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Forecasting models are a central part of many control systems, where high conse-

quence decisions must be made on long latency control variables. These models are

particularly relevant for emerging artificial intelligence (AI)-guided instrumentation,

in which prescriptive knowledge is needed to guide autonomous decision-making.

Here we describe the implementation of a long short-term memory model (LSTM)

for forecasting of electron energy loss spectroscopy (EELS) data, one of the richest

analytical probes of materials and chemical systems. We describe key considerations

for data collection, preprocessing, training, validation, and benchmarking, showing

how this approach can yield powerful predictive insight into order-disorder phase

transitions. Finally, we comment on how such a model may integrate with emerging

AI-guided instrumentation for powerful high-speed experimentation.
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I. INTRODUCTION

Reward-based decision-making is directly linked to our ability to accurately forecast,

or anticipate, changes in a system or process. Effective forecasting is essential for many

disciplines and technologies we take for granted, ranging from meteorology1 to the power

grid2 and from stock trading3 to logistics.4 The recent rise of autonomous vehicles, including

automobiles, drones, and spacecraft, has been propelled by advanced forecasting models

deployed on high performance computing platforms.5,6 Abundant low-cost computing and

the proliferation of machine learning (ML) have enabled many new real-time forecasting

approaches. When performed correctly, forecasting can save time, reduce cost, and guide

scientific discovery by helping direct decision-making. Consequently, much of the scientific

community is interested in the development and application of good forecasting models;

notable examples include medicine,7,8 climate science,9,10 and high-energy physics.11,12 How-

ever, other disciplines, such as materials science and chemistry, have been slower to adopt

these approaches, often due to a lack of domain-specific analytics and control frameworks.

These issues are exemplified in the field of electron microscopy, which showcases both

the challenges and opportunities for forecasting. Today’s scanning transmission electron

microscopy (STEM) represents the “gold standard” for the observation of materials and

chemical processes at high spatial and temporal resolution. Everything from crystal growth

to battery cycling and alloy fatigue can be observed in situ, using elaborately designed stages,

aberration-corrected sub-Ångström probes, and high-speed detectors.13–15 While advanced

hardware can easily generate large volumes of data, our ability to interpret, anticipate,

and automatically act on such data is limited.16,17 For many studies, both ex and in situ,

we must make rapid decisions on high-latency control parameters using information from

high-throughput, multimodal data streams. However, we currently lack the necessary (1)

low-level control, (2) descriptive models, and (3) forecasting (prescriptive) approaches to

implement more powerful decision-making.

Recently, significant progress has been made toward new microscope automation plat-

forms (1) that allow for centralized, data-driven control of instrument operations.18–20 Data

can then be passed through two main kinds of descriptive models (2): those based on deeply

trained ML networks fed large volumes of hand-labeled or simulated examples,21–26 or those

based on few-shot ML approaches utilizing sparse, canonical examples.27 We have previously
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demonstrated28,29 the ability to conduct efficient, generalizable, and task-based automated

classification via the latter approach. While such models are an important development, it

is increasingly clear that we must move beyond purely descriptive models to realize truly

autonomous experimentation. Specifically, we require forecasting models (3), that allow us

to anticipate changes in data streams and prescriptively tune high-latency control parame-

ters. Currently, a whole range of experiments, such as studying heating- or beam-induced

phase transitions, tracking of particles and reaction fronts, as well as operando switching of

ferroic and quantum materials, is difficult or impossible to conduct.30 For many such stud-

ies, the experimental system (encompassing both sample and instrument) is slow to respond

to changes in control parameters due to mechanical instability (movement), thermal mass

(heating), and hysteresis (electric and magnetic field). Because of this latency, human-in-

the-loop control is often unfeasible; once the operator has seen that something has changed,

it is usually too late to implement a manual response.

Fortunately, this prediction and control problem is quite similar to those encountered in

the other aforementioned domains. ML approaches are particularly well-suited to the study

of higher-dimensional, noisy, or complex datasets, where latent correlations may not be

immediately obvious to a human operator. A variety of time-dependent ML-based prediction

approaches exist, with the most common being based on recurrent neural networks (RNNs)

and gated recurrent units (GRUs).31 Among the former, long short-term memory (LSTMs)

are commonly used to incorporate knowledge of past experiences to model Markov-type

decision processes.32 LSTM models have been extensively applied to serial data, such as

text, audio, and video.33 Despite their prevalence, there has been surprisingly little work on

the use of LSTMs in electron microscopy, with limited examples including control of scan

generation34 and segmentation of biological images.35 Given that STEM data is acquired in

serial fashion, we aim to evaluate the performance of the LSTM model for microscope data,

with an eye toward practical implementation.

