SE FOR Al

Naturally!: How

Breakthroughs in
Language Processing
Can Dramatically Help
Developers

Anand Ashok Sawant and Premkumar Devanbu

From the Editor

Editor: Tim Menzies
North Carolina State University
tim@menzies.us

Natural

Do you have exciting stories about novel artificial intelligence (AI) methods for
software engineering (SE)? Why not submit them to the “SE for AI” column?
Articles should be 1,000-2,400 words and be practitioner focused (figures and ta-
bles count as 250 words; try to include 12 references or fewer). Submit initial ideas

or finished articles to timm@ieee.org. In this issue’s column, Anand Ashok Sawant

and Premkumar Devanbu show us that source code is like natural language, i.e.,

it is highly repetitive and predictable in nature. This enables a whole range of

exciting and novel new analysis methods for SE.—Tim Menzies

TAKING ADVANTAGE OF the natu-
ralness hypothesis for code, recent
development, and research has fo-
cused on applying machine learn-
ing (ML) techniques originally
developed for natural language pro-
cessing (NLP) to drive a new wave
of tools and applications aimed

Digital Object Identifier 10.1109/MS.2021.3086338
Date of current version: 20 August 2021

118

specifically for software engineering
(SE) tasks. This drive to apply ML
and deep learning (DL) has been an-
imated by the large-scale availability
of software development data (e.g.,
source code, code comments, code
review comments, commit data, and
so on) available from open source
platforms such as GitHub and Bit-
bucket. Commercially available
tools that leverage this combination

IEEE SOFTWARE I PUBLISHED BY THE IEEE COMPUTER SOCIETY

of artificial intelligence (AI) and
SE include:

¢ Codota.ai [Figure 1(a)] and Kite:
tools that use DL and NLP tech-
niques to do better in IDE code
completion

e deepcode.ai [Figure 1(b)]: per-
forms code analysis based on
learned rules to augment current
static analysis tools

0740-7459/21©2021IEEE

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 01,2022 at 18:59:34 UTC from IEEE Xplore. Restrictions apply.

SE FOR Al

(b)

HelloWor LdFunction/src/main/java/hellowor1d/App. java

item_values.put("location", new AttributeValue(ipvd));

inaRes

o
(r=DOS),

+ item_values.put(“date"”, new AttributeValue(now));

. ot 4 = UentBuilder. defaultClient();

‘ danilop 3 minutes ago Author Owner Q -
Recommendation generated by Amazon CodeGuru Reviewer. Leave feedback on this recommendation by
replying to the comment or by reacting to the comment using emoji.

This code is written so that the client cannot be reused across invocations of the Lambda function.

To improve the performance of the Lambda function, consider using static initialization/constructor, global/static
variables and singletons. It allows to keep alive and reuse HTTP connections that were established during a
previous invocation.

Learn more about best practices for working with AWS Lambda functions.

‘. Reply.

Resolve conversation

(0

FIGURE 1. Commercial tools taking advantage of the naturalness hypothesis. (2) PROBLEM: Code completion at line level that
includes all variables is hard. SOLUTION: Using naturalness, we can learn complete code patterns from other projects to suggest
relevant code completions. (b) PROBLEM: Finding potential issues such as duplicate code or security issues using static analysis can
result in a lot of false positives or negatives. SOLUTION: Using naturalness, we can learn potential issues from token relationships
from past issues to identify issues in previously unseen code. (c) PROBLEM: Manually reviewing code written by others to find bugs/
issues is not completely reliable. SOLUTION: Using naturalness, we can learn a mapping of potential code issues to a natural language

description to generate code review comments.

¢ CodeGuru [Figure 1(c)]: devel-
oped by Amazon to perform
automated code reviews on
customer code that use Amazon’s
own Amazon Web Services APIs.

Why Does This Work Well?
Parallels Between Al and SE
and NLP Tasks

The naturalness hypothesis for code
states that “though software, in the-
ory, can be very complex, in prac-
tice, it appears that even a fairly
simple statistical model can capture
a surprising amount of regularity

in ‘natural’ software.” Source code,
like natural language, is a form of
communication between program-
mers. Much like natural language,
more “natural” code—code that has
lower per-token entropy—has a di-
rect impact on its readability (sub-
sequently maintainability). Source
code, like natural language, is pre-
dictable—in fact, it might be even
more predictable due to the repeti-
tiveness of code.

