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SE FOR AI

TAKING ADVANTAGE OF the natu-
ralness hypothesis for code, recent 
development, and research has fo-
cused on applying machine learn-
ing (ML) techniques original ly 
developed for natural language pro-
cessing (NLP) to drive a new wave 
of tools and applications aimed 

specifically for software engineering 
(SE) tasks. This drive to apply ML 
and deep learning (DL) has been an-
imated by the large-scale availability 
of software development data (e.g., 
source code, code comments, code 
review comments, commit data, and 
so on) available from open source 
platforms such as GitHub and Bit-
bucket. Commercially available 
tools that leverage this combination 

of artificial intelligence (AI) and 
SE include:

• Codota.ai [Figure 1(a)] and Kite: 
tools that use DL and NLP tech-
niques to do better in IDE code 
completion

• deepcode.ai [Figure 1(b)]: per-
forms code analysis based on 
learned rules to augment current 
static analysis tools
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From the Editor

Do you have exciting stories about novel artificial intelligence (AI) methods for 

software engineering (SE)? Why not submit them to the “SE for AI” column?  

Articles should be 1,000–2,400 words and be practitioner focused (figures and ta-

bles count as 250 words; try to include 12 references or fewer). Submit initial ideas 

or finished articles to timm@ieee.org. In this issue’s column, Anand Ashok Sawant 

and Premkumar Devanbu show us that source code is like natural language, i.e., 

it is highly repetitive and predictable in nature. This enables a whole range of 

 exciting and novel new analysis methods for SE.—Tim Menzies
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•	 CodeGuru [Figure 1(c)]: devel-
oped by Amazon to perform 
automated code reviews on 
customer code that use Amazon’s 
own Amazon Web Services APIs.

Why Does This Work Well? 
Parallels Between AI and SE 
and NLP Tasks
The naturalness hypothesis for code 
states that “though software, in the-
ory, can be very complex, in prac-
tice, it appears that even a fairly 
simple statistical model can capture 
a surprising amount of regularity 

in ‘natural’ software.” Source code, 
like natural language, is a form of 
communication between program-
mers. Much like natural language, 
more “natural” code—code that has 
lower per-token entropy—has a di-
rect impact on its readability (sub-
sequently maintainability). Source 
code, like natural language, is pre-
dictable—in fact, it might be even 
more predictable due to the repeti-
tiveness of code.

Source code is often much more 
repetitive than texts written in lan-
guages such as English (assuming 

no plagiarism). Studies have shown 
that code tokens are easier to pre-
dict than normal text.1 This is due 
not only to the simpler syntax of 
code1 but also to an adherence to 
similar programming styles across 
projects. This would indicate that 
code is often written in such a way 
that another human can under-
stand it (and not just for execution 
by a machine). In terms of model-
ing code, this can mean that code 
language models might be just as, 
or even more, effective than their 
equivalent for NLP.

FIGURE 1. Commercial tools taking advantage of the naturalness hypothesis. (a) PROBLEM: Code completion at line level that 

includes all variables is hard. SOLUTION: Using naturalness, we can learn complete code patterns from other projects to suggest 

relevant code completions. (b) PROBLEM: Finding potential issues such as duplicate code or security issues using static analysis can 

result in a lot of false positives or negatives. SOLUTION: Using naturalness, we can learn potential issues from token relationships 

from past issues to identify issues in previously unseen code. (c) PROBLEM: Manually reviewing code written by others to find bugs/

issues is not completely reliable. SOLUTION: Using naturalness, we can learn a mapping of potential code issues to a natural language 

description to generate code review comments.

(a) (b)

(c)
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A growing body of evidence1–3 
supporting the naturalness hypoth-
esis indicates that language models 
that have been commonly used in 
the NLP world applicable to SE 
problems as well. It’s not just the 
models that transfer over to the 
SE world, but there are also simi-
lar tasks that are applicable, for 
example, text summarization in 
NLP that parallels code comment 
generation. We see those language 
models for source code are used 
in much the same ways as those in 
NLP. A partial list of SE tasks that 
take advantage of the naturalness 
hypothesis include:

1.	code comment generation
2.	code retrieval
3.	code deobfuscation
4.	defect prediction
5.	API mapping
6.	code translation
7.	automated code review
8.	code completion
9.	type recovery.