Here we describe an LSTM approach for forecasting of in situ electron energy loss spec-

troscopy (EELS) data collected in the STEM, a model we call EELSTM. We have chosen

this technique because it strongly encodes local chemical state and phase, can be read-

ily quantified using existing theoretical frameworks, and can be acquired at high speed and

energy resolution.36 We explore the crystalline-to-amorphous phase transition in the archety-

pal perovskite oxide SrTiO3 (STO), utilizing the electron beam itself to drive reduction and
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associated changes in core loss EELS spectra. Understanding such order-disorder phase tran-

sitions is important for emerging technologies, ranging from solid oxide fuel cells (SOFCs) to

sensors in extreme environments and radiation-hard electronics.37 We systematically explore

data preprocessing, model architecture, hyperparameter optimization, training, and valida-

tion relative to ground truth experimental data. We show that this model has excellent

predictive power and may serve as a basis for future model-predictive control approaches.

Finally, we comment on the potential deployment of this model in emerging autonomous

microscope systems.

II. RESULTS AND DISCUSSION

The chief aim of the present study is to adapt existing LSTM models, such as those used

for natural language processing38,39 and time series prediction of physical phenomena,40–42

to the task of EELS forecasting. As shown in Figure 1, the EELSTM model workflow en-

compasses four steps: Data Collection, Preprocessing, Training and Validation, and

Inference. In Section IIA, we describe the experimental setup and EELS data acquisi-

tion, including considerations for the best model performance. In Section II B, we review

preprocessing strategies unique to EELS data, resulting from the data collection process,

variability between experiments, and the nature of core loss data itself. In Section IIC,

we describe the training and validation process, including the relationship between training

inputs and predictions, model transferability, and temporal correlations. Finally, in Section

IID, we discuss possible error metrics and benchmark performance relative to ground truth

experimental data.

A. Data Collection

We have chosen to to examine a crystalline STO sample, which will readily undergo

reduction and a crystalline-to-amorphous phase transformation due to electron beam knock-

on damage at 300 keV accelerating voltage. Several datasets were collected by parking the

electron beam on an undamaged part of the sample and then acquiring time series spectra

with a fixed dwell time of 0.08, 0.1, 0.2, 0.4, or 0.8 s px−1, while keeping all other instrument

parameters constant. We observed that consistency in operating conditions (such as beam
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FIG. 1. Overview of the EELSTM model workflow. (A–D) Steps of Data Collection, Pre-

processing, Training and Validation, and Inference, respectively. Add label on bottom arrow.

Replace labels with bold lower case letters.

energy, dwell time, and material) between experiments is paramount, as models trained on

data with specific beam parameters did not perform well on spectra acquired with differing

parameters. This discrepancy arises because EELS intensity depend on dwell time and the

damage rate (and hence phase transition) varies with dose conditions.

We conducted three different experiments under similar conditions to obtain the training

and test datasets. Two whole experiments’ worth of data were used to construct the training

dataset, while a third experiment was held back as a test set. This construction is important,

because the model is able to train on data showing all stages of the phase transition; if the

first portion of a single experiment were used to train—and the later portion was then

utilized as the test set—the model would not accurately predict future spectra in the later

phases. Finally, this construction also allows for extrapolation to new experiments, where

predictions can be made independent of the progression of the phase transition.

B. Preprocessing

We next consider data preprocessing, which includes iterative steps unique to in situ

EELS data, as shown in Figure 1. Initially, we designed the model to use the raw EELS

spectra and trained an LSTM model for predictions. This method resulted in an excessively

long training phase, with over 30,000 epochs required for convergence. After further exam-

ination of the data and a review of experimental considerations, we identified a variety of

preprocessing steps to improve training and accuracy. Figure 2 shows an overview of these
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preprocessing methods and we next discuss their rationale, implementation, and effect on

model predictions.

FIG. 2. Data preprocessing. (a–d) Strategies include scaling of spectra, peak alignment between

experiments, binning of spectra to reduce noise, and background subtraction, respectively. Raw

spectra are shown in blue and processed spectra are shown in orange. Replace labels with bold

lower case letters.

