


2

regime in which the speed of sound surpasses the elec-
tronic group velocities [71]. In this regime, the sponta-
neous emission of incoherent acoustic waves is suppressed
by kinematic constrains.

We describe the realization of the device in a TBG
tuned close to the magic angle and weakly modulated in
space by a periodic uniaxial strain or a periodic array of
screening gates, see Fig. 1a. The periodicity of the mod-
ulation defines the resonant phonon mode of the phaser.
Remarkably, for lasing in the THz range, the modula-
tion wavelength should be in the mesoscopic scale. The
electronic population inversion, necessary for the gain, is
imposed by the external leads, in a structure similar to
semiconductor laser diodes [72].

Toy model.— To develop an intuition for the lasing
mechanism of the phaser, we begin by analyzing a toy
model. Later, we numerically analyze the full band struc-
ture of the TBG, whose physics near the charge neutral-
ity point can be described by this toy model. Yet, this
model applies to more generic two-dimensional lattices in
the slow-electron regime, with low-energy physics given
by the Dirac Hamiltonian

HD(k) = ~vek · σ, (1)

where k = (kx, ky) is the in-plane crystal momentum,
σ = (σx, σy) is a vector of Pauli matrices acting in the
pseudospin basis, and ve > 0 is the electronic group
velocity. Eq. (1) is diagonalized by the Bloch states
eir·k

√
A |ψkα(r)〉, where |ψkα(r)〉 is periodic in the unit cell,

corresponding to the eigenvalues εα(k) = α~ve|k|, where
α = ± and A is the area of the system. The eigenstates
are created by the operators ĉ†kα. In the toy model, we
assume no spin or pseudospin degrees other than σ (ad-
ditional degrees of freedom such as valley, spin, and layer
indices of the TBG would not qualitatively change the
effect).

We consider a regime in which ve < cph, where
cph is the speed of sound in the material, assumed to
be uniform and isotropic. The corresponding sound
waves are described by the lattice displacement oper-
ator û(r, t) = (ûx, ûy)[73], which can be expanded in
the eigenmodes û(r, t) = 1√

A
∑

q e
iq·r−iωl(q)tcl(q)ũl(q).

Here, r = (x, y), and cl(q) is the unit vector denoting
the direction of the displacement in the mode l and crys-
tal momentum q. Focusing on the lowest energy acoustic
mode with l = 0, we assume a dispersion ω0(q) = cph|q|,
and coupling to electrons

Ĥep =

∫

d2rg(r)Ôij(r)∂iûj(r). (2)

Here, Ôij(r) is a local electronic operator with i, j =
{x, y} and g(r) denotes the coupling strength assumed
to be non-uniform in space. The spatial dependence of
g(r) is specified below.

The system is connected to two external leads imposing
population inversion for the electrons. The two leads are
electron- and hole-doped semiconductors, with the bot-
tom edge of the conduction band of the electron-doped
semiconductor and the top edge of the valence band of the
hole-doped semiconductor set at the energy ε = V . The
chemical potential of the electron-doped semiconductor
is set at ε = εtop, corresponding to the top of the upper
band of the TBG [denoted by α = +, see below Eq. (1)].
The chemical potential of the hole-doped semiconductor
is set to the charge neutrality point of the TBG, ε = 0.
For simplicity, we assume that the tunneling rate of the
electrons between the system and the leads is faster than
the decay rate of the electrons in the system due to relax-
ation and phonon emission processes [74]. With this as-
sumption and for zero-temperature leads, the occupation
probability fαk = 〈ĉ†αkĉαk〉 of the electrons can be ap-
proximated by fαk = 0 for 0 < εα(k) < V , and fαk = 1
otherwise, imposing an inverted population in the bot-
tom of the upper band, see Fig. 1b.

Such an inverted population is virtually decoupled
from the phonons to the leading order in the electron-
phonon coupling when this coupling is spatially uniform.
This is because, in the “slow-electron” regime, it is im-
possible to simultaneously conserve energy and crystal
momentum in a single-phonon emission. Therefore, in
this case, the incoherent phonon background field cre-
ated by the non-equilibrium electronic state is suppressed
compared to wide-band materials. This virtual decou-
pling between the electrons and the phonons provides
an important baseline condition for lasing. However, the
electrons should be coupled to at least one phonon mode,
to generate a coherent beam.

Following the concept of free-electron lasers [75–78],
emission in a selected mode can be induced by spatially
modulated electron-phonon coupling coefficient, g(r). In
what follows, we consider a coupling modulated along the
x̂ direction, with a wavelength λu = 2π/ku, and uniform
along ŷ, g(r) = g0+2g1 cos(kux), see Fig. 1a for illustra-
tion. We denote the region of the system where g1 6= 0,
a nano-undulator, by analogy with a magnetic undula-
tor in free-electron lasers. The physical realization of the
nano-undulator in the TBG is discussed below.

