoting

the logarithm of the matrix with entriesMij = 〈ψi(0)|j〉.
Since 〈ψα(t)|∂tψβ(t)〉 = −〈∂tψα(t)|ψβ(t)〉, Mαβ(t) is
Hermitian. Without loss of generality, we choose to work
in a gauge where 〈ψα|∂tψα〉 = 0, implying Mαα(t) = 0.
We consider the evolution of the system in the rotating

frame that results after applying Q̂1(t). I.e., we consider
the evolution of

ρ̂1(t) ≡ Q̂†
1(t)ρ̂(t)Q̂1(t). (B23)

By taking the time-derivative of ρ̂1(t) and exploiting

∂tQ̂1(t) = −i∑αβMαβ(t)ψ̂
†
α(t)ψ̂β(t)Q̂1(t), we find that

∂tρ̂1(t) = − i

~
[Ĥ1(t), ρ̂1(t)] +D1(t) ◦ ρ̂1(t). (B24)

where

Ĥ1(t) =
∑

α

εα(t)ĉ
†
αĉα −

∑

αβ

Mαβ(t)ĉ
†
αĉβ . (B25)

and

D1 ◦ Ô = Q†
1

[

D ◦ (Q̂1ÔQ̂†
1)
]

Q̂1, (B26)
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with time-dependence suppressed for brevity. Note that
D1(t) is in the Lindblad-form.
Eq. (B24) is of the same form as the original master

equation we considered, Eq. (B1). However, the eigen-

modes of the new Hamiltonian Ĥ1(t), ψ̂
1
α(t) are nearly

stationary. To see this, note that, for α 6= β,

Mαβ(t) = −i 〈ψα(t)|∂tH(t)|ψβ(t)〉
2(εα(t)− εβ(t))

(B27)

implying

|Mαβ(t)| . λδε(t). (B28)

Thus, in the adiabatic limit, λ ≪ 1, ψ̂1
α(t) can be com-

puted using canonical perturbation theory with respect
to the term

∑

αβMαβ(t)ĉ
†
αĉβ in Eq. (B25). The nth

term in this expansion will be of order λn, and first order
expansion thus yields

ψ̂1
α(t) = ĉα −

∑

β 6=α

Mαβ(t)

εα(t)− εβ(t)
ĉβ +O

(

λ2
)

, (B29)

The expression above gives ψ̂1
α(t) up to an overall (time-

dependent) phase factor which we are free to choose
due to gauge symmetry. Similar perturbative arguments
show that the associated energies of Ĥ1(t) are given by
ε1α(t) = εα(t) + O(λ2δε), since we chose a gauge for
|ψα(t)〉 where Mαα(t) = 0. Evidently, the αth eigen-

mode of the transformed Hamiltonian, ψ̂1
α(t), is given by

ĉα, up to a time-dependent correction of order λ. Hence
the eigenmodes of Ĥ1(t) are nearly stationary in the limit
λ≪ 1.
We now apply the above procedure one more time.

We first apply a comoving frame transformation Q̂2(t) to

Ĥ1(t) which transforms each eigenmodes ψ̂1
α(t) into the

orbital annihilation operator ĉα:

Q̂†
2(t)ψ̂

1
α(t)Q̂2(t) = ĉα. (B30)

Since ψ̂1
α(t) = ĉα+O(λ), Q̂2(t) = 1+O(λ). We can find

Q̂2(t) exactly using the same procedure we used to ob-

tain Q̂1(t). Following this procedure, we find the density

matrix in this frame, Q̂2(t)ρ̂1(t)Q̂
†
2(t) evolves according

to the master equation

∂tρ̂2(t) = − i

~
[Ĥ2(t), ρ̂(t)]−D2(t) ◦ ρ̂0(t). (B31)

where D2 ◦ Ô = Q̂2

[

D1 ◦ (Q̂2ÔQ̂†
2

]

Q̂2 (with time-
dependence suppressed for brevity), and

Ĥ2(t) =
∑

α

ε1α(t)ĉ
†
αĉα +

∑

αβ

M1
αβ(t)ĉ

†
αĉβ . (B32)

Here M1
αβ(t) ≡ i〈ψ1

α(t)|∂tψ1
β(t)〉, with |ψ1

α(t)〉 =

ψ̂1†
α (t)|0〉 denoting the single-particle eigenstate of Ĥ1(t)

with associated energy ε1α(t).