Source code is often much more
repetitive than texts written in lan-
guages such as English (assuming

SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE

no plagiarism). Studies have shown
that code tokens are easier to pre-
dict than normal text.! This is due
not only to the simpler syntax of
code! but also to an adherence to
similar programming styles across
projects. This would indicate that
code is often written in such a way
that another human can under-
stand it (and not just for execution
by a machine). In terms of model-
ing code, this can mean that code
language models might be just as,
or even more, effective than their
equivalent for NLP.

119

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 01,2022 at 18:59:34 UTC from IEEE Xplore. Restrictions apply.

SE FOR Al

RNNs has been shown to be ef-
fective for code completion-based
tasks. One such example is by

A growing body of evidence!—3 To achieve any one of these tasks,

supporting the naturalness hypoth- SE research has to take advantage of
esis indicates that language models NLP models, some examples of these

are as follows:

that have been commonly used in
the NLP world applicable to SE
problems as well. It’s not just the
models that transfer over to the
SE world, but there are also simi-
lar tasks that are applicable, for
example, text summarization in
NLP that parallels code comment
generation. We see those language
models for source code are used
in much the same ways as those in
NLP. A partial list of SE tasks that
take advantage of the naturalness
hypothesis include:

. code comment generation
. code retrieval

. code deobfuscation

. defect prediction

. API mapping

. code translation

. automated code review

. code completion

. type recovery.

O © 3 N Li A W IN R~

1. Code2Vec: these approaches
utilize a bag-of-words approach
similar to Word2Vec. Essentially,
the vector representation for each
token is calculated based on the
surrounding tokens. Code2Vec*
learns a vector representation of
a piece of code based on paths in
its abstract syntax tree. Figure 2
depicts an example where a Code-
2Vec based model can label the
semantics of a piece of code, that
is, predict the expected name of a
function.

2. RNN-based language models: re-

current neural networks (RNNs)
can be used to capture local
sequence dependence between
tokens. They have been shown to
be effective for text prediction in
the NLP world. In the SE world,
modeling the source code using

Object(int target) {
for (Object elem :

return elem;

}

}

this.elements) {
if (elem.hashCode().equals(target)) {

}
return this.defaultValue();

mmm) Function f is get

FIGURE 2. Code2Vec used to identify semantics of a function definition.

Raychev et al., where they de-
veloped a model and tool called
SLANG. This tool can predict
based on what a developer has
(partially) typed to guess what
the complete form should be (see
the example in Figure 3).

. Long short-term memory

(LSTM)-based language models:
simple RNNs have one major
shortcoming where the context
for which it learns an embedding
of a token (i.e., the length of the
preceding tokens that contribute)
is limited. LSTMs, on the other
hand, can store token information
over long-term temporal depen-
dencies. This has made LSTM’s
effective for NLP classification
problems. Similarly, LSTMs are
especially useful in the case of
source code as variable usage and
declaration might often be sepa-
rated by a lot of tokens. One effec-
tive use case in the SE world of an
LSTM is a tool called NL2Type®
(seen in Figure 4) to predict a
JavaScript function parameter’s
type based on the function body.

. Graph neural network ap-

proaches: all of the aforemen-
tioned approaches only consider
the lexical nature of source code,
that is, the models are based on

} else g

}

—
—)

SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX_SMS_MESSAGE_LENGTH) {
ArraylList msglist = smsMgr.divideMsg(message);

[smsMgr.sendMultipartTextMessage(...msgList...);|

[smsMgr.sendTextMessage(...message...);|

FIGURE 3. RNN-based model used to complete snippets of code.

120 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 01,2022 at 18:59:34 UTC from IEEE Xplore. Restrictions apply.

token sequences. HOWE}VCI’, source

code has semantic properties
which can be represented as a
graph (or tree). Graphical repre-
sentations of code semantics can
be modeled using a graph neural
network approach. One task for
which it has been shown to be ef-
fective is the variable misuse task,
where the model by Allamanis
et al.® learns from the relation-
ships in the program graph as to
what variable needs to be used
where and where it should not
be used (see Figure 5), that is, it
learns some information about the
semantic flow of the source code.
5. Transformer-based approaches:
the current state of the art in
NLP is 1) pretraining a larger
transformer-based language
model using billions of tokens
such that it captures the underly-
ing statistical relationships be-
tween all the token in the corpus
and 2) fine-tuning this pretrained
model for a specific task such as
sequence labeling. Adoption of
this approach has recently been
on the uptick, where we see pre-
trained models, such as Code-
Bert,” CUBert,8 and PLBART,?
which pretrain models using
billions of token of source code.
These models are then applied to
a variety of tasks such as variable
misuse detection, identifying the
wrong binary type, and detection
of the exact exception type.

What Are the Differences,
Though?