1. Scaling and Normalization

The first data preprocessing required is to scale the data between 0 and 1. The primary

reason for this is that LSTM networks use several zero-centered or nearly zero-centered

functions, such as sigmoid and hyperbolic tangent.32 The derivatives of these functions

diminish greatly outside of this input range, and so training weights receive small updates

based on the gradient when the input data is outside of this optimal range.43 We can consider

several ways of scaling the data, knowing that raw intensity counts range in the thousands

to tens of thousands. The most logical, due to the inherent data structure, is a manual

scaling, where the training set is scaled between 0 and 1 using the min and max values

across the spectrum. Thus, the inherent link between energy bins is conserved. Conversely,

we may also use the scikit-learn library MinMaxScaler to scale each energy bin individually

between 0 and 1, so the inherent structure between energy bins is lost (this is the method
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represented in Figure 2.a).

After reading in the raw data, we scaled it based on one of the training datasets, formatted

the data into the sequence/output format for the LSTM and trained the model. We then

called the trained model to make a prediction and unscaled the predicted result to compare to

the ground truth. We assumed that the second method utilizing scikit-learn’s MinMaxScaler

would preserve signal-to-noise in lower intensity regions, but our testing showed that the

noise levels from the predictions were not statistically different. Most interestingly, we

observed that both scaling methods yielded similar error, indicating that the channel-to-

channel relationship did not need to be maintained for the model. While performance with

scaled data did show an improvement over the model with raw data, the biggest benefit

was faster convergence. Models were able to train approximately 10× faster, primarily due

to convergence in fewer epochs. This finding demonstrates the importance of scaling data

in a range where the sigmoid and activation functions have a more significant impact due

to gradient-based weight updates. To evaluate the performance of this and the following

preprocessing steps, we consider the mean squared error (MSE) and root mean squared

error (RMSE) relative to ground truth, as will be described Section IID. As a baseline,

the RMSE of the raw data before any preprocessing is 1958.3. After scaling, performance

improved greatly to a RMSE value of 295.5± 40.3 relative to raw spectra. Finally, it should

be noted that, while scaling is the first strategy implemented for improved performance, it

should always be done only after all other preprocessing steps have been implemented. For

example, if background subtraction is implemented, scaling should only be done after the

background subtraction step.

2. Peak Alignment

Because of the nature of EELS data acquisition, it is important to account for spectral

shifts between experiments that might influence forecasts. While a systematic shift in core-

loss edge onset is often related to oxidation state, instability in the microscope high tension

system can also introduce artificial shifting. To correct for this, low-loss and core-loss data

may be acquired simultaneously and the core-loss data can then be shifted to account for

energy drift throughout the experiment.44 However, not all instruments possess the required

spectrometer hardware and shuttering between energy regimes can add overhead (slow down)
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an acquisition, making this approach difficult to apply during high-speed experimentation.

For simplicity, we treat the entire core-loss spectrum, aiming to minimize artificial shifts for

more accurate prediction and error metrics.

In order to make a generic alignment for all future data, we used one of the timesteps

from the test spectra as a reference. We utilized the peak alignment functionality of the

Hyperspy Python library to align all spectra to this reference spectrum. As a result of

shifting peaks, some of the data from the edges of the full spectra were lost. One of the

fundamental characteristics required for model inputs is consistency between number of

channels; therefore, we cropped all spectra after alignment to ensure consistent numbers of

energy channels. For the data shown in Figure 2.b, the raw spectrum had 2048 channels

prior to alignment. After alignment, which typically lost ≤ 10 channels, we cropped 74

channels from the beginning and end, yielding a final number of 1900 energy channels.

This alignment improved the RMSE between the predicted and real spectra to 217.9 ±

23.4. We consider two explanations: first, a shift in energy channels between a real and

predicted spectrum leads to significant increase in error around regions of interest, such as

the Ti L2,3 edge at ∼ 456 eV and O K edge at ∼ 532 eV. Second, the model learns trends

for energy bins as distinct input features; when there is a shift between the spectra that

were used to train the model and those used for prediction, we are asking for additional

extrapolation. While more training datasets covering a wide range of shifts might eliminate

this step, this preprocessing proved important for more limited amounts of training data.

3. Binning and Smoothing

We observed that the predicted spectrum was not able to capture the natural noise in

the real spectrum, leading to an increased error between the prediction and ground truth.

