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ABSTRACT: We analyze an ensemble of organophosphorus compounds to form an unbiased
characterization of the information encoded in their X-ray absorption near-edge structure
(XANES) and valence-to-core X-ray emission spectra (VtC-XES). Data-driven emergence of
chemical classes via unsupervised machine learning, specifically cluster analysis in the Uniform
Manifold Approximation and Projection (UMAP) embedding, finds spectral sensitivity to
coordination, oxidation, aromaticity, intramolecular hydrogen bonding, and ligand identity.
Subsequently, we implement supervised machine learning via Gaussian process classifiers to
identify confidence in predictions that match our initial qualitative assessments of clustering. The
results further support the benefit of utilizing unsupervised machine learning as a precursor to
supervised machine learning, which we term Unsupervised Validation of Classes (UVC), a result
that goes beyond the present case of X-ray spectroscopies.

I. INTRODUCTION
The information content in any spectroscopy method is
constrained by the lossiness of the underlying quantum
mechanics that connects an atomic-scale structure and
dynamics to experimental observables. Further limitations to
the sensitivity of spectroscopy techniques often include the
inherently nonlinear or stochastic responses of the exper-
imental probe. These facts constrain our ability to correlate
physical measurements, e.g., spectral features, to desired
microscopic properties. Thus, the emergence of data science
and machine learning (ML) in spectroscopy, with applications
in all fields in physical sciences, has exploded.1−5 These data-
driven models can frequently disentangle and infer patterns
from inherently lossy observables as well as provide insight into
the information encoded in spectra.
In general, supervised ML studies across a wide range of

spectroscopies target either predicting properties from spectra
or correlating specific properties of interest to spectral
features.6 This necessarily assumes that sufficient information
is, in fact, encoded in spectra; otherwise, supervised ML
models will correlate spurious features to requested properties.
This detail of encoded information is often addressed by hand-
selecting a targeted training domain, an approach that is deeply
contingent on the accuracy and completeness of prior
knowledge.7 Clearly, issues will arise if the training domain is
too small or biased. First, if the training domain is too small,
the model will be unable to generalize well beyond its
specialized scope, which violates the essential assumption that
the training and test data are sampled from the same
distribution. Second, although some bias is essential for any

machine learning model,8 unwanted bias, especially from
unrepresentative data, blindly undermines reliability of
inferences and has led to contemporary ethical concerns.9−12

In an effort to combat unwanted bias as well as provide
generalizability to complex datasets, this study demonstrates
the value of the discovery cycle exemplified in Figure 1. This
process validates encoded information via unsupervised
machine learning, i.e., cluster analysis on a reduced-dimen-
sional embedding of the spectra, before passing either the
embedding or the original spectra�selected as an unbiased
training (sub)set�to a supervised ML model. This approach
decreases the risk of implicit biases and spurious correlations
introduced by supervised ML by adding steps (3) and (4) to
validate spectral sensitivity of the training dataset to properties
requested during supervised predictions. The continuation of
inferences from supervised ML back to experimental design
and (primarily) data simulation is obviously informed by the
resulting errors achieved by the supervised ML model.
This cycle touches on other related ways people have used

unsupervised ML as a precursor to or in a cycle with
supervised ML. These approaches have included semi-
supervised machine learning,13 pretraining a neural network,14
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feature selection or generation,15 and human-in-the-loop
learning,16 which have been used in a multitude of fields,
such as gene expression17 and marketing.18 Given the ubiquity
of concerns about the scope and bias when constructing
training datasets in supervised ML, we propose that our
approach, which we term Unsupervised Validation of Classes
(UVC), has relevance beyond the present case of X-ray
spectroscopies as well as contributes to efforts to close the loop
between artificial intelligence and scientific understanding.19

Here, we apply the framework of Figure 1 to both X-ray
absorption spectroscopy (XAS) and X-ray emission spectros-
copy (XES). XAS has seen an explosion of ML applica-
tions.20−41 XAS is most commonly used in chemistry, biology,
and materials science to investigate the element-specific local
coordination environment and electronic structure, with
applications including energy storage,42,43 catalysis,44 and
photochemical dynamics.45 XAS, which includes both the X-
ray absorption near-edge structure (XANES) and extended X-
ray absorption fine structure (EXAFS), probes the unoccupied
electronic states of the excited state of a chosen atomic species.
Conversely, relaxation to fill the core hole results in either

nonradiative (Auger) or radiative processes. The latter results
in the emission of X-ray fluorescence that can be finely
characterized by XES for insight into the occupied electronic
states.46−48 Often discussed as complementary to XANES in
information content, valence-to-core XES (VtC-XES) is
produced when electrons deexcite from the valence shell to
fill the core hole, giving direct information about the occupied
electronic states involved in bonding.49,50 While XAS and XES
have traditionally been synchrotron-based methods, we note
that their access, including for VtC-XES, is now being steadily
augmented with a renaissance of laboratory-based spectrom-
eters,51−53 including in studies of sufficient scale for data
science methods.54

In the first study to use supervised ML in XAS, Timoshenko
et al.20 successfully inferred coordination numbers of Pt
nanoclusters from XANES spectra using a neural network, a
result that would otherwise require (human) expert analysis of
EXAFS. Zheng et al.24 also predicted coordination, except
using a random forest model. Notably, Torrisi et al.36 likewise
used a random forest model to correlate polynomial fitting
parameters of spectra to properties like bond distance. Other
works utilizing both supervised and unsupervised machine
learning in XAS include a XANES matching algorithm,25

hierarchical clustering on spectra,26 and use of an autoencoder

to correlate coordination to a reduced-dimensional representa-
tion of spectra.27 Most of these studies assumed that desired
information was in fact encoded in spectra, largely because of
hand-crafting relevant training datasets. However, our
approach (Figure 1), via the unsupervised machine learning
precursor, allows for explorative and unbiased refinement of
chemical descriptors�a step that we propose is necessary, and
likely sufficient, when addressing much more complex datasets.
The present study is prompted by our recent work55 that

compared the variance and information content of sulfur K-
edge XANES to VtC-XES Kβ spectra for sulforganics. We
found that nonlinear dimensionality reduction algorithms, a
subset of unsupervised ML, provided an effective way to
extract spectral features and thus important chemical
information encoded in spectra. Moreover, our results
exemplified the benefits of utilizing unsupervised ML to
mold and understand the full potential of supervised ML
analysis.56