In the nano-undulator, the conservation of crystal mo-
mentum in a phonon emission process obeys k′ − k =
q + nkux̂, where k and k′ are respectively the crystal
momenta of the electron before and after the emission of
a phonon with momentum q, and n = {−1, 0, 1} [see
Fig. 1c]. The additional momentum shift arises from
the expansion of g(r) in its spatial Fourier components,
g(r) =

∑

n gne
inkux, where g1 = g−1. The phase shift

of the electron-phonon components corresponds to a mo-
mentum shift in Eq. (2). In turn, the energy conservation
is not affected by the static modulation of the coupling
and reads ε+(k

′) − ε+(k) = ~ω0(q). For phonons prop-
agating in the x̂-direction, the energy and crystal mo-
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ve = 1.5× 106 cm/sec.
Lasing threshold.— To lase, the device should reach

the lasing threshold, i.e., the gain should exceed the
loss. The loss of phonons mostly occurs due to electron-
phonon, phonon-phonon, and impurity scattering. The
lifetime of acoustic phonons in clean graphene can reach
τph ≈ 0.3µsec, for long-wavelength phonons [97], which
results in γloss = (τphcph)

−1 ≈ 2×10−4 µm−1. This value
is below the gain of the system, estimated slightly above
the resonance peak.

To have a sufficient gain, the system can be placed
in an acoustic cavity. Such cavities were realized, e.g.,
in Ref. 98. The phonon-loss in a cavity is given by
γcavity = − log(R1R2)/(2Lu), where R1 and R2 are the
reflectivities of the two mirrors. For R1R2 = 0.97 and
Lu ≈ 5µm, we obtain γcavity ≈ 0.001µm−1. This re-
sults in a Q-factor of the cavity for the phonons of about
Q ∼ 105.

Discussion.— In this manuscript, we presented a
model of a phonon laser device based on the “narrow-
band” regime, dubbed a phaser. The phaser generates
coherent phonon beams in the THz range. We demon-
strated two realizations of the phaser in the TBG tuned
near the magic angle, with a spatially modulated uniax-
ial strain and an array of screening gates [see Fig. 1a].
The periodicity of the structure can control the resonant
frequency of the device. The phaser opens up new av-
enues in driving the TBG into a non-equilibrium regime
through moiré Floquet engineering [99, 100], extending
the driving sources to THz frequencies and finite mo-
menta [101].

The lattice oscillations caused by the phonon beam
are coupled to plasmon modes through Coulomb inter-
actions and the electron-phonon coupling. The result-
ing charged modes generate a THz electromagnetic field
evanescent in the direction perpendicular to the TBG
plane. We estimate the electric field amplitude near the
surface [79] by | ~E| = 2

√
2πeρ0λq

2|〈û〉|. Here, λq de-
notes the relative charge fluctuation which we estimate
as λq ≈ 2×10−2, and ρ0 is the electronic density taken as
ρ0 ≈ 1/a2m. Assuming that the phaser in the saturation
regime creates lattice waves of the order of |〈û〉| ≈ 0.1a,

we estimate, | ~E| ≈ 30 kV/m. Such an electric field can
be detected by placing a dipole antenna near the sur-
face of the TBG. An oscillating evanescent electric field
can be transformed into THz electromagnetic radiation,
through a meta-material structure. We leave the analysis
of this problem for future studies.

In our analysis, we focused on the single-particle
electronic bands of the TBG. In the presence of the
electron-electron interactions, the Fermi velocity may be
renormalized, yet the slow-electron regime can be still
achieved [102]. Furthermore, the Dirac dispersion near
the charge neutrality point is protected by the C2T sym-
metry (two-fold rotation times time-reversal) and will be
preserved unless it is spontaneously broken [103].

The toy model of the phaser [Eq. (1)] can be realized
in other experimental platforms. For example, a “slow-
band” regime can be realized in cold atoms, using Bose-
Fermi mixtures [104, 105]. We note, however, that the
energy scales of cold atom setups are a few orders of
magnitude smaller than in solids, giving rise to a different
range of resonant frequencies.

We thank Kenneth Burch, Jerome Faist, Mohammad
Hafezi, Atac Imamoglu, Cyprian Lewandowski, Marios
Michael, Leo Radzihovsky, and Christopher Yang for
valuable discussions. G. Refael and I. Esin are grateful
for support from the Simons Foundation and the Institute
of Quantum Information and Matter, as well as support
from the NSF DMR grant number 1839271. E. Demler
and I. Esterlis acknowledge support from the ARO grant
“Control of Many-Body States Using Strong Coherent
Light-Matter Coupling in Terahertz Cavities”. This work
is supported by ARO MURI Grant No. W911NF-16-1-
0361, and was performed in part at Aspen Center for
Physics, which is supported by National Science Founda-
tion grant PHY-1607611.