Multiple sources of noise exist in EELS data, including shot noise, gain noise, read-out

noise, and Fano noise.45 While shot and Fano noise arise prior to signal detection, they are

influenced by the point spread function (PSF) of the detector and this should be considered

in generalizing a predictive model to other experiments. Further, both gain and read-out

noise are affected by the choice of spectrometer binning and gain correction. While some

of these parameters can be fixed for a specific prediction, the intrinsic stochastic nature of

noise makes it challenging to predict.
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Therefore, we proposed that measured predictive performance might improve if the train-

ing data were less noisy. A typical method of reducing noise is to average spectra across

several timesteps. We consider two such binning methods: “exclusive bins” and “rolling

bins.” The exclusive bins method averaged every n spectra (n was typically 3–5) without

any overlap; that is, we averaged n spectra, then shifted forward by n timesteps to average

the next group. This approach made sure to not use any spectra more than others in the

averaging, but was detrimental, given that the amount of available data was reduced by a

factor of n. The rolling bins method averaged n spectra, then shifted the timestep forward

by 1 to take the next average; this approach resulted in reusing all spectra n times (except

for the very first and last n spectra), but was advantageous since the amount of training

data was not significantly reduced (we only lose n timesteps of data).

Both methods were in fact effective in reducing noise in the datasets, as shown in Figure

2.c. However, the reduction in training data, particularly when using the exclusive bins

method, actually yielded worse results (RMSE of 400.8 ± 154.8). This result is explained

by the fact that good performance must have a sufficient amount of training data for the

model to predict well, and losing so much data was detrimental. To employ this approach

in future studies, one would need to gather significantly more experimental data to offset

the loss of training data. The rolling bins method improved the RMSE to 241.4± 63.7 from

the baseline. However, this improvement is smaller than that seen from spectrum shifting.

When both approaches were combined, no significant improvement was made to the error

and this strategy was discarded, since it only added to preprocessing time.

4. Background Subtraction

Finally, we consider the natural decrease of the inelastic scattering background at higher

energy losses, which primarily results from plasmon excitations that can be described by a

well-known power law dependence. This behavior led to some instances where the predicted

signal was shifted vertically from the actual signal, leading to inflated error between the

predicted and real spectrum. To mitigate this effect on prediction error, we utilized back-

ground subtraction so that all of the signals started on a comparable baseline, as shown

in Figure 2.d. It was necessary to perform background subtraction before any scaling or

normalization, since the background subtraction shifted the entire baseline.
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TABLE I. Changes in RMSE as a function of preprocessing.

Approach RMSE % Improvement

Raw 1958.3 —

Scaling and Normalization 295.5 84.9

Peak Alignment 217.9 88.9

Binning and Smoothing 400.8 79.5

Background Subtraction 392.4 80.0

In general, best practice dictates specifying the region for background subtraction to be

taken before the edge of interest. This approach proved problematic for this particular study,

however, because we were performing predictions on an entire spectrum, not just a single

edge of interest. Most compounds contain multiple edges in a given spectrum and STO

specifically contains both the Ti L2,3 and O K edges. For consistency, we performed the

background subtraction using the region before the Ti L2,3 edge. After training the model

on background-subtracted data, we observed decreased performance with higher variability

(RMSE of 392.4 ± 177.4). We observed that models trained on this type of data had a

greater tendency to overfit. This behavior may be explained given the fact that background

subtraction constrains the data to a narrower range of values, and after scaling, the data

tends to not extrapolate as well to unseen data, resulting in an increased likelihood to overfit.

The results highlighted the problem with using background subtraction when considering

the whole spectrum, and would perhaps be more useful when utilizing different error metrics.

This method would also be more suitable for modeling only a certain energy regime, where

background subtraction in one region can be carried out independently from another area

of interest. Therefore, background subtraction was not deemed a necessary preprocessing

step for best results in the current implementation. In summary, we can see that individual

preprocessing steps can improve RMSE by nearly 88.9%, as shown in Table I.

C. Training and Validation

The generic structure of the LSTM model takes as input a sequence of time series data

and outputs a prediction of a future timestep, as shown in Figure 3. We first considered two

models: one that took as input a sequence of whole spectra and predicted a whole spectrum,
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or a aggregate model that analyzes input and predictions channel-by-channel, followed by

recombination of the individual predictions to form a whole spectrum. Given that each

spectrum contained 2048 energy channels, the second method required 2048 separate models;

this method was discarded primarily due to the prohibitive computational time and memory,

as well as initially positive results from the first approach.

The next consideration for the model revolved around deciding the prediction horizon for

the model. In time series, there is often a correlation between timesteps, and care must be

taken to ensure actionable predictions. If the correlation is too high, the model may learn to

simply predict the last timestep of the input sequence as the next timestep, leading to artifi-

cially inflated prediction accuracy. For example, in the “long input, short horizon” scenario

in Figure 3.a with an 8 timestep input and 1 timestep horizon, the prediction appears to

have an extremely high fidelity. However, this result is not significantly better than simply

using the last spectrum from the input sequence as the prediction. To account for this, we

performed a Pearson autocorrelation calculation between a spectrum at a given timestep and

all subsequent spectra, as shown in Supplementary Figure 6. As anticipated, we observed a

high correlation among timesteps proximal to each other, with a steadily decreasing corre-

lation. After approximately 6–8 timesteps, the correlation between spectra was sufficiently

low to ensure that the model would not simply learn the most recent spectrum from the

input. For an EELS dwell time of 0.4 seconds, this corresponds to ∼ 3 seconds.

The length of the input sequence was optimized along with other model hyperparameters

in the range of 3–15 timesteps, as shown in Table II. Naturally, a sufficiently long sequence of

spectra must be used to establish the progression of the STO phase transformation that can

predict out several timesteps. We observe poor results when a short input sequence is used,

as shown in the “short input, long horizon” scenario in Figure 3.b with a 3 timestep input

and 8 timestep horizon. However, we also wish to avoid excessively long input sequences to

maintain sensitivity to rapid changes in the data. In the context of automation, a longer

input sequence leads to more lag from the point when a control parameter is changed and

the system starts gathering data, increasing the likelihood of inaccurate reaction tracking.

We determined an ideal “Long input, long horizon” scenario as shown in Figure 3.c, with

an 8 timestep input and 8 timestep horizon, indicating good prediction with minimal au-

tocorrelation. Additional hyperparameter optimization was performed with the Hyperopt

package from Python, which utilizes Bayesian optimization to selectively search in spaces
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where performance tends to be better. While this approach does not guarantee a globally

optimal hyperparameter set, it does have the advantage of searching in the most optimal

sub-spaces (unless it gets stuck in a local minimum). We emphasize that further tuning of

the input and horizon may be necessary depending on the exact parameters of an EELS

experiment and the nature of the behavior under study.

D. Inference and Benchmarking

Lastly, we consider inference and benchmarking of model performance in different stages

of an STO phase transition. The inference step (Figure 1.d) takes an input sequence from a

new experiment (the test set), makes a prediction, and compares it to the ground truth. Re-

sults then iteratively inform data collection (such as more experiments, adjusting sampling,

dose, etc.) and preprocessing steps (such as background subtraction, binning, etc.), after

which the model is retrained and reevaluated. Importantly, it is possible to readily transform

the output of the LSTM (in the form of a numpy array) back to a Hyperspy signal to use

its built-in functionality, such as edge quantification and EELS-specific post-processing.

As already mentioned, the primary benchmarking functions used in this study are MSE

and RMSE, which were selected for their straightforward interpretation. However, they

are relatively simplistic, since they treat each energy channel equally; essentially, the EELS

background contributes just as much to the overall error as a region of interest, such as the

Ti L2,3 or O K edges. In light of this limitation, we also considered additional metrics to

both train the model and evaluate performance, including: cosine similarity, peak MSE, and

weighted MSE. Cosine similarity is a very common and effective metric for showing similarity

between two vectors. The disadvantage is that our spectra all have very high cosine similarity

(0.999 and greater), so it is difficult to optimize over this range. Logarithmic scaling or other

strategies to inflate the difference between 0.999 and 1.0 might be useful, but in the end,

it was discarded. Alternatively, we considered peak MSE as a new EELS-specific objective

function, where the predicted and true signals are taken as input. Hyperspy fitting functions

may then be used to determine peak location, height, and width. The MSE of those metrics

between the predicted and true spectrum is the objective function. Using this approach,

it is possible to simultaneously evaluate multiple spectral regions by assigning peaks of

location, height, and width = 0 to make up the disparity. This approach is beneficial
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because it significantly penalizes mismatched number of peaks more than simply wrong

peaks. However, it completely ignores the background and so does not lead to interpretable

spectra. Finally, weighted MSE is a method that specifies which regions are more important

and then multiplies the error of those regions by an additional factor to lend additional

penalization in the objective function.46 While this approach should theoretically reward

better performance in key regions of interest, we found that the overall performance was

comparable to standard MSE; since this did not improve interpretability, the final evaluations

used standard MSE and RMSE.

We can now evaluate the performance of the forecasting model on in situ EELS data taken

at various stages of an order-disorder phase transition in STO. Figure 4 shows prediction re-

sults on a representative EELS dataset, using peak alignment and signal scaling as discussed

in Section II B, and the set of hyperparameters determined in Table II. Predictions are made

using an 8 timestep input, with an 8 timestep horizon, then overlaid against ground truth

(raw) data. We first consider Figure 4.a, which shows the initial stages (time = ∼ 15 s) of

the phase transition across the whole spectrum and two regions of interest, the Ti L2,3 and

O K edges. We observe an excellent prediction across the entire spectrum (MSE = 216.7)

relative to the ground truth data, with the added benefit of denoising relative to the raw

experimental data. Focusing on the Ti L2,3, we observe the expected crystal field splitting

of the white lines into t2g and eg contributions, indicating a predominant Ti4+ valence state

within the resolution of the measurement. Similarly, we observe expected features in the O

K edge consistent with the this valence state. Next, we consider a later stage in the phase

transition, shown in Figure 4.b. At this time (time = ∼ 60 s), the sample is heavily reduced

by the beam and increasingly amorphous. The substantial presence of Ti3+ is reflected in

the increasing degeneracy of the Ti L2,3 edge states and merging of the features in the L3 and

L2 peaks. Similarly, there is less definition and a general flattening of the O K edge features,

again consistent with reduction.47 Here again, we observe strong predictive capability across

the full spectrum (MSE = 181.4), pointing to the ability of the model to capture the future

state of a phase transition.
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FIG. 3. Input sequence and output forecast horizon scenarios. (a) “Long input, short

horizon” scenario with an 8 timestep input and 1 timestep horizon, demonstrating deceptively

good results. (b) “Short input, long horizon” scenario with a 3 timestep input and 8 timestep

horizon, demonstrating poor results. (c) “Long input, long horizon” scenario, with an 8 timestep

input and 8 timestep horizon, indicating good prediction with minimal autocorrelation. The green

lines represent spectra from the input sequence, the blue line is the true future spectra to predict,

and the orange line is the predicted spectrum from the LSTM. Note that the plots on the right

show only the last spectrum from the input sequence (in green). Calibrate energy axis and

tell me what colors are what. Replace labels with bold lower case letters.
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FIG. 4. Optimized LSTM prediction of an STO order-disorder phase transition. (a)

Timestep corresponding to the start of the experiment, where the sample is crystalline and un-

damaged. (b) Timestep near the end of an experiment, where the sample is largely amorphous

and heavily damaged. The blue line shows the real spectrum at an 8 timestep horizon, while the

orange shows the LSTM model output. Add chemical edge label and shade region in whole

spectrum. Can we do a background subtraction prior to each edge (Ti L and O K)

after processing?
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III. CONCLUSIONS

We have described the implementation of an LSTM model for forecasting of EELS spec-

tra during an in situ phase transition in STO. We find that the model possesses excellent

predictive power relative to ground truth experimental data, but that there are important

pre-processing and temporal correlation steps that must be considered. Moving forward,

it will be important to further evaluate model accuracy against prediction horizon. It will

also be necessary to explore error metrics that improve the interpretability of results and

consider models that account for the physics of different beam parameters or materials.

For implementation in emerging AI systems, we envision the EELSTM forecasting model

should be running continuously on a rolling buffer of EELS data and implemented in model-

predictive control frameworks for closed-loop feedback.18 We expect that this approach will

find widespread use in studies of high-speed phase transitions for fundamental studies of

crystal nucleation and growth, battery cycling, mechanical deformation, and quantum be-

havior.
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IV. METHODS

A. Experimental Materials and Methods

A cross-sectional STEM sample of a SrTiO3 single-crystal substrate was prepared using

a FEI Helios NanoLab DualBeam Focused Ion Beam (FIB) microscope and a standard lift

out procedure. STEM data was collected using a probe-corrected JEOL GrandARM-300F

microscope operating at 300 kV, with a convergence semi-angle of 29.7 mrad and estimated

∼ 230 pA probe current. EELS data was acquired using a GIF Quantum 665 spectrometer,

with a spectrometer acceptance angle range of 113–273 mrad, a dispersion of 0.1 eV ch−1, and

a dwell time ranging from 0.08–0.8 s px−1. Spectra were binned 130× in the non-dispersive

direction. Spectra were acquired by parking the probe on a different pristine region of the

crystal for each experiment and then acquiring spectra continuously for 60–90 s.