Here, we investigate the information content and sensitivity
of phosphorus K-edge XANES and VtC-XES Kβ in a more
complex chemical system, organophosphorus compounds, and
indeed find sensitivity to a wider range of chemical properties,
including coordination, oxidation, aromaticity, intramolecular
hydrogen bonding, and ligand identity. The proximity of
phosphorus to sulfur in the periodic table allows for the same
theoretical parameters to generate spectra (and thus obtain
similar experimental agreement) as our previous study and also
leverages the more diverse bonding environment of phospho-
rus. The dataset of spectra is calculated from molecular
structures gathered from the PubChem57 database using
moldl, a new open-source tool that we have developed for
this purpose.58 For the rest of this paper, we will refer to the
phosphorus K-edge XANES and VtC-XES Kβ as just XANES
and VtC-XES, respectively, for brevity.
Organophosphorus compounds have much higher total

variance than sulforganics, as well as higher variance within the
same bonding geometry. We can therefore tune the input
domain to account for these highly variant structures, allowing
us to understand the sensitivity of these spectra to a wider
range of properties. In addition, we can find, in an unbiased
way, the extent of the chemically relevant information that may
be extracted using dimensionality reduction algorithms,
especially when confined to very limited dimensions. These
explorations allow for full utilization of real spectral
information during supervised ML predictions.
To this end, we use the Uniform Manifold Approximation

and Projection (UMAP)59 for dimensionality reduction, which
allows us to develop chemical classes by examining clustering
of spectra in a two-dimensional embedding. UMAP is a
nonlinear embedding similar to t-distributed Stochastic
Neighbor Embedding (t-SNE),60 which was used in our
recent work55 to extract chemical classes. Like t-SNE, UMAP
constructs a graph-based representation of the data in the high-
dimensional space to generate a similarity comparison, and
then it tries to match the similarity comparison in a low-
dimensional representation of the data. However, UMAP
utilizes a different cost function, namely, cross-entropy instead
of KL divergence, which further enables the global structure to
be preserved, albeit at the cost of the “crowding problem”.60

Moreover, given the proper choice in hyperparameters,
UMAP can retain global similarity such that distances between
clusters can be interpreted (given the manifold remains
connected). This contrasts t-SNE, where its cost function,

Figure 1. Flowchart of an analysis framework that uses unsupervised
machine learning (such as cluster analysis) as a precursor to
predictions on spectra via supervised machine learning, which can
then inform experimental design and data creation.
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the KL divergence, goes to zero at large distances. The result is
that t-SNE is not penalized for putting unalike data either far
or very far away, and thus interpretation of similarity is only
valid on a relatively local (intracluster) scale. These properties
of UMAP allow it to generate a mapping function that can then
be used to map subsequent data, which is why UMAP is called
a “parametric embedding” and contrasts t-SNE’s requirement
that the entire training dataset must be used to predict new
data. Thus, UMAP can be used for future data compression
and has the potential for better interpretation of overall global
similarities. These advantages have led to its recent popularity,
such as in single-cell RNA sequencing (scRNA-seq) data
analysis,61 but UMAP has not yet seen use in XAS analysis.

II. METHODS
Our methods for the electronic structure calculations closely
follow that of Tetef et al.55 Molecular structures were
downloaded from the PubChem database using our open-
source Python module called moldl58 that allows for users to
easily write scripts that can search the PubChem database and
store the resulting structures, with metadata, in a local database
indexed by PubChem Compound IDentification (CID)
numbers. The downloaded structures can then be sorted
using customizable filters, and selected molecules can be
exported in multiple formats (SDF, MOL, and XYZ). This tool
is accessible to any researcher for use in projects that require
the collection and management of molecular structure datasets.
A total of 1196 compounds were downloaded and managed in
this study, while 756 of them were structurally viable for our
desired analysis.
Both XANES and VtC-XES were calculated with the open-

source NWChem computational chemistry software pack-
age62,63 via the same pipeline as specified in Tetef et al.55 To
summarize, both spectra were computed using the Sapporo

QZP-2012 basis set64 for P, while the remaining atoms were
represented using the 6-31G* basis set and the PBE0 exchange
correlation functional.65 Additionally, the Stuttgart RLC
ECP66 was substituted for atoms heavier than phosphorus.
As in Tetef et al.,55 a post-processing energy-dependent linear
broadening scheme was applied to XANES transitions, starting
with a full width half-maximum (FWHM) Lorentz broadening
of 0.5 eV at the whiteline, and then linearly increasing to 4.0
eV FWHM at 20 eV past the whiteline. An energy shift of 50
eV was applied to all XANES transitions to align with
experimental data.67

For VtC-XES, the calculated transitions were all shifted by
−19 eV to align to the experiment.68 A FWHM Lorentz
broadening of 0.5 eV and a FWHM Gaussian broadening of
1.5 eV were added to each transition to agree with
experimental data.68 Because NWChem calculates a self-
consistent field density functional theory (DFT) solution for
both XANES69 and VtC-XES,70 this solution serves as a
reference for the time-dependent DFT (TDDFT)-based X-ray
spectroscopy calculations and thus only one internally
consistent energy shift is required for each system.
Finally, both XANES and VtC-XES were individually

normalized by their total Kα intensities. The Kα transitions
scale in intensity proportional to the compound size (like VtC-
XES and XANES calculations) but are very nearly independent
of all environmental effects, thus providing an absolute scale to
maintain relative intensities across the entire ensemble.
The sulforganics study of Holden et al.54 for the

experimental VtC-XES and NWChem calculations showed
excellent agreement, as did additional calculations and
comparison to XANES in Tetef et al.55 Here, in Figures S1
and S2, we more modestly validate the performance of
NWChem against several VtC-XES taken with the same
instrument and methodology as Holden et al.,54 and also

