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The hyperbolic space affords an infinite number of regular tessellations, as opposed to the Euclidean
space. Thus, the hyperbolic space significantly extends the design space lattices, potentially providing
access to unexplored wave phenomena. Here we investigate the dynamic behavior of hyperbolic tes-
sellations governed by interactions whose strengths depend upon the distances between neighboring
nodes. We find eigen-modes that are primarily localized either at the center or towards the boundary
of the Poincaré disk, where hyperbolic lattices are represented. Hyperbolic translations of the seeding
polygon produce distorted lattices, leading to a redistribution of the eigen-modes akin to edge-to-edge
transitions. The spectral flow associated with these deformed lattices reveals a rich behavior that is
characterized by modes that are spatially asymmetric and localized. The strength of the localization can
be predicted from the slopes of the corresponding spectral branches, suggesting a potential topological
origin for the observed phenomena. The rich yet predictable spectral flow and the high modal density
of these lattices, along with the propensity of their modes to be strongly localized, suggest potential
applications of hyperbolic lattices as vibration sensors, which operate over a large range of frequencies
and exploit the sensitivity of localized modes to perturbations. In addition, hyperbolic lattices can
inform the design of architected structural components with strong vibration attenuation and isolation
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capabilities.
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1. Introduction

Significant attention has been recently devoted to hyperbolic
lattices for applications related to mathematics, computer science
and most recently, photonics [1-3]. These lattices tessellate the
hyperbolic space, which in contrast to the Euclidean space, affords
the opportunity for an infinite number of regular tessellations.
Thus, hyperbolic lattices significantly extend the design space
typically associated with lattices in Euclidean space, which are
restricted to 2, 3, 6-fold symmetries as stipulated by the crystal-
lographic restriction theorem [4]. Regular hyperbolic tessellations
are obtained through a series of reflections and translations in
hyperbolic space which lead to structures whose hierarchical
patterns may be reflected in their physical properties and overall
performance. The exploration of such properties and performance
as it relates primarily to dynamics and vibrations is one of the
goals of this study.

Recent investigations have employed hyperbolic lattice ge-
ometries for the demonstration of the existence of spectrally-
isolated degenerate flat bands and unusual density of states
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for circuit quantum electrodynamics [1,2]. Also, topological phe-
nomena in hyperbolic geometry for lattices under a uniform,
pseudospin-dependent magnetic field, were shown to realize a
non-Euclidean analog of the quantum spin Hall effect [3], and
to display novel manifestations of the bulk-boundary correspon-
dence principle [5]. A distinctive feature of these prior studies
is that the interactions do not depend upon the distance of
neighboring sites. In mechanics, such distance is of primary im-
portance as it is intrinsically tied to the interaction strength. This
key difference makes the study of hyperbolic lattices governed
by mechanical interactions both novel and distinct relative to
prior studies in terms of fundamental properties and potential
relevance to applications. These applications include, for example,
sensors, lightweight large structures, RF systems, and phase-array
reflectors, all of which heavily rely on sensitivity to structural
changes, on structural stability and on the ability to isolate and
confine vibrations.

The objective of this paper is to conduct a preliminary inves-
tigation of the dynamic properties of hyperbolic lattice configu-
rations. The interest lies on the broad variety of tessellations that
are associated with hyperbolic geometries, by their inherent hi-
erarchical configurations, and by their natural development onto
curved surfaces. The study of hyperbolic lattices in mechanics is
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Fig. 1. Hyperbolic lattices corresponding to successive generations g: (a) lattices corresponding to Schlifli symbol {6, 4}, and (b) {8, 3} lattice (b).

at its infancy, and as such it is rich in open questions as well as
in opportunities for technological applications.

The paper is organized in 5 sections, including this introduc-
tion. Section 2 describes the geometry and the dynamic models
employed, while Section 3 illustrates the spectral properties and
the localized characteristics of most of the eigen-states (modes)
that are found in regular hyperbolic lattices. Next, Section 4
investigates these properties and their sensitivity to variations
resulting from hyperbolic translations of the originating polygon.
Finally, Section 5 summarizes the main findings of the work.

