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Quantum Hall physics has been theoretically predicted in four dimensions and higher. In hypothetical
2n dimensions, the topological characters of both the bulk and the boundary are manifested as quantized
nonlinear transport coefficients that respectively connect to the nth Chern number of the bulk gap pro-
jection and to the nth winding number of the Weyl spectral singularities on the (2n − 1)-dimensional
boundaries. Here, we introduce the concept of phason engineering in metamaterials and use it as a vehi-
cle to access and apply the quantum Hall physics in arbitrary dimensions. Using these specialized design
principles, we fabricate a reconfigurable two-dimensional aperiodic acoustic crystal with a phason living
on a 2-torus, giving us access to the four-dimensional quantum Hall physics. Also, we supply a direct
experimental confirmation that the topological boundary spectrum assembles in a Weyl singularity when
mapped as a function of the quasimomenta. We also demonstrate topological wave steering enabled by
the Weyl physics of the three-dimensional boundaries.
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I. INTRODUCTION

In 1988, Haldane predicted that quantized Hall physics
can be intrinsic to a material [1]. To generate the effect
without an external magnetic field, he had to consider an
atomic lattice with at least two degrees of freedom per
repeating cell and to rely on complex hopping parameters
that break the time-reversal symmetry. Chromium-doped
thin films of (Bi,Sb)2Te3 produced the experimental val-
idation of Haldane’s prediction [2,3]. Two decades after
Haldane’s seminal work, quantum Hall physics was pre-
dicted to also manifest in systems with electromagnetic [4]
and mechanical [5] degrees of freedom. These predictions
became reality in 2009, when confirmed with gyromag-
netic photonic crystals [6], and in 2015, when confirmed
with gyroscope lattices [7]. These earlier advances flour-
ished in extremely active fields, where quantum Hall
physics is investigated with both quantum materials and
classical metamaterials.

The integer quantum Hall effect (IQHE) generalizes
in four dimensions and higher [8], and the representa-
tive theoretical models that display the effect, intrinsically,
have been already enumerated [9] (see also Sec. 2.2.4 of
Ref. [10]). Those representative models assume spatial
periodicity and this simplified setting comes at the price of
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increased complexity in the degrees of freedom per repeat-
ing cell. For example, the simplest model in dimension
d = 2n requires 2n degrees of freedom, complex connec-
tivity, and a high level of tuning to stabilize a topological
phase [9]. One strategy for implementing such higher-
dimensional models is to see them as supplying labels for
and specific connections between the degrees of freedom.
As long as these labels and their connections are identically
reproduced, the degrees of freedom can be rendered in
any dimension, in particular, in our three-dimensional (3D)
physical space. Following this strategy, the 4D QHE was
recently implemented with classical electric circuits [11].
While certainly an impressive demonstration, the outcome
was an extremely complex network of connected circuit
components.

Starting with the work of Kraus et al. [12], a strat-
egy emerged for the emulation of topological effects from
higher dimensions. It relies on aperiodicity, specifically, on
the fact that any aperiodic pattern has an intrinsic degree
of freedom, the phason, which, at least in principle, can
be engineered, accessed, and controlled experimentally
[13,14]. The phason space augments the physical space
and this opens a door to higher-dimensional physics. Cer-
tainly, the experimental emulations of the 4D QHE were
based on these principles [15,16]. Working with ultracold
atoms, Lohse et al. [15] were able to map a cloud’s cen-
ter of mass as it navigated an aperiodically modulated
potential and to demonstrate the quantization of the bulk
topological invariant via a connection established in an
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earlier theoretical work [17]. The bulk-boundary corre-
spondence was not addressed in this study. Zilberberg et al.
[16] emulated the 4D QHE with spatially modulated arrays
of coupled optical wave guides and produced evidence of
topological boundary modes. However, due to the specific
physics involved, the analysis rested entirely on the spa-
tial profile of the modes and their actual energies were
not resolved. As such, no evidence of the hallmark Weyl
singularity in the dispersion of the boundary modes was
presented, predicted by the strong bulk-boundary corre-
spondence of the 4D QHE [9]. Instead, other weaker forms
of bulk-boundary correