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We theoretically predict a new working principle for optical amplification, based on Weyl semimet-
als: when a Weyl semimetal is suitably irradiated at two frequencies, electrons close to the Weyl
points convert energy between the frequencies through the mechanism of topological frequency con-
version from [Martin et al, PRX 7 041008 (2017)]. Each electron converts energy at a quantized rate
given by an integer multiple of Planck’s constant multiplied by the product of the two frequencies.
In simulations, we show that optimal, but feasible band structures can support topological frequency
conversion in the “THz gap” at intensities down to 2W/mm?; the gain from the effect can exceed the
dissipative loss when the frequencies are larger than the relaxation time of the system. Topological
frequency conversion provides a new paradigm for optical amplification, and further extends Weyl

semimetals’ promise for technological applications.

Weyl semimetals are at the center of topological mate-
rials research thanks to their rich phenomenology [1-13]
and promising technological applications [14-16]. They
are characterized by topologically protected nodes in the
band structure near the Fermi surface that give rise to
(pseudo)spin-momentum locked low-energy excitations
with linear dispersion. Being surrounded by very high
Berry curvature, these nodal points, or Weyl points, lead
to unusual linear and nonlinear optical properties which
make Weyl semimetals promising platforms for, e.g., pho-
tovoltaics and high-harmonic generation [16-26].

In recent years, it was also appreciated that the in-
terplay between external driving and band topology can
give rise to a rich variety of exotic phenomena [27-46].
Particularly relevant for our work, bichromatic driving
(i.e., simultaneous driving at two distinct frequencies)
has emerged as a versatile tool for control of matter [47—
51], that can even induce its own unique topological phe-
nomena [43, 52-54]: Ref. [52] showed that a spin driven
by two oscillating magnetic fields with incommensurate
frequencies f; and f, can enter a regime where it trans-
fers energy between the driving modes at an average rate
given by the universal “energy transfer quantum”, hfi fo,
where h denotes Planck’s constant[43, 53, 54]. This effect
was termed topological frequency conversion.

While the model from Ref. [52] has been experimen-
tally implemented and studied [55, 56], actual obser-
vation of topological frequency conversion is still lack-
ing. The reasons are two fold: First, in the magnetic
realm, topological frequency conversion in the desirable
frequency regime of THz and above requires extremely
high amplitudes of the oscillating magnetic field (of about
1 Tesla and above, corresponding to radiation intensities
of more than 240 MW /mm?). Even then, measurable
— and especially useful — conversion rates would require
many spins acting synchronously.

In this work we propose a Weyl semimetal as the
medium of choice for realizing topological frequency con-
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FIG. 1. (a) Illustration of main result: a Weyl semimetal
irradiated by distinct frequencies can transfer energy between
the modes through a novel mechanism known as topological
frequency conversion. (b) Gain coefficient in an inversion-
symmetric Weyl semimetal with a Fermi surface consisting
of two Weyl points with Fermi velocities 3.87 - 10° m/s, as
a function of the Fermi energy er. The “pump” and “sig-
nal” modes have frequencies 0.82 THz and 1.23 THz and am-
plitudes 50kV/m and 100kV/m inside the material, respec-
tively. Near er = 4meV, these values correspond to radiation
intensities of 0.5 W/mm?, and 2W/mm?, respectively. Blue,
orange and green data result from relaxation times 200, 400,
and 600ps, respectively. (c) Energy transfer per unit vol-
ume, as a function of relaxation time 7, for an isolated Weyl
node with Fermi velocity 3.87 - 10°m/s. Modes 1 and 2 have
amplitudes 900 kV/m and 1800 kV /m inside the material, re-
spectively. Mode 2 has frequency f2 = 1.23 THz, and mode 1
has frequency fi = (V5 — 1) f2/2, (blue), fi = 2f»/3 (green),
and f1 = 2f2/(34 0.0017) (orange). See Secs. VID and IV
for further details of the calculation used for panels (b) and
(c), respectively.

version at high frequencies and with large conversion
rates. For that we consider a Weyl semimetal, sub-
jected to incoming radiation at two incommensurate fre-



quencies, as depicted in Fig. 1(a). Under appropriate
driving, individual electrons near the Weyl nodes act as
an ensemble of topological frequency converters (as in
Ref. 52), with the (pseudo-)spin of each electron playing
the role of the spin, and the vector potential potential
inside the material playing the role of the magnetic field
(the “transduction” being provided by the Fermi veloc-
ity of the Weyl point). As a result, the system hosts
an ensemble of electrons that each convert energy from
mode 2 to mode 1 at the quantized rate +h f; fo per elec-
tron; the number of active frequency converters is con-
trolled by the magnitude of the vector potential. Impor-
tantly, topological frequency conversion can be realized
in Weyl semimetals at relatively modest radiation inten-
sities. This is because the effective spins interact directly
with the (strongly coupled) electric field of the radiation
rather the than the magnetic field. As another benefit,
Weyl semimetals host a macroscopic number of active
frequency converters, giving rise to very large conversion
rates.

As a bulk response, topological frequency conversion
is unique to Weyl semimetals, and constitutes a funda-
mentally new mechanism for optical amplification. The
phenomenon has novel features of intrinsic interest: first,
it is a 2-wave mixing effect that does not require an idler
beam or phase matching. Secondly, it is in essence a
nonperturbative effect, beyond the regime of standard
“Xn” responses: in the ideal, fully adiabatic, limit, we
show that the rate of topological frequency conversion
is non-analytic as a function of the driving amplitude,
and hence cannot be captured through a standard Tay-
lor expansion. Away from this limit (i.e., in the presence
of finite driving frequency and relaxation), the nonper-
turbativeness persists in the form of a highly nonlinear
amplitude-dependence.

The novel features above, along with the modest ra-
diation intensities required and the macroscopic number
of active frequency converters give Weyl semimetals a
significant potential for optical amplification. This is
demonstrated in Fig. 1(b): here we plot the gain coef-
ficient (i.e., the exponential rate at which the intensity
of the amplified mode increases inside the material), ob-
tained from simulations with a somewhat optimized, but
feasible band structure of a Weyl semimetal. The mate-
rial is irradiated at frequencies in the “THz gap,” where
new effective amplifiers are in high demand, due to a lack
of powerful coherent radiation sources. Assuming suffi-
ciently slow relaxation, our simulations indicate gain co-
efficients of order 100 cm ™! can be achieved at intensities
of order 1 W/m?. This value is comparable with current
methods such quantum cascade lasers [57-61], which re-
port gain coefficients, 20 —50cm ™ range [57, 58]. We em-
phasize it may be possible to realize significantly larger
gain coefficients than O(100cm™!) in other parameter
ranges; e.g., with stronger intensities.

There still are challenges that need to be overcome
before optical amplification can become reality: being a
conductor, Weyl semimetal respond with plasma oscilla-

tions to radiation which renormalize the vector potential
inside the material. It is therefore necessary to drive the
system above its plasma frequency to allow the vector po-
tential enter the material. The plasma oscillations on the
other hand provides an opportunity: driving the material
close to resonance with the plasma frequency amplifies
the internal vector potential, thus significantly enhanc-
ing the rate of energy conversion. Indeed, we exploit this
resonance effect to achieve the simulated gain coefficients
of ~ 100 cm™! for the data depicted in Fig. 1(b).

Another, more serious, challenge is electronic relax-
ation processes. These counteract the frequency conver-
sion by providing a channel for trivial energy dissipa-
tion — material heating. = For the parameters consid-
ered in Fig. 1(b), net energy gain of the pumped mode
becomes possible for a characteristic relaxation time of
order 300 picosecond at THz frequencies. Such relax-
ation times are longer than the relaxation times that
have been mostly reported experimentally to date, which
range from 0.25 ps—3 ps [62-65] to 40 ps [66]. The nature
and timescales for scattering processes in Weyl semimet-
als is an interesting subject on its own which is still being
explored, however: some experiments report signatures
with much longer lifetimes [17, 67, 68] that can even ex-
ceed 1000 ps [69]. In addition experiments and theoreti-
cal studies indicate regimes dominated by non-standard,
momentum-conserving channels of dissipation, resulting
in hydrodynamical behavior [70, 71].

We speculate that slower relaxation rates can be
achieved, e.g. through improvement of materials quality
and bath/substrate engineering. As another example, we
show that dissipation is significantly reduced at commen-
surate frequencies, without affecting the energy transfer
from topological frequency conversion [see Fig. 1(c)]. Ex-
cessive heating can be countered through pulsed driving,
by allowing the system to dissipate away heat between
the pulses. If sufficiently slow relaxation can be reached
through such or similar incremental improvements, there
is a potential for significant benefits in the form of a new
and powerful mechanism for optical amplifcation.

The rest of this paper is structured as follows: in Sec. I
we review the characteristic properties of Weyl semimet-
als, which forms the basis for our discussion. In Sec. II,
we present the mechanism for frequency conversion from
a single-particle perspective. Sec. III shows how topolog-
ical frequency conversion arises in a realistic many-body
system, taking into account the effects of finite frequency
and dissipation. In Sec. IV, we support our conclusions
with numerical simulations. In Sec. V, we summarize
the conditions that a Weyl semimetal and driving modes
must satisfy to allow for topological frequency conversion.
In Sec. VI, we incorporate the effects of plasmons on the
single-grain frequency converter, calculate the work in
the context of Maxwell equations for the problem, and
propose a practical implementation of an amplifier based
on this effect using a “phase array” of Weyl grains. We
conclude with a general discussion in Sec. VII. Details of
derivations are provided in Appendices.



I. REVIEW OF WEYL SEMIMETALS

We begin by reviewing the characteristic properties of
Weyl semimetals. This review forms the basis for our
subsequent discussion.

Weyl semimetals are 3-dimensional materials in which
two adjacent energy bands touch at isolated points in the
Brillouin zone [11, 12], as depicted in Fig. 2(a). These
band-touching points are known as Weyl points. To
understand Weyl points better, we consider the Bloch
Hamiltonian of the system, H(k), near one such Weyl
point, which we (without loss of generality) take to be
located at wave vector k = 0. When restricted to the
subspace spanned by the two touching bands, and lin-
earized in k around k = 0, H(k) takes the following
characteristic form:

H(k) :€0+hZUlejk] +hzv7kz+o(k2)v (1>

1,7 %

where 0,,0, and o, denote the Pauli matrices acting
on the subspace spanned by the two touching bands in
some given basis, R is a real-valued symmetric full-rank
3 x 3 matrix, while V. = (V;,V5,V3) and &g is a real-
valued velocity and energy, respectively. Evidently, the
two energy bands of H(k) included above touch at the
Weyl point (k = 0). When the touching energy bands are
plotted in the plane k; = 0 (for i = x,y, or z), the bands
form a characteristic “touching cones” structure, as for
example in Fig. 2(a). €9 determines the location of the
touching point on the energy axis, while V determines
the “tilt” of the cones. The eigenvectors and spectrum
of R determines the anisotropy (or “squeezing”) of the
band gap around the Weyl point.

Once it is present, a Weyl point is a very robust fea-
ture: as long R remains full-rank, any infinitesimal per-
turbation to the system can only shift the location of
the band-touching point, but not eliminate it. This
is straightforward to verify through direct calculation.
Hence, a smooth change of system parameters can only
cause Weyl points to continuously move around in the
Brillouin zone [72]. As a result of this robustness, Weyl
semimetals are a generic class of materials. Indeed, many
materials have recently been shown to be Weyl semimet-
als [10-12, 73-79].

Another novel feature of Weyl semimetals is the non-
trivial band topology associated with the eigenstates of
the Bloch Hamiltonian, {|¢¥,(k))}. These topological
properties are captured by the Berry curvature €2, (k) =
(21 (k), 02 (K), 2% (K)) where

k) =i ) €in(dva (k)0 (k)), (2)

3
jk=1

with €;;; denoting the Levi-Civita tensor and 0; the par-
tial derivative with respect to the ith component of crys-
tal wave vector, k; (we discuss the physical significance
of the Berry curvature below). Weyl points act as point

sources for Berry curvature: for two bands, 1 and 2,
touching at an isolated Weyl node at k = k;, the Berry
curvature of the upper band, 2, satisfies

V- (k) = 2w sgn(|R[)é(k — ki), 3)

were | - | denotes the determinant, and V the nabla op-
erator in k-space. The sign is reversed for the the lower
band. The relationship between Weyl points and Berry
curvature is in exact analogy to point charges and the
electric field. In this analogy, the index ¢ = sgn|R| deter-
mines the “charge”, or chirality, of the Weyl point [80].
The net charge of all Weyl points that appear within a
given gap is zero [1]; thus any gap must hold an even
number of Weyl points.

For a system with many bands and multiple Weyl
points, Eq. (3) generalizes to

VQo =21 gisiad(k — ki), (4)

where the sum runs over all Weyl points in the system, g;
denotes the chirality of Weyl point ¢, and s; , indicates
how the Weyl points of the system connect the bands:
specifically s; o = 1 if Weyl point ¢ connects band o with
the adjacent band above, s; , = —1 if it connects band
a with the band below, and s;, = 0 if band « is not
involved at Weyl point i.

Eq. (4) can equivalently be expressed using the diver-
gence theorem: for a closed surface in the Brillouin zone,
C, the total Berry flux of band «, §,d?*S - Q4(k) (which
is identical to the Chern number of band « when con-
stricted to the 2-dimensional closed surface C), is given
by Ekiec ¢iS«,i where the sum runs over all Weyl points
contained within C.

Berry curvature acts as a magnetic field in reciprocal
space: an electron in band « with a relatively well-defined
position and wavevector, r and k, acquires a transverse
velocity proportional to €,(k) when subject to a weak
external force [81], k:

o (k) = %Vksa (k) + k x Qq(k). (5)

This second term above is known as anomalous velocity,
and can be seen as a canonically-conjugate analog to the
Lorentz force: whereas a magnetic field B generates a ve-
locity in reciprocal space perpendicular to the real-space
velocity, k = —fB x 1 (the Lorentz force), Berry cur-
vature generates a real-space velocity perpendicular to
the reciprocal space velocity, I = k x Q,, (the anomalous
velocity); here e denotes the elementary charge.

Eq. (3) implies that the Berry curvature diverges near
Weyl points. Hence electrons with wavevectors near
a Weyl point experience a divergent anomalous veloc-
ity [82]. When subject to an applied electric field, E, such
that k = —eE/h, Weyl semimetals can thus produce a
large current response which may be nonlinear as a func-
tion of E. This significant nonlinearity makes Weyl ma-
terials particularly attractive as nonlinear optical media,
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FIG. 2. (a): Energy bands of the linearized Hamiltonian in Eq. (1) in the plane k, = 0, with €9 = 0, R;; = §;;3.87 - 10° m/s,
and v = (0,0,3.1-10°m/s). The red line shows an example of the Fermi surface (with Fermi energy —115meV) when projected
into the same plane. (b): Trajectory of eA(t)/h resulting from two modes with circular polarization in the zz and yz planes

with amplitudes & = 740kV/m, £ = 1000kV /m and frequencies, fo =1, THz, fi = ‘/52_1 f2 (blue). Also shown is the surface
Bo (gray). See main text for further details. (c): Cross-section of By for the same parameters as in (b). Within the red and
blue sub-surfaces W (k) takes value 1 and —1, respectively, while W (k) = 0 outside the surface. (d): Trajectory of eA(t)/h for
the same values of & and f2 as in (b), and with Ey = 720kV/m, fi = 2 f, (resulting in a commenusrate frequency ratio). The

different value of &; is chosen to ensure that the vector potential of mode 1 has the same amplitude in panels (b) and (d), such

that the topological phase boundary By is the same for panels (b-d).

with potential applications including high-harmonic gen-
eration, frequency conversion and photovoltaics [16, 20].

In principle, any material the band geometry that has
large local Berry curvature near the Fermi level is prone
to having strong nonlinear response; Weyl semimetals
are just a prominent example of those thanks to the di-
vergent Berry curvature near the Weyl points. However,
this is not the full story: the exotic band topology of Weyl
semimetals (i.e. the nontrivial winding of the Berry cur-
vature around Weyl points) in itself gives rise to unique
nonlinear response phenomena. The effect we explore
in this paper — topological frequency conversion — is an
example of such an inherently topological response phe-
nomenon.

II. FREQUENCY CONVERSION FROM A
SINGLE ELECTRON

Here we show how the nontrivial band topology of
Weyl semimetals allows electrons to act as topological
frequency converters [52, 83]. We consider a Weyl
semimetal irradiated by two electromagnetic waves, or
“modes”, with distinct propagation angles and frequen-
cies, and with elliptical or circular polarization. Fig. 1(a)
depicts a concrete example in which the two waves are
circularly polarized in the xz and yz planes. We let Eq (¢)
and Es(t) denote the electric fields resulting from mode 1
and 2, respectively, such that the net electric field in the
Weyl semimetal at time ¢ is given by E(t) = Eq (¢)+Ea(t).
We assume the wavelengths of the incoming waves to be
much longer than the relevant length scales we consider,
and hence take E;(t) to be spatially uniform. The two

modes are oscillating with frequencies f; and fs, such
that, for ¢ = 1,2, E;(t) = E;(t + T;), where T; = 1/f;.
For simplicity, we first consider the case where f; and fo
are incommensurate; we consider the case of commensu-
rate frequencies in Sec. IT A.

The coupling between the Weyl semimetal and the
electromagnetic radiation is captured by the Peierls sub-
stitution [84], which causes the driven system to be gov-
erned by the time-dependent Bloch Hamiltonian

H(k,t) = H(k+ eA(t)/h), (6)

where A(t) = — fot dsE(s) denotes vector potential in-
duced by E(¢) [85]. In the following H (k) denotes the
Hamiltonian of the system in the absence of the driving,
while H (k,t) denotes the Hamiltonian in the presence of
the driving.

It is useful to decompose the vector potential as A (t) =
Aq(t) + Ay(t), where 9;A;(t) = E;(t). Since E;(t) is
generated by electromagnetic radiation, its time-average
vanishes; hence A;(t) is also T;-periodic with respect to
t. Without loss of generality we take both A;(t) and
As(t) to have time-average zero (recall that constant
shifts in A(t) correspond to benign gauge transforma-
tions). It is convenient to represent the vector potentials
A and A; as explicit functions of the phases of the two
modes , o and «; (rather than single time variable).
Specifically, a(d1,¢2) = Ai(p1/wi) + Az(p2/w2) and
a;(d;) = Aij(¢;/w;), where w; = 2x f; denotes the an-
gular frequency of mode i. We similarly let €(¢1, ¢2) and
€;(¢;) denote the electric fields E and E; as functions of
the individual phases the two modes.

To reveal how topological frequency conversion
emerges, we consider the dynamics of a single electron in



band «, in a wavepacket with some relatively well-defined
position, r, and wavevector, k. The rate of energy trans-
ferred to mode 1 by the wavepacket, P, (k,t), is given by
Ohm’s law [86],

P,(k,t) = —eEq(t) - to(k, ). (7
where 1, (k,t) denotes the velocity of the wavepacket in
band « at wavevector k, given the Hamiltonian H (k,t).
When w; and wsy are small enough so that the time-
dependence of H (k,t) is adiabatic [87], I (k,?) is given
by Eq. (5), with the instantaneous reciprocal space ve-
locity given by k(t) = —eE(t)/h:

fo(k,t) = %Vkea(k—i-eA(t)) - %E(t) x Qo (k+eA(t)/h).

(8)
Our goal is to compute the time-averaged rate of en-
ergy transfer into mode 1,

lim —
t—o00 0

t
P,(k) = ds P, (k, s). (9)
Here and throughout this work, we use the - accent to
indicate time-averaging, such that, for any function of
time and, possibly, other parameters f(t,z), f(r) =
limy_s oo % fot dsf(s,x).

To compute P,(k), we express Io(k,t) as a direct
function of ¢1 and ¢a: T(k,t) = va(k;wit,wat). Here
Vo (k; @1, ¢2) is obtained from the expression for 7, (k, t)
in Eq. (8) after replacing A(t) and E(t) with a(¢1, ¢2)
and €(¢1,¢2), respectively. Since we assume w; and
wo to be incommensurate, the time-averaged value of
Eq(t) - to(k,t) is identical to the phase-averaged value
of €1 (¢)1) - Vqo (k, ¢17 (;52) Hence,

B 27
P,(k) = i 2/ dprdéa €1(¢1) - Va(k; @1, ¢2).  (10)

Using the expression for v we described above, along with
€; = 21 f;0p, ¢, we obtain

= 1S / Ar by (05, 0% Dy 0x) o (k—cx /).
(11)

See Appendix A for detailed derivation.  The in-

tegral above has a direct geometrical interpretation:
2

Tzdp1des (0, x Og,x) gives the differential area el-

ement of the closed surface defined by ea(¢q,¢2)/h in

reciprocal space,

By = {ea(¢1a ¢2)/h}’

The direction of the differential area element (0,4, ¢ X
0g, ) defines the orientation of By. In Fig. 2(b) we depict
By for the case where modes 1 and 2 are circularly polar-
ized in the xz and yz planes respectively, and have elec-
tric field amplitudes & = 1000kV/m, & = 740kV/m,

and frequencies fo = 1THz, fi = ‘/52_1 fo. For in-
commensurate frequencies, the trajectory of e A(t)/h fills

0 S ¢17¢2 < 27T7 (12)

out By completely at long times, as also illustrated in
Fig. 2(b).
With the above geometric interpretation, we find

Po(k) = fifoi 7{% PK Dk +K),  (13)

where §,; d’k’ denotes the surface integral of k' over the
surface By. From Sec. I we recall that this integral is
quantized as 27 times the net charge of Weyl points of
band a enclosed within the surface By after displacing
it by k from the origin in reciprocal space, Q,[k] (here
the enclosed charge is weighted by the orientation of By
with respect to the volume in which the Weyl point is
enclosed):

Po(k) = hfi f2QalK] (14)

where we used h = 27h.

For an isolated Weyl point with charge +1 located at
k = 0 in a two-band system, Q,[K] is given by the fol-
lowing for the upper band (a = 2):

Q2[k] = —W(k), (15)

where the function W (k) is integer-valued and denotes
the net winding number of By around k as a function of
¢1 and ¢2. In Fig. 2(c) we plot W(k) for the configu-
ration of two circularly polarized modes also considered
in Fig. 2(b). The sign is reversed for mode 2 [i.e., when
replacing E; with E; in Eq. (7)]. Hence the electron acts
as a conversion medium that transfers energy between
mode 2 and 1.

For a system with multiple bands, Qq[k] = >, W(k —
K;)q:Si,o, where the index s; o encodes how Weyl point 4
connects the bands of the system (see Sec. I). We hence
arrive at

Po(k) = hfrfa Y W(k —k;)gisia- (16)

This constitutes one of our main results.

Eq. (16) shows that each electron in the Weyl
semimetal transfers energy from mode 2 to mode 1 at
a rate which is quantized, as an integer multiple of hf; fs.
The value of the integer depends on the location of the
electron in the Brillouin zone, k. Specifically, the conver-
sion rate P, (k) is nonzero for electrons whose wavevec-
tors k are located within the surface By relative to a Weyl
point. Thus, a nonzero conversion power can be realized
for electrons near Weyl points.

The energy conversion predicted in Eq. (16) can be
seen as a realization of the topological frequency conver-
sion that was discovered in Ref. [52]. Ref. [52] showed
that a 2-level system (such as a spin-1/2) initialized in
its lower band and adiabatically driven by two modes
with frequencies f; and fy can transfer energy between
the modes at an average rate quantized as h fi foz, where
z is an integer. Ref. [52] explained this conversion as an
anomalous velocity along the synthetic dimensions that



correspond to the photon numbers of the two modes.
To understand the relationship between our result and
Ref. [52], note that for fixed k, H(k,t) is a Hamiltonian
of a 2-level system of the exact same form as considered
Ref. [52], with the pseudospin of the electron playing the
role of the physical spin in Ref. [52]. Indeed, the ar-
guments of Ref. [52] show that for the two-level system
described by H(k,t), z = W(k). In this way, each elec-
tron in a Weyl semimetal can be seen as a topological
frequency converter from Ref. [52], with the quantized
rate of conversion controlled by its location in the Bril-
louin zone.

A. Commensurate frequencies

The discussion above for simplicity assumed the fre-
quencies f; and fs incommensurate. Here we consider
the case where the frequencies of the modes are commen-
surate such that f1/fo = p/q for some integers p and ¢. In
this case, E(t) and A(t) thus are time-periodic with the
extended period Tyt = pT1 = ¢T15. This time-periodicity
significantly affects the electron’s trajectory in the BZ
(relative to its equilibrium wavevector), eA(t)/h. For
incommensurate frequencies, the trajectory fills a closed
surface, namely By, as illustrated in Fig. 2(b). In con-
trast, commensurate frequencies causes the trajectory to
form a closed curve, Cy, as in Fig. 2(d). The curve Cy is
still located on the surface By.

For commensurate frequencies, the driving experienced
by the electron depends on the initial phase difference be-
tween the modes, A¢; here nonzero A¢ corresponds to
a shift of the phase of mode 2 such that E(t) = E;(¢) +
Es(t + Ag/ws), resulting in E(t) = €(w1t,wat + A¢g) and
A(t) = a(wit,wst + Ag). For incommensurate frequen-
cies, different values of A¢ are equivalent to shifts in the
time origin and hence do not affect the long-term dy-
namics of the electron. In contrast, for commensurate
frequencies, each distinct value of A¢ results in a dif-
ferent closed trajectory of A(t), Cy. The surface By is
recovered by combining the curves Cy for all possible val-
ues of A¢.

For commensurate frequencies, the quantization of P
breaks down. The breakdown of quantization arises be-
cause the trajectory of the modes’ phases (¢1(t), ¢2(t)) =
(w1t,wat + Ag) does not cover the whole 2d phase Bril-
louin zone over time, ¢1, ¢ = [0,27), thus invalidating
the step leading to Eq. (10). However, quantization is re-
covered when averaging P over all possible values of A¢:
for commensurate frequencies, Eq. (10) remains valid for
the average value of P with respect to A¢. Thus, for
commensurate frequenices it is possible to enhance con-
version rates relative to the quantized value by tuning the
phase difference to a value where the conversion rate ex-
ceeds its average value. For uncontrolled (random) phase
differences, the conversion rate remains quantized on av-
erage.

III. FREQUENCY CONVERSION IN
MANY-BODY SYSTEMS

Our next goal is to show how topological frequency
conversion emerges in a realistic Weyl semimetal where
electrons are affected by interactions, impurities and
phonons. We focus on the rate of energy transfer to mode
1 per unit volume for a Weyl semimetal driven by two
modes, n(t). If n(t) is positive, there is a net flow of en-
ergy into mode 1, implying amplification of this mode.
This energy must originate from mode 2. The conversion
rate 7(t) can be computed from the current density, j(t),
using Ohms law:

n(t) = —Eq(t) - j(t). (17)

To obtain the current density j(¢) we characterize the
many-body state of the Weyl semimetal in terms of the
momentum resolved density matrix,

Pk, 1) = Tri aclpr (1), (18)

where pr(t) denotes the full density matrix of the Weyl
semimetal at time ¢, which is subject to interactions, im-
purities, and phonons, while Try k[-] denotes the trace
over all possible occupations of electronic states with
crystal momentum other than k. p(k,t) is a matrix in
the 2¢ dimensional Fock space associated with the d or-
bitals (or bands) accessible by the electrons at wavevec-
tor k [88] Below, the “hat” accent * indicates operators
that act on many-body orbital Fock states. Operators
without the accent, such as the Bloch Hamiltonian from
Secs. I-1I, H(k,t), are single-particle operators. p(k, 1)
encodes the band occupancies alongside with inter-band
coherences and all multi-particle correlations of electrons
with the same wavevector k. The inter-band coherences
are crucial for capturing topological energy conversion,
since they give rise to the anomalous velocity in our for-
malism.

p(k,t) determines the current density in the system,
j(t), through

e 3 .
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where momentum integrals are taken over the full Bril-
louin zone, and H(k,t) denotes the second-quantized
Bloch Hamiltonian of the system:

H(k,t)=> H;(k,t)éle;,. (20)

Here H;j(k,t) = (i|H(k,t)[j), and |i) denotes the ith
orbital state in the standard Bloch space.

In the presence of driving p(k, t) approaches to a time-
dependent steady state. We obtain this steady state by
solving a master equation for p(k, ¢), in which the effects
of interactions, impurities and disorder are included as a
dissipative term. The master equation and steady-state



solution are summarized in Sec. IIT A below. The cal-
culation of the steady-state is straightforward, but in-
volved, and is detailed in Appendix B. A key feature
of the steady-state solution is that the current response
can be split into an energy-conserving “adiabatic com-
ponent”, jo(t), and a dissipative correction due to non-
adiabaticity and scattering, 6j(t):

J(t) =Jo(t) + 8j(1). (21)

This decomposition allows us to identify an energy-
conserving and dissipative component of 7(¢):

no(t) = —E1(t) -jo(t), mnais(t) = —E1(¢)-0j(t). (22)

The component jo(t) is responsible for topological fre-
quency conversion, and we find that this term dominates
in the limit of adiabatic driving and slow relaxation. As
a central result, we find that
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with o (k,t) = $Viea(k + eA(t)) — £E(t) x Qa(k +
eA(t)/h) denoting the wavepacket velocity in band «;
7o (k) is the time-averaged occupation in the ath band
of the instantaneous Bloch Hamiltonian, H (k,t).

In what follows, we first discuss the steady state so-
lution of the density matrix (Sec. IITA). We then com-
pute the time-averaged energy pumping resulting from
the non-dissipative component of the current response,
1o. We finally consider the dissipative component of 7,
Ngis in Sec. IIIC. It is crucial to estimate 7q;s, since am-
plification is only achieved when 7 exceeds 74js-

A. Steady state solution

We now discuss how we obtain the steady-state of
p(k,t). Details of this discussion are provided in Ap-
pendix B.

For a clean and non-interacting system, p(k,t) evolves
according to the von Neumann equation, O;p(k,t) =
—(i/h)[H (k, t), p(k, t)]. Interactions, phonons, and impu-
rities cause a dissipative correction to this equation. For
sufficiently weak dissipation, this correction can be de-
rived approximately from first principles and takes the
form of a trace- and positivity-preserving linear operator
acting on p(k,t), D(k,t) [89]. Thus, p(k,t) is governed
by the following Lindblad-type quantum master equation

(k. 1) ~ %[H(k, 1), ok, 8)] + D(k, 1) 0 p(k, ). (24)

In Appendix. B, we obtain a solution to Eq. (24). The
solution p(k,t) is accurate as long as the driving is adia-
batic with respect to the energy gap of H(k,t), de, and
much faster than the the magnitude of the dissipator
D [90]:

ID(k,t)]| < wi, wa < de. (25)

We term this limit, as the coherent adiabatic regime.
When the above conditions are satisfied, we find the-
steady state value of p(k,t) is diagonal in the eigenbasis

of the Hamiltonian, ]EI(k,t), up to minor nonadiabatic
corrections. The corresponding eigenvalues (which de-
termine the the occupations of the instantaneous bands
of H(k,t)) are nearly stationary, except for minor fluctu-
ations of order ||D||/O(w1,ws). These fluctuations, along
with the subleading (second-order) nonadiabatic correc-
tions to p(k,t) give rise to the dissipative current §j(¢).
The term jo(¢) results from just keeping the (dominating)
time-independent component of the eigenvalues of p(k, t)
and including leading-order nonadiabatic correction to its
eigenbasis. Here the leading-order non-adiabatic correc-
tion to the eigenbasis is responsible for the anomalous
velocity which enters in jo(t).

Our solution to Eq. (24) applies to any dissipator
D, and this dissipator can be derived from first prin-
ciples [89]. However, for illustrative purposes, we now
demonstrate our solution for the concrete example where
D takes a particular phenomenological form: the “Boltz-
mann” form. In this approximation, the dissipator uni-
formly relaxes electrons towards their instantaneous equi-
librium state at some given ambient temperature 1/ and
chemical potential u, and with some rate 1/7:

R ..
Dg(k,t)op= _;[p — pea(k, t)]. (26)
Here  peq(k,t) is the instantaneous equilib-
rium state described above, and is given by

e‘ﬁ[ﬁ(k’t)_”ﬁ]/Tr(e_B[H(k’t)_“ﬁ]), where 1 = ), ele;.
We also use this dissipator in our numerical simulations
(see Sec. IV).

The Boltzmann-form dissipator [Eq. (26)] leads to the
following steady state density matrix:

t

palk)~ lim + [ ds folealkit) =l (27)

t—oo t 0
where f3(E) denotes the Fermi-Dirac distribution at
temperature 1/8. This result (see also Appendix B) in-
dicates a steady state occupation which is the average
band-population on the trajectory k 4+ eA(t)/h, as if the
equilibrium distribution is “smeared” over a characteris-
tic wavevector scale eA/h, where A is the drive vector
potential magnitude. This smearing is confirmed in our

numerical simulations (see Sec. IV and Fig. 4 in particu-
lar).

B. Non-dissipative frequency conversion

We first compute the average rate of energy transfer in
the limit of adiabatic driving and zero dissipation. I.e.,
we compute the the time-average of the component 7(t),
flo. We find that 7y(t) can have nonzero time-average
because of the mechanism of topological frequency con-
version that we discovered in the last section.



To compute 7y we first note 7y can be written
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where P, (k,t) = eE(t) - fo(k,t) [see also Eq. (7)]. We
find the time-average of the above using the main re-
sult from Sec. IIIB, pa(k) = 7hf1f2 Zz W(k*kl)qzsza
[Eq. (16)]. Here ¢;, Si.a, and k; denote the charge, band
connectivity, and wave vector of Weyl point i in the sys-
tem, respectively, while W (k) measures the net winding
of the surface By around wavevector k (see Sec. IITC for

further details). with this, Eq. (28) becomes:
o = —hfLf Z/ddk Siala ()W (k — ki), (29)
o = 1/2 - (277')3 qiSi,aPa i)

Thus, each Weyl point is surrounded by a region of recip-
rocal space (namely the region where W (k —k;) # 0), in
which electrons act as topological frequency converters.
In this region, each transfers energy to mode 1 at the
quantized rate +hfi fo. This is a many-electron general-
ization of Eq. (16) and constitutes another main results
of this paper. In the following we thus refer to 77y as the
topological frequency conversion rate of the system, to
distinguish it from the dissipation rate, which is given by
the time-average of nqjs(t).

While the conversion rate from each electron is quan-
tized, the net number of electrons with nonzero conver-
sion rate is not fixed, but depends on the amplitude
and configuration of the driving field (through the func-
tion W (k)) and the steady-state distribution surrounding
each Weyl point, p, (k). This steady-state distribution is
in turn controlled by the band structure of the system,
as well as the configuration and intensity of the external
driving.

To explore how the band structure and driving con-
figuration controls the conversion rate, we first estimate
the “gross” rate of topological frequency conversion from
a Weyl point (i.e., not taking into account cancella-
tion between electrons that transfer energy at opposite
rates). Note that W (k) is positive within volume of
order ~ %AlAg(Al + Ay) in reciprocal space, with
A; = E;/w; denoting the vector potential amplitude of
mode ¢. This volume corresponds to an electronic density

of ~ %AlAQ(Al + As) for each Weyl point. Since each

electron contributes A f1 f2 to 7o, fgross is of order

€3E1 E2 E1 EQ
ross I — . 30
Mg <w1 e ) (30)

8mwth?
As an example, for w; ~ 27 THz and E; ~ 1500kV /m.
the above estimate yields 79gross ~ 500 kW / mm?.

The actual, net, topological conversion power, 7 is sig-
nificantly smaller than the gross rate we estimated above,
due to cancellation between electrons that convert energy
at rates hfifo and —hf; fa. Specifically, when modes 1
and 2 only contain a single harmonic each, the driving

induced vector potential satisfies A;(t) = —A;(t+T;/2),
implying W(k) = —W(=k) [91] [this symmetry is
clearly evident in Fig. 2(c)]. Hence the regions of re-
ciprocal space characterized by conversion rates hfifo
and —hf fo have equal net volumes. In realistic situa-
tions, both volumes will be occupied by electrons, imply-
ing Mo < Mgross- However, because 7gross can be quite
large, even a small imbalance in the filling of the two
regions can lead to significant net frequency conversion.

To achieve a nonzero 7y, the steady-state occupation of
the bands, p,(k), must be anisotropic around the Weyl
point to counteract the antisymmetry W(k) = —W (k).
Such an anisotropy is generally achieved when the “Weyl
cone tilt”, V| is nonzero, since we expect the steady-state
inherits the same symmetry properties as the equilibrium
state [see Eq. (1)]. Additionally, the Weyl point must
be within a distance of order ~ eA;/h from the Fermi
surface to ensure that p, (k) does not take constant value
(1 or 0) within By. Indeed, our numerical simulations
demonstrate that nonzero 7y can arise when V # 0 and
the Fermi surface lies close to the Weyl point.

Topological frequency conversion is in essence a non-
perturbative effect: it is controlled by the overlap of
the quantized (i.e., nonanalytic) function W (k) with the
steady-state distribution. Hence topological frequency
conversion does not have a simple power-law dependence
on A in the limit of small A, and is therefore beyond stan-
dard nonlinear response theory. In Sec. IV [Fig. 6(b)] we
provide data from numerical simulations indicating this
highly nonlinear nature of the phenomenon.

C. Dissipative energy loss

For topological frequency conversion to cause a net am-
plification of mode 1, 7y must exceed the rate of energy
loss due to dissipation, nqis. It is therefore crucial to
estimate this dissipation rate. This is the goal of this
subsection.

Our solution of the master equation in Appendix B
shows that the dissipative current response, dj(t) [see Eq.
(21)], contains two components:

0j(t) = 0jmr(t) + djna(t), (31)

which we interpret as arising from momentum-relaxation
(0jmr) and nonadiabaticity-induced particle-hole pair cre-
ation (djna); see discussion below. Consequently, nq;s (%)
can also be separated into these two components:

ndis(t) - nmr(t) + nna(t)~ (32)

where 7, (t) = E1(t) - jmr(t), and ny, is defined likewise.
While 7y, and n,, are given in Appendix B, here we
discuss their origin and estimate their magnitudes based
on a phenomenological discussion.
Energy loss due to momentum relaxation, 7y,,, arises
when perturbed electrons in the close vicinity the



FIG. 3. Schematic illustration of the two distinct dissipa-
tion mechanisms in a driven Weyl semimetal. (a) Momentum
relaxation: as electrons are adiabatically translated in the
Brillouin zone by the driving-induced electric field (black ar-
rows), electrons shifted to higher energies (black dots) can
relax by decaying to vacant states that have become avail-
able at lower energies within the same band (white dots),
causing net dissipation of energy. This mechanism can occur
for all wavevectors near the Fermi surface, where driving in-
creases the energy of electrons beyond the energies of vacant
states elsewhere in the same band. (b): Nonadiabatic heating,.
Electrons that are taken through or near a Weyl node by the
driving-induced electric field can undergo complete or partial
Landau-Zener tunneling from the valence to the conduction
band. This results in dissipation when the excited electrons
in the conduction band relax back into vacant states in the
valence band.

Fermi surface relax due to their displacement from in-
stantaneous equilibrium, as schematically indicated in
Fig. 3(a). In contrast, ny,(t) arises from the particle-hole
pair creation that results because the driving-induced
electric field inevitably overpowers the gap sufficiently
close to Weyl points. Equivalently, n,, arises because ef-
fective gap closing of H (k,t) near a Weyl point gives rise
to Landau-Zener tunneling from the conduction to the
valence band upon driving. These excited electrons dis-
sipate energy as they relax back to the conduction band,
as schematically illustrated in Fig. 3(b).

Below we estimate 7y, and n,, based on phenomeno-
logical arguments. For simplicity, we consider system
with two bands and an isolated Weyl point at k = 0
(which is easily generalized to multiple Weyl points).
Moreover, we do not distinguish between the characteris-
tic relaxation rates associated with momentum relaxation
and particle-hole pair creation (which may be different in
real materials), but use

I~ Dk, 1) (33)

as an estimate for both characteristic relaxation rates.

1. Momentum relaxation

We first estimate the rate of energy loss arising from
momentum relaxation, 7y, (t). For convenience, in the
following we let A = E/Q denote the characterstic mag-
nitude of the driving-induced vector potential, E the

characteristic magnitude of E(t), and Q the character-
istic scale of w; and ws.

Effects of momentum relaxation can only emerge
within a distance ~ eA/h from the Fermi surface, where
electronic occupation fluctuates. Therefore, only a den-
sity of eSpA/(27)3h contributes to §jm.(t), where Sp is
the area of the Fermi surface. Electrons near the Fermi
surface on average gain an energy of order eAvgp/2h due
to the driving (with vp the characteristic Fermi velocity).
Assuming their relaxation rate is of order I', the average
rate of energy loss in the system due to momentum relax-
ation thus is given by %. We estimate that half
of this comes from mode 1. This estimate agrees well
with our predictions based on the definition of §ju,,(¢) in
Appendix B. Using that A ~ E/Q, we find

F62E2SF1}F
e ™ 63002

It is interesting to note that 7., is proportional to
the size of the Fermi surface, Sp. Therefore type-I Weyl
points are more suitable for frequency conversion than
type-II Weyl semimetals, since the surrounding Fermi
surface forms a compact ellipsoid for the former case,
in contrast to an extended hyperboloid in the latter.

As an example, we estimate 7y, for the same pa-
rameters we used to estimate 7gross in Sec. IIIB i.e.,
E ~ 1500kV/m, vp ~ 5-10°m/s, Q@ = 27 THz.
For an ellipsoid Fermi surface with principal semi axes
(1.5,1.5,2.4)eA/h (yielding Sp ~ 0.06A72), our estimate
then results in 7y, ~ 5-1075J/mm37, where 7 = 1/T.
Note that our estimated value of 7y, is proportional
to the Fermi surface area and thus can be easily ad-
justed to other values of this quantity. Recalling that
Ngross ~ 900 kW/mm3 for the same parameters, we ex-
pect net frequency conversion to only exceed momentum
relaxation when 7 > 100ps. This expectation is con-
firmed in our numerical simulations [see Fig. 1(b)].

(34)

2.  Non-adiabatic heating

Non-adiabatic heating arises from electrons at k-points
where the time-dependence of H(k,t) = H(k+eA(t)/h)
overwhelms the band gap. In Weyl semimetals, such k-
points inevitably exist (even for arbitrarily slow driving),
because the band gap of H (k) closes at Weyl points. For
each such k-point, the band gap of H(k,t) effectively
closes at certain times ¢, namely when k + eA(t)/h is
sufficiently close to the Weyl point at k = 0 (see below
for more detailed conditions). At each such gap-closing
event, electrons at wavevector k will undergo partial or
complete Landau-Zener transition from the conduction
to the valence band. This mechanism effectively heats
the electrons and eventually results in dissipation once
the excited electrons relax. The dissipation induced by
the mechanism above is captured by 7y, (¢).

To estimate 7, we first identify the set of k-points for
which the time-dependence of H(k,t) is non-adiabatic;



we term this region of reciprocal space as the “non-
adiabatic” region and denote it by V,,. The Landau-
Zener formula [92, 93] states that time-dependence of
H(k,t) is non-adiabatic if, for some ¢,

hl|0:H (k + eA(t))| > 0e%(k + eA(t))/h, (35)

where de(k) = e2(k) — e1(k), and £, (k) denotes the ath
energy band of H(k). Using the linearized form of H (k)
in Eq. (1), a straightforward derivation (see Appendix C)

shows that this condition is satisfied at k-points for which
min, |k + eA(t)/h| S dp where

eE|R|
dy = 6
O\ w2 (36)

while ||R|| and vy denotes the largest and smallest
eigenvalue of the velocity matrix R, respectively [see
Eq. (1)] [94]. For incommensurate frequencies, Vy, thus
consists of all k-points within a distance dj from the topo-
logical phase boundary By by our estimate. For com-
mensurate frequencies V,, consists all k-points within a
distance dg from Cy, which forms a closed curve on By,
as in Fig. 2(d).

Electrons with wave vectors k within V,, encounter a
vanishing gap of H(k,t) at times ¢t where |k+eA(t)/h| <
do. These electrons then undergo Landau-Zener tunnel-
ing, which effectively heats them to a high-temperature
state, as explained in the beginning of this subsection.
These high-temperature electrons then relax back to
equilibrium after a characteristic time 1/T". n,,(¢) is then
the rate of energy loss, or heating, (per unit volume) aris-
ing from this relaxation. We estimate

Tha ~ A6nannar/27 (37)

where n,, is the concentration of excited electrons within
Vha, and Aey, denotes the characteristic average value of
de(k+eA(t)) for k within V,,. Here the factor of 2 comes
because we estimate that the other half of the dissipated
energy comes from mode 2.

We obtain Ae,, using that V,, is located a distance
~ eA/h from the Weyl node, such that Ae,, ~ eA|R||,
and ||R|| is the largest velocity implied by the velocity
tensor R. Using A ~ E/), we obtain

Aepa S

~

eE||R]/. (38)

To estimate ny,, it is crucial to know the characteristic
time interval between successive gap-closing events expe-
rienced by electrons with a given wavevector within V,,,
At. To build intuition, let us first consider what happens
when At > 1/T, i.e., when electrons have time to fully
relax between successive gap-closing events [95]. Elec-
trons at wavevector k are taken to a high-temperature
state whenever k comes within a sphere of radius ~ dy
from eA(t)/h. Electrons are in equilibrium as they “en-
ter” the sphere (due to our assumption At > 1/T"), and
we estimate that half of them are excited to the conduc-
tion band as they “leave” the sphere. The concentration
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of electrons per unit time that are heated by this pro-
cess is hence given by the cross-section of this sphere
times %e|8tA| /h. Therefore, we expect the concen-
tration of electrons heated per unit time to be given by
ed3|0;A(t)|/167%h. Assuming the electrons relax with
characteristic rate I', we estimate ny, as the fixed point
of Oynya = emd?|9;A(t)|/1672h — Tny,. Using 6;A = E,
we thus find n,, ~ ed3E/167%hI.

Next, we consider the case where At < 1/T. In
this case, a significant fraction of electrons are already
in a high-temperature state when they experience a
gap-closing event (i.e., when they “enter” the sphere
with radius dy centered at eA(t)/h). Assuming that
the gap-closing event effectively randomizes the state
of the electrons (i.e., the electrons are in a infinite-
temperature state right after “leaving” the sphere, re-
gardless of their initial state), a subsequent gap-closing
event only re-heats a reduced number of electrons to a
high-temperature state. We estimate the fraction of pre-
excited electrons to be of order 0.5 e 2 right before the
gap closing and 0.5 right after; thus the heating rate is
reduced by a factor O(1 — e~F'A%), resulting in

edi B ~TAL
Nipa ~ 167725F(1 —e ). (39)

Combining this result with Eqs. (36)-(38), we obtain

B R|? At
ha ™ Sy a1 ) (40)
Below we estimate At (i.e., the characteristic time be-
tween gap closing events) for the two cases incommensu-
rate and commensurate frequencies; as we find these two
situations lead to significantly different At, and hence
also different values of 7,,.

Evidently, the bound above is controlled by the ra-
tio between the largest and smallest eigenvalues of the
matrix R, ||R||/vo. As we argued in Sec. I, this num-
ber quantifies the anisotropy of the band gap around the
Weyl point.

Note that the first factor in Eq. (40) is larger than the
gross rate of topological frequency conversion in Eq. (30)
(this follows from ||R||/vg > 1, and 7% > 8). Thus, At
needs to be much shorter than I'~! for nonadiabatic heat-
ing not to overwhelm the net rate of topological frequency
conversion. In particular, since At is at least 27/, we
expect I' < € to be a necessary condition for topological
frequency conversion.

To illustrate the above result, we estimate 7,, for
the same parameters as gave us the estimates 7gross =
500kW/mm?® and 7y, ~ 100kW/mm?, namely, E ~
1500kV/m, Q = 27 THz, ||R| ~ vo ~ 5-10°m/s [see
text below Egs. (30) and Eq. (34)]. With these param-
eters Eq. (40) yields 7, ~ 650kW/mm?(1 — e~ T'4%). In
the case of fast relaxation I, n,, is clearly the dominant
heating mechanism.



8. Nonadiabatic heating at incommensurate frequencies

For incommensurate frequencies, we estimate At as
the time-window over which trajectory of eA(t)/h has
length |By|/dp, where |By| denotes the area of the sur-
face on which eA(t)/h is confined to at all times, By =
{ea(p1,¢2), 0 < ¢; < 2w} [see Sec. II and Fig. 2(b)]
Since 0, A(t) = KE(t), the trajectory of eA(t)/h over
the time-window At has length eEAt/h. Estimating
|Bo| ~ 4m%e?A%/h? and using dy = /eE| R||/hv2 along
with A ~ E/Q, we hence obtain

4 2 E 2
At ~ %1 / ;H;ﬁ for irrational wy /wo (41)

For the parameters we used to estimate 7,, above
[E ~ 1500kV/m, vp ~ 5-10°m/s, and Q = 27 THz]
this estimate yields At ~ 30ps. To achieve topologi-
cal frequency conversion at incommensurate frequencies
with these parameters, the characteristic relaxation time
7 = I'"! must be much longer than this timescale. In
this limit (i.e., 7 > At), we find 7,, ~ 5-1078kJ/mm37,
which is smaller than 7gr0ss Wwhen 7 2 100 ps.

D. Lissajous Conversion

We now consider the case of commensurate frequencies,
which can give a marked reduction of the non-adiabatic
losses.

Eq. (40) shows that small time-intervals between sub-
sequent gap-closing events, At, leads to suppression of
nonadiabatic heating, n,,. An important consequence of
this is that 7y, is strongly suppressed for commensurate
frequencies, i.e., when

fi/f2=alp (42)

for some integers p and ¢ (which we, without loss of gen-
erality, take to have no common divisor). In this case,
eA(t)/h forms a 3-dimensional Lissajous figure in recip-
rocal space, as in Fig. 2(d), and is time-periodic with
period ¢17 = pT5. Thus, a given k-point within V,, ex-
periences gap-closing events with periodicity [96]

As a consequence, 7,, is strongly suppressed for highly
rational frequency ratios, i.e., when p and ¢ are small.

The suppression of 7,, means that net amplification
from topological frequency conversion is significantly en-
hanced at highly commensurate frequencies. We term
this mechanism of topological frequency conversion at
commensurate frequencies Lissajous conversion. The
dramatic suppression of nonadiabatic heating results in
an enhanced net frequency conversion rate in the Lis-
sajous conversion regime, as is evident in our numerical
simulations (see Fig. 1(b), and Sec. IV).
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FIG. 4. Energy conversion in the model we study in Sec. IV.
(a) Plot of W(k) in the plane k, = 0, with red, blue, and
white indicating values —1, 1, and 0, respectively. Black cir-
cle indicates By and shaded region schematically indicates the
non-adiabatic region Vn,. Orange circle and dashed line in-
dicate the location of the Weyl point and equilibrium Fermi
surface. (b): net rate of energy transfer to mode 1 from elec-
trons with a given wavevector k, P(k), as a function of k in
the plane k, = 0, for same parameters as in Fig. 4(a). (c)
occupation number in equilibrium of electronic modes with
wavevector k, as a function of k in the plane k, = 0, for the
same system as in panels (a-b). (d): net time-averaged occu-
pation number of electronic modes with wavevector k, (f(k))
as a function of k in the plane k, = 0 for the system depicted
in panel (a-c).

As an example, we consider Lissajous conversion at
frequencies w; = 27 THz wy = %wl. These parameters
result in At ~ 3ps. To compare, recall that At was
estimated to 30 ps in the same frequency range. Using
Eq. (37), we estimate the nonadiabatic heating rate to
be given by 1y, ~ 3.5 - 107%kJ/mm?>7, which we expect
can be smaller than 7g0ss when 7 > 10ps. In contrast,
recall that our estimated nonadiabatic heating rate at
incommensurate frequencies in the same frequency range
is given by 5-10~8kJ /mm37, and thus more than 10 times
larger.

In the limit of large p, ¢, we expect that our estimate
for At saturates at the expression we obtain for incom-
mensurate frequencies.

IV. NUMERICAL SIMULATIONS OF
FREQUENCY CONVERSION

We now support our theoretical predictions by data
from numerical simulations.

In our simulations, we consider the dynamics of elec-
trons near a single Weyl node in a Weyl semimetal with 2



bands. The electrons are subject to the linearized Bloch
Hamiltonian

H(k) = hvk-o+hk-V. (44)

We also introduce two electromagnetic modes that are
circularly-polarizedthat propagate in the yz- and zz-
planes, respectively. For ¢ = 1,2, mode i has angular
frequency w; and electric field amplitude &; inside the ma-
terial. It thus induces the time-dependent electric field
E;(t), where

E;(t) = & (coswit, 0, sinwyt), (45)
Es(t) = £(0, cos wat, sin wat). (46)

The irradiated electrons are governed by the time-
dependent Bloch Hamiltonian H (k,t) = H(k+eA(t)/h),
where A(t) denotes the driving-induced vector potential
and is defined through 9;A(t) = E;(t) + Ea(t) (see also
Sec. IT). As in the previous sections, we work in a gauge
where A (t) has vanishing time-average.

We numerically obtain the evolution of the
momentum-resolved density matrix of the system,
p(k,t) (see Sec. III for definition), using the mas-
ter equation in Eq. (24). We take the dissipator
D to be given by the Boltzmann form [Eq. (26)]:
D(k,t)op=—1[p— peq(k,t)]. Here peq(k,t) denotes the
instantaneous equilibrium state of electrons with crystal
momentum k at time ¢ at some given temperature T
and chemical potential p [see text below Eq. (26) for
explicit definition]. Since Eq. (24) describes evolution in
the 4-dimensional second-quantized Bloch space of the
system, its numerical solution is relatively inexpensive.

For each k, we numerically solve Eq. (24) to obtain the
steady-state evolution of p(k,t). From this steady state
we extract the quantity

P(k)ztlirgo% ds%El(s)-’I‘f[Vﬁ(k,s)ﬁ(k,s)]. (47)
0

P(k) gives the time-averaged total rate of energy trans-
fer to mode 1 from electrons with wavevector k. The
total time-averaged rate of energy transferred to mode 1
per unit volume of the whole system, 7, is obtained by
integrating P (k) over all wavevectors:

3
i= [P (43)

In our simulation, we evaluate the k-integral above by
sampling P(k) over a large number of uniformly dis-
tributed values of k [97].

We solve the master equation for p(k,t) through direct
integration, not making use of any of the approximations
of Sec. IITC. In particular, our simulation does not dis-
tinguish between coherent and incoherent dynamics, and
our obtained value for 77 thus includes both contributions
both from topological frequency conversion and dissipa-
tion. Hence our simulation can be used to test the con-
clusions in Sec. III.
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We probe different values of f; and 7, while keeping
all other parameters fixed at values fo = 1.23THz, v =
3.87-10°m/s, V = (0,0,3.1-10°m/s), u = 115meV,
T =20K, & = 09MV/m, and & = 1800kV/m. Our
chosen values of v and V have magnitudes comparable to
those in real materials [98, 99]. The values of ; and V are
chosen to maximize the imbalance between the number
of electrons acting as frequency converters at rates hfi fo
and —hf fa, as discussed in Sec. ITI B (see also Sec. IVB
below).

A. Identification of amplification regime

In Sec. III, we showed that the time-averaged rate
of energy transfer to mode 1 can be decomposed as
71 = 7o + 7ais- Here 7y can be positive due to topological
frequency conversion, while 7q;5 is negative and measures
the time-averaged rate of energy dissipated from mode 1
due to heating in the system. We expect |fjqis| to decrease
with increasing relaxation time 7, while 7y remains con-
stant. Thus, 77 should increase with 7. There should
also exist a critical value of 7 for which 7 = 0. When 7
is larger than this “amplification threshold”, the system
will amplify mode 1 (77 > 0). We expect the amplifica-
tion threshold to be significantly lower in the Lissajous
conversion regime (i.e., at rational frequency ratios) than
for irrational frequency ratios due to the suppression of
nonadiabatic heating in the former case (see Sec. IVC
and Sec. IV C below).

To identify the amplification threshold for the system,
we computed 77 as a function of 7 for three representative
choices of fi/fa2; namely, irrational f; = i f2, rational

= %fg, and nearly-rational f; = Siﬂfg, where ¢ is

given by the “golden mean”, 1(1++/5), and e = m/1000.
We keep all other parameters fixed at the values we
specified earlier. The two latter values of f; are chosen
to demonstrate the mechanism of Lissajous conversion:
Whereas f; = % fo is commensurate with fo, fi = 3%-5 fa
is not, and hence the former value of f; is expected to
yield more efficient—Lissajous—conversion.

In Fig. 1(c) we plot 7 as a function of 7 for the three
values of fi above. As we expect, 77 increases as a func-
tion of 7 for all choices of f;, and attains positive value
for sufficiently large 7. For the irrational frequency ra-
tio fi = fa/¢, the amplification threshold is reached
at 7 ~ 1000ps, for fi = 2f5/3 at 7 = 300ps and for
f1 =2f2/(3 + ¢€) above 7 = 1200 ps.

Note that the weak detuning of f; from 2f5/3 (green
curve) to 2f2/(3+ €) (orange curve) reduces 7 by more
than 100 kW /mm?, and pushes the amplification thresh-
old from 300 to 1200 ps. This demonstrates the strong
dependence of the net conversion rate on the commensu-
rability of f; and fs that we discussed in Sec. III D.



B. Origin of energy conversion

Next, we confirm that the amplification of mode 1 (i.e,
the positive values of 7 > 0) we observed is due to topo-
logical frequency conversion. To this end, we compute
P(k) as a function of k around the Weyl point.

We first review the signatures of topological frequency
conversion we expect to see. For k-points where H(k, 1)
changes adiabatically in time, electrons should act as
topological frequency converters (as in Ref. [52]) that
transfer energy to mode 1 at an average rate quantized
as t£hfifoW(k), where the W (k) denotes the integer-
valued net winding number of the surface By around k
[see Fig. 2(c)]. Here 4+ and — result from electrons in
band 1 and 2, respectively. We hence expect

P(k) = hfifaW (k)[p1(k) — p2(K)] + Pais(k),  (49)

where po(k) denotes the time-averaged occupancy of
band «, and Py;s(k) denotes the rate of energy loss from
mode 1 due to dissipation. We expect the latter is always
negative, but only significant around the Fermi surface
(due to momentum relaxation), and within the nonadia-
batic region (due to nonadiabatic heating).

In Fig. 4(a) we plot W(k) in the plane k, = 0, for
f1 = fa/p and with all other parameters specified be-
low Eq. (48). We also indicate the Fermi surface (dashed
line) and schematically indicate the nonadiabatic region
(shaded region), which surrounds the topological phase
boundary (solid line). Since g > 0, band 1 is fully oc-
cupied in equilibrium. We therefore expect py(k) =~ 1
[see Eq. (27)] for all k away from the nonadiabatic re-
gion (where Landau-Zener tunneling can induce holes).
We hence expect topological frequency conversion causes
P(k) to approximately take value hf; f2[1— p2(k)] within
the red region of Fig. 4(a), value —h f1 fo[1 — p2(k)] in the
blue region, and value 0 in the white region.

In Fig. 4(b), we plot P(k) in the plane k, = 0 in for
parameters f1 = fo/p and 7 = 51.6ps [100]. The data
shows clear signatures of topological frequency conver-
sion, in the form of two “topological plateaux” of the
Brillouin zone where P(k) takes positive and negative
values, respectively. These plateaus coincide closely with
the regions in Fig. 4(a) where W (k) = £1. P(k) approx-
imately takes value hf; fo within the red plateau (away
from the Weyl point), and value between 0 and —hfi fo
within the blue plateau (close to the Weyl point).

We expect P(k) differs from 4hf; f> in the topological
plateaux due to the finite value of ps(k) — p1 (k). To con-
firm this, we computed the time-averaged number of elec-
trons per k-point, (fu(k)) = limo0 + [ ds Tr[ap(k, s)],
where n = éJ{él + é;ég. Our expectation that p;(k) ~ 1
implies that 2 — (fni(k)) should be a good proxy for
[p2(k) — p1(k)] away from the nonadiabatic region. In
Fig. 4(d) we plot (A(k)). Taken in combination with
Figs. 4(ab), our data are thus consistent with P(k) tak-
ing value +hf1 fa[p2(k) — p1(k)] within the topological
plateaux.
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In addition to topological frequency conversion, the
data in Fig. 4(b) also shows clear signatures of the two
distinct mechanisms for dissipation that we identified
in Sec. IIIC, i.e., momentum relaxation and nonadia-
batic heating: P(k) takes large negative values within
the nonadiabatic region, as we expect from nonadiabatic
heating, and moderate negative values around the Fermi
surface, as we expect from momentum relaxation.

Note also that the data in Fig. 4(d) are in good
agreement with our prediction that in the regime 7 >
1/Q, the steady state band populations are effectively
“smeared” versions of their equilibrium counterparts [see
Eq. (27)]: The distribution in Fig. 4(d) clearly resembles
a “smeared” version of the ellipsoid-profile that occurs in
equilibrium [plotted in Fig. 4(c)].

Finally, the data in Figs. 4(cd) demonstrate how a
nonzero value of the “Weyl cone tilt” V is needed to
nonzero net rate of topological frequency conversion, 7,
as we discussed in Sec. IITB. The nonzero value of V,
which causes an ellipsoid-profile of (n(k)) in equilibrium
[Fig. 4(c)], results in a “smeared ellipsoid” profile of
(7(k)) in the steady state. As a result of this smeared el-
lipsoid profile, the region characterized by W (k) = 1 has
a larger volume in which [p2(k) — p1 (k)] > 0 ((2(k)) < 2)
than than the volume where W (k) = —1, allowing for a
nonzero value of 7.

C. Lissajous Conversion

We finally verify that the enhancement of 7 in the Lis-
sajous regime (i.e., at commensurate frequencies) is due
to the suppression of nonadiabatic heating. To this end,
we plot in Fig. 5 P(k) for the parameters 7 = 516 ps and
fi=2f2/3 (a) and f; = 2f2/(34¢€) (b). The two choices
of f, are very close, but whereas the former choice of f;
is commensurate with f5, the latter choice is not. The
negative values of P(k) within the nonadiabatic region
(which we attribute to nonadiabatic heating), are much
fainter in panel (a) than in panel (b). This is consistent
with our expectation that nonadiabatic heating is indeed
significantly suppressed for f; = % f2 compared to SLJFE fa.

We also compute the total dissipated power in
the system due to both driving modes, Pyis(k) =
—limy 00 [y BTV (K, 5)p(k, 5)] - (Bi(s) + Ea(s)), for
the same parameters as in panels (a) and (b). Pgis(k)
measures the time-averaged rate of work done on elec-
trons with wavevector k by the two driving modes in
combination; hence it measures the total rate of dissipa-
tion, and is guaranteed to be positive due to the second
law of thermodynamics. In Fig. 5(c) and (d) we plot
Pyis(k) for the parameter sets we considered in panels
(a) and (b), respectively. While outside the nonadia-
batic region, P(k) and Pyis(k) effectively take the same
values for the two frequency ratios, nonadiabatic heat-
ing is much weaker in panel (d) than in panel (¢). The
very different values of 77 at frequencies f; = % fo and

fi= ?%e f2 must therefore be due to this suppression of
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FIG. 5.  Evidence of Lissajous conversion. (a,b): plot of

P(k) in the plane k, = 0 for parameters 7 = 516ps, fi =
2f2/(3+¢€)(a), and fi = 2f2/3 (b). (c,d): total dissipation
rate Piot(k) for the same parameters as depicted in panels
(a) and (b),respectively. Note the different color scales used
in panels (a,b) and (c,d).

nonadiabatic heating in the commensurate case.

D. Nonanalytic amplitude dependence

We next explore the relationship between the topo-
logical frequency conversion rate, the amplitudes of the
incoming modes. Fixing E» = 2E;, Fig. 6(a) plots 7 as
a function of E; for the isolated Weyl node studied in
the previous subsections, with f; = %fg = 1.23 THz,

= 516.3ps, and g = 115meV. The error bars in
Fig. 6(a) indicate the estimated uncertainty due to the
finite number of k-points we sample [101]. The conver-
sion rate exhibits a clear cusp when E; &~ 1000kV/m;
by inspecting the k-dependent frequency conversion rate
as in Fig. 4, we verified that this is the amplitude where
topological frequency conversion sets in due to the sur-
face By crossing the Fermi surface. The cusp of 7 reveals
a non-monotonous and nonlinear dependence on driv-
ing amplitude, supporting our conclusion that topolog-
ical frequency conversion is an effectively nonperturba-
tive response phenomenon. The amplification threshold
is reached at amplitude Ey ~ 1300kV /m.

V. CONDITIONS FOR FREQUENCY
CONVERSION

There are several conditions that a Weyl material
must satisfy to realize topological frequency conversion.
The conditions can be grouped into the conditions that
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FIG. 6. (a) Net conversion rate as a function of the electric

field amplitude inside the material, E1, with E> fixed to E1/2
throughout, while f; = ng = 3.18 THz, 7 = 516.3, and, u =
115 meV (mode configurations and band structure parameters
are given in the main text). (b) Relative amplitude of mode
1 (blue), 2 (orange), and of all other modes (green) inside
the material, due to current-induced plasma oscillations in
the grain of Weyl semimetal; see Sec. VI A for details of the
computation.

an individual Weyl node must satisfy (Sec. VA), the
conditions on the global band structure and symmetry
class of the system (Sec. V B), conditions on the driving
(Sec. VC), and conditions on relaxation (Sec. VD).

A. Conditions on individual Weyl nodes

The rate of topological frequency conversion from Weyl
node i is given by the ith term in the sum over Weyl nodes
in Eq. (29) i = qhfifs f(Qﬂ-)B /)2 - ﬁl(k)}W(k -
k;). Thus, Weyl point i can only contrlbute to frequency
conversion if

p1(k; + 0k) # pa(k; + k)

Therefore only the Weyl nodes sufficiently near the Fermi
energy can contribute to topological frequency conver-
sion. If a Weyl node is too far from the Fermi energy,
the two touching bands are either both full or empty
within a distance ~ eA/h from the Weyl node, implying
P1 (kz + 5k) ~ ﬁz(kz + (5k) for 0k; within Bp.

For the most natural case where each of the two modes
contains only a single harmonic, W (k) = —W(-k), as is
also evident in Figs. 2(c) and 4(a). For Weyl point i to
contribute to frequency conversion, p1 (k) or pa(k) must
hence break inversion symmetry around k;. Specifically

Pa (ki + (51() 7& ﬁa(ki - 5k) (51)

This constitutes our second condition. This symmetry
breaking can be achieved with a nonzero value of the
Weyl cone tilt, V [see Eq. (1)], as we demonstrated in
our numerical simulations (Sec. IV).

for 6k within By.  (50)

for 0k within By.

B. Condition on symmetry class

We now identify the symmetries a Weyl semimetal
must break to support topological frequency conversion.



The two symmetries that are central to the Weyl
semimetals are the inversion and the time-reversal sym-
metry [12]; at least one of these symmetries must be bro-
ken for the Weyl nodes to exist. Both inversion and time-
reversal symmetry results in inversion-symmetric energy
bands, e, (k) = €4(—k) (with « denoting the band index
after indexing them according to their energy). Thus, for
both symmetries, a Weyl point at wavevector k implies
the existence of a Weyl point at wavevector —k. The con-
jugate Weyl nodes at k and —k have equal charges for
time-reversal symmetric Weyl semimetals, and opposite
charges for inversion-symmetric Weyl semimetals [12].
We expect the steady-state to approximately inherit the
same inversion symmetry, such that g, (k) = po(—k). For
the most natural case where modes 1 and 2 each contain
a single harmonic, W (k) = —W(—k). Hence the contri-
butions to 7 from symmetry-conjugate nodes cancel out
for Weyl semimetals with time-reversal symmetry, but
not for Weyl semimetals with inversion symmetry.

We conclude that broken time-reversal symmetry is
required for topological frequency conversion, while in-
version symmetry does not need to be broken. Other
crystal symmetries, such as reflection and discrete rota-
tion symmetry, do also not preclude frequency conver-
sion, since the incoming modes (and hence W (k)) can
be configured in a way that breaks these symmetries.
Hence magnetic Weyl semimetals, such as CogSnsS or
CoaMnGa [77, 79], intrinsically support topological fre-
quency conversion, while non-magnetic Weyl semimet-
als (such as TaAs) require an externally-provided time-
reversal symmetry breaking. This external symmetry
breaking is already achieved with the circularly-polarized
driving; a higher degree of asymmetry can further be
achieved with e.g. a current bias or externally applied
magnetic field.

C. Condition on driving

Next, we identify the conditions that the driving ampli-
tudes and frequencies must satisfy to support frequency
conversion for a given Weyl semimetal.

Sec. ITI C 2 concluded that the dynamics of electrons is
non-adiabatic within a distance dy from the boundary By,

where dy ~ ,/g—f;, and vg is the smallest singular value

of the matrix R in Eq. (1) [see Eq. (36)]. For a nonzero
number electrons to act as frequency converters, dy must
hence be smaller than the linear dimension of By, which
we estimate to be of order eA/h. These considerations
imply that
2
L (52)
€Yo
is required for frequency conversion.

Hence, “steep” Weyl points (i.e., Weyl points with
large vg) are most useful for frequency conversion, as
they support topological frequency conversion at lower
intensities.
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Weyl points in known compounds support topologi-
cal frequency conversion at experimentally accessible pa-
rameters: for example, TaAs has Weyl points for which
vo ~ 10°m/s [98, 99] At frequency 2 ~ 27 THz, we
hence expect these Weyl points can support topologi-
cal frequency conversion at moderate intensities of order
100 W/mm? and above.

Finally, we require that the bandwidth of the bands
containing the Weyl node be larger than the driving fre-
quency; otherwise, driving cannot be considered adia-
batic anywhere in the system. This puts an upper limit
for the frequencies that could achieve frequency conver-
sion in a given Weyl semimetal. As an example, for TaAs
the characteristic band gap between Weyl points is of or-
der 20 meV [98], corresponding to a maximum frequency
limit of ~ 5 THz.

D. Condition on relaxation

A final condition for amplification, is that the rate
of topological energy conversion, 7y, must overcome the
(negative) rate of dissipation, 774;s. Our analysis and nu-
merical simulations identified two sources of dissipation:
momentum relaxation (7)) and nonadiabatic heating
(Tma): Mdis = Mmr + Tna. Amplification of mode 1 thus
requires

77]0 + Thmr + Tha > 07 (53)

In Sec. ITI C 2 we concluded that the gross rate of topo-
logical frequency conversion, ngross (i-€., the rate that re-
sults when not taking into account cancellation between
electrons that convert energy in opposite directions), can
only exceed 7y, if 7 2 1/9Q. Since the net rate of topo-
logical frequency conversion, 7y, is just a small fraction
of Ngross, and since energy is also lost to momentum re-
laxation, we hence expect net amplification (7 > 0) can
only be achieved when

TL1/Q (54)

The phenomenological discussion in Sec. II1 C 2 shows
that nna oc (1 — e TA%) where At denotes the charac-
teristic time between instances where a given wavevec-
tor k is taken to the Weyl point by the applied drive
(k — k + eA(t)/h). Here At is significantly smaller
for Lissajous conversion (highly rational frequency ra-
tios) than for incommensurate frequency ratios. Thus,
the threshold for net amplification is significantly lower
at commensurate frequencies. Indeed, in our simulations,
a small adjustment of f1 from 2f5/(3 + €) to 2f2/3 low-
ered the amplification threshold from above 1200 ps to
~ 300 ps.

Our quoted values in Sec. III provide an example of
how to estimate the break-even relaxation rate. For in-
tensity E ~ 1600kV/m and ©Q ~ 27 THz, we estimated
Ngross ~ 900 kW/mm3. The net rate 7y will be only a
fraction of this value. For the same parameters, and with



isotropic band gap matrix R of order 5-10% m/s and Fermi

surface area 0.06 A72, we found 7y, ~ 5-1078 kJ/mm37,
and Npa ~ 51078 kJ/mm37 (for incommensurate fre-
quencies) or 3.5-107?kJ /mm37 (for Lissajous conversion
at frequency ratio 2/3). Hence, we expect topological
frequency conversion can exceed the rate of dissipation
when 7 are several times larger than 100ps. We more-
over expect the threshold to be significantly lower for Lis-
sajous conversion (i.e. commensurate frequencies), than
for incommensurate frequencies. This is in good agree-
ment with our data in Fig. 1(b) which indicate that 7
must exceed 300 ps in order to achieve net frequency con-
version in the Lissajous regime for the parameters above,
and 1000ps for incommensurate frequencies.

The different scaling behaviors of dissipation and topo-
logical frequency conversion point toward the parameter
regimes beneficial for amplification.

First, note that (at a fixed area of the Fermi surface),
Nmr scales linearly with electric field E, while n,, and
Tgross Scales as E3 (specifically, npa ~ I 3 in the Lissajous
regime) [see Egs. (34),(37), and (30)]. Thus, we expect
that the relative contribution of 7,,, decreases at high
intensity, while the ratio of 1y, and 7gross remains fixed,
implying that frequency conversion becomes more effi-
cient at higher intensities.

Second, for a given intensity, the topological frequency
conversion rate scales as 1/, while 7,, scales as 1/Q3
(for incommensurate frequencies) or 1/92 (for commen-
surate frequencies). Similarly, momentum relaxation
scales as 1/Q2. Thus, we expect amplification is most
easily reached at the top of the frequency range that sup-
ports topological frequency conversion, given the driving
intensity and band structure of the system.

The requirements on the relaxation rate pose the
biggest current challenge to realizing topological fre-
quency conversion. Relaxation times in known Weyl
semimetals have been reported to be in the range 0.25 —
3ps [62-64, 67], although transient signatures with life-
times above 100 [67, 68] and 1000 [69] ps have also been
reported in some compounds. Thus further improve-
ments in the quality of materials are needed to fulfill the
requirements of topological frequency conversation in the
practically interesting THz range.

VI. THINKING OUTSIDE THE GRAIN:
GLOBAL ELECTRODYNAMICS
CONSIDERATIONS AND IMPLEMENTATION
USING PHASE ARRAYS

The full understanding of the frequency conversion ef-
fect requires thinking about the global electromagnetic
field, and the material response of the Weyl grains to an
external drive. Specifically, in this section we incorpo-
rate the dielectric response to our analysis, and propose
a phase-array geometry of the Weyl grains as a prototype
for a Weyl topological amplifier.
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A. Renormalization of electric field by plasma
oscillations

Let us begin with considering the macroscopic response
of a single grain to external driving. For i = 1,2, we
let E;(r,t) denote the (plane-wave) electric field from
mode i as a function of position r and time t and let
Eo(r,t) = Ei(r,t) + Eo(r,t) denote the net “incoming”
field resulting from the driving. The current and charge
oscillations in the grain induced by the external driv-
ing creates an additional electric field, Ei,q(r,t). The
total electric field inside the sample is thus given by
E(r,t) = Eo(r, t) + Eina(r, t); this is the field driving the
response of the material, and is the one we considered
in the calculation in the previous sections. Evidently,
the internal field in the sample gets renormalized by the
charge and current in the material.

Our first order of business is to find the internal field
E(r,t) (which we used in our analysis above) in terms of
the external fields. We can find E(r,¢) self-consistently
by solving Maxwell’s equations, taking account the cur-
rent and charge dynamics in the grain induced by E(r, ).
While an exact (geometry-dependent) analysis is in prin-
ciple possible, the small size of the grain allows us to
make some simplifications, such as ignoring the skin ef-
fect. Thus, inside the grain Ei,q(r,t) is approximately
given by the electrostatic field resulting from the instan-
taneous charge configuration in the system. These in
turn arises from the driving-induced oscillations of the
grain’s bulk plasmonic mode [102].

For a small spherical grain, we can assume Eg(r,t)
uniform within the grain, and moreover ignore retarda-
tion effects of the electromagnetic field (this is equiv-
alent to neglecting the skin effect). Inside the grain,
Einq(r,t) is thus given by the electrostatic field arising
from the instantaneous charge distribution at time t.
The charge distribution is nontrivial due to the oscillat-
ing currents, which produce surface charges. Specifically,
8tp(ra t) =V j(rvt)a lmplylng p(raw) = év : j(I‘,LU).
We now show that the equations of motion above have a
solution in which the current density and Einq(r,t) are
also uniform within the sample. To show this, note that
a uniform current density in the grain, j(r,t) = j(¢), im-
plies that the charge accumulates on the surface. The
surface charge density at the angle specified by unit vec-
tor  on the sphere, is given by OA(F,t) = j(t) - T.
Hence A(f,t) =1 Ao(t), with Ag(¢) denoting the unique
zero-mean solution to d;Ag(t) = j(¢). Inside the sphere,
the electrostatic field from a surface charge distribution
A(f) = £ Ag is uniform and given by Ei,q(t) = 2o(t)

Hence, the electric field is uniform within the sampleggﬁd
given by E(t) = Eo(t) + %(:) Thus, a uniform current
density j(t) and E(t) solves the dynamics of the grain.

Transforming to frequency domain, and using that
J(w) = —iwAp(w), we finally arrive at

B(w) = Bofw) - 2. (55)




This gives the frequency-dependent renormalization of
the electric field inside the grain, and is an exact solu-
tion in the limit where the grain size is smaller than the
wavelength of the driving modes.

In linear response theory, the time-derivative of the
current response is assumed proportional to the elec-
tric field, implying j(w) ~ —ikE(w)/w for some con-
stant k. The resulting solution leads to a frequency de-
pendent relative permittivity, E(w) =~ e(w)Eq(w) with
€w) = (I —w/w?)™! with w, = /0/3¢y denonting
the plasma frequency of the system. The plasma fre-
quency omega, is estimated for generic Weyl semimet-
als, in Ref. [103]: it is typically given by an O(1) constant
times the Fermi energy.

The linear response analysis above is useful for eluci-
dating the qualitative features of the plasmonic response.
However, the regime we consider potentially supports a
significant nonlinear response due to the nonquadratic
dispersion and large Berry curvature surrounding Weyl
nodes — indeed, topological frequency conversion is a non-
linear response phenomenon. We thus go beyond the lin-
ear response regime in our analysis below: for a given
internal field configuration, E(t), the current response
j(t) can be easily computed in the limit of weak relax-
ation and adiabatic driving without any linear response
approximation, using Eq. (21), j(¢t) = jo(¢t) + 6j(¢) with
Jo(t) given in Eq. (23) and the dissipative component
dj(t) is negligble in the limit we consider [104].

The driving frequency controls whether the plasma os-
cillations amplify or screen the electric field from the in-
coming radiation. This qualitative behavior is evident
in the linear response result we quoted above, but also
endures after taking into account the nonlinear response.
To see this, consider what external electric field Eq(w)
is needed to cause a given internal field E(w) [which de-
termines the current response j(w)]. As in the linear re-
sponse regime, j(w) is controlled by vector potential, and
thus scales with E(w)/w [see Eq. (23)]. The plasmon-
induced electric field hence is negligible in the limit of
large w (but grain size still smaller than the wavelength),
meaning the grain is effectively transparent to the radi-
ation: E(w) ~ Eg(w). Conversely, for small w, j(w)/weg
will be considerably larger than E(w), implying that Eg
in turn has to be much larger in E(w) for Eq. (55) to
hold. Thus, for small frequencies, the plasma oscilla-
tions severely screens the electric field inside the sample
relative to the external field. At some intermediate fre-
quency, E(w) =~ —ge(:uz, and a very weak external field
thus causes a large internal field. In this case, driving res-
onates with the plasma oscillations, causing significantly
enhanced amplitude of the electric field. As we will see,
this mechanism allows for significant enhancement of the
topological frequency conversion rate.

B. Radiation output of grain

Next, we want to compute E(r,t) outside the grain,
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to determine the profile of the emitted radiation. Here,
the grain’s small size means that E;,q(r,t) to a good
approximation takes the form of dipole radiation gener-
ated by some nontrivial trajectory of the dipole moment.
Using that the surface charge distribution we obtained

above, we find the dipole moment to simply be given by
p(w) = 47“2'7"3'@.

The energy converted to mode 1 leaves the grain as ra-
diation energy at frequency wi. The bulk of the emitted
radiation energy comes from constructive interference be-
tween the incoming plane wave Eq(r,w;) and the emitted
dipole radiation Ei,q(r,w;) (i.e., the wy-Fourier compo-
nents of Einq(r,t) and Eq(r,t), respectively).

To compute the frequency-resolved radiation energy
emanating from the grain, we consider the total en-
ergy flux density, given by the Poynting vector field,
S(r,t) = ﬁE(r,t) x B(r,t). By using the Fourier
decomposition E(r,t) = [dwE(r,w)e” ™" along with
E(r,w) = E*(r,—w) [and likewise for B(r,t)], we find
that the time-averaged energy flux density, S(r), is thus
given by

S(r) = /% /dw Re [E(r,w) x B*(r,w)] (56)
0

We identify S(r,w) = M—loRe [E(r,w) x B*(r,w)] as the
energy flux density from modes with frequency w. The
total radiation power from the grain at frequency w is
given by

P(w) = deA - S(r,w) (57)

where C is some surface containing the grain.

To compute P(w), we use the divergence theorem
to find P(w) = %fc dV Re[V - (E(w) x B*(w)], with
fc dV denoting the integral over the volume contained
in C. Next, we apply the cross product identity V -
(E x B*) = —E - (V x B*). Using Ampere’s law
V x B(r,w) = —ipgeowE(r,w) — poj(r,w), where j(r,w)
is the Fourier transform of the current density, yields
P(w) = % [dV Re [iweo|E?(w)| + E(w) - j*(w)]. The first
term in the parenthesis evidently is fully imaginary, and
thus gives a vanishing contribution to the integral. This
leave us with P(w) = 2 [ dVRe [E(r,w) - j*(r,w)]. Since
E(r,w) and j(r,w) are uniform within the grain, we find

P(w) = 2VRe [B(w) - §* @), (58)

which is exactly the quantity we calculated in Sec. III. In-
terestingly, the plasma-induced electric field does not di-
rectly contribute to the power output, since it is propor-
tional to —ij(w); rather it indirectly modifies the power
output through its effect on the current response. We
thus arrive at

Pwy) =7V. (59)

with 77 denoting the frequency conversion rate within the
grain. This gives the output intensity of the dipole radi-
ation emitted with frequency w;.



C. Implementation using a phase array

In order to produce an amplifier out of the frequency-
conversion effect, we must consider combining many
grains together to create a phase array. While we do
not intend to analyze such a device in detail in this
manuscript, we will here outline its design. The phase-
array geometry we envision has Weyl grains arranged in
a 3d cubic-lattice, with one axis along the propagation
direction of an external plane wave with circularly po-
larization (mode 1), which we intend to amplify. In the
direction of the propogation of mode 1 the structure will
have a lattice constant of a quarter wavelength, such that
the backscattering element of the amplified mode 1 is be
eliminated by destructive interference.

The array will also be subject to a normal-incident ra-
diation from mode 2, which is the amplification source
beam to be converted. In order to maximize the ampli-
fication effect, we anticipate that in-phase arrangement
of all layers with respect to mode 2 would be beneficial,
hence the lattice constant along the mode 2 direction
should be mode-2 wavelength, Ao (see Fig. 7).

Indeed, obtaining amplifiers from single gain elements
is a common practice. Josephson traveling wave ampli-
fiers (JTWA; see, e.g., Ref. 105) , for instance, are essen-
tially a chain of individual Josephson parametric ampli-
fiers. Other traveling wave optical amplifiers rely on non-
linear crystals such as LiNb or f—BaB20O4 (BBO). It is
only in the macroscopic constructs of parametric JTWA,
and non-linear crystals which mix light modes, that is-
sues related to phase-matching arise. Similarly, a single
Weyl grain in a topological-frequency-conversion regime
requires no mode-matching beyond the need to have a
rational frequency ratio to be in the Lissajous regime.
In fact, the grains are expected to be smaller than the
wavelengths involved. It is only when these grains are
combined into an array that we need to consider how the
wavelengths of the amplified radiation correspond to the
spatial structure of the amplifier.

D. Numerical simulations of plasmon-enhanced
amplification

We now demonstrate that topological frequency con-
version remains possible even after including screening
effect of plasma oscillations. Furthermore, we show that
tuning frequencies near the plasma resonance dramati-
cally enhances the frequency conversion effect.

We consider an inversion-symmetric Weyl semimetal
whose Fermi surface consists of two Weyl nodes that
are related by inversion symmetry. The Hamiltonian of
one Weyl node is given by H(k) = hwk - o + hk - V
with v = 3.87 - 10°m/s and V = (0,0,3.1 - 10° m/s)
(i.e., the same dispersion as considered in Sec. IV); the
Hamiltonian of the other Weyl node is given by H(—k).
We consider the case where the electric field inside the
grain, E(t), is fixed and given by two circularly polarized
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FIG. 7. Phase-array proposal for combining the gain from
Weyl grains into a topological amplifier. The spacing of the
grains in the direction of propagation should match a quarter
of the wavelength of the amplified wave. This will suppress
reflection, and will concentrate the contribution of each grain
into a single forward-propagating beam. The pump beam is
expected to be normal to the source beam, and the spacing
along its direction should be its wavelength.

modes as in Sec. IV [see Egs. (45)-(46)] with amplitudes
&1 = 100kV/m and & = 50kV/m; we allow the incom-
ing radiation field Eg(w) to vary.

We first compute the external electric field Eq(¢) which
causes the internal electric field to be given by E(t)
as specified above. We compute Eq(w) as described in
Sec. VIA. Le, we use E(w) = Eg(w) — ij(w)/3eow, along

with j(t) ~ —e [2X 3 pa(K)Ea(k,t), where fo(k, )
denotes the time-averaged value of the equilibrium state
occupation of band a, (1 + exp[—(eq(k + €A(t))) —
w)/kpT])~t, with £, (k) denoting the ath band of H (k).
We use temperature T' = 20 K in our simulation and con-
sider different values of pu.

In Fig. 6(b) we plot the resulting relative in-
crease of mode 1 inside the material, G = |E(w;) -
E}(w1)|/|Eo(w1)?, as a function of chemical potential, z
(blue). We also plot the corresponding relative increase
of mode 2 (orange), as well as the net relative gain of all
remaining modes (induced by the nonlinear oscillations
of the plasmons), G = ([ dw|dEq(w)|?)'/2, with §Eq(w)
denoting the component of external field Eq(w) which is
orthogonal to the internal field E(w) (for w ¢ {w1,ws},
0E(w) = Eg(w)). The data in Fig. 6(b) shows that the
plasma oscillations do not affect the modes when the
chemical potential is smaller than 2.5meV. Moreover,
for u < 5meV, G3 < 1, implying that the external radi-
ation field does not need lead to appreciable amplitude
of any higher-harmonic or orthogonal modes to provide
the bichromatic electric field inside the grain which we
require. In other words, the plasma oscillations do not
significantly excite any modes other than the pump and
signal mode when g < 5meV. For values of pu above
5meV, the internal electric field gets severely suppressed
by the plasmon screening, while the plasma oscillations



begin to significantly excite modes other than the pump
and signal modes. Here, the frequency conversion rate is
significantly reduced. Furthermore, a more careful anal-
ysis is needed in this regime to account for the higher
harmonics of E(¢) induced by the nonlinear plasma oscil-
lations.

In the range 2meV < p < 4meV, the internal field is
significantly enhanced by the plasma oscillations, with-
out nonlinear corrections playing a role. This plasma res-
onance dramatically enhances topological frequency con-
version:  we first compute the frequency conversion rate
for the same parameters considered for Fig. 6(b), using
the approach of Sec. IV. From our obtained frequency
conversion rate, 77, we compute the gain coefficient of the
material, g = 7j/I; with I} = cgo|Eg(w1)|? denoting the
intensity of mode 1 outside the material; we use the data
from Fig. 6(b) to compute Eg(w;) (recall we consider
a fixed value of the internal field, E(w;), but allow Eg
to vary). The gain coefficient has dimension of inverse
length, and gives the characteristic rate at which mode 1
gets amplified inside the material. In Fig. 1(b), we plot
the gain coefficient as a function of chemical potential, us-
ing 7 = 200 ps (blue), 400 ps (orange) and 600 ps (green).
When the plasmon resonance is reached at p ~ 4meV,
the gain coefficient increases dramatically, reaching val-
ues of order 100 cm ™!, exceeding, e.g., the THz gain co-
efficients of 20-50 cm ™! reported in Refs. [57, 58].

VII. DISCUSSION

In this manuscript, we showed that Weyl semimetals
can efficiently convert energy between two driving modes,
through the mechanism of topological frequency conver-
sion [52]. This effect makes Weyl semimetals promising
media for THz and possibly even infrared amplification.
Our analysis shows that Weyl semimetal with feasible
band dispersions support topological frequency conver-
sion in the “THz gap” at experimentally accessible inten-
sities of order ~ 50 W/mm?, or even less (~ 1 W/mm?)
if one drives near the plasma frequency. Topological fre-
quency conversion is supported both for incommensurate
frequencies and commensurate frequencies, but is most
efficient in the latter case, due to the mechanism of Lis-
sajous conversion. Our numerics and estimates focused
on topological frequency conversion in the THz regime,
where there is the biggest need for new photonic control
elements, but the effect may also be supported at other
frequency ranges.

The primary obstacle to Weyl semimetals operating as
topological frequency converters is drive-induced heating.
Heating both wastes energy from the beams we would like
to amplify, and may even damage the material. Phonons,
interactions and impurities all lead to electron relaxation
processes which cause this heating.

Through phenomenological arguments and numerical
simulations, we identified two important mechanisms
for dissipation: momentum relaxation and nonadiabatic
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heating. Momentum relaxation occurs when electrons
near the Fermi surface relax their energy by changing
their momentum, and which is common to all irradiated
materials. Nonadiabatic heating emerges when electrons
undergo Landau-Zener transitions between the valence
and the conduction band. This mechanism is particularly
relevant in topological semimetals, due to the existence
of gap-closing points in these materials. Even so, non-
adiabatic heating is strongly suppressed in the Lissajous
regime, which makes it much preferred for amplification.

In our simulations and phenomenological discussion,
relaxation was parameterized through a single relaxation
time, 7. In particular, we took electron-hole recombi-
nation, and intra-band momentum relaxation (which is
supported by phonons) to have the same characteristic
rates. Needless to say this treatment could be made
more realistic by considering separate relaxation rates for
these processes, as suggested by experiments [64, 67, 68].
Nonetheless, we believe our simple dynamical model cap-
tures the conditions for amplification.

To achieve amplification, where energy gain due to
topological frequency conversion exceeds the loss due to
dissipation, the characteristic relaxation time 7 must be
sufficiently long. To limit non-adiabatic heating as well
as momentum relaxation we need 7f > 1. This con-
dition was clearly evident in our simulations: even for
optimal parameters, and in the Lissajous regime, break-
even was only reached when 1/7 2 300f,(for incommen-
surate frequencies, amplification required 7f > 1000).
So far, 7’s were reported in the range 0.25 — 5ps [62—64]
in pump-probe experiments. This suggests net amplifi-
cation of continuous-wave THz frequencies is currently
beyond reach. That said, transient experimental signa-
tures with 7 > 100 ps have been seen in Weyl semimet-
als [67, 68], emphasizing that a more discriminating anal-
ysis may reveal a broader amplification regime.

Notwithstanding, signatures of topological frequency
conversion effect could be observed even if the re-
laxation time is too short to allow for amplification.
That is because the direction of energy conversion of a
Weyl semimetal driven bichromatically by two circularly-
polarized modes is determined by the product of the two
mode’s polarizations. Hence a reversal of the circular po-
larization of either mode should will lead to an increase in
the output intensity of one mode, and a decrease for the
other mode. This topological effect could be accessed ex-
perimentally. Another group recently proposed to utilize
this chirality-sensitive intensity shift to extract enantios-
elective information from a gas of chiral molecules [106].

Furthermore, we can suggest several strategies to ap-
proach the amplification regime. Commensurate fre-
quency conversion, i.e. Lissajous conversion, already
provides a dramatic improvement by suppressing non-
adiabatic effects by an order of magnitude. Momentum
relaxation is harder to control. Note, however, that mo-
mentum relaxation energy loss scales linearly with radia-
tion intensity, I. In contrast, topological energy conver-
sion (and nonadiabatic heating) scale as I*/2. Therefore



the relative significance of momentum relaxation should
decrease at larger intensities. Moreover, at a given in-
tensity, topological frequency conversion scales inversely
with the driving frequency, f, while dissipative energy
absorption decreases as f~2 (specifically, mna ~ f2
in the Lissajous conversion regime). The amplification
threshold of 7 f will therefore be lower at higher frequen-
cies.

If an issue, driving-induced heating can possibly be cir-
cumvented by using pulsed lasers instead of continuous
wave beams: by allowing the system to dissipate heat
between pulses, such a scheme would allow us to reach
the high-intensity regime without causing material dam-
age; while a detailed investigation would be an interest-
ing topic for future studies, we expect pulses with dura-
tions more than a few periods, or randomly-timed pulses,
will yield conversion rates consistent with topological fre-
quency conversion at continuous-wave operation. This
way the large-amplitude regime required for frequency
conversion could be realized while allowing time for the
system to dissipate absorbed heat between pulses even if
relaxation times are short. In addition to these consider-
ations, materials with a steeper velocity makes realizing
the large frequency regime easier, as the velocity at the
Weyl point is the “coupling constant” that converts the
electric-field amplitude into an energy scale.

Weyl nodes need to be located near the Fermi surface
to support topological frequency conversion, and more-
over need to be surrounded by an asymmetric electron
distribution, in order to ensure an imbalance in the num-
bers of electrons that convert energy at opposite rates.
Optimal imbalance can be reached in the presence of
a “Weyl cone tilt”, and through appropriate tuning of
the chemical potential. Additionally, our analysis indi-
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cates that time-reversal symmetry needs to be broken to
acheive frequency conversion. Hence, we expect magnetic
Weyl semimetals, such as CozSnyS or CooMnGa [77, 79]
are best-suited for topological frequency conversion.

Topological frequency conversion could also be
achieved in non-magnetic Weyl semimetals, or even be
enhanced in magnetic Weyl semimetals, by “priming”
the particle distribution into an out-of-equilibrium state.
Such priming could e.g. be achived by driving the system
with ultrashort laser pulses or with a DC current, and
would create a transient state more suited for frequency
conversion than the steady states we have considered in
this work. Similarly, purification of the material, along-
side bath or substrate engineering are other potentially
important directions for realizing amplification by sup-
pressing dissipation. Indeed, these research directions
are also important for the general nonlinear response of
Weyl semimetals (e.g., chiral photogalvanic effect) [20].
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Appendix A: Derivation of Eq. (11)

In this Appendix, we derive the expression for the time-
averaged energy conversion rate from a single electron in
band «, P,(k), that we quote in Eq. (11) in the main
text.

To recapitulate,
[Eq. (11)] reads

the equation we aim to derive

2 27
pa(k) = flfgﬁ/o d¢1d¢2 (8¢1ax8¢2a)-ﬂa(k+ea/h).

(A1)
where we suppressed the (¢1, ¢2)-dependence of the in-
tegrand. The quantities above are defined in the main
text. For brevity, we will use the shorthand notation
¢ = (é1,¢2) and 2, (k, ¢) = Qu(k+ea/h) in the follow-
ing.

We derive Eq. (A1) starting from Eq.(10) in the main
text:

Pal) = — / Poer(d) valid).  (A2)

= 4n?

24

Here €;(¢) denotes the electric field of mode i as a func-
tion of ¢ [107], while v, (k;¢) denotes the wavepacket
velocity in band « as a function of ¢, and is given by

Valki0) = 1 Vealk,0) — Te(0) x Rk d) (A3

with €(¢) = €1(8) + €2(9), ea(k, ) = ea(k + ea()/R)
and e, (k) denoting the energy of band «.

First, we consider the contribution to P, (k) from the
group velocity component of v :

—e
472h

2m
Pas(k) = i | #oa()-Veallk) (A1)
0
Using €;(¢) = w;0y, a(¢) along with the chain rule, one
can verify that

—e€1(¢) - Vea(k, ¢) = w104, ea(k, ¢). (A5)

Since eq(k,¢) is 2m-periodic in ¢;, we conclude
Pu.gv(k) = 0, implying that

2 27

P10 = 25 [ Poei(o) - [el0) x 2l )] (40

To evaluate Eq. (A6), we use that €(¢) = €1(¢)+€2(o),
along with a- (b x ¢) = ¢ (a X b), we obtain

2 2

d*¢le1(9) x e2(0)] - Qa(k,¢)- (AT)

- —e

P,(k)= —
(k) 4m2h [,
Using €; = w;04, ¢ and w; = 27 f;, we identify
€1 ((Z)) X 62(¢) = w1w28¢1a X 8¢2a. (AS)

Inserting this in the above establishes Eq. (A1).

Appendix B: Solution of master equation

Here solve the master equation in Eq. (24), and use the
solution to obtain the expression for the current density
in Eq. (21).

The Appendix is structured as follows: We provide a
summary of the results in Sec. B1. In Sec. B2 we de-
rive the steady state solution to the master equation. We
demonstrate our solution for the Boltzmann-form dissi-
pator in Sec. B3. Using our steady state solution, in
Sec. B4 we obtain the current density, while Sec. B5
contains derivations of auxiliary results which enter in
our calculation.

1. Summary of solution

Our goal is to obtain the steady-state of the master
equation

0uplle.1) = ~T[A(K, 1), (I, )] + DOk, 1) 0 ok 1), (B1)



Here p(k,t) and H(k,t) denote the momentum-resolved
density matrix and Hamiltonian in the second-quantized
Bloch space of the system, Ho, while D(k,t) is
Lindblad-form superoperator. H (k,t) is given by
> (i H (K, t)\j)éTéj, where H(k,t) denotes the ordinary
(first-quantized) Bloch Hamiltonian of the system, and &
annihilates a fermion in orbital «; see Sec. I1I for further
details of the notation.

We solve Eq. (B1) in the limit where dynamics are
adiabatic, and the characteristic relaxation rate I' =
ID(k,t)|| is slower than the characteristic angular driv-
ing frequency, €2. This limit is summarized through the
following conditions:

I<Q, ©m<dekt), hoHk,t)<d(k,t),
(B2)
where de(k,t) denotes the (smallest) spectral gap of
H(k,t). The second and third inequality are indepen-
dent conditions that are both needed to ensure adiabatic
dynamics.
To quantify the extent to which the system satisfies
the conditions in Eq. (B2), we use the dimensionless pa-

rameter

I wQ  hoH(k,t)
Alk) = max (Q de(k, 1)’ oe2(k, 1) (B3)
The system satisfies the conditions in Eq. (B2) for

wavevectors k where A(k) < 1. In Sec. B2, we derive
the steady-state solution of Eq. (B1) up to a correction
of order \?(k).

From our steady-state solution we obtain the current
density using

i(t) = —e/dngr[vﬁ(k Hpk,t).  (B4)
J - h (27'(')3 ) p 9 .

The relevant property of the steady state in this com-
putation are the band occupancies of the instantaneous
Hamiltonian:

pa(k,t) = Tr[p(k, )P (k, t)dha (k, 1),

where ¢4 (k, t) = > (i|Ya(k, t))¢;, denotes the ath eigen-
mode of H(k,t), with |1, (k,t)) denoting the ath eigen-
state of H(k,¢) with associated energy e,(k,t). In
Sec. B4, we show that the integrand in Eq. (B4) can
be expressed in terms of p, as follows:

(B5)

LIV, 0500, 0] = 3 pall, DFa (k. )40 (X2(k)or)
(B6)
where 1, (k,t) = Vea (k, t) — £ E(t) x Qq/(k, t) denotes the
group velocity in band «, and and vg denotes the char-
acteristic magnitude of |VH(k,t)||/k. This constitutes
the main result of this appendix.
We provide a prescription for computing p,(k,?) in
Sec. B2d, and demonstrate the computation for the case
of a Boltzmann-type dissipator in Sec. B 3.
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a. Decomposition of current density

We now show how Eq. (B6) allows us to decompose
the current density as

3(t) = Jo(t) + 0j(t), (B7)
where
3
o) == [ ‘jﬁkgzpa Jialk,t),  (BS)

with po (k) denoting the time-average of p,(k,t), and
dj(t) denotes a dissipative component of the current den-
sity, which we define below, and which is small in the
limit A(k) < 1. This result was quoted in Eq. (21) of the
main text.

As our first step, we find that p,(k,t) is nearly sta-
tionary in the limit I' < Q:

pa(k,t) = pa(k) + O(T/Q) + O\ (k). (B9)

This result is established in Sec. B5a. Note that I'/Q <
A(k), such that vme(k,t) < Ak)vp. However, we ex-
pressed this O(\) correction as above to make it explic-
itly clear that it is controlled by I'/€.
Next, we use that the two components of the group
velocity satisfy
1
SVea(k,t) S vr, %|E(t) x Qa(k, )] < A(K)vp. (B10)
These results are established in Sec. B5b.
The above two results motivate us to decompose

Eq. (B6) as

%Tr[VH(k, )50k, )] = VoK, £) + Ve (K, £) + Vaa (K, £).

(B11)
where
vo(k,t) EZ k)i, (k,t) (B12)
Vinr (K, 1) = %Z (P (k, 1) — po(k))Vea(k, 1)
Via(k, 1) = % [V H (K, t)p(k, t)] — vo(K,t) — Vine (K, £)

Due to Egs. (B9) and (B10), the latter two components
in particular satisfy
Vi (k, 1) S O(vrL'/Q2) + O(X* (K)vr),
Vna(kvt) 5 O(/\2(k)UF)

The decomposition above allows us to express the cur-
rent density as

(B13)
(B14)

.](t) :jO(t) +jmr(t) +jna(t) (B15)
where
3
jmr(t) = *h /(;171_1){3 er(k t) (Blﬁ)
e 3
jna(t) = —ﬁ /((2171_1){3‘711;1(1{’ t). (B17)



We identify §j(t) = jna(t) + jmr(t). Evidently, jo domi-
nates in the limit of adiabatic driving and coherent dy-
namics, where A(k) < 1.

Jjmr 1s the current density correction due to relaxation-
induced fluctuations in the band-occupancy, while j,, as
the correction due to the finite driving frequency and re-
laxation rate (relative to the band gap). Note that jn.(¢)
is only significant for k-points where dynamics are non-
adiabatic, while ju,(¢) can be nonzero for all k-points
where the electron density fluctuates. For this reason,
we heuristically identify ju,, and ju. as the components
of §j(t) that arise due to momentum relaxation and nona-
diabatic heating, respectively.

2. Derivation of steady state

In this subsection we derive the steady state solution
of Eq. (B1).

We first show that such a steady state exists. Given an
initial condition specified at some time tq, the solution of
Eq. (B1) can formally be written as

plk, 1) = Telo ) o ke, t). (B18)
where T denotes time-ordering, and L(k,t) denotes the
Liouvillian generating the time-evolution: £(k,t)o O =
—(i/h)[H (k,t),0] + D(k,t) 0 O.

Due to its Lindblad form, £(k,t) is negative semidef-
inite. Except in cases of fine-tuning or in the pres-
ence of conserved integrals of motion (which we do
not consider here), all eigenvalues of L(k,t) except for
one are negative; the last eigenvalue takes value 0.
The left eigenvector corresponding to this unique zero-

eigenvalue is the identity operator, I [108] It follows that

t
Jig 45£0%:9) 125 a single left eigenvector with

1imtoﬂ,oo Te
eigenvalue 1 (namely I), while all other eigenvalues van-
ish. Letting p(k,t;ty) denote the corresponding right
eigenvector, we hence have

ftto dsL(k,s)

lim Te oM = ﬁo(k7t;t0)Tr[M]

to——o00 (Blg)
L(k,t) preserves the trace and positivity of any operator
and we may choose M positive-definite. Hence po(k, ;o)
must be positive-definite and have unit trace. In other
words, po(k,t;tg) corresponds to a physical density ma-
trix. .

The semigroup property, ’Tefto dstlles) o N =
Telty ds£069) O(Tefffto1 dsL(k:5) o M) implies that o (k, ¢ o)
must be independent of ¢g in the limit g — —oco. We thus
simply refer to this operator as pg(k,t). This operator
defines the time-dependent steady state of the system.
Our goal is to obtain this steady state.

Eq. (B19) implies we can obtain the steady state by
evolving Eq. (B1) from any initial state with unit trace;
for our purpose it is convenient to choose the initial state
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p(k,to) = 1/2%, where I denotes the identity opera-
tor. Our derivation proceeds as follows: we first identify
a time-dependent unitary transformation (or “comoving
frame transformation”) that maps Eq. (B1) into a new
master equation of the same form in which the eigenba-
sis of the Hamiltonian is constant up to a correction of
order A\?; this approach was e.g. also used in Ref. [109)].
We then solve the master equation in this new frame us-
ing a rotating wave approximation, by exploiting that
the spectral gap of the Hamiltonian is the largest energy
scale of the system in the limit A(k) <« 1 [110, 111].

In the following, we consider the dynamics of electrons
with a fixed given wavevector, k. For brevity, we suppress
all quantities’ dependence on k, unless otherwise noted.

a. Rotating frame transformation

Here we map the master equation in Eq. (B1) into
one where the Hamiltonian has an effectively time-
independent eigenbasis. To this end, we sequentially ap-
ply two comoving frame transformations that each reduce
the time-dependence of the Hamiltonian’s eigenstates by
a factor A [109]. The first transformation, Q1 (t), maps

14 (t) into the orbital annihilation operator ¢,, for all a:

QT () (t)Q1(t) = Ca

As we show in Sec. B5c¢, the above is realized when

(B20)

Qi(t) = Te " JodsXap Muﬁ(s)@x(s)lﬁﬁ(s)‘}l’ (B21)

where
Map(t) = i{va(t)|0ns(t))
and Vi = exp(Y],, é/¢;log(M);;), with log(M) denoting

the logarithm of tile matrix with entries M;; = (¢;(0)[7).
Since (Yo (0)0rs(1) = —(Ortba (OlVs(1)), Mas(t) is
Hermitian. Without loss of generality, we choose to work
in a gauge where (14|0:1,) = 0, implying M, (t) = 0.

We consider the evolution of the system in the rotating
frame that results after applying Q1(t). Le., we consider
the evolution of

pr(t) = Q1(A)Q: (8).
ByA taking the time—deriva:cive 9f pAl(At and exploiting
0eQ1(t) = =i 320 Map(t)PL(£) 5 (t) Q1 (¢), we find that

1

(B22)

(B23)

Opr(t) = = [H (1), (0] + Da(t) o pn (1) (B24)
where
(1) =Y ealt)ila — > Map(t)chés.  (B25)
«@ af
and
Do =Ql [D ° (Q@Q{)]Ql, (B26)



with time-dependence suppressed for brevity. Note that
D (t) is in the Lindblad-form.

Eq. (B24) is of the same form as the original master
equation we considered, Eq. (B1). However, the eigen-
modes of the new Hamiltonian H (), 1L (t) are nearly
stationary. To see this, note that, for o # 3,

Ol H® )
Mas(t) = =15 o) — es(0)

(B27)

implying

Map(®)] S N (t). (B28)
Thus, in the adiabatic limit, A < 1, @é(t) can be com-
puted using canonical perturbation theory with respect
to the term Y, Mag(t)éhés in Eq. (B25). The nth
term in this expansion will be of order A", and first order
expansion thus yields

1 — — Maﬁ(t) P 2
wa(t) - %;lf‘:a(t)_gﬂ(t) 5+O(A )7

(B29)

The expression above gives 1! (£) up to an overall (time-
dependent) phase factor which we are free to choose
due to gauge symmetry. Similar perturbative arguments
show that the associated energies of Hj(t) are given by
el(t) = ea(t) + O(N%6¢), since we chose a gauge for
[tha(t)) where Moo (t) = 0. Evidently, the ath eigen-
mode of the transformed Hamiltonian, ¥ (), is given by
Ca, up to a time-dependent correction of order A. Hence
the eigenmodes of H;(t) are nearly stationary in the limit
AL

We now apply the above procedure one more time.
We first apply a comoving frame transformation Q2 (t) to
H(t) which transforms each eigenmodes ¢} (t) into the
orbital annihilation operator ¢,:

QY1) P4 (H)Qa(1)
Since L (t) = éq + O(N), Q2(t) = 1+ O()). We can find
Qg(t) exactly using the same procedure we used to ob-

tain Ql(t). Following this procedure, we find the density

matrix in this frame, Q2(t)p1(t)Q3(t) evolves according
to the master equation

ba. (B30)

1

(), (1)) = Da(t) 0 po(t).

p2(t) = (B31)

where Dy 0 O = Qs [Dl o (QQ@Q;]QQ (with time-
dependence suppressed for brevity), and

Hy(t) =) el(t)chéa + > Mbgt)ehes.  (B32)
« af

Here ML(t) = iGLODWL0). with WD) =
YL (t)]0) denoting the single-particle eigenstate of Hj(t)
with associated energy el (t).
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We now seek to bound Méﬁ. To this end, we use that
Oulealt) —25()1 S A [112], Bifva(t) S A=(t) [113),
and 07 H (t) ~ QO H (t) < A\26e(t). Combining these re-
sults with Eq. (B27), we conclude 9;M,p5(t) ~ A20e(t).
Using Eq. (B29), d(ea(t) —ep(t))™! < A, and the defi-
nition of M/ 4(t), we hence obtain

M 5(t) ~ N?8e(t) (B33)

In principle we could iterate the comoving frame trans-
formation procedure further to obtain increasingly accu-
rate master equations for p(k,t) [109]. However, since we
are just interested in obtaining p(k,t) to corrections of
order A2, this second step is enough for our purpose.

b. Rotating wave approximation

We now solve Eq. (B31) with a rotating wave approxi-
mation. To this end, we first apply a final unitary trans-
formation to Eq. (B31) which is generated by diagonal
part of Hy(t):

V(t) = exp l—i /0 t dt Y b (t)eléa

The density matrix in this frame, () = VI()p2(t)V (¢),
evolves according to the master equation

(B34)

8=Vt (cz o [f/ﬁv*])f/. (B35)

where

Lo00 =— ﬁ[z,; M sélés, O+ Dyo0 0. (B36)

Here we suppressed time-dependence for brevity.

We consider the matrix elements of p(¢) in the basis of
states corresponding to the 2¢ unique configurations of
electrons in the orbitals in the system, {|n)},

Pmn(t) = (m|p(t)[n). (B37)
Here, n = (n1,...nq) with n; = 0,1 for each ¢ and
¢le|n) = ni|n). Le., |n) denotes the state in Hy with n,
Fermions in orbital ¢. In this basis t orbital basis of Hs.
Here and below, we use bold italic symbols to indicate
configurations of orbital occupancies, as above.

According to Eq. (B35), pmn(t) evolves according to
the coupled differential equation

N
Deprm (t) = Rt (Dpra (1) (B38)
kl

where

RAL(1) = (n|La()o(|fe) (1)) e fis Zoct ik,
(B39)



Note that Lo(t) is of order A28e(t). This follows since
M. 5 ~ N26e(t) and | Do = || D|| < T, while I' < A?de(t).
At the same time, we expect (n|Ly(t) o (|k)(I|)|m) os-
cillates with characteristic frequency 2. In the limit
A < 1, REL (1) hence oscillates rapidly relative to its
characteristic magnitude for choices of n,m, k,l where
n; —m; # k; —1; for one or more choices i. This allows us
to make a rotating wave approximation, where we only
keep the terms in Eq. (B39) where n; —m; = k; —1; for all
i. We expect this approximation yields the correct steady
state up to a correction of order ||Lz]|/de ~ A2 [110].

After the rotating wave approximation above,
Eq. (B39) in particular only couples diagonal matrix el-
ements of p with other diagonal elements:

Ian(t) = = R om0 (B0
Since we chose the initial condition p(ty) = I/2¢, imply-
ing ppim(to) = 1/2%6,,m, we hence conclude
= faDn)(n| +O(O?). (B41)
where f,,(t) denotes the steady state of
O fu(t Z RIV™(#) fn (1) (B42)

and is normalized such that ) fn(t) = 1. Evidently,
p(t) is diagonal in the orbital eigenbasis up to a correc-
tion of order A2, while the off-diagonal elements deco-
here (this is a general feature for open quantum systems
where relaxation is slow compared to the level spacing of
the system [110]).

We obtain the steady state in the lab frame, (t) by
reverting the net unitary transformation that we applied
to obtain p,

U(t) = V(t)Q2(t)Q1(t).

Thus we conclude

o(t) =Y fa®)UT(B)ln) (|0 (1) + O(A?)

(B43)

(B44)

Here fy,(t) is computed from Eq. (B42).

c. Direct method for computing Ry

The matrix elements R7.*, which determine the
steady state through the coeflicients fy(t), can in princi-
ple be obtained from the definition in Eq. (B39). How-
ever, we can obtain them directly from the eigenstates of
the instantaneous Hamiltonian H(¢) and the lab frame
dissipator D(t) without having to go through the proce-
dure we described in Sec. B2a.

First note that M} = 0, implying

Ry (t) =

Te[Dy(t) o (Im)(ml)|n)(nl] (B45)
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Next, we recall that

Dy 00 = QIQ} [Do (Q2Q1@QIQ£)]Q2Q17 (B46)

where we suppressed ¢. We now use that Qs = 1 + O\
and

Qi(t)ln) = [Tn(t) (B47)
where |, (t)) is the eigenstate of H(t) satisfying
DL Tn(t) = nalUa()). (B48)

Combining the above results and using D(t) ~ T', we thus

obtain
Ry = Tr[Do ([Um) (Ui |)|[Un)(Pn|] + O(AT). (B49)

where we suppressed the time-dependence of |U,(t)),
D(t) and R2™(t). Since R7W™(t) ~ I', we expect ne-
glecting the correction above yields the correct value of
fn(t) state up to a correction of order \.

d. Calculation of band occupancies

Now, we compute the instantaneous occupancy in band
a in the system, p,(k,t), which will play an important
role for determining the current density.

We consider the one-body correlation matrix in the
eigenmode basis,

TrWAJ:; (kv t)iz)ﬁ (ka t)ﬁ(kv t)}

The instantaneous occupancy of band « is given by the
diagonal elements of this matrix, ps(k,t) = gaa(k,?).
However, we will also keep track of the off-diagonal ele-
ments of gas(k,t), since these are used to compute the
current density in the next subsection. In the remainder
of this step of the derivation, k and ¢ are fixed parame-
ters, and we therefore suppress them for brevity.

Inserting the solution for p we obtained Eq. (B44), we
find

Jap(k,t) = (B50)

s = ) fn(n|ULdsUTIn) + O(N?), (B51)

where U = VQ,Q;. Since |n) is an eigenstate of V, and
Ql$aQ1 = éa, we find

s = 3 fa(nlQoélésQhin) + O(N)  (B52)

Since Qg is a product of exponentials of a quadratic op-
erators, QQCQQQ must be a linear combination of the op-
erators {¢;}; i.e.,

$6aQo = Z QaiCi (B53)



for some unitary matrix Q),; which we obtain below. Us-
ing <n|éjéj|n> = 0;;n;, we thus find

Gap = Z fnniQZiQﬁi + O(Az)a

n,

(B54)

To compute Qqi, we use Eqgs. (B29)-(B30) to obtain

Mag

Q2taQl =Ca+ > St O\ (B55)
B

Combining this with Eq. (B53), we conclude

Qup = bap + (1 — dap) + O(N?) (B56)
Oé
Inserting this result into Eq. (B54), we obtain

Gas = 3 fn ( Bagnia + Mpa(l = 6a) 22 ) LO(N?)
(B57)

where we used that Mﬁ“ ~ O(\).

—eg
using po = Goa, W€ hence find

Setting o = 8 and

o= fnla +O(N?). (B58)

3. Explicit solution for Boltzmann-form dissipator

We finally demonstrate our solution above for the case
where D(k, t) is given by the Boltzmann-type dissipator
in Eq. (26), D(k,t)oO = —7[(9 p29(k, t)]. Here p2i(k,t)
denotes the equilibrium state of the instantaneous Hamil-
tonian H (k, t) with temperature 1/8 and chemical poten-
tial pu. We treat k as a fixed parameter and suppress it
below.

First, we obtain the coefficients f, (t), which determine
the band occupancies p,(t). Recall that f,, are given
as the steady-state solution to the the differential equa-
tion in Eq. (B42), 0,fn(t) = >_,,, Rua™(t) fm(t). Using
Eq. (B49) to find the coefficients { R¥™(t)}, a straight-
forward computation yields

RI(6) = ~ LG + =T [ () (1) (T (0)] (B59)
Thus
Oufnlt) =~ f(t) + - Telpea (D1 () (Wa(0)]] (B6O)

where we used ), fm(t) = 1. This first-order inhomo-
geneous differential equation has steady-state solution

1 / dse™ T T [ () U ()) (T (5))]

fn(t) = 7 Jo
(B61)
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Next, we obtain the band occupancies, {p,(t)}, using
=2_falOn

n

Substituting in  Eq. (B61) and  identifying
S [T () (W (t)[n6 = O, (£)Ya(t), we obtain

(B62)

! / dse= =/ T o ()L (3)da(s)]  (B3)
0

Palt) = .

Next, we note that Tr[¢)] ()1 (5)peq(s)] gives occupa-
tion probability of the ath band of the Hamiltonian H (t)
in equilibrium at temperature 1/8 and chemical potential
p. We recognize this probability as fz(eq(s) — p) where
fa(e) denotes the Fermi-Dirac distribution at tempera-
ture 1/5. Thus

t):% /0 dse= /7 fuea(s) — ). (B6A)

Note that p,(t) converges to its time-average in the limit

~1 < Q, consistently with what we claimed in Eq. (B9).

We finally compute the time-average of p,(t). A
straightforward computation shows

(B65)

which was what we quoted in Eq. (27) in the main text.

4. Derivation of current density

We finally obtain the expression for the current density
in Eq. (B6), i.e., we seek to show that

Zpara + O

where 1, = %Vsa — 7E x Q,. Here and below, we take
both k and t to be 1mphc1t parameters. .
As our first step, we combine Tr[pVH| =

Zij (i|VH]j)Tr [ﬁéTéJ] with @I = Za<¢a|l>1/;:& to write

VHp ) (B66)

Te[pVH] =Y (ol VH|V5)gas, (B67)

aff

where gop = Tr[ﬁgzﬁg] and is computed in Sec. B2d.
Combining Eqgs. (B57)-(B58) we can express go in terms
of the band occupancies pq:

+0(\?) (B68)

Pa — P
G = B+ Mial1 )22

oa —Eg

Next, we use the

Yo [Va)(Waleq to find
<w°“VHW)B> = 0apVea + iAag(E

spectral decomposition H =

o« —€8), (B69)



where A, = i(10o|Vp3). Combining Egs. (B67)-(B69),
we hence find

Z PaVeqti Z

VHp AosMpa+0O ()\ ’UF)
(B70)
We identify the first term in the right-hand side above as
the contribution arising from the group velocity.
To rewrite the second term, we use that [0;¢,) = $E-
|Viba), implying Mg = $E - Aqp [114]. Thus

5 e = 1M A = & 3= ki Kl
af af,i

4 (B71)

where A7, 5 and E; denotes the ith vector component of

A, s and E, respectively. Next, we note
Z(pa Z Pa
(B72)

af
Using the definition of A’ ; along with (¢4|0ips) =
—(0altg), we find 305 AL g Al = (Oitha|0j100). Hence

Z(pa_pﬁ aﬁAﬁa Z/)a
(B73)

af
We identify the right-hand side as —i Za,k Pacijk U,
where ¢€;;, denotes the Levi-Civita tensor and QF denotes
the kth component of Q. Thus,

Z(pa —PB %ZpaE X Qg

ap

/B‘A] ﬂAéa - AiﬁAi a)

zwalajwa>_<8jwa|ai¢a>)

)AaBMﬁa =1 (B74)

Hence the second term in Eq. (B70) gives the contri-
bution to the particle velocity from the anomalous ve-
locity. In particular, by inserting the above result into
Eq. (B70), and dividing through with A, we establish
Eq. (B66), which was the goal of this subsection.

5. Derivation of auxiliary results

In this subsection we derive the auxiliary results which
we quoted in the subsections above. Specifically, we de-
rive Egs. (B9), (B10), and (B21). These results are es-
tablished in Secs. B5c¢, B5a, and B5b, respectively.

a. Near-stationarity of pa [Eq. (B9)]

We first show that p, is nearly stationary.

Our starting point is the equation of motion for the
diagonal matrix elements of p(k,t) in the orbital basis,
{fnk, )}, Orfn(t) = =D, Ry (t) fm(t). We note that
R (k. t) is of order T, but oscillates with characteristic
frequency 2. As a 1resu1t7 we expect fr,(k,t) to deviate

30

from its time-average, f,(k), by a correction of order
r/Q:

filk,t) = fi(k) + O(N). (B75)
Inserting this into Eq. (B58), we thus find
Pa = Pa T O()‘) (B76)

where p, (k) denotes the time-average of p,(k,t), and we
neglected a correction of order A2, since it is subleading
relative to I'/€Q.

b. Bounds on group velocity [Eq. (B10)]

We next establish the bounds on the group velocity in
Eq. (B10). To obtain this result, we note that }|Ve,| =
+(¥a|VH|tha)| < vp. This establishes the first condition
in Eq. (B10).

To establish the second condition in Eq. (B10), we use
that

(&

7 E(t) x Q4(

t)=i) (AapMpa — AsaMag) (BTT)
E

This follows from Eq. (B74) after setting p, equal to 1
for one particular choice of a and 0 for all other choices.
Next, we use that [Aag| = [(Ya|VH|Yg)/(ea —ep)] <
vp/de. Since |(Mag| S Moe [see Eq. (B28)], we thus con-
clude that £|E(t) x Q4(t)] < Avp. This was what we
aimed to bhOW

¢.  Expression for Q:(t) [Eq. (B21)]
We finally prove that, for each «, the unitary operator
in Eq. (B21),

—i [y dt’ Sop Maﬁ(t/)lﬁl(t')lﬁﬁ(t’)vh

Q1(t) =Te (B78)

transforms the eigenmode of the Hamiltonian, z/;a(k, t)
into the orbital annihilation operator é,:
QLDYa(t)Q1(t) = éa, (BT9)

We first note that Q1 (¢) is quadratic and conserves the

number of fermions. Hence, Q]; ()9ha(t)Q1 () must be a
linear combination of the orbital annihilation operators:

Q1 (t)ha ZKM

Eq. (B79) is satisfied if K;(t) =

(B80)

for some matrix K;(t).
Savi-

We can find K,;(t) from the single-particle evolution
of the system, using i) = &0} and |1ha(t)) = ], (£)]0):

Kai(t) = (Ya(0)|Q1(1)]), (B81)



where Qi(t) is the operator Q:(t) projected into the
single-particle space:

Q1 () = Te J5 45 T W () W3(9)| Maas () iy i) G108 (M )i

(B82)
Since M;; = (i|1;(0)), we find

e2ig 1) (illog(M)i; _ Z |i) () M

ij

> [1i(0))(i], we find

(B83)

Using Z” |2) (| Mi; =

Koi(t) = (o (t)|[Te o ds Eig Mis()I9i() (5 (9 (0)),
(B84)

implying
Ki(0) = 0ai- (B85)

To see that K,;(t) also equals d,; at later times, we take
the time-derivative above:

OuKas(t) = ((Oa(t)] = Y Aas()(65(0)] ) QD))
’ (B86)
Since (Yo (8)|0pa(2)) = —(0sa(t)|9p(1)),
Mas(t) = —i(Oba(t \ 5(t)).  This result, along
with 32 [$5 (1)) (¥p(1)] = 1, implies
ZMa,B | <8t¢a( )| (B87)
Using this in Eq. (B86), we conclude that 0;K,,(t) = 0.

Since we found above that K,5(0) = dqag, it hence follows
that
Koi(t) = ai (B88)

at all times ¢. Using this result in Eq. (B80), we conclude
that Eq. (B79) holds. This was what we wanted to show,
and concludes this appendix.

Appendix C: Derivation of bound on dy

Here we derive the condition for adiabaticity which we
quote above Eq. (36) and the text above. I.e., we seek
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to establish that the time-dependence of H(k,t) can be
considered adiabatic for k-points where

|RleE

inlk +eA(t)/h| 2
i [+ eA(1)/H 2 1

(C1)

See main text for definition of quantities and notation.

Our starting point is Eq. (35), which states that the
dynamics of the system are adiabatic for k-points where

hl|O:H (k + eA(t)/h)|| < 6% (k + eA(t)/h)  (C2)
for all ¢.

We consider the dynamics near a Weyl point, where
the Hamiltonian takes the linearized form H(k) = o -
Rk + V - k [see Eq. (1)]. We ignore the second term
arising from the Weyl cone tilt V| since it only affects
the time evolution through an overall phase factor. With
this linearized form we find

de(k) = |RK], (C3)
hl|0:H (k + eA(t)/h)|| = e| RE(t)] (C4)

Thus dynamics in the system are adiabatic if
e|RE(t)| < |R(k + eA(t)/h)|? (C5)

We now use that |RE(t)| < |R||E, where E denotes
the characteristic magnitude of the driving-induced elec-
tric field. Moreover, |Rv| > vg|v| where vy denotes the
smallest eigenvalue of R. Combining these two inequal-
ities with Condition (C5), we conclude that the time-
dependence of the Hamiltonian is adiabatic if

ek
1Rl =~ S vglk + eA(t)/h[? (C6)

for all ¢.

Rearranging the factors above, we conclude that the
dynamics of the system are adiabatic if Condition (C1)
is satisfies. This was what we wanted to show.
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