2. Hyperbolic lattices: Geometry and dynamic model

We focus on the dynamic behavior of two-dimensional (2D)
hyperbolic lattices, here represented in the Poincaré disk defining
the projection of a hyperboloid onto the unit disk [6,7]. The neg-
ative curvature of the hyperbolic plane differentiates hyperbolic
lattices from their Euclidean counterpart [3]. For example, in
the hyperbolic plane, the sum of internal angles of a polygon is
smaller than in its Euclidean counterpart, which allows denser
contact of polygons at vertices. For example, while only four
squares can be contacted in an Euclidean square lattice, any
number of squares q > 4 can be in contact in hyperbolic lattices.

The lattice degrees of freedom are expressed by the Schlifli
symbol {p, q}, where the integers p and q respectively denote
tessellations of q contacting p-sided regular polygons, with q > 4.
Given a p-sided seed polygon, hyperbolic tilings are achieved by
recursively adding neighboring polygons to the outermost edges,
such that two polygons sharing an edge are connected by a
hyperbolic reflection. The hyperbolic reflection of a point against
a hyperbolic geodesic is analogous to the reflection of a point
against a straight line in the Euclidean plane: both define the
mirror symmetric copy of a point relative to a line. The analytic
expression of the hyperbolic reflection can be found in [6] (see
Chapters 7 for examples) and the interested readers may also
visit the link in [8] for visualizations, examples and tutorials. With
reference to Fig. 1, the tessellation process can be described as
follows: Consider the seeding polygon, marked as generation g =
1 in Fig. 1. Then each point of the polygon is reflected about each
of its sides. If the originating polygon is a hexagon, as for example
in Fig. 1a, these reflections produces 6 polygons which are said to
belong to the second generation of the lattice, (blue polygons in
Fig. 1). Repeating the operation for each polygon from the sec-
ond generation leads to the third generation (green polygons in
Fig. 1). Progressing with the process recursively fills the Poincaré
disk [6,9], as exemplified in Fig. 1 for two seeding polygons. The
outcomes are tree-like geometries consisting of repeating units
that define structures that are inherently hierarchical. Examples
of such structures corresponding to various Schlifli symbols are
illustrated in Fig. 2.

Fig. 2. Examples of hyperbolic lattices which sample a variety of Schlafli
symbols {p, q}.

Based on these geometries, we design a discrete mechanical
system by assigning a mass to each node of a hyperbolic lattice,
with a specified degree of freedom, and connect the nearest
neighbors by linear elastic links. We assume that the masses are
identical and equal to m = 1, and move along the z direction
perpendicular to the plane of the lattice. Henceforth, the system
is described by the Lagrangian

1 )
L= Emz Zy — ZW(r,, — T, Zn — Zu).
n

n,n’

(1

where r, defines the location of the nth mass, and z, is the
corresponding out-of-plane motion. Also in Eq. (1), W is the
interaction potential, which is defined as

(2)

where k is an interaction constant, which is here set equal to 1 for
convenience. The potential in Eq. (2) describes interactions whose
strength is inversely proportional to the Euclidean distance |u|
between neighboring nodes. This is a distinctive difference with
respect to prior work on circuit quantum electrodynamics [1,2]
and on non-Euclidean analogs of the quantum spin Hall effect [3],
where interactions are independent upon the distance of neigh-
boring sites. Assuming a mechanical realization of this lattice,
such distance becomes of primary importance as it is intrinsically
tied to the stiffness of a ligament. This distinctive feature makes
the study of hyperbolically inspired lattices governed by me-
chanical interactions rich in open questions related to the effect
of tessellations and of lattice distortions as investigated in the
upcoming sections.

W(r,z) = 522/Ir|,
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Fig. 3. Vibrational spectrum for the {7, 3} (a), and {5, 4} (b) lattices, with eigen-modes displaying distinct bulk (red) or boundary (blue) spatial profiles. Selected
eigenstates show the presence of degenerate eigenfrequency pairs associated with eigenstates that are rotated copies of each other, in conjunction with modes that
are mostly localized at the center of the disk. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

3. Spectral analysis and mode localization

We first investigate the spectral characteristics of various (fi-
nite) hyperbolic tessellations nucleated from the center of the
hyperbolic disk. All lattices investigated in this study are of gen-
eration g = 6 which is found sufficient in terms of frequency
range of the dynamic behavior and degree of hierarchy. The
cases for {7, 3} and {4, 5} lattices are chosen here for illustration
purposes, and similar results can be found for other tessellations.
The distribution of the first 40 natural eigenvalues §2 versus the
mode number are shown in Fig. 3.