Most of the AT + SE work parallels that
of the NLP world. This operates under

1. Vocabulary growth: the vo-

cabulary used in source code is
much larger than that of natural
language. Developers can freely
create identifier names; this
means that even a model trained
on billions of tokens might en-
counter novel vocabulary. This
can severely hinder the perfor-
mance of a model when it comes
to generalizing performance to
more than a small set of projects
(out-of-vocabulary problem). One
way to overcome this obstacle is
using byte pair encoding where
each token is split into subtokens
(e.g., <LinkedList > — <Linked>
<List >) and embeddings are
derived for these subtokens. This
ensures that even for unseen
tokens, at least part of the token
might be part of the vocabulary.
Since the subtoken vocabulary
includes the character set, even
dinovo tokens could be theoreti-
cally handled. Byte pair encod-
ing works very well in practice
for code.10

SE FOR Al

2. The “span” or “scope” of rele-

vant text is much wider for code:
language models learn some
relationships between tokens that
are in their immediate proxim-
ity. While this works well for
natural language, in the case of
source code this can be especially
tricky. For example, in a class, a
field can be declared at the top
of the file and the field is then
used (read or written to) later on
in one of the methods that might
be at the bottom of the file and
1,000 tokens away. This seldom
occurs in NLP, where the subject
and object of a piece of text can
mostly be found in a smaller con-
text window. Even proper nouns
tend to be reused in fairly proxi-
mate contexts. In code, learning
this relationship between the
declaration of the field and its
usage can be limited by current
hardware constraints based on
the size of sequences and batches
that can be fit into a GPU. Typi-
cally, on an Nvidia V100 GPU,

/** Utility function to ensure that object properties are
* copied by value, and not by reference

* @private

* @param {Object} target Target object to copy
* properties into
@param {Object} source Source object for the
proporties to copy

Parameter

*
*

* |@param {string} propertyObj Object containing _

% properties names we Should Be of
*

want to loop over

4

function deepCopyProperties(target, source, propertyObj) {

}

Type Object

FIGURE 4. The LSTM model used to detect the type of JavaScript parameters.

the assumption that code is the same
as any natural language. However,

public ArraySegment<byte> ReadBytes(int length) {
int size = Math.Min(length, _len - pos); :
var buffer = EnsureTempBuffer(length) ; mmmmp Incorrect variable

there are a few differences between var used = Read(buffer, 8, size); used, should be size

source code and natural language and
that has certain implications.

FIGURE 5. A graph neural network is used to detect incorrect variable usage.

SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 121

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 01,2022 at 18:59:34 UTC from IEEE Xplore. Restrictions apply.

the maximum sequence size

is 512 tokens and 16 batches,
thereby reducing the chances
that the field and its usage will
be in the same sequence. To al-
leviate the issues caused by this,
researchers have often resorted
to only using input sequences
that might fit on the GPU with
all relationships preserved, thus
discarding any data that might
be too long. This does mean
that most Al and SE models are
restricted by the size (in terms
of the number of tokens) of the
code and do not effectively scale
to larger programs.

3. Code is bimodal,\\ admitting
both formal and “natural” read-
ing: during this entire article
we have operated under the
assumption that source code is
“natural.” One might assume
that reading code is the same
as reading a paragraph from
Harry Potter, especially since
most code appears to have been
written to communicate with
other humans in addition to the

SE FOR Al

ANAND ASHOK SAWANT is a postdoctoral scholar at the Uni-
versity of California, Davis, Davis, California, 95616, USA. Further
information about him can be found at https://anandsaw.github.io/.
Contact him at asawant@ucdavis.edu.

PREMKUMAR DEVANBU is a distinguished professor in the
Department of Computer Science at the University of California,
Davis, Davis, California, 95616, USA. Further information about him
can be found at https://web.cs.ucdavis.edu/~devanbu/. Contact him
at ptdevanbu@ucdavis.edu.

computer; clearly, it is not. This
has led to a dual-channel hy-
pothesis for code. One channel
is formal or algorithmic, where
the execution of the code is
specified. The other channel is a
natural language channel, where
the code is a medium of com-
munication with another human
developer. A functional mag-
netic resonance imaging (fMRI)
study'? has confirmed this to

an extent where neuroscientists
have found that when reading
code, humans engage both the
parts engaged with mathemat-
ics and natural language. All
language models used in AT and
SE take advantage of this natural
channel; static analysis tools and
compiler optimizations exploit
the algorithmic channel. These
“bimodal” property enables sev-
eral new directions of research,
for example, static analysis
methods could selectively per-
form approximations when a
language model indicates it is
unlikely to lead to inaccuracies;