We now seek to bound M1
αβ . To this end, we use that

∂t(εα(t)− εβ(t))
−1 . λ [112], ∂t|ψα(t)〉 . λδε(t) [113],

and ∂2tH(t) ∼ Ω∂tH(t) ≤ λ2δε2(t). Combining these re-
sults with Eq. (B27), we conclude ∂tMαβ(t) ∼ λ2δε(t).
Using Eq. (B29), ∂t(εα(t) − εβ(t))

−1 . λ, and the defi-
nition of M1

αβ(t), we hence obtain

M1
αβ(t) ∼ λ2δε(t) (B33)

In principle we could iterate the comoving frame trans-
formation procedure further to obtain increasingly accu-
rate master equations for ρ̂(k, t) [109]. However, since we
are just interested in obtaining ρ̂(k, t) to corrections of
order λ2, this second step is enough for our purpose.

b. Rotating wave approximation

We now solve Eq. (B31) with a rotating wave approxi-
mation. To this end, we first apply a final unitary trans-
formation to Eq. (B31) which is generated by diagonal

part of Ĥ2(t):

V̂ (t) = exp

[

−i
∫ t

0

dt
∑

α

ε1α(t)ĉ
†
αĉα

]

. (B34)

The density matrix in this frame, ρ̃(t) = V̂ †(t)ρ̂2(t)V̂ (t),
evolves according to the master equation

∂tρ̃ = V̂ †
(

L2 ◦ [V̂ ρ̃V̂ †]
)

V̂ . (B35)

where

L2 ◦ Ô =− i

~
[
∑

αβ

M1
αβ ĉ

†
αĉβ , Ô] +D2 ◦ Ô. (B36)

Here we suppressed time-dependence for brevity.
We consider the matrix elements of ρ̃(t) in the basis of

states corresponding to the 2d unique configurations of
electrons in the orbitals in the system, {|n〉},

pmn(t) ≡ 〈m|ρ̂(t)|n〉. (B37)

Here, n = (n1, . . . nd) with ni = 0, 1 for each i and

ĉ†i ĉi|n〉 = ni|n〉. I.e., |n〉 denotes the state in H2 with ni
Fermions in orbital i. In this basis t orbital basis of H2.
Here and below, we use bold italic symbols to indicate
configurations of orbital occupancies, as above.
According to Eq. (B35), pmn(t) evolves according to

the coupled differential equation

∂tpnm(t) =

N
∑

kl

Rkl

nm
(t)pkl(t) (B38)

where

Rkl

nm
(t) ≡ 〈n|L2(t)◦(|k〉〈l|)|m〉ei

∫
t

0
ds

∑
iε

2

i (t)(ni−mi+ki−li).
(B39)
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Note that L2(t) is of order λ
2δε(t). This follows since

M1
αβ ∼ λ2δε(t) and ‖D2‖ = ‖D‖ ≤ Γ, while Γ ≤ λ2δε(t).

At the same time, we expect 〈n|L̃2(t) ◦ (|k〉〈l|)|m〉 os-
cillates with characteristic frequency Ω. In the limit
λ ≪ 1, Rkl

nm
(t) hence oscillates rapidly relative to its

characteristic magnitude for choices of n,m,k, l where
ni−mi 6= ki− li for one or more choices i. This allows us
to make a rotating wave approximation, where we only
keep the terms in Eq. (B39) where ni−mi = ki−li for all
i. We expect this approximation yields the correct steady
state up to a correction of order ‖L2‖/δε ∼ λ2 [110].

After the rotating wave approximation above,
Eq. (B39) in particular only couples diagonal matrix el-
ements of ρ̃ with other diagonal elements:

∂tpnn(t) = −
∑

m

Rmm

nn
(t)pmm(t). (B40)

Since we chose the initial condition ρ̂(t0) = Î/2d, imply-
ing pnm(t0) = 1/2dδnm, we hence conclude

ρ̃(t) =
∑

n

fn(t)|n〉〈n|+O(λ2). (B41)

where fn(t) denotes the steady state of

∂tfn(t) = −
∑

k

Rmm

nn
(t)fm(t) (B42)

and is normalized such that
∑

n
fn(t) = 1. Evidently,

ρ̃(t) is diagonal in the orbital eigenbasis up to a correc-
tion of order λ2, while the off-diagonal elements deco-
here (this is a general feature for open quantum systems
where relaxation is slow compared to the level spacing of
the system [110]).
We obtain the steady state in the lab frame, ρ̂(t) by

reverting the net unitary transformation that we applied
to obtain ρ̃,

Û(t) = V̂ (t)Q̂2(t)Q̂1(t). (B43)