In the plots, each eigen-frequency is represented by a solid cir-
cle whose color (red or blue) and size are defined by a localization
index 7, which, for the nth eigenvector ™, is defined as:

(n)

7m — Ziec P
N L(n) °

20 P

Here, <1>i(") is the amplitude of the nth mode at lattice site
i, N denotes the total number of nodes in the lattice, while C
identifies the subset of such nodes that belong to the first and
second generation. Thus, Z™ — 1 identifies an eigenmode that
is fully localized in the center of the crystal, while 7" — 0
corresponds to modes that are mainly localized towards to the
edges of the crystal. The blue/red colors correspond to Z™ < 0.5
and 7™M > 0.5, respectively, hence they separate the modes
into two classes with either edge or center localized character.
A finer account of the localization character is supplied by the
sizes of the markers which are proportional to Z(", hence a larger
circle describes a higher degree of center-localization. This mode
analysis can and will be applied also to the crystals nucleated
from points other than the center of the Poincaré disk (Section 4).

Fig. 3 shows that the modes mostly appear in pairs, but not
all the time. This phenomenon is specific to the lattices nu-
cleated from the center of the Poincaré disk and is related to
the rotational symmetry of the lattice, and, more precisely, with
the fact that the representation sectors of the cyclic C, group
with conjugate characters are mapped into each other by the
complex conjugation. Hence, the spectral degeneracies corre-
spond to pairs of modes from such conjugate sectors, which
appear to be simply rotated versions of each other. The non-
degenerate modes correspond to the representation sector with
trivial character, which is self-conjugate. Examples of such modes
are shown in Fig. 3 (see modes in the dark-framed inserts). As

(3)

one can see, the blue resonances mostly occur in pairs. However,
the second group of modes, characterized by 7™ — 1 and
corresponding to strong localization towards the center of the
lattice, alternate between degenerate and non-degenerate modes
and display different levels of spatial symmetry (see the modes
in the red-framed inserts).

As it is always the case with lattice systems, spatial variations
increase the energy of a vibrational mode, hence the low energy
modes tend to be highly de-localized. Our hyperbolic crystal,
however, becomes stiffer closer to the boundaries, hence the
modes not localized near the center will feel an environment that
promotes higher energies. As such, the spectral data seen in Fig. 3
is a result of a synergy between the spatial variation and the
spatial location of the modes. As a result, eigen-modes that are
centrally localized and modes de-localized along the boundary
coexist at comparable energies, a scenario that is completely
absent in uniform Euclidean lattices. This leads to an interesting
mechanical response to the deformations of the lattice, which is
explored in the next section.

4. Distorted hyperbolic lattices

A hyperbolic tessellation can be nucleated from any point of
the Poincaré disk by simply translating the seed polygon. From
the pure hyperbolic geometry point of view, all such translated
tessellations are completely equivalent. However, we recall that,
in mechanical lattices, the interactions between masses at the
nodes (see Eq. (2)) are inversely proportional to the Euclidean
distances between the positions, hence our hyperbolic tessella-
tions should be treated as point-patterns in the Euclidean space.
Hyperbolic displacements of the seeding polygon in certain direc-
tions lead to cyclic distortions of the crystal, as it is illustrated in
Fig. 4 for the {4, 5} (a) and the {7, 3} (b) lattices. Indeed, when
r = #£2 in this figure, the hyperbolically translated seed polygon
(shaded gray in the figure) becomes identical to a polygon from
the original lattice, hence the tessellation algorithm produces
identical infinite lattices. These distortions can be also interpreted
in light of a projection operation from a point in space, which is
consistent with the Poincaré disk representation of these lattices.
In this context, the distorted configurations correspond to stereo-
scopic projections of the same lattice from a point that translates
in space [6].

In this work, we focus on finite lattices (6 generations), which
break the repetitive character of the deformation process. The
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Fig. 4. Distorted {4, 5} and {7, 3} lattices ((a) and (b) respectively) are obtained from the horizontal translation of the originating polygon. Such translation r leads to
a repeating pattern in the event of a hyperbolic tessellation encompassing infinite generations. The process can be also considered as the result of the stereoscopic

projection of the lattice from a varying point in space [6].
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Fig. 5. Spectral properties of distorted {4, 5} and {7, 3} lattices ((a) and (b) respectively).

spectral flow induced by the distortions are shown in Fig. 5.
Complex emerging patterns for the spectral branches illustrate
an extremely rich dynamic behavior. The modes localized in the
center of the crystal, i.e. those with significant amplitudes inside
the first and second generation of lattice points around the seed
polygons, shown in Fig. 4, have been identified with the protocols
described in the previous section, and color coded based on the
localization index Z(™ of Eq. (3). Remarkably, the spectral flow as-
sociated to these modes assembles in distinct continuous curves
in Fig. 5(a) (see the red highlights). These spectral curves can be
understood from the re-scaling of the local bond lengths around
the seed polygon as 2/(1—d?), where d, is the Euclidean distance
from the center of seed polygon to the center of the disk. Indeed,
as the seed polygon is displaced away from the center of the disk,
the modes localized around it experience a lattice with shorter
bonds and, as such, the frequencies of the center-localized modes
are expected to scale as ,/2/(1 — d?) with parameter r. This is
the equation governing the red curves clearly seen in Fig. 5(a).
The spectral flow of the center-localized modes in Fig. 5(b) is
more complicated because the set C in Eq. (3) contains many
more points, hence in Fig. 5(b) we see a much larger number of
localized modes.

As we mentioned in the previous section, center and edge
localized modes coexist in the same window of frequencies, and
this leads to interesting synergy between the spectral flows of
the center and edge localized modes. Indeed, upon increasing
the parameter r, a center-localized mode moves up in frequency,
but the edge localized modes are less affected and they hover

around a fixed frequency. When an edge (blue) band meets a red
parabola, a hybridization happen and the blue bands appear to
peal off and then merge into the red bands, via sharp veering
points [10]. In addition, various values of r correspond to the
coalescence of multiple frequencies, which is a potential indi-
cation of the occurrence of spectral singularities, which may be
associated with exceptional points, here induced by distortions,
as opposed to parity-symmetry time conditions [11,12]. Such
singularities and their sensitivity to perturbations are potentially
of great interest for sensing purposes, and specifically in relation
to their sensitivity to lattice perturbations. These activities may
be inspired by the recent strong interest on exceptional points for
novel sensing configurations [13]. Furthermore, modal crossings
and associated hybridization may also be highly relevant for the
purpose of exploiting vibrations for information transfer, as the
ability for a mode to transition from being edge localized, to
being more distributed, and to eventually become localized in
the center portion of the lattice could form the basis for efficient
transfer of signals across the lattice with minimal changes in
frequency.

A selection of eigen-modes for the {4, 5} lattice are presented
in Fig. 6, to confirm how the color coding adopted provides a
good indication of the localization of the modes. This is illustrated
for example for the modes denoted with (1) in the figure, which
corresponds to a boundary localized mode, which is distributed
across the entire edge. This mode occurs on a branch that is
generally flat, and therefore not significantly affected by the
variation of the translation parameter r. A similar observation
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Fig. 6. Distorted {4, 5}: selection of eigenmodes associated with flat branches (modes (1) and (4)) are characterized by edge-localized modes that are not strongly
affected by the variation of r. These modes are characterized by a high degree of rotational symmetry. In contrast, modes corresponding to branches of higher slopes
appear to be localized and non-symmetric (modes (2,3) and (5)). The circumferential location of the localization is related to the slope of the branch: left-localized
for modes belonging to a branch of negative slope (modes (2,3)) and right-localized for a positive branch (mode (5)).

can be made for mode (4), which occurs at higher frequencies
and it is associated with a branch of moderate slope. In contrast,
modes (2,3,5) are localized along the circumferential direction,
i.e. they are not uniformly distributed along the angular coordi-
nate, and are respectively localized at the center (2), and along
the edge (3,5). Modes (3,5) in particular are highlighted out of
branches that are highly sensitive with respect to r, and as a
result are strongly asymmetric. Notably, the slope of the branch is
correlated to the degree of localization along the circumferential
direction: the steeper the branch, the stronger the circumferential
localization and the related asymmetry (modes (2,3) and (5)). The
circumferential location of the localization is also related to sign
of the slope of the branch: left-localized for modes belonging to
a branch of negative slope (modes (2,3)) and right-localized for
modes along a positive slope branch (mode (5)). This suggests
the possibility of predicting the spatial characteristics of localized
modes through topological considerations that may be applied to
the spectral branches.