[1] M. Först, C. Manzoni, S. Kaiser, Y. Tomioka,
Y. Tokura, R. Merlin, and A. Cavalleri, “Nonlinear
phononics as an ultrafast route to lattice control,” Nat.
Phys. 7, 854–856 (2011).

[2] Nianbei Li, Jie Ren, Lei Wang, Gang Zhang, Peter
Hänggi, and Baowen Li, “Colloquium: Phononics: Ma-
nipulating heat flow with electronic analogs and be-
yond,” Rev. Mod. Phys. 84, 1045–1066 (2012).

[3] Alexander A. Balandin and Denis L. Nika, “Phononics
in low-dimensional materials,” Mater. Today 15, 266–
275 (2012).

[4] Martin Maldovan, “Sound and heat revolutions in
phononics,” Nature 503, 209–217 (2013).

[5] Alexander A. Balandin, “Phononics of Graphene and
Related Materials,” ACS Nano 14, 5170–5178 (2020).

[6] Alaska Subedi, Andrea Cavalleri, and Antoine Georges,
“Theory of nonlinear phononics for coherent light con-
trol of solids,” Phys. Rev. B 89, 220301 (2014).

[7] Roman Mankowsky, Michael Först, and Andrea Cav-
alleri, “Non-equilibrium control of complex solids by
nonlinear phononics,” Reports Prog. Phys. 79, 064503
(2016).

[8] D. M. Juraschek, M. Fechner, and N. A. Spaldin, “Ul-
trafast Structure Switching through Nonlinear Phonon-
ics,” Phys. Rev. Lett. 118, 054101 (2017).

[9] R. Mankowsky, A. Subedi, M. Först, S. O. Mariager,
M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Glow-
nia, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin,
T. Loew, B. Keimer, A. Georges, and A. Cavalleri,
“Nonlinear lattice dynamics as a basis for enhanced su-
perconductivity in YBa2Cu3O6.5,” Nature 516, 71–73
(2014).

[10] M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser,
A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli,
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Steffen Michaelis de Vasconcellos, David Perez de Lara,
Rudolf Bratschitsch, Michael Rohlfing, and Andres
Castellanos-Gomez, “Biaxial strain tuning of the opti-
cal properties of single-layer transition metal dichalco-
genides,” npj 2D Mater. Appl. 1, 1–7 (2017).

[85] U. Ludacka, M. R.A. Monazam, C. Rentenberger,
M. Friedrich, U. Stefanelli, J. C. Meyer, and J. Ko-
takoski, “In situ control of graphene ripples and strain
in the electron microscope,” npj 2D Mater. Appl. 2, 1–6
(2018).

[86] Riju Banerjee, Viet Hung Nguyen, Tomotaroh Granzier-
Nakajima, Lavish Pabbi, Aurelien Lherbier, Anna Ruth
Binion, Jean Christophe Charlier, Mauricio Terrones,
and Eric William Hudson, “Strain Modulated Superlat-
tices in Graphene,” Nano Lett. 20, 3113–3121 (2020).

[87] C. C. Hsu, M. L. Teague, J. Q. Wang, and N. C. Yeh,
“Nanoscale strain engineering of giant pseudo-magnetic
fields, valley polarization, and topological channels in
graphene,” Sci. Adv. 6 (2020).

[88] Zhen Bi, Noah F.Q. Yuan, and Liang Fu, “Designing
flat bands by strain,” Phys. Rev. B 100, 035448 (2019).

[89] Eros Mariani and Felix Von Oppen, “Temperature-
dependent resistivity of suspended graphene,” Phys.
Rev. B 82, 195403 (2010).

[90] E. H. Hwang and S. Das Sarma, “Dielectric function,
screening, and plasmons in two-dimensional graphene,”
Phys. Rev. B 75, 205418 (2007).

[91] Felix Von Oppen, Francisco Guinea, and Eros Mariani,
“Synthetic electric fields and phonon damping in car-
bon nanotubes and graphene,” Phys. Rev. B 80, 075420
(2009).

[92] Hidekatsu Suzuura and Tsuneya Ando, “Phonons and
electron-phonon scattering in carbon nanotubes,” Phys.
Rev. B 65, 235412 (2002).
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PHONON INSTABILITY FROM THE EQUATION

OF MOTION FORMALISM

In this section, we derive the equations of motion for
the electronic and bosonic operators and demonstrate an
instability of the resonant phononic mode. For simplicity,
here and throughout these notes we work in the units in
which ~ = 1. We consider the electronic Hamiltonian

ĤD =
∑

k,α=±
εα(k)ĉ

†
kαĉkα, (1)

where εα(k) = αve|k|. Similarly the Hamiltonian for the
acoustic phonons reads

Ĥph =
∑

q

ω0(q)b̂
†
q b̂q, (2)

where ω0(q) = cph|q|. The electron-phonon coupling is
given by

Ĥep =
∑

k,q,n

gn[ĉ
†
k,αĉk+Q

n
,α′ b̂q + ĉ†k,αĉk−Q

n
,α′ b̂†q], (3)

where Qn = q+nku and n = {−1, 0, 1}. The full Hamil-
tonian of the system is given by the sum, Ĥ = ĤD+Ĥph+

Ĥep. The equations of motion for the operators in the

Heisenberg picture are given by −i∂tĉkα = [Ĥ, ĉkα] and
−i∂tb̂q = [Ĥ, b̂q]. Explicit calculation of the commutator
yields

−i∂tĉkα = −εα(k)ĉkα −
∑

q,n

gn[ĉk+Q
n
,α′ b̂q + ĉk−Q

n
,α′ b̂†q].