Figure 2. UMAP representation of VtC-XES (top) and XANES (bottom), color-coded by coordination, with some example spectra (as calculated
by NWChem) shown to the right.
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validate the performance against several XANES spectra from
Persson et al.67

Briefly, Principal Component Analysis (PCA) was imple-
mented using the scikit-learn71 package in Python and
was applied to the original spectra before UMAP to speed up
computation and decrease noise. The number of principal
components kept from the PCA was the number of
components necessary to explain at least 95% of the variance
in the dataset. For example, the number of retained principal
components was 7 and 14 components for VtC-XES and
XANES spectra, respectively, for the dataset consisting of all
tricoordinate and tetracoordinate compounds, as shown in
Figure S3. Some reconstructed spectra using the 95% variance
cutoff are shown in Figures S4 and S5. The difference in the
number of principal components required for VtC-XES and
XANES suggests that XANES spectra have more variation and
thus more nonlinear features, which is unsurprising.
UMAP was implemented using the umap-learn

module72 with default hyperparameters. Again, as mentioned
above, to accelerate computing, the UMAP algorithm was
applied to the PCA coefficients at the 95% variance level, thus
decreasing the dimensionality of the training space from 1000
to either 7 or 14. For Figures 2−6, the number of UMAP
output components was constrained to two for visualization
purposes, while for Figure 7, the output dimensionality was set
to five (found through the hyperparameter optimization
discussed below).
Finally, to help illustrate the value of unsupervised ML as a

precursor to supervised ML, we applied supervised ML in the
form of a Gaussian process73 classifier to the UMAP
representation for all five classification schemes determined
by the two-dimensional cluster analysis. The Gaussian
processes were implemented using scikit-learn,71

which utilizes the Laplace approximation as detailed by
Rasmussen and Williams.73 A separate classifier was trained

for each of the five classification schemes, shown in Table S1,
for both VtC-XES and XANES data.
A test set was specified for each classifier, which comprised

of a random selection of 15% within each class, with the rest of
the data specified as training. A validation set was then
randomly selected within that training set to optimize model
hyperparameters. These hyperparameters were found to be five
dimensions for the UMAP embedding, with the optimal
kernels for the Gaussian Process selected as Rational
Quadratic for both VtC-XES and XANES spectra. All data
and analysis code for this study is publicly available.74

III. RESULTS AND DISCUSSION
The first two sections below follow the general approach in
Tetef et al.55 wherein we investigate the heuristically expected
chemical sensitivities in VtC-XES and XANES (Section III.I)
and then, when subclusters are observed within an expectedly
dominant chemical classification, we investigate unexpected
sensitivities to further structure or electronic refinements
(Section III.II). This has several important results, including
delineation of both similar and different sensitivities of VtC-
XES and XANES to chemical classifications, as well as the
emergence of spectral sensitivity to second-shell coordination
for phosphates.
The final section (Section III.III), on the other hand, seeks

to address the motivating hypothesis illustrated in Figure 1, i.e.,
unsupervised ML can usefully inform supervised ML. We
demonstrate that confidence of predictions directly correlates
to our qualitative cluster analysis, thus validating that the
strength of information encoded in VtC-XES and XANES can
vary between spectroscopies, depending on the system and
property of interest.

III.I. Unbiased Verification of Heuristic Classes. To
begin, heuristically, one expects phosphorus coordination to
yield the strongest distinguishing features between spectra,
specifically the distinction between tricoordinate phosphorus

Figure 3. UMAP representation of VtC-XES (top) and XANES (bottom) for tricoordinate phosphorus and tetracoordinate phosphorus
compounds, color-coded by number of oxygens bonded to phosphorus within each coordination. The same example spectra as before are shown to
the right, as calculated by NWChem.
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and tetracoordinate phosphorus. Not only do these coordina-
tion geometries have different hybridized orbital characters but
they are also often a proxy for the oxidation state. In
organophosphorus compounds with tricoordinate phosphorus
centers, phosphorus is typically in a 3+ oxidation state, whereas
compounds with tetracoordinate phosphorus centers usually
have phosphorus in a 5+ oxidation state.
We chose compounds with a diverse number of oxygens

bonded to phosphorus within these two coordination
configurations (with all other bonding atoms as carbon) to
further vary the effective charge on phosphorus. We then
applied UMAP to VtC-XES and XANES spectra to create a
two-dimensional embedding of the ensemble. The results are
color-coded based on whether the compound includes
tricoordinate phosphorus or tetracoordinate phosphorus, as
shown in Figure 2. All R groups bonded to phosphorus (or
bonded to the oxygens bonded to phosphorus) are constrained
to be exclusively carbons (e.g., alkyl or aryl chains), and
sometimes hydrogens (when bound to the oxygen) to achieve
hydroxyl groups, but only for phosphates (which we will
explore later).
As expected, coordination distinguishes most of the

groupings of the compounds, with a handful of outliers. We
have further labeled some example compounds a−h (right
panels) in each cluster with their corresponding VtC-XES and
XANES spectra. (The identity of compounds a−h is defined in
Table S2 in the supplementary section, but it is sufficient to say
that they span a wide range of local coordination and oxidation
states.) Note how some compounds that are in the same
cluster in the VtC-XES embedding are in different clusters in
the XANES embedding, and vice versa. For example,
compounds a, b, and c are together in the XANES embedding,
but they are in three different clusters in the VtC-XES
embedding, which we will discuss later as being due to the
number of oxygen ligands. These observations clearly indicate
that VtC-XES and XANES encode information differently and
that there are chemically relevant subgroupings within each
coordination.
Seeking to elucidate the chemical subgroupings, Figure 3