Thus we conclude

ρ̂(t) =
∑

n

fn(t)Û
†(t)|n〉〈n|Û(t) +O(λ2) (B44)

Here fn(t) is computed from Eq. (B42).

c. Direct method for computing Rmm

nn

The matrix elements Rmm
nn

, which determine the
steady state through the coefficients fn(t), can in princi-
ple be obtained from the definition in Eq. (B39). How-
ever, we can obtain them directly from the eigenstates of
the instantaneous Hamiltonian Ĥ(t) and the lab frame
dissipator D(t) without having to go through the proce-
dure we described in Sec. B 2 a.
First note that M1

αα = 0, implying

Rmm

nn
(t) = Tr

[

D2(t) ◦ (|m〉〈m|)|n〉〈n|
]

(B45)

Next, we recall that

D2 ◦ Ô = Q̂†
1Q̂

†
2

[

D ◦ (Q̂2Q̂1ÔQ̂†
1Q̂

†
2)
]

Q̂2Q̂1, (B46)

where we suppressed t. We now use that Q̂2 = 1 +O(λ)
and

Q̂1(t)|n〉 = |Ψn(t)〉 (B47)

where |Ψn(t)〉 is the eigenstate of Ĥ(t) satisfying

ψ̂†
α(t)ψ̂α(t)|Ψn(t)〉 = nα|Ψn(t)〉. (B48)

Combining the above results and using D(t) ∼ Γ, we thus
obtain

Rmm

nn
= Tr

[

D ◦ (|Ψm〉〈Ψm|)|Ψn〉〈Ψn|
]

+O(λΓ). (B49)

where we suppressed the time-dependence of |Ψn(t)〉,
D(t) and Rmm

nn
(t). Since Rmm

nn
(t) ∼ Γ, we expect ne-

glecting the correction above yields the correct value of
fn(t) state up to a correction of order λ.

d. Calculation of band occupancies

Now, we compute the instantaneous occupancy in band
α in the system, ρα(k, t), which will play an important
role for determining the current density.

We consider the one-body correlation matrix in the
eigenmode basis,

gαβ(k, t) ≡ Tr[ψ̂†
α(k, t)ψ̂β(k, t)ρ̂(k, t)]. (B50)

The instantaneous occupancy of band α is given by the
diagonal elements of this matrix, ρα(k, t) = gαα(k, t).
However, we will also keep track of the off-diagonal ele-
ments of gαβ(k, t), since these are used to compute the
current density in the next subsection. In the remainder
of this step of the derivation, k and t are fixed parame-
ters, and we therefore suppress them for brevity.
Inserting the solution for ρ̂ we obtained Eq. (B44), we

find

gαβ =
∑

n

fn〈n|Û ψ̂†
αψ̂βÛ

†|n〉+O(λ2), (B51)

where Û = V̂ Q̂2Q̂1. Since |n〉 is an eigenstate of V̂ , and

Q̂†
1ψ̂αQ̂1 = ĉα, we find

gαβ =
∑

n

fn〈n|Q̂2ĉ
†
αĉβQ̂

†
2|n〉+O(λ2) (B52)

Since Q̂2 is a product of exponentials of a quadratic op-

erators, Q̂†
2ĉαQ̂2 must be a linear combination of the op-

erators {ĉi}; i.e.,

Q̂†
2ĉαQ̂2 =

∑

i

Qαiĉi (B53)
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for some unitary matrix Qαi which we obtain below. Us-

ing 〈n|ĉ†i ĉj |n〉 = δijni, we thus find

gαβ =
∑

n,i

fnniQ
∗
αiQβi +O(λ2), (B54)

To compute Qαi, we use Eqs. (B29)-(B30) to obtain

Q̂2ĉαQ̂
†
2 = ĉα +

∑

β 6=α

Mαβ

εα − εβ
ĉβ +O(λ2) (B55)

Combining this with Eq. (B53), we conclude

Qαβ = δαβ +
Mαβ

εα − εβ
(1− δαβ) +O(λ2) (B56)

Inserting this result into Eq. (B54), we obtain

gαβ =
∑

n

fn

(

δαβnα +Mβα(1− δαβ)
nα − nβ
εα − εβ

)