(4)

The equation for ĉ†kα is obtained from the com-

plex conjugate. Next, we compute −i∂t〈ĉ†kαĉk′,α′〉 =

−i〈[∂tĉ†kα]ĉk′,α′〉 − i〈ĉ†kα[∂tĉk′,α′ ]〉, which reads

− i∂t〈ĉ†kαĉk′α′〉 = [εα(k)− εα′(k′)]〈ĉ†kαĉk′α′〉+
+ g

∑

q,nβ

[〈ĉ†k+Q
n
β ĉk′α′〉〈b̂q〉+ 〈ĉ†k−Q

n
β ĉk′α′〉〈b̂†q〉]−

− g
∑

q,nβ

[〈ĉ†kαĉk′+Q
n
β〉〈b̂†q〉+ 〈ĉ†kαĉk′−Q

n
β〉〈b̂q〉].

(5)

Similarly,

−i∂t〈b̂q〉 = −ω0(q)〈b̂q〉 −
∑

n,k

gn〈ĉ†kαĉk+Q
n
,α′〉 (6a)

−i∂t〈b̂†q〉 = ω0(q)〈b̂q〉+
∑

n,k

gn〈ĉ†k+Q
n
αĉk,α′〉. (6b)

Next, we perform the transformation −i∂t → ω and
solve for the eigenmodes. To simplify this problem, we
assume a single coherent phonon mode with momentum
q corresponding to Qn, and set k′ = k +Qn in Eq. (5),
yielding

ω〈ĉ†kαĉk+Q
n
,α′〉 =[εα(k)− εα′(k +Qn)]〈ĉ†kαĉk+Q

n
α′〉+

+ gn[fk+Q
n
,α′ − fk,α]〈b̂q〉.

(7)

Here, we defined fkα = 〈ĉ†kαĉkα〉 and neglected expecta-
tion values with momentum 2Qn. Combining Eq. (7)
and Eq. (6a), we obtain a linear equation. Imagi-
nary eigenvalues correspond to an exponentially growing
mode of phonons hybridized with electron-hole excita-
tions. An approximate solution can be obtained if we
assume [εα′(k + Qn) − εα(k)] = ∆ε, and α = α′ = +.
Then one can sum both sides of Eq. (7) over k, leading
to and eigenvalue equation

(ω +∆ε)(ω + ω0(q)) = −g2n
∑

k

∆fk, (8)

where ∆fk = fk+Q
n
,+ − fk,+ The solution reads

ω± =
∆ε+ ω0(q)

2
± 1

2

√

(∆ε− ω0(q))2 − 4g2n
∑

k

∆fk.

(9)
Therefore, near the resonance the eigenvalues obtain
an imaginary component, when (∆ε − ω0(q))

2 <
4g2n

∑

k ∆fk.

BOLTZMANN EQUATION FROM THE

EQUATION OF MOTION FORMALISM

Here, we derive the Boltzmann equation [Eq. (6) in
the main text] from the equations of motion, Eq. (4) and
Eq. (6). First, we transform the operators to the “inter-

action picture”, ĉkα = e−iεα(k)tĉIkα and b̂q = e−iω0(q)tb̂Iq.
Next, we integrate both sides of Eq. (4) over t, leading
to

ĉIkα(t) = iĉ0kα−

−i
∫ t

0

dt′
∑

q,n

gne
(∆εQn

−ω0(q))t
′

ĉIk+Q
n
,α′ b̂Iq−

−i
∫ t

0

dt′
∑

q,n

gne
(∆ε−Qn

+ω0(q))t
′

ĉIk−Q
n
,α′(b̂Iq)

†,

(10)

where ∆εQ = εk+Q−εk and ĉ0kα = ĉIkα(0). To the linear

order in gn, we can approximate the operators ĉI and b̂I
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on the r.h.s. by ĉ0 and b̂0, defined for gn = 0. Therefore,
to this order in gn,

ĉIkα(t) =iĉ
0
kα +

∑

q,n

gnF (∆εQ
n
− ω0(q), t)ĉ

0
k+Q

n
,α′ b̂0q+

+
∑

q,n

gnF (∆ε−Q
n
+ ω0(q), t)ĉ

0
k−Q

n
,α′(b̂0q)

†,

(11)

where F (∆ε, t) = −i
∫ t

0
dt′ei∆εt′ = 1−ei∆εt

∆ε . Next, we

compute 〈(ĉIkα)†ĉIkα〉, yielding

fkα =f0kα +
∑

q,n

|F (∆εQ
n
− ω0(q), t)|2f0k+Q

n
,αnq+

+
∑

q,n

|F (∆ε−Q
n
+ ω0(q), t)|2f0k−Q

n
,αnq.

(12)

where fkα = 〈(ĉIkα)†ĉIkα〉, f0kα = 〈(ĉ0kα)†ĉ0kα〉 and nq =
〈(b0q)†b0q〉 ≈ 〈b0q(b0q)†〉. In the long time limit, t → ∞,
we approximate |F (∆ε, t)|2 → 2πtδ(∆ε). Differentiating
over time, we arrive at

ḟkα =2π
∑

q,n

δ(∆εQ
n
− ω0(q))f

0
k+Q

n
,αnq+

+2π
∑

q,n

δ(∆ε−Q
n
+ ω0(q))f

0
k−Q

n
,αnq.

(13)

ANALYTICAL ESTIMATION OF THE GAIN

Here, we analytically estimate the gain in the toy
model [given in Eq. (1) in the main text], deriving Eq. (8)
in the main text. Our goal is to evaluate the period-
averaged power, P0

e (ω), of the phonon mode with fre-
quency ω, given by Eq. (6) in the main text in the
small-gain limit, γω → 0. For simplicity, we assume

Mαα′

k,k′ =
(2π)2

A q2|u0|2g21〈O〉2∑n=± δ(k−k′−Qn), where
we defined Q± = (q ± ku)x̂. Therefore, the gain can be
written as Pe(ω) =

∑

αα′,n[P+
αα′,n(ω)−P−

αα′,n(ω)], where

Pζ
αα′,n = 2πP0

∫

d2k

(2π)2
fαkδ(εα(k)−εα′(k−ζQn)+ζω),

(14)
P0 = ωq2|u0|2g21〈O〉2, and ζ = ±. We also assume fαk =
0 for 0 < εα(k) < V , and fαk = 1, otherwise. The
expression breaks up into overlaps of two cones in the
energy-momentum space, εα(k) and εα′(k − Qζ) ± ω,
where εα(k) = αve|k|, for α = ± [see below Eq. (1) in
the main text].

First, we evaluate P+
++,n corresponding to the gain in

the system. It accounts for the intersection of ε+(k) and
ε+(k −Qn) + ω in the range max(V, ω) < ε+(k) < V +
ω. For ω > ωRn [see Eq. (3) in the main text for the
definition of ωR±], the two cones do not intersect, giving

rise to zero contribution to the gain. In the opposite case,
when ω < ωRn, the two cones intersect along a line. The
maximal overlap is expected when ω . ωRn, where the
two cones are nearly tangential. Focusing on this case, we
define momentum in a spherical system of coordinates,
such that k = (k cos(θ), k sin(θ)), where k = |k| and θ is
the angle of k relative to the x̂ axis. The intersection of
the cones occurs near θ1 = 0 when q + nku > 0 or near
θ2 = π when q+nku < 0. We expand ε+(k−Qn), to the
leading (quadratic) order in δθ = θ−θ1/2, yielding ε+(k−
Qζ) = ve|k − Qn| + vekQn

2|k−Qn|δθ
2 + O(δθ4), where Qn =

|Qn|. At this order in δθ, the intersection ε+(k) = ε+(k−
Qn)+ω, occurs at δθ

±
0 = ±

√

(veQn − ω) 2(k−Qn)
vekQn

, where

we considered k > Qn, corresponding to the dominant
contribution. Note, that veQn = ωRn identically.
Next, we split the integral in Eq. (1) to an inte-

gral over the energy ε = vek and the angle δθ, as
∫

d2k
(2π)2 =

∫

dεND(ε)
∫ 2π

0
dθ
2π . The density of states for

the dispersion ε+(k) is given by ND(ε) = ε/(2πv2e ). The
energy conserving δ-function can be simplified in the
angular coordinates as δ(ε+(k) − ε+(k − Qn) − ω) =

ε−ωRn

εωRn|δθ+
0 |
∑

i=± δ(δθ − δθi0). The angular integral there-

fore can be trivially performed due to the δ-function,
leaving the energy integral

P+
++,n = P0

∫ ω+V

max(ω,V )

dε
2(ε− ωRn)

εωRn|θ+0 |
ND(ε). (15)

We implicitly assume that P+
++,n = 0 for ω > ωRn or

ε < ωRn. We therefore obtain

P+
++,n =

P0I+
n (ω, V )Θ(ωRn − ω)

πv2e
√

2ωRn(ωRn − ω)
, (16)

where I+
n (ω, V ) =

∫max(ωRn,ω+V )

max(ωRn,ω,V )
dε
√
ε
√
ε− ωRn, which

has an exact analytic expression. In the limit V ≫ ωRn,
I+
n (ω, V ) = V ωRn.
Next, we evaluate P−

−+,n accounting for an intersec-
tion of ε−(k) and ε+(k + Qn) − ω in the range −ω <
ε+(k) < min(0, V − ω) contributing to a negative gain
(i.e., absorption of the phonons by the electrons). The

intersection occurs at δθ±0 = ±
√

(ω − veQn)
2(Qn−k)
vekQn

for

k < Qn. Integration over the energy and angle in the
range ε ∈ [max(0, ω − V ), ω], using δ(ε−(k) − ε+(k +
Qn) + ω) = ωRn−ε

εωRn|δθ+
0 |
∑

i=± δ(δθ − δθi0), yields

P−
−+,n =

P0I−
n (ω, V )Θ(ω − ωRn)

πv2e
√

2ωRn(ω − ωRn)
, (17)

where I−
n (ω, V ) =

∫ ωRn

min(ωRn,max(0,ω−V ))
dε
√
ε
√
ωRn − ε.

The total contribution is shown in Fig. 2b in the
main text. For ω = ωRn − δωn, where δωn ≪
ωRn and in the limit V ≫ ωRn, we approximate

Pe(ω) ≈ P0ND(V )
√

2ωRn

δωn
. Therefore, the gain, as
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follows from Eq. (7) in the main text reads γω =
ωg2

1〈O〉2a2

c3
ph

M
ND(V )

√

2ωRn

δωn
.

THE BISTRIZER-MACDONALD MODEL OF

THE TBG

In this section, we present the continuum model that
describes the low-energy physics of the TBG near the
charge neutrality. Our goal is to outline the model that
we used in the numerical simulations and to estimate the
energy scale of the spatially modulated electron-phonon
coupling due to the uniaxial strain and an array of screen-
ing gates. Therefore, we begin with a continuum model
with a generic weak strain and screened electron-phonon
interaction.

The TBG consists of two graphene monolayers twisted
by a relative angle θ. Each untwisted graphene mono-
layer, denoted by l = 1, 2, comprises a honeycomb lat-
tice of carbon atoms with a lattice constant of a =
0.246 nm and reciprocal vectors G1,2 = 2π

a (1,± 1√
3
). The

graphene band structure exhibits two valley points at
K± = ∓(G1 + G2)/3, where the electrons have nearly
Dirac dispersion. Our model is linearized around the val-
ley points giving rise to the valley number, ξ = ±. Under
a uniaxial strain and a twist, the low energy physics of
each monolayer, at valley ξ, is given by [1, 2]

h
(l)
ξ = −vF [(1+ ET

l )(k−D
(l)
ξ + ξA

(l)
ph)] · (ξσx, σy) +Φ

(l)
ph.

(18)
Here, vF /a = 2.14 eV, σx and σy are Pauli matrices act-
ing in the sublattice basis {|A〉, |B〉} of each monolayer
(σx|A〉 = |B〉), El is the strain and rotation tensor, given

for small deformations by El =

(

ǫxx ǫxy − θl
ǫyx + θl ǫyy

)

,

where θ1,2 = ±θ/2 is the rotation angle of each mono-

layer. The vector D
(l)
ξ = (1 − ET

l )Kξ − ξA includes
the modified position of the valley points due to the
deformation and an effective gauge connection imposed

by the strain, reading A =
√
3

2a β(ǫxx − ǫyy, ǫxy), with
β ≈ 3.14. Eq. (18) also includes coupling to acoustic
phonons, represented by the effective gauge connection

A
(l)
ph =

√
3

2a β(û
(l)
xx − û

(l)
yy , û

(l)
xy) and by the diagonal term

Φ
(l)
ph = D(u

(l)
xx +u

(l)
yy). Here, ûij = (∂iû

(l)
j + ∂j û

(l)
i )/2, and

û
(l)
i (r, t) is the displacement operator in the direction
i = {x, y} and layer l. Each monolayer has an additional
spin degree of freedom which is degenerate in the model.

For ǫij = 0 and β = D = 0, the twisted structure
exhibits an emergent moiré lattice with a honeycomb
structure, described by the reciprocal vectors G

m
1,2 =

Gm(± 1√
3
, 1), where Gm = 2π

am
and am = a/[2 sin(θ/2)].