B. Computational Methods

Model development was done in Python 3.8. The Hyperspy 1.6.5 library was used to read

and perform qualitative and quantitative analysis of EELS spectra. Numpy 1.19.4, pandas

1.2.0, scikit-learn 1.0.2, and matplotlib 3.2 were utilized for data processing, formatting,

and visualization. Keras 2.4.3 and Tensorflow 2.4.1 were used for the LSTM model. Many

iterations of the model were conducted using the hyperopt library, yielding the optimized

hyperparameters shown in Supplementary Table II. Graphical user interface (GUI) develop-

ment, as described in the Supplementary Information Figure 5, was implemented in Python

3.8. The Flask 2.0.1 and sqlalchemy 1.4.7 were used for the framework of the GUI.
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V. DATA AVAILABILITY

The EELS data used in this study are available on FigShare at https://doi.org/10.

6084/m9.figshare.20288730.v1.
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The code along with Jupyter notebooks used in this study is available on Gitlab at

https://github.com/pnnl/EELSTM.
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X. SUPPLEMENTARY INFORMATION

A. Optimized Hyperparameters

TABLE II. Optimized hyperparameters for the EELSTM model.

Hyperparameter Search Space Optimal Value

Learning Rate [·10−6 ,·10−1 ] ·10−4

LSTM Layers [1,4] 3

Nodes in Layer [64,512] 256

Dropout [0.01,0.3] 0.2

Input sequence window [3,15] 8

Batch size [20,100] 40
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B. Graphical User Interface

The model described in the main text is linked to a graphical user interface (GUI) built

using the Python Flask web framework, shown in Figure 5. This interface provides real-

time visualization of raw data and model forecasts. The GUI includes four steps: (1) Data

Import, (2) Spectrum Visualization and Model Selection, (3) Forecast Display,

and (4) Forecast History. In (1) the user selects an appropriate EELS spectrum image

(SI) data in the native Gatan *.dm4 format. This data should contain the EELS datacube

in a time-series. The backend of the GUI uses HyperSpy to parse the individual EELS

spectra. After selecting the spectrum, the user is sent to (2), where they can visualize

the SI time series dynamically via a slider bar. They can also input the dwell time and

model parameters. After submitting the desired parameters, the user is presented with a (3)

forecast, input sequences, ground truth data (if available), and MSE. Finally, (4) catalogs

the history of prior forecasts, allowing a user to easily revisit previous spectra and results.

FIG. 5. Graphical user interface (GUI) for interacting with the EELSTM model. (a–d)

Usage steps include Data Import, Spectrum Visualization and Model Selection, Forecast Display,

and Forecast History, respectively. Replace letters in figure with lower case bold.
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C. Autocorrelation

In some cases, the last input in a sequence is a better predictor of future sequences than

an LSTM model. In light of this, autocorrelation calculations between the EELS spectra

inform how many timesteps in advance must be predicted to ensure actionable predictions.

Figure 6 shows the result of the autocorrelation calculation from the dataset shown in the

main text. The shaded area represents number of input timesteps where the autocorrelation

value falls into an acceptable range, whereas the blue dots represent the autocorrelation

values for each input timestep. The smaller the autocorrelation value, the less likely that

the model copies seasonal trends into its prediction and the more accurate the prediction

will be. As shown in this plot, the minimum preferred number of input timestep is 6 for

our LSTM model, and the autocorrelation value converges to zero starting at 10 timesteps.

This also verifies that our data are not subject to explicit autocorrelation.

FIG. 6. Autocorrelation plot from the dataset shown in the main text. The shaded area

represents the 95 % confidence interval. The horizontal lines depict an autocorrelation of ±0.4,

which is the preferred maximum range for our model. Both the autocorrelation and the time axes

are unitless.
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