shows the embedding color-coded within each of the tri- and
tetracoordinate classes based on the number of oxygens
bonded to phosphorus and the corresponding named chemical
classifications. The spectral averages for both VtC-XES and
XANES spectra for each class are shown in Figure S6, while the
spectral averages for each cluster are shown in Figure S7.
Figure 3 shows very clear retention of chemically relevant
information, with some similarities and differences between
VtC-XES and XANES. We will now discuss the expected
change in spectra based on the chemical signatures in this
ensemble, the resulting successes in information encoding, the
differences between the two spectroscopies, and (importantly)
the occurrence of outliers in the UMAP embedding,
specifically, if the outliers correspond to molecules whose
electronic structure is somehow strongly anomalous with
respect to their general chemical class.
First, we expect effective charge of phosphorus to have the

biggest impact on both VtC-XES and XANES spectra. For
VtC-XES, the ligand peaks (the small low-energy peak in
Figure S6) will increase in both energy and intensity with an
increase in phosphorus oxidation. From a molecular orbital
perspective, this trend is from both a larger overlap between
the ligand valence orbital and the phosphorus 3p orbital
(valence shell) and the increased number of oxygen ligands. In

general, this feature (which also changes with different ligand
symmetries and orientation) is why VtC-XES is strongly
sensitive to ligand identity.75 For XANES spectra, an increase
in the oxidation of phosphorus, i.e., the number of oxygen
ligands within a coordination, will cause a blue shift of the
absorption edge, also demonstrated again by the average
spectra in Figure S6.
Second, in terms of successful information encoding, we see

that the number of oxygen ligands supplies much more
information to explain the groupings in the UMAP
representation than just coordination. For example, the highest
oxidation compounds�the phosphates (blue)�are separated
from all other compounds in both VtC-XES and XANES
embeddings and are even subdivided into two clusters for both
(this is due to a combination of chemical properties, which we
will explore later in (Section III.II) and is the reason
compounds e and d are separated in the XANES embedding
but not the VtC-XES embedding).
Third, we consider the similarities and differences of

information encoding by XANES and VtC-XES in Figure 3.
In terms of differences, VtC-XES segregated the tetracoordi-
nate phosphonates (yellow) from other compounds, whereas
XANES segregated the tricoordinate trialkyl phosphines
(orange) from the rest of the ensemble. Additionally, VtC-
XES separated the phosphine oxides (pink) into two
subclusters not seen in the XANES embedding, while the
tricoordinate phosphite esters (red) get their own cluster in
XANES but not in the VtC-XES embedding.
A closer look at these differences in the UMAP embeddings

for VtC-XES and XANES is exemplified by the example
compounds a−c. In this case, although compound b
(tetracoordinate, phosphine oxide, one oxygen ligand) has a
more reduced P atom compared to compounds a and c (both
tetracoordinate, phosphates, four oxygen ligands), it is in a
different cluster in the VtC-XES embedding but in the same
cluster, albeit at the opposite end, as compounds a and c in the
XANES embedding. We see that VtC-XES for compound b is
in fact vastly different than the spectra of a and c, but its
XANES counterpart is more similar to the others. This
difference is grouping is likely indicative of the variation within
the two spectroscopies. Because UMAP compares both local
and global similarities between spectra, this trend might
indicate that VtC-XES have more discrete spectral features
(especially regarding the charge on phosphorus) compared to
a continuous variation in XANES spectral features (for
example, a continuous shift in the absorption edge).
Finally, moving to apparent outliers, one clear example is the

location of compound a, diethyl (chloromethyl) phosphonate
in the VtC-XES embedding. Compound a is a phosphonate
but has a chlorinated carbon ligand, which effectively pulls
more charge from phosphorus, thus making the carbon act
more like an oxygen and the phosphorus having a higher
oxidation. Likewise, both phosphonates, like compound a, in
the phosphate cluster having a chlorinated R1 ligand are thus
grouped with the nominally “higher oxidation” compounds
instead of the cluster with compound c (diethyl methane-
phosphonate).
As for further outliers, note that although compound f is a

phosphinite with nominal P(III) oxidation from its tricoordi-
nate P, it has a distinct number of oxygen ligands (one)
compared to g (trialkyl phosphine, tricoordinate, no O
ligands) and h (phosphite ester, tricoordinate, three O
ligands). In these UMAP embeddings, compound f is more
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similar to the higher oxidation compounds in VtC-XES
compared to XANES spectra. Upon further examination, the
other trialkyl phosphines in the cluster with compound f in the
VtC-XES embedding are anomalous�they all have nitrile
functional groups bonded to the phosphorus atom. Thus, in
this case, VtC-XES seems to determine outliers more
definitively than XANES, where the distinction falls on the
second nearest-neighbor identity.
These observations bring us to our next hypothesis that

VtC-XES and XANES are both sensitive to ligand identity. As
stated earlier, VtC-XES is highly sensitive to ligand identity via
changes in the ligand peak feature.47 Again, because the
absorption edge of a XANES spectrum shifts with oxidation,
the electronegativity of ligands will cause the biggest spectral
change. However, even for ligands with approximately the
same electronegativity, different phase shifts and cross sections
cause finer changes to XANES spectra.

To systematically probe the effect of ligand identity, a series
of tetracoordinate phosphorus compounds (phosphates) were
evaluated, in which the oxygen substituents were replaced with
one or two sulfur atoms with the local bonding environment
around the phosphorus otherwise unchanged. Compared to
oxygen, sulfur is significantly less electronegative, with a
Pauling electronegativity value near that of carbon and
phosphorus.76 Thus, while differences in photoelectron
scattering can influence the XANES, we generally expect that
these oxygen-to-sulfur ligand substitutions cause the biggest
spectral change by adjusting the effective charge on the
phosphorous. The resulting clusters are shown in Figure 4.
Note that the phosphates are the same compounds that were
used in the ensemble appearing in Figures 2 and 3, but that we
have added additional chemical classes�phosphorothioates
and dithiophosphates�to create the ensemble appearing in
Figure 4.

Figure 4. UMAP representation of VtC-XES (left) and XANES (right) for compounds with sulfur ligands, color-coded by the number of sulfurs.
The pair of bottom insets on each panel are enlargements of the shown subregions to make it easier to see violations of cluster chemical classes, i.e.,
outlier compounds.

Figure 5. UMAP representation of the VtC-XES spectra of compounds with consecutively more R groups (if bonded to an oxygen) replaced with
an H atom (to create hydroxyl groups), color-coded by chemical class.
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The different ligand identities drive cluster separations in
Figure 4, but do not exhaust the refinement of chemical
classification; we return below to the question of further
classification within phosphates. However, in Figure 4, VtC-
XES has a clear outlier�the phosphorothioate (green) in the
dithiophosphate cluster (red) in the second inset of that figure.
Chemically, this compound (PubChem CID 104781, tert-
butylbicyclophosphorothionate) is structurally different from
others because the oxygens form one edge of a carbon
tetrahedrane. Thus, a clear chemical outlier, in terms of
electronic structure, is also flagged as an outlier in the UMAP
embedding because UMAP grouped this compound with
dithiophosphates instead of with phosphorothioates.
We next analyze whether the spectra would be sensitive to

substitutions of R groups (if bonded to an oxygen) with a
hydrogen atom, thus forming hydroxyl groups, as shown in
Figure 5. Here, we have taken phosphinate and phosphonate as
starting points, and consecutively replaced O−R groups with
OH groups. Note that the phosphinates and phosphonates are
the same compounds that were used in the ensemble appearing
in Figures 2 and 3, but that we have added additional chemical
classes�phosphenic acids, half phosphonic acids, and
phosphonic acids�to create the ensemble appearing in Figure
5.
In general, this distinction seems to be better illuminated by

VtC-XES than the XANES (which is shown in Figure S8), as
the clustering in VtC-XES is suggestive of a sensitivity to
hydroxyl groups. However, Figure 5 also exemplifies that first
nearest neighbors, e.g., the oxygen ligands directly bonded to
phosphorus, likely cause the biggest spectral changes and thus
are the biggest contributing factor to clustering, which is
consistent with our earlier observations.
III.II. Emergent Chemical Fingerprints from Clusters.

Above, we motivated our classes by important chemical
properties that we heuristically expected to yield the biggest
spectral differences. However, even within this chemically
driven framework, there are subclusters within our heuristic
chemical classes that are instead emergent from UMAP. For
example, we found that subclustering of the phosphate
chemical class (exemplified by multiple separate subclusters
in Figures 3 and 4) was caused by unexpected variations in the
secondary substituent (atoms bound to oxygens, not directly to
phosphorus), indicating that XANES spectra are sensitive to
even more subtle details than anticipated.
Let us examine this subdivision of the phosphates,

specifically in the UMAP embedding of their XANES spectra.
For just phosphates, we achieve the embedding shown in
Figure 6, which has labeled the phosphates into four clusters
determined by the dbscan77 clustering algorithm: I, II, III,
and IV. The average spectrum for each cluster is shown at the
bottom and the common structural motifs for each cluster are
shown to the right.
77% of Cluster I is comprised of compounds with two alkyl

R groups and the third group either alkyl or aryl rings. This
distinction is different from Clusters II to IV as they instead
typically have two R groups as H atoms instead of carbon-
based groups. Cluster II is the largest subcluster and 94% of
the compounds have two hydroxyl groups bonded to
phosphorus and the last R group an alkyl chain. These two
clusters are the most distinct.
On the other hand, Clusters III and IV are similar in

composition. Cluster III is comprised of compounds with the
third R group as: (a) alkyl rings or cycloalkanes (36%), (b)

aromatic rings (23%), or (c) take part in intramolecular
hydrogen bonding with one of the hydroxyl groups bonding to
phosphorus. Cluster IV compounds are structurally very
similar to Cluster III compounds, even though their spectra
are distinct. However, 54% of Cluster IV compounds have
their third R group as aromatic rings. For some example
compounds in each cluster along with their spectra and
structure, see Figures S9−S12. All compounds in Clusters I−
IV can also be viewed in Figures S13−S16. Additionally, given
the linear nature of Clusters I, III, and IV in the UMAP
embedding, we tested the correlation between the embedding
location and the energy of the absorption edge, as shown in
Figure S17, and found no strong correlation.
Furthermore, color-coding the phosphates based on a 10-

dimensional clustering and then visualizing them in two
dimensions yields very nearly the same classifications, as shown
in Figure S18. Thus, the two-dimensional embedding is
retaining enough information to categorize the phosphates
appropriately. Even expanding the embedding space to three
dimensions instead of two for all previous embeddings yields
very nearly the same clustering, as shown in Figure S19. This
retention in information�yet complex clustering of com-
pounds�further supports the nonlinear nature of spectra and
the idea that properties are complexly encoded in spectra and
conversely, spectral features do not correlate solely to a single,
high-variant attribute but rather a combination of electronic or
chemical properties.
Taken en masse, these results show the extent to which

chemically relevant information is, or is not, encoded by the
quantum mechanics involved in XANES and VtC-XES. As to
the specific algorithm, UMAP can be used iteratively as more
data is collected. Thus, it has the potential to shown evolutions
through the domain space, similar to the latent space of a
variational autoencoder (VAE),78 given proper tuning of its
two hyperparameters: the number of expected neighbors in a
cluster and the minimum distance between points. For an
overview of the effect of those two hyperparameters on the