The Hamiltonian describing the low-energy physics of the
TBG is obtained by combining Eq. (18) describing mono-
layers and interlayer hopping terms Tξ, yielding[1, 3, 4]

for the valley ξ,

Hξ =

(

h
(1)
ξ T †

ξ

Tξ h
(2)
ξ

)

. (19)

Here, the interlayer hopping is approximated by

Tξ(r) =

(

u u′

u′ u

)

+

(

u u′w−1

u′/w u

)

eiξG
m
1 ·r +

(

u u′w
u′/w−1 u

)

eiξG
m
2 ·r in the sublattice basis,

where w = ei2πξ/3, and we consider u = 0.0797 eV,
u′ = 0.0975 eV. Fig. 3a in the main text shows the
spectrum of a single valley of the TBG, described by
Eq. (19), for ǫij = β = D = 0.
Next, we discuss the realizations of the nano-

undulator. We begin by discussing a spatially modulated
uniaxial strain along the x direction. We parametrize
such a strain by ǫxx = ǫ0 cos(kux), where ǫ0 is the am-
plitude of the strain, assumed to be small ǫ0 ≪ 1, and
ǫxy = ǫyx = ǫyy = 0. The effective electron-phonon cou-
pling in the presence of the strain is given by the linear

in ǫ0û
(l)
ij term in Eq. (18) . Expanding to this order we

arrive at

he−p
l = −vF

√
3

2a
βǫ0 cos(kux)(û

(l)
xx − û(l)yy)σ

x. (20)

By comparing Eq. (20) and Eq. (2) in the main text, we

find g1 =
√
3

4a vFβǫ0. For ǫ0 ≈ 5% strain, we estimate
g1 ≈ 0.15 eV, corresponding to γ0 ≈ 0.02µm−1.
Another realization is based on a periodic array of

gates placed at the distance d from the TBG. The
gates modify the screening efficiency of the interaction
between the electronic charge density and the lattice
ions[5–11]. For a phonon of momentum q, the renor-
malized coupling term near the gate can be estimated
by D = D0q/[q + qTF tanh(qd)], where we use the esti-
mate for the Thomas Fermi wavevector[12] qTF ≈ 1 nm−1

. For a periodic structure of gates along x̂ with pe-
riodicity λu, and in the limit qTF ≫ q, 1/d, the cou-
pling approximately oscillates between Dmin ≈ D0q

qTF
and

Dmax ≈ D0

1+qTFd
. Comparing with Eq. (2) in the main

text, we estimate g1 ≈ 1
4

D0

1+qTFd
andO ∼ 1. For qTFd ≈ 3

and D0 = 50 eV, we estimate g1 ≈ 3 eV. For this value
of g1, we obtain γ0 ≈ 8.5µm−1.

COUPLING OF THE PHONONS TO PLASMON

MODES

In this section, we discuss the coupling of phonons
to plasmon modes, giving rise to an evanescent THz-
oscillating electromagnetic field. To describe this ef-
fect, we assume a uniform density of electrons ρ0e modu-
lated by small fluctuations represented by the displace-
ment operator ue(r, t), resulting in the density opera-
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tor, ρ̂e(r, t) = ρ0[1 − ∇ · ûe(r, t)]. Similarly, the den-
sity operator of the ions modulated by the phonon dis-
placement field û(r, t) [see the main text], is given by
ρ̂L(r, t) = ρ0L[1 −∇ · û(r, t)], where ρ0L is the density of
ions. For uniform densities (when ûe = û = 0), the sam-
ple is neutral, corresponding to ρ0 = ZLρ

0
L, where ZL is

the ions’ charge. Plasma modes in the electronic density
and phonon modes in the ions, give rise to local electric
charge density given by δ̂ρ(r, t) = ρ0∇·[û(r, t)−ûe(r, t)].
This charge density, in turn, creates an oscillating electric
field.

The dynamics of the electronic density fluctuations is
described by the Hamiltonian

Ĥe =

∫

d2r

a2m

[

1

2me
|π̂e(r)|2 +

κe
2
|∂rûe(r)|2

]

. (21)

Here, π̂e(r) is the conjugate momentum of ûe(ε), me is
an effective electron mass[13] and κe is related to the
electronic compressibility, which near the Dirac cone [see
Eq. (1) in the main text], can be approximated as κe ≈
ve/am, where am = a/(2 sin(θ/2)). Similarly, the lattice
displacement is described by the Hamiltonian

ĤL =

∫

d2r

a2

[

1

2M
|π̂(r)|2 +

Mc2ph
2

|∂rû(r)|2
]

. (22)

The electronic and the ionic densities are coupled by the
Coulomb repulsion between the charge densities eδ̂ρ at
different positions, which is described by the Hamiltonian

ĤC =

∫∫

d2rd2r′VC(r − r′)δρ̂(r)δρ̂(r′), (23)

where VC(r − r′) = e2/|r − r′|. We also consider the
electron-phonon coupling [see Eq. (2) in the main text]
written in the form

Ĥep = −
∫

d2rg(r)ρ0e(∇ · ûe)(∇ · û). (24)

The equation of motion for the displacement operators in
the Heisenberg picture driven by the Hamiltonian Ĥ =
Ĥe + ĤL + ĤC + Ĥep, reads ∂tûe = π̂e/me and ∂tû =
π̂/M . In turn, the equation of motion for the conjugate
momenta reads