algorithmic approaches could be
used as training signals to learn
noise-resistant representations

that could be used to fix er-
13

rors;!3 recovering original code
from algorithmically obfuscated
code could be used as a training

signal to train autoencoders.!*

Going Forward

This research field of Al and SE has
taken off as an increasing number of
papers at top SE conferences utiliz-
ing state-of-the-art Al approaches.
This does appear to reinforce this
notion that treating code as natural
language does work. But what does
the future hold? As mentioned ear-
lier, code is a bit more than just a
series of tokens there is richer infor-
mation available in code (the algo-
rithmic channel). Designing models
and approaches that take this into
account along with the natural chan-
nel is the next frontier for the field of
AT and SE. We look forward to the
new waves of research that are sure
to follow and welcome the many
new researchers to this field! @

References

1. W. U. Ahmad, S. Chakraborty, B. Ray,
and K.-W. Chang, “Unified pre-train-
ing for program understanding and
generation,” 2021, arXiv:2103.06333.

2. T. Ahmed, P. Devanbu, and V. J. Hel-
lendoorn, “Learning lenient parsing
& typing via indirect supervision,”
Empirical Softw. Eng., vol. 26, no.

2, pp. 1-31, 2021. doi: 10.1007/
$s10664-021-09942-y.

3. M. Allamanis, M. Brockschmidt, and
M. Khademi, “Learning to repre-
sent programs with graphs,” 2017,
arXiv:1711.00740.

4. U. Alon, M. Zilberstein, O. Levy,
and E. Yahav, “code2vec: Learning
distributed representations of code,”
in Proc. ACM Programming

122 |IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 01,2022 at 18:59:34 UTC from IEEE Xplore. Restrictions apply.

Languages, vol. 3, no. POPL, pp.
1-29, 2019. doi: 10.1145/3290353.

5. C. Casalnuovo, E. T. Barr, S. K.
Dash, P. Devanbu, and E. Morgan, “A
theory of dual channel constraints,”
in Proc. ACM/IEEE 42nd Int. Conf.
Softw. Eng., New Ideas Emerg. Re-
sults, 2020, pp. 25-28.

6. C. Casalnuovo, K. Lee, H. Wang, P.
Devanbu, and E. Morgan, “Do pro-
grammers prefer predictable expressions
in code?” Cogn. Sci., vol. 44, no. 12, p.
€12921, 2020. doi: 10.1111/cogs.12921.

7. C. Casalnuovo, E. Morgan, and P.
Devanbu, “Does surprisal predict
code comprehension difficulty,” in
Proc. 42nd Annu. Meeting Cogn.
Sci. Soc., Toronto, Canada, 2020,
pp. 564-570.

10.

11.

. C. Casalnuovo, K. Sagae, and P.

Devanbu, “Studying the difference
between natural and programming
language corpora,” Empirical Softw.
Eng., vol. 24, no. 4, pp. 1823-1868,
2019. doi: 10.1007/s10664-018-9669-7.

. Z. Feng et al., “Codebert: A pre-

trained model for programming

and natural languages,” 2020,
arXiv:2002.0815S.

A. A. Ivanova et al., “Comprehension
of computer code relies primarily on
domain-general executive brain re-
gions,” Elife, vol. 9, p. €58906, 2020.
doi: 10.7554/eLife.58906.

A. Kanade, P. Maniatis, G. Bala-
krishnan, and K. Shi, “Learning

and evaluating contextual embed-
ding of source code,” in Proc. Int.

SE FOR Al

12.

13.

14.

Conf. Machine Learning, 2020, pp.
5110-5121.

R.-M. Karampatsis, H. Babii, R.
Robbes, C. Sutton, and A. Janes,
“Open-vocabulary models for source
code,” in Proc. ACM/IEEE 42nd Int.
Conf. Softw. Eng., Companion Proc.,
2020, pp. 294-295.

R. S. Malik, J. Patra, and M. Pradel, “NI-
2type: Inferring javascript function types
from natural language information,” in
Proc. IEEE/ACM 41st Int. Conf. Softw.
Eng. (ICSE), 2019, pp. 304-315.

doi: 10.1109/ICSE.2019.00045.

B. Roziere, M.-A. Lachaux, M. Szaf-
raniec, and G. Lample, “DOBF: A
deobfuscation pre-training objective
for programming languages,” 2021,
arXiv:2102.07492.

Digital Object Identifier 10.1109/MS.2021.3099682

SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE

123

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 01,2022 at 18:59:34 UTC from IEEE Xplore. Restrictions apply.