To achieve any one of these tasks, 
SE research has to take advantage of 
NLP models, some examples of these 
are as follows:

1.	Code2Vec: these approaches 
utilize a bag-of-words approach 
similar to Word2Vec. Essentially, 
the vector representation for each 
token is calculated based on the 
surrounding tokens. Code2Vec4 
learns a vector representation of 
a piece of code based on paths in 
its abstract syntax tree. Figure 2 
depicts an example where a Code-
2Vec based model can label the 
semantics of a piece of code, that 
is, predict the expected name of a 
function.

2.	RNN-based language models: re-
current neural networks (RNNs) 
can be used to capture local 
sequence dependence between 
tokens. They have been shown to 
be effective for text prediction in 
the NLP world. In the SE world, 
modeling the source code using 

RNNs has been shown to be ef-
fective for code completion-based 
tasks. One such example is by 
Raychev et al., where they de-
veloped a model and tool called 
SLANG. This tool can predict 
based on what a developer has 
(partially) typed to guess what 
the complete form should be (see 
the example in Figure 3).

3.	Long short-term memory 
(LSTM)-based language models: 
simple RNNs have one major 
shortcoming where the context 
for which it learns an embedding 
of a token (i.e., the length of the 
preceding tokens that contribute) 
is limited. LSTMs, on the other 
hand, can store token information 
over long-term temporal depen-
dencies. This has made LSTM’s 
effective for NLP classification 
problems. Similarly, LSTMs are 
especially useful in the case of 
source code as variable usage and 
declaration might often be sepa-
rated by a lot of tokens. One effec-
tive use case in the SE world of an 
LSTM is a tool called NL2Type5 
(seen in Figure 4) to predict a  
JavaScript function parameter’s 
type based on the function body.

4.	Graph neural network ap-
proaches: all of the aforemen-
tioned approaches only consider 
the lexical nature of source code, 
that is, the models are based on FIGURE 2. Code2Vec used to identify semantics of a function definition.

FIGURE 3. RNN-based model used to complete snippets of code.
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token sequences. However, source 
code has semantic properties 
which can be represented as a 
graph (or tree). Graphical repre-
sentations of code semantics can 
be modeled using a graph neural 
network approach. One task for 
which it has been shown to be ef-
fective is the variable misuse task, 
where the model by Allamanis 
et al.6 learns from the relation-
ships in the program graph as to 
what variable needs to be used 
where and where it should not 
be used (see Figure 5), that is, it 
learns some information about the 
semantic flow of the source code.

5.	Transformer-based approaches: 
the current state of the art in 
NLP is 1) pretraining a larger 
transformer-based language 
model using billions of tokens 
such that it captures the underly-
ing statistical relationships be-
tween all the token in the corpus 
and 2) fine-tuning this pretrained 
model for a specific task such as 
sequence labeling. Adoption of 
this approach has recently been 
on the uptick, where we see pre-
trained models, such as Code-
Bert,7 CUBert,8 and PLBART,9 
which pretrain models using 
billions of token of source code. 
These models are then applied to 
a variety of tasks such as variable 
misuse detection, identifying the 
wrong binary type, and detection 
of the exact exception type.

What Are the Differences, 
Though?
Most of the AI + SE work parallels that 
of the NLP world. This operates under 
the assumption that code is the same 
as any natural language. However, 
there are a few differences between 
source code and natural language and 
that has certain implications.