∂tπ̂e = κe∂
2
rûe − 2a2m∂rφ̂(r)− a2mg(r)ρ0∂

2
rû, (25)

where φ̂(r) =
∫

d2r′VC(r−r′)ρ0eδρ̂(r
′). Similarly, for the

phonon conjugate momentum, we obtain

∂tπ̂ =Mc2ph∂
2
rûe + 2a2∂rφ̂(r)− a2g(r)ρ0∂

2
rûe. (26)

Differentiating over time the equations of motion of the
displacement fields and combining with equations of mo-
tion for the conjugate momenta, we arrive at

M∂2t û =Mc2ph∂
2
rû+ 2a2∂rφ̂(r)− a2g(r)ρ0∂

2
rûe(27a)

me∂
2
t ûe = κe∂

2
rûe − 2a2m∂rφ̂(r)− a2mg(r)ρ0∂

2
rû.(27b)

To find the eigenmodes of the coupled differential equa-
tion, we substitute û(r, t) = 1√

A û(q, ω)eiq·r−iωt and

ûe(r, t) =
1√
A ûe(q, ω)e

iq·r−iωt, leading to

ω2û = c2phq
2û+

aqvC
M

(û− ûe)−
a2q2vD
M

ûe (28a)

ω2ûe =
κeq

2

me
ûe −

a2mqvC
ame

(û− ûe)−
a2mq

2vD
me

û,(28b)

where we used the surface Fourier transform of F {VC} =
2πe2/q, take only the constant in space component of
g(r), and defined vC = 4πe2ρ20a, vD = g0ρ0. We can
rewrite the latter equation as an eigenvalue problem

ω2~U = K~U, (29)

where K =

(

c2phq
2 + aqvC

M −amqvC
M

− amaq2vD

M

−amqvC
M

− amaq2vD

M
κe

me
q2 +

a2
mqvC
ame

)

,

~U = ((am/a)û/
√
me, ûe/

√
M)T , and M =

√
Mme. The

eigenvalues to the leading order in q read

ω2
+ =

a2mqvC
ame

(

1 +
a2me

a2mM

)

+O(q2) (30a)

ω2
− =

q2

1 + a2me

a2
mM

(

c2ph +
a2κe
a2mM

− 2a2vD

)

+O(q3),(30b)

respectively corresponding to the plasmon and phonon
modes. The plasmon eigenmode, corresponding to ω+,
reads ûe/û = −amM

ame
+O(q). Similarly, the phonon eigen-

mode, corresponding to ω−, reads ûe/û = 1+λq+O(q2),
where

λ = a
(a2mM − a2me)vD
(a2mM + a2me)vC

+ a
c2phmeM −Mκe

(a2mM + a2me)vC
. (31)

Therefore, for q → 0 phonons, ûe → û, corresponding to
δρ→ 0. For a finite momentum excitation, we find

δρ̂(r, t) = ρ0λq
2û(r, t). (32)

For q = qx̂ and ω = ω−, the charge density wave in the
x̂ direction gives rise to an oscillating current density in
the same direction, as follows from the continuity equa-
tion Jx(r, t) = −ω

q 〈δρ̂(r, t)〉. The current density gener-
ates an oscillating magnetic field which near the sample
plane (z = 0) is oriented mostly in the ŷ direction and can
be estimated by Ampere’s law as By(r, t) =

2πe
cℓ
Jx(r, t),

where r = (x, y, z = 0) and cℓ is the speed of light. For
z > 0, this oscillating magnetic field propagates accord-
ing to the electro-magnetic wave equation. Assuming
By(r, t) = By(z = 0, t)eikzz, we find k2z = ω2/c2ℓ − q2.
Since, cℓ ≫ cph, kz obtains imaginary values, corre-
sponding to an evanescent electromagnetic wave. The
corresponding electric field is given by ~E = −i cℓω ~∇× ~B,

yielding ~E(r, t) = − cℓ
ω (x̂kz− ẑq)By(r, t). In terms of the

charge densities, the electric field reads

Ex = 2πe〈δρ̂〉e−|kz|z(kz/q) (33a)

Ez = −2πe〈δρ̂〉e−|kz|z, (33b)
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corresponding to the amplitude

| ~E| = 2πeρ0λq
2|〈û(r, t)〉|e−|kz|z

√

1 + |kz/q|2. (34)

We estimate Eq. (31) by λ ≈ avD/vC. Taking ρ0 =
1/a2m, and g0 ≈ 50 eV, we find λ ≈ 2a. Assuming at the
laser saturation the displacement vector is |〈û〉| ≈ 0.1a,
taking qa ≈ 10−2, and focusing on the near field z ≪
|kz|−1, we estimate | ~E| ≈ 30 kV/m.
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