+O(λ2)

(B57)

where we used that
Mβα

εα−εβ ∼ O(λ). Setting α = β and

using ρα = gαα, we hence find

ρα =
∑

n

fnnα +O(λ2). (B58)

3. Explicit solution for Boltzmann-form dissipator

We finally demonstrate our solution above for the case
where D(k, t) is given by the Boltzmann-type dissipator

in Eq. (26), D(k, t)◦Ô = − 1
τ [Ô−ρ̂eqα (k, t)]. Here ρeqα (k, t)

denotes the equilibrium state of the instantaneous Hamil-
tonian Ĥ(k, t) with temperature 1/β and chemical poten-
tial µ. We treat k as a fixed parameter and suppress it
below.
First, we obtain the coefficients fn(t), which determine

the band occupancies ρα(t). Recall that fn are given
as the steady-state solution to the the differential equa-
tion in Eq. (B42), ∂tfn(t) =

∑

m
Rmm

nn
(t)fm(t). Using

Eq. (B49) to find the coefficients {Rmm
nn

(t)}, a straight-
forward computation yields

Rmm

nn
(t) = −1

τ
δnm +

1

τ
Tr

[

ρ̂eq(t)|Ψn(t)〈Ψn(t)|
]

(B59)

Thus

∂tfn(t) = −1

τ
fn(t) +

1

τ
Tr

[

ρ̂eq(t)|Ψn(t)〉〈Ψn(t)|
]

(B60)

where we used
∑

m
fm(t) = 1. This first-order inhomo-

geneous differential equation has steady-state solution

fn(t) =
1

τ

∫ t

0

dse−(t−s)/τTr
[

ρ̂eq(s)|Ψn(s)〉〈Ψn(s)|
]

(B61)

Next, we obtain the band occupancies, {ρα(t)}, using

ρα(t) =
∑

n

fn(t)nα (B62)

Substituting in Eq. (B61) and identifying
∑

n
|Ψn(t)〉〈Ψn(t)|nα = ψ̂†

α(t)ψ̂α(t), we obtain

ρα(t) =
1

τ

∫ t

0

dse−(t−s)/τTr[ρ̂eq(s)ψ̂
†
α(s)ψ̂α(s)] (B63)

Next, we note that Tr[ψ̂†
α(s)ψ̂α(s)ρ̂eq(s)] gives occupa-

tion probability of the αth band of the Hamiltonian Ĥ(t)
in equilibrium at temperature 1/β and chemical potential
µ. We recognize this probability as fβ(εα(s)− µ) where
fβ(ε) denotes the Fermi-Dirac distribution at tempera-
ture 1/β. Thus

ρα(t) =
1

τ

∫ t

0

dse−(t−s)/τfβ(εα(s)− µ). (B64)

Note that ρα(t) converges to its time-average in the limit
τ−1 ≪ Ω, consistently with what we claimed in Eq. (B9).
We finally compute the time-average of ρα(t). A

straightforward computation shows

ρ̄α = lim
t→∞

1

t

∫ s

0

dtfβ(εα(s)− µ). (B65)

which was what we quoted in Eq. (27) in the main text.

4. Derivation of current density

We finally obtain the expression for the current density
in Eq. (B6), i.e., we seek to show that

1

~
Tr[∇Ĥρ̂] =

∑

α

ραṙα +O
(

λ2vF
)

, (B66)

where ṙα = 1
~
∇εα − e

~
E×Ωα. Here and below, we take

both k and t to be implicit parameters.
As our first step, we combine Tr[ρ̂∇Ĥ] =

∑

ij〈i|∇H|j〉Tr[ρ̂ĉ†i ĉj ]. with ĉ
†
i =

∑

α〈ψα|i〉ψ̂†
α to write

Tr[ρ̂∇Ĥ] =
∑

αβ

〈ψα|∇H|ψβ〉gαβ , (B67)

where gαβ ≡ Tr[ψ̂†
αψ̂β ] and is computed in Sec. B 2 d.

Combining Eqs. (B57)-(B58) we can express gαβ in terms
of the band occupancies ρα:

gαβ = δαβρα +Mβα(1− δαβ)
ρα − ρβ
εα − εβ

+O(λ2) (B68)

Next, we use the spectral decomposition H =
∑

α |ψα〉〈ψα|εα to find

〈ψα|∇H|ψβ〉 = δαβ∇εα + iAαβ(εα − εβ), (B69)
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where Aαβ ≡ i〈ψα|∇ψβ〉. Combining Eqs. (B67)-(B69),
we hence find

Tr[∇Ĥρ̂] =
∑

α

ρα∇εα+i
∑

αβ

(ρα−ρβ)AαβMβα+O
(

λ2vF
)

(B70)
We identify the first term in the right-hand side above as
the contribution arising from the group velocity.
To rewrite the second term, we use that |∂tψα〉 = e

~
E ·

|∇ψα〉, implying Mαβ = e
~
E ·Aαβ [114]. Thus

∑

αβ

(ρα − ρβ)MαβAj
βα =

e

~

∑

αβ,i

(ρα − ρβ)EiAi
αβAj

βα

(B71)
where Ai

αβ and Ei denotes the ith vector component of
Aαβ and E, respectively. Next, we note

∑

αβ

(ρα − ρβ)Ai
αβAj

βα =
∑

αβ

ρα(Ai
αβAj

βα −Aj
αβAi

βα)

(B72)
Using the definition of Ai

αβ along with 〈ψα|∂iψβ〉 =

−〈∂iψα|ψβ〉, we find
∑

β Ai
αβA

j
βα = 〈∂iψα|∂jψα〉. Hence

∑

αβ

(ρα−ρβ)Ai
αβAj

βα =
∑

α

ρα(〈∂iψα|∂jψα〉−〈∂jψα|∂iψα〉)

(B73)
We identify the right-hand side as −i

∑

α,k ραǫijkΩ
k
α,

where ǫijk denotes the Levi-Civita tensor and Ωkα denotes
the kth component of Ωα. Thus,

∑

αβ

(ρα − ρβ)AαβMβα = −i e
~

∑

α

ραE×Ωα (B74)

Hence the second term in Eq. (B70) gives the contri-
bution to the particle velocity from the anomalous ve-
locity. In particular, by inserting the above result into
Eq. (B70), and dividing through with ~, we establish
Eq. (B66), which was the goal of this subsection.

5. Derivation of auxiliary results

In this subsection we derive the auxiliary results which
we quoted in the subsections above. Specifically, we de-
rive Eqs. (B9), (B10), and (B21). These results are es-
tablished in Secs. B 5 c, B 5 a, and B5b, respectively.

a. Near-stationarity of ρα [Eq. (B9)]

We first show that ρα is nearly stationary.
Our starting point is the equation of motion for the

diagonal matrix elements of ρ̂(k, t) in the orbital basis,
{fn(k, t)}, ∂tfn(t) = −∑

k R
mm
nn

(t)fm(t). We note that
Rmm

nn
(k, t) is of order Γ, but oscillates with characteristic

frequency Ω. As a result, we expect fn(k, t) to deviate

from its time-average, f̄n(k), by a correction of order
Γ/Ω:

fi(k, t) = f̄i(k) +O(λ). (B75)

Inserting this into Eq. (B58), we thus find

ρα = ρ̄α +O(λ). (B76)

where ρ̄α(k) denotes the time-average of ρα(k, t), and we
neglected a correction of order λ2, since it is subleading
relative to Γ/Ω.

b. Bounds on group velocity [Eq. (B10)]

We next establish the bounds on the group velocity in
Eq. (B10). To obtain this result, we note that 1

~
|∇εα| =

1
~
|〈ψα|∇H|ψα〉| ≤ vF. This establishes the first condition

in Eq. (B10).
To establish the second condition in Eq. (B10), we use

that

e

~
E(t)×Ωα(t) = i

∑

β

(AαβMβα −AβαMαβ) (B77)

This follows from Eq. (B74) after setting ρα equal to 1
for one particular choice of α and 0 for all other choices.
Next, we use that |Aαβ | = |〈ψα|∇H|ψβ〉/(εα − εβ)| ≤
vF/δε. Since |Mαβ | . λδε [see Eq. (B28)], we thus con-
clude that e

~
|E(t) × Ωα(t)| . λvF. This was what we

aimed to show.

c. Expression for Q̂1(t) [Eq. (B21)]

We finally prove that, for each α, the unitary operator
in Eq. (B21),

Q̂1(t) = T e−i
∫

t

0
dt′

∑
αβ Mαβ(t

′)ψ̂†
α(t′)ψ̂β(t

′)V̂1, (B78)

transforms the eigenmode of the Hamiltonian, ψ̂α(k, t)
into the orbital annihilation operator ĉα:

Q̂†
1(t)ψ̂α(t)Q̂1(t) = ĉα, (B79)

We first note that Q̂1(t) is quadratic and conserves the

number of fermions. Hence, Q̂†
1(t)ψ̂α(t)Q̂1(t) must be a

linear combination of the orbital annihilation operators:

Q̂†
1(t)ψ̂α(t)Q̂1(t) =

∑

i

Kαi(t)ĉi (B80)

for some matrix Kαi(t). Eq. (B79) is satisfied if Kαi(t) =
δαi.
We can find Kαi(t) from the single-particle evolution

of the system, using |i〉 = ĉ†i |0〉 and |ψα(t)〉 = ψ̂†
α(t)|0〉:

Kαi(t) = 〈ψα(t)|Q1(t)|i〉, (B81)



31

where Q1(t) is the operator Q̂1(t) projected into the
single-particle space:

Q1(t) = T e−i
∫

t

0
ds

∑
αβ |ψα(s)〉〈ψβ(s)|Mαβ(s)e

∑
ij |i〉〈j| log(M)ij .

(B82)
Since Mij = 〈i|ψj(0)〉, we find

e
∑

ij |i〉〈j| log(M)ij =
∑

ij

|i〉〈j|Mij (B83)

Using
∑

ij |i〉〈j|Mij =
∑

i |ψi(0)〉〈i|, we find

Kαi(t) = 〈ψα(t)|T e−i
∫

t

0
ds

∑
ij Mij(s)|ψi(s)〉〈ψj(s)||ψi(0)〉,

(B84)
implying

Kαi(0) = δαi. (B85)

To see that Kαi(t) also equals δαi at later times, we take
the time-derivative above:

∂tKαi(t) =
(

〈∂tψα(t)| − i
∑

β

Aαβ(t)〈ψβ(t)|
)

Q1(t)|i〉

(B86)
Since 〈ψα(t)|∂tψβ(t)〉 = −〈∂tψα(t)|ψβ(t)〉,
Mαβ(t) = −i〈∂tψα(t)|ψβ(t)〉. This result, along
with

∑

β |ψβ(t)〉〈ψβ(t)| = 1, implies

∑

β

Mαβ(t)〈ψβ(t)| = −i〈∂tψα(t)|. (B87)

Using this in Eq. (B86), we conclude that ∂tKαi(t) = 0.
Since we found above thatKαβ(0) = δαβ , it hence follows
that

Kαi(t) = δαi (B88)

at all times t. Using this result in Eq. (B80), we conclude
that Eq. (B79) holds. This was what we wanted to show,
and concludes this appendix.

Appendix C: Derivation of bound on d0

Here we derive the condition for adiabaticity which we
quote above Eq. (36) and the text above. I.e., we seek

to establish that the time-dependence of H(k, t) can be
considered adiabatic for k-points where

min
t

|k+ eA(t)/~| &
√

‖R‖eE
~v20

. (C1)

See main text for definition of quantities and notation.

Our starting point is Eq. (35), which states that the
dynamics of the system are adiabatic for k-points where

~‖∂tH(k+ eA(t)/~)‖ ≪ δε2(k+ eA(t)/~) (C2)

for all t.
We consider the dynamics near a Weyl point, where

the Hamiltonian takes the linearized form H(k) = σ ·
Rk + V · k [see Eq. (1)]. We ignore the second term
arising from the Weyl cone tilt V, since it only affects
the time evolution through an overall phase factor. With
this linearized form we find

δε(k) = |Rk|, (C3)

~‖∂tH(k+ eA(t)/~)‖ = e|RE(t)| (C4)

Thus dynamics in the system are adiabatic if

e|RE(t)| ≪ |R(k+ eA(t)/~)|2 (C5)

We now use that |RE(t)| . ‖R‖E, where E denotes
the characteristic magnitude of the driving-induced elec-
tric field. Moreover, |Rv| ≥ v0|v| where v0 denotes the
smallest eigenvalue of R. Combining these two inequal-
ities with Condition (C5), we conclude that the time-
dependence of the Hamiltonian is adiabatic if

‖R‖eE
~

. v20 |k+ eA(t)/~|2 (C6)

for all t.

Rearranging the factors above, we conclude that the
dynamics of the system are adiabatic if Condition (C1)
is satisfies. This was what we wanted to show.
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