1.	Vocabulary growth: the vo-
cabulary used in source code is 
much larger than that of natural 
language. Developers can freely 
create identifier names; this 
means that even a model trained 
on billions of tokens might en-
counter novel vocabulary. This 
can severely hinder the perfor-
mance of a model when it comes 
to generalizing performance to 
more than a small set of projects 
(out-of-vocabulary problem). One 
way to overcome this obstacle is 
using byte pair encoding where 
each token is split into subtokens 
(e.g., <LinkedList > → <Linked>  
<List >) and embeddings are 
derived for these subtokens. This 
ensures that even for unseen 
tokens, at least part of the token 
might be part of the vocabulary. 
Since the subtoken vocabulary 
includes the character set, even 
dinovo tokens could be theoreti-
cally handled. Byte pair encod-
ing works very well in practice 
for code.10 

2.	The “span” or “scope” of rele-
vant text is much wider for code: 
language models learn some 
relationships between tokens that 
are in their immediate proxim-
ity. While this works well for 
natural language, in the case of 
source code this can be especially 
tricky. For example, in a class, a 
field can be declared at the top 
of the file and the field is then 
used (read or written to) later on 
in one of the methods that might 
be at the bottom of the file and 
1,000 tokens away. This seldom 
occurs in NLP, where the subject 
and object of a piece of text can 
mostly be found in a smaller con-
text window. Even proper nouns 
tend to be reused in fairly proxi-
mate contexts. In code, learning 
this relationship between the 
declaration of the field and its 
usage can be limited by current 
hardware constraints based on 
the size of sequences and batches 
that can be fit into a GPU. Typi-
cally, on an Nvidia V100 GPU, 

FIGURE 4. The LSTM model used to detect the type of JavaScript parameters.

Parameter
Should Be of
Type Object

FIGURE 5. A graph neural network is used to detect incorrect variable usage.
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the maximum sequence size 
is 512 tokens and 16 batches, 
thereby reducing the chances 
that the field and its usage will 
be in the same sequence. To al-
leviate the issues caused by this, 
researchers have often resorted 
to only using input sequences 
that might fit on the GPU with 
all relationships preserved, thus 
discarding any data that might 
be too long. This does mean 
that most AI and SE models are 
restricted by the size (in terms 
of the number of tokens) of the 
code and do not effectively scale 
to larger programs.

3. Code is bimodal,11 admitting 
both formal and “natural” read-
ing: during this entire article 
we have operated under the 
assumption that source code is 
“natural.” One might assume 
that reading code is the same 
as reading a paragraph from 
Harry Potter, especially since 
most code appears to have been 
written to communicate with 
other humans in addition to the 

computer; clearly, it is not. This 
has led to a dual-channel hy-
pothesis for code. One channel 
is formal or algorithmic, where 
the execution of the code is 
specified. The other channel is a 
natural language channel, where 
the code is a medium of com-
munication with another human 
developer. A functional mag-
netic resonance imaging (fMRI) 
study12 has confirmed this to 
an extent where neuroscientists 
have found that when reading 
code, humans engage both the 
parts engaged with mathemat-
ics and natural language. Al l 
language models used in AI and 
SE take advantage of this natural 
channel; static analysis tools and 
compiler optimizations exploit 
the algorithmic channel. These 
“bimodal” property enables sev-
eral new directions of research, 
for example, static analysis 
methods could selectively per-
form approximations when a 
language model indicates it is 
unlikely to lead to inaccuracies; 

algorithmic approaches could be 
used as training signals to learn 
noise-resistant representations 
that could be used to fix er-
rors;13 recovering original code 
from algorithmically obfuscated 
code could be used as a training 
signal to train autoencoders.14

Going Forward
Th is research field of AI and SE has 
taken off as an increasing number of 
papers at top SE conferences utiliz-
ing state-of-the-art AI approaches. 
This does appear to reinforce this 
notion that treating code as natural 
language does work. But what does 
the future hold? As mentioned ear-
lier, code is a bit more than just a 
series of tokens there is richer infor-
mation available in code (the algo-
rithmic channel). De signing models 
and approaches that take this into 
account along with the natural chan-
nel is the next frontier for the field of 
AI and SE. We look forward to the 
new waves of research that are sure 
to follow and welcome the many 
new researchers to this field! 
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