A final set of results illustrate the effects of a sweep of the
parameter r on a specific mode, which is illustrated in Fig. 7.
In this context, the parameter r is considered as an adiabatic
parameter that is reminiscent of the dynamics of a phason in
non-commensurate lattices [14-16]. The range of variation of
the mode is highlighted by the black rectangular box in Fig. 7.
Spanning of r in the highlighted range shows how a mode initially
localized at the inner portion is made to move and evolve through
a process that is reminiscent of a topological pump [16]. The
mode at the initial considered value of r = —0.2 is shown in
the top left corner of Fig. 7. As r is varied, the mode shifts in
an apparent counterclockwise motion, which can be followed by
looking at the sequence of mode shapes presented in a coun-
terclockwise arrangement in Fig. 7. At r = 0, the mode loses
localization and appears symmetric, while as r grows and be-
comes positive, the mode regains its localized nature, at a location
that is symmetric with respect to the negative values of r. These
results show that a simple translation of the originating poly-
gon leads to a predictable re-location of the localized modes, a

phenomenon that is quite analogous to what has been already
observed in periodically modulated lattices in Euclidean space.
Indeed, it has been observed [15-17] that spatial modulations
of lattice properties and/or geometry can lead to mode local-
ization, at locations that are entirely controlled by the phase of
such periodic material/geometrical modulations. This dynamical
characteristic was used to drive an edge-to-edge transition of an
eigen-mode, hence to controllably transfer energy or information
across a mechanical structure, by simply modifying the phase of
the modulation [14,16]. Here, the translation of the originating
polygon produces the same effect, as it induces periodic vari-
ations of the lattice geometry that are accompanied by spatial
re-locations of the localized modes. While these similarities are
of considerable interest for the fundamental understanding of the
dynamics of periodic lattices, both euclidean and hyperbolic, our
observations may have interesting practical implications. Indeed,
for a hyperbolic crystal with Schlifli symbol {p, q}, we can use
the symmetry and translate along p independent directions to
generate the same effects. This supplies a knob to control the
location of the localize modes practically throughout the me-
chanical structure. Hyperbolic lattices in the Poincaré disk may
be mapped to different shapes and can form the basis for novel
structural components that are hierarchical in nature, and that
are characterized by a dynamic behavior that is rich in modes
that are strongly localized in space. These structural components
could lead to novel designs of lattice structures of a variety of tes-
sellations that have significant vibration isolation characteristics,
along with possibly novel mechanical properties owing to their
hierarchical structure.

5. Conclusions

The dynamic properties of elastic hyperbolic lattices are inves-
tigated to highlight their spectral characteristics. These include
eigenvectors that are localized at the center alternating with
ones that are localized at the boundary of the Poincaré disk. The
spectral branches also reveal repeated eigenvalues that suggest
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Fig. 7. Distorted {7, 3} lattice spectra, and variation of eigen-modes along a selected branch (bold line in square frame): the localization of the mode evolves along
a circumferential directory as r varies, leading to a process which is reminiscent of a topological pump [16].

spectral degeneracies resulting from the rotational symmetry
of the lattices. Next, distortions are introduced as hyperbolic
translations of the generating polygon. These cause shifts of the
eigenvalues which trace spectral branches forming complex spec-
tral patterns. The slope of the branches are indicative of the
strength of modal localization, which is quantified in terms of a
localization parameter. Following of specific branches illustrates
of the possibility of controlling a transition of the area of de-
formation which is driven by lattice distortions. The complex
spectral characteristics of hyperbolic lattices suggest a number
of applications related to lattices capable of localizing vibrations,
that are highly sensitive to perturbations, and that are defined by
hierarchical structures that can be developed on curved surfaces.
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