Figure 6. UMAP representation of the XANES spectra of phosphates,
color-coded by subclusters. Cluster-averaged spectra and a summary
of structural motifs for each cluster are also shown.
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UMAP embedding, see Figures S20 and S21. Finally, and of
key importance here, UMAP can generate embeddings of
spectra that can be used for unbiased refinement of the training
dataset in addition to a preprocessing step before supervised
ML predictions.
III.III. Validation of Chemical Fingerprints from

Cluster Analysis. In our prior work on sulforganics55 and
in the present above work on the more complex case of
organophosphorus compounds, we have demonstrated a
convincing utility of advanced, nonlinear unsupervised ML
tools for evaluating the chemically relevant information in VtC-
XES and XANES spectra. We now return to our hypothesis
presented in the introduction and illustrated in Figure 1, where
we propose that such an unsupervised ML method can
productively inform the use of supervised ML tasks.
The most common use of supervised ML in X-ray

spectroscopy is to predict numerical properties, such as bond
length or coordination, from XANES spectra.20−22,24,31 Here,
we instead predict chemical classes from both VtC-XES and
XANES spectra. Moreover, we predict these classes from a five-
dimensional UMAP representation of the spectra instead of
from the original spectra themselves. Such preprocessing
through dimensionality reduction can help separate inherently
correlated and nonlinear spectral features56 as well as greatly
reduce both the computational cost and the effect of spectral
noise.
Furthermore, we use a Gaussian process (GP) to

incorporate prior knowledge into our models and generate
an informed predictor.73 A GP is a nonparametric kernel
method that formally incorporates Bayes rule into the model,
which not only allows for priors to be specified during training
but also allows for a probabilistic interpretation of the results.
This probability gives uncertainty estimates, or conversely
confidence, of the predictions. We note that one of the biggest
downsides of a GP is that it scales poorly, which is another
reason why applying a nonlinear dimensionality reduction
routine like UMAP beforehand can transform this problem
into a computationally tractable one.
The results of training a GP on each of the five classification

schemes (see Table S1) we developed�coordination, number
of oxygen ligands, phosphate subcluster, number of sulfur
ligands, and number of hydroxyl ligands�are shown in Figure
7, with the average accuracy score on the test set as well as the
probability of that prediction, i.e., the confidence score, shown.

There is a clear correlation between the average accuracy and
confidence, indicating that the GP is, in fact, properly modeling
uncertainty of predictions.
Finally, the accuracies and confidence of each prediction

across VtC-XES and XANES data match what we observed in
our two-dimensional UMAP figures. This correlation is clearly
demonstrated in the hydroxyl ligand and phosphate subcluster
classification schemes, where the XANES and VtC-XES,
respectively, poorly cluster by these schemes, and the low
corresponding GP confidence reflects this. Overall, these
results further validate that visualizing data via a dimensionality
reduction algorithm like UMAP correlates to extractable
information content and can properly inform classes to be
used for supervised ML.
However, we note that care must be taken to ensure

transferability when training any supervised ML model on
theoretical spectra to then make predictions on experimental
data, the obvious next step of our GPs. Ensuring transferability
might mean appropriately modeling for noise, the spectral line
shape, or any systematic errors in the theoretical model.

IV. CONCLUSIONS
By utilizing Uniform Manifold Approximation and Projection
(UMAP) and analyzing the resulting clustering in a two-
dimensional embedding of VtC-XES and XANES spectra of an
ensemble of organophosphorus compounds, we find sensitivity
to coordination and ligand identity (specifically by distinguish-
ing the number of oxygen ligands, sulfur ligands, and hydroxyl
groups). Additionally, the XANES was clearly more sensitive to
phosphate subgroupings due to an unexpected, unintuitive
fingerprint that emerged from the clustering in the
unsupervised machine learning tool, UMAP.
These results culminate in a valuable analysis framework:

(1) applying nonlinear dimensionality reduction routines and
cluster analysis to check for both heuristic chemical
sensitivities and emergent ones present in the spectra, (2)
applying dimensionality reduction methods like UMAP before
querying supervised ML models, and (3) utilizing models that
incorporate prior knowledge, such as a Gaussian process, to
estimate uncertainty or confidence of these predictions on the
clustering-informed classes. Furthermore, this framework,
which we call Unsupervised Validation of Classes (UVC)
and illustrate in Figure 1, is broadly applicable�it can easily be
expanded to both other systems and other spectroscopies�

Figure 7. Gaussian process classifier prediction accuracies with corresponding average probability (“confidence”) for all chemically driven and
cluster-driven classification schemes.
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providing a way to inform methodology and validate
predictions instead of relying solely on the scientist’s
knowledge and, possibly, bias in the initial construction of an
appropriate training dataset.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.2c03635.

Theory versus experiment: VtC-XES (Figure S1); theory
versus experiment: XANES (Figure S2); scree plot of
VtC-XES and XANES data (Figure S3); PCA
reconstruction of VtC-XES (Figure S4); PCA recon-
struction of XANES spectra (Figure S5); class averages
of spectra with different coordinations (Figure S6);
cluster averages of spectra with different coordinations
(Figure S7); UMAP representation of XANES with H
atom substitutions (Figure S8); phosphate subcluster I
example spectra (Figure S9); phosphate subcluster II
example spectra (Figure S10); phosphate subcluster III
example spectra (Figure S11); phosphate subcluster IV
example spectra (Figure S12); phosphate subcluster I
structures (Figure S13); phosphate subcluster II
structures (Figure S14); phosphate subcluster III
structures (Figure S15); phosphate subcluster IV
structures (Figure S16); phosphate subcluster correla-
tions (Figure S17); phosphate subclusters: 10-dimen-
sional clustering (Figure S18); 3D UMAP visualizations
(Figure S19); changing UMAP hyperparameters:
number of neighbors (Figure S20); changing UMAP
hyperparameters: minimum distance (Figure S21);
classification table (Table S1); and table for compounds
a−h (Table S2) (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Gerald T. Seidler − Department of Physics, University of
Washington, Seattle, Washington 98195, United States;
orcid.org/0000-0001-6738-7930; Email: seidler@

uw.edu

Authors
∥Samantha Tetef − Department of Physics, University of
Washington, Seattle, Washington 98195, United States;
orcid.org/0000-0003-3098-8198

∥Vikram Kashyap − Department of Physics, University of
Washington, Seattle, Washington 98195, United States

William M. Holden − Department of Physics, University of
Washington, Seattle, Washington 98195, United States

Alexandra Velian − Department of Chemistry, University of
Washington, Seattle, Washington 98195, United States;
orcid.org/0000-0002-6782-7139

Niranjan Govind − Physical and Computational Sciences
Directorate, Pacific Northwest National Laboratory,
Richland, Washington 99352, United States; orcid.org/
0000-0003-3625-366X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpca.2c03635

Notes
The authors declare no competing financial interest.
∥S.T. and V.K. co-first authors.

■ ACKNOWLEDGMENTS
S.T. acknowledges funding from NRT-DESE: Data Intensive
Research Enabling Clean Technologies (DIRECT) under
grant no. NSF #1633216 and from NSF CHE-1904437. V.K.
acknowledges support from the Washington NASA Space
Grant from the Washington NASA Space Grant Consortium
(WSGC). N.G. acknowledges support from the Department of
Energy, Office of Science, Office of Basic Energy Sciences,
Chemical Sciences, Geosciences and Biosciences under Award
No. KC-030105172685. This research benefited from
computational resources provided by the Environmental
Molecular Sciences Laboratory (EMSL), a DOE Office of
Science User Facility sponsored by the Office of Biological and
Environmental Research and located at PNNL. PNNL is
operated by Battelle Memorial Institute for the United States
Department of Energy under DOE Contract No. DE-AC05-
76RL1830. Additionally, this work was facilitated through the
use of advanced computational, storage, and networking
infrastructure provided by the Hyak supercomputer system
and funded by the STF at the University of Washington.

■ REFERENCES
(1) Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh,
A. Machine learning for molecular and materials science. Nature 2018,
559, 547−555.
(2) Zhou, Z. Q.; He, Q. F.; Liu, X. D.; Wang, Q.; Luan, J. H.; Liu, C.
T.; Yang, Y. Rational design of chemically complex metallic glasses by
hybrid modeling guided machine learning. npj Comput. Mater. 2021,
7, No. 138.
(3) Liu, Y.; Zhao, T. L.; Ju, W. W.; Shi, S. Q. Materials discovery and
design using machine learning. J. Materiomics 2017, 3, 159−177.
(4) Liu, Y.; Guo, B. R.; Zou, X. X.; Li, Y. J.; Shi, S. Q. Machine
learning assisted materials design and discovery for rechargeable
batteries. Energy Storage Mater. 2020, 31, 434−450.
(5) Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C.
Materials design and discovery with high-throughput density
functional theory: The Open Quantum Materials Database
(OQMD). JOM 2013, 65, 1501−1509.
(6) Ramirez, C. A. M.; Greenop, M.; Ashton, L.; Rehman, Iu.
Applications of machine learning in spectroscopy. Appl. Spectrosc. Rev.
2021, 56, 733−763.
(7) Gordon, D. F.; Desjardins, M. Evaluation and selection of biases
in machine learning. Mach. Learn. 1995, 20, 5−22.
(8) Wolpert, D. H.; Macready, W. G. No free lunch theorems for
optimization. IEEE Trans. Evol. Comput. 1997, 1, 67−82.
(9) Alelyani, S. Detection and evaluation of machine learning bias.
Appl. Sci. 2021, 11, No. 6271.
(10) Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan,
A. A Survey on bias and fairness in machine learning. ACM Comput.
Surv. 2021, 54, 1−35.
(11) Pot, M.; Kieusseyan, N.; Prainsack, B. Not all biases are bad:
equitable and inequitable biases in machine learning and radiology.
Insights Imaging 2021, 12, No. 13.
(12) Hiemstra, A. M. F.; Cassel, T.; Born, M. P.; Liem, C. C. S. The
promises and perils of machine learning algorithms to reduce bias and
discrimination in personnel selection procedures. Gedrag Organ. 2020,
33, 279−299.
(13) Belkin, M.; Niyogi, P.; Sindhwani, V. Manifold regularization: A
geometric framework for learning from labeled and unlabeled
examples. J. Mach. Learn. Res. 2006, 7, 2399−2434.
(14) Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P. A.; Vincent,
P.; Bengio, S. Why does unsupervised pre-training help deep learning?
J. Mach. Learn. Res. 2010, 11, 625−660.
(15) Liu, H.; Yu, L. Toward integrating feature selection algorithms
for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005,
17, 491−502.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.2c03635
J. Phys. Chem. A 2022, 126, 4862−4872

4870

https://pubs.acs.org/doi/10.1021/acs.jpca.2c03635?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.2c03635/suppl_file/jp2c03635_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gerald+T.+Seidler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6738-7930
https://orcid.org/0000-0001-6738-7930
mailto:seidler@uw.edu
mailto:seidler@uw.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samantha+Tetef"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3098-8198
https://orcid.org/0000-0003-3098-8198
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vikram+Kashyap"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="William+M.+Holden"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexandra+Velian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6782-7139
https://orcid.org/0000-0002-6782-7139
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Niranjan+Govind"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3625-366X
https://orcid.org/0000-0003-3625-366X
https://pubs.acs.org/doi/10.1021/acs.jpca.2c03635?ref=pdf
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41524-021-00607-4
https://doi.org/10.1038/s41524-021-00607-4
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1016/j.ensm.2020.06.033
https://doi.org/10.1016/j.ensm.2020.06.033
https://doi.org/10.1016/j.ensm.2020.06.033
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1080/05704928.2020.1859525
https://doi.org/10.1007/BF00993472
https://doi.org/10.1007/BF00993472
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.3390/app11146271
https://doi.org/10.1145/3457607
https://doi.org/10.1186/s13244-020-00955-7
https://doi.org/10.1186/s13244-020-00955-7
https://doi.org/10.1109/TKDE.2005.66
https://doi.org/10.1109/TKDE.2005.66
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.2c03635?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(16) Monarch, R. Human-in-the-Loop Machine Learning: Active
Learning and Annotation for Human-Centered AI; Manning: Shelter
Island, 2021.
(17) Omta, W. A.; van Heesbeen, R. G.; Shen, I.; de Nobel, J.;
Robers, D.; van der Velden, L. M.; Medema, R. H.; Siebes, A. P. J. M.;
Feelders, A. J.; Brinkkemper, S.; et al. Combining supervised and
unsupervised machine learning methods for phenotypic functional
genomics screening. SLAS Discovery 2020, 25, 655−664.
(18) Mathivanan, N. M. N.; Md Ghani, N. A.; Janor, R. M.
Improving classification accuracy using clustering technique. Bull.
Electr. Eng. Inform. 2018, 7, 465−470.
(19) Krenn, M.; Pollice, R.; Guo, S. Y.; Aldeghi, M.; Cervera-Lierta,
A.; Friederich, P.; dos Passos Gomes, G.; Häse, F.; Jinich, A.; Nigam,
A.et al.On scientific understanding with artificial intelligence,
arXiv:2204.01467. arXiv .org e-Pr int archive . https://
arXiv.2204.01467, 2022.
(20) Timoshenko, J.; Lu, D. Y.; Lin, Y. W.; Frenkel, A. I. Supervised
machine-learning-based determination of three-dimensional structure
of metallic nanoparticles. J. Phys. Chem. Lett. 2017, 8, 5091−5098.
(21) Timoshenko, J.; Frenkel, A. I. ″Inverting″ X-ray absorption
spectra of catalysts by machine learning in search for activity
descriptors. ACS Catal. 2019, 9, 10192−10211.
(22) Timoshenko, J.; Anspoks, A.; Cintins, A.; Kuzmin, A.; Purans,
J.; Frenkel, A. I. Neural network approach for characterizing structural
transformations by X-ray absorption fine structure spectroscopy. Phys.
Rev. Lett. 2018, 120, No. 225502.
(23) Timoshenko, J.; Wrasman, C. J.; Luneau, M.; Shirman, T.;
Cargnello, M.; Bare, S. R.; Aizenberg, J.; Friend, C. M.; Frenkel, A. I.
Probing atomic distributions in mono- and bimetallic nanoparticles by
supervised machine learning. Nano Lett. 2019, 19, 520−529.
(24) Zheng, C.; Chen, C.; Chen, Y.; Ong, S. P. Random forest
models for accurate identification of coordination environments from
X-Ray absorption near-edge structure. Patterns 2020, 1, No. 100013.
(25) Zheng, C.; Mathew, K.; Chen, C.; Chen, Y. M.; Tang, H. M.;
Dozier, A.; Kas, J. J.; Vila, F. D.; Rehr, J. J.; Piper, L. F. J.; et al.
Automated generation and ensemble-learned matching of X-ray
absorption spectra. npj Comput. Mater. 2018, 4, No. 12.
(26) Kiyohara, S.; Miyata, T.; Tsuda, K.; Mizoguchi, T. Data-driven
approach for the prediction and interpretation of core-electron loss
spectroscopy. Sci. Rep. 2018, 8, No. 13548.
(27) Routh, P. K.; Liu, Y.; Marcella, N.; Kozinsky, B.; Frenkel, A. I.
Latent representation learning for structural characterization of
catalysts. J. Phys. Chem. Lett. 2021, 12, 2086−2094.
(28) Aarva, A.; Deringer, V. L.; Sainio, S.; Laurila, T.; Caro, M. A.
Understanding X-ray spectroscopy of carbonaceous materials by
combining experiments, density functional theory, and machine
learning. Part I: Fingerprint spectra. Chem. Mater. 2019, 31, 9243−
9255.
(29) Carbone, M. R.; Yoo, S.; Topsakal, M.; Lu, D. Classification of
local chemical environments from x-ray absorption spectra using
supervised machine learning. Phys. Rev. Mater. 2019, 3, No. 033604.
(30) Carbone, M. R.; Topsakal, M.; Lu, D.; Yoo, S. Machine-
learning X-ray absorption spectra to quantitative accuracy. Phys. Rev.
Lett. 2020, 124, No. 156401.
(31) Liu, Y.; Marcella, N.; Timoshenko, J.; Halder, A.; Yang, B.;
Kolipaka, L.; Pellin, M. J.; Seifert, S.; Vajda, S.; Liu, P.; Frenkel, A. I.
Mapping XANES spectra on structural descriptors of copper oxide
clusters using supervised machine learning. J. Chem. Phys. 2019, 151,
No. 164201.
(32) Martini, A.; Guda, S. A.; Guda, A. A.; Smolentsev, G.; Algasov,
A.; Usoltsev, O.; Soldatov, M. A.; Bugaev, A.; Rusalev, Y.; Lamberti,
C.; Soldatov, A. PyFitit: The software for quantitative analysis of
XANES spectra using machine-learning algorithms. Comput. Phys.
Commun. 2020, 250, No. 107064.
(33) Miyazato, I.; Takahashi, L.; Takahashi, K. Automatic oxidation
threshold recognition of XAFS data using supervised machine
learning. Mol. Syst. Des. Eng. 2019, 4, 1014−1018.
(34) Guda, A. A.; Guda, S. A.; Martini, A.; Kravtsova, A. N.; Algasov,
A.; Bugaev, A.; Kubrin, S. P.; Guda, L. V.; Šot, P.; van Bokhoven, J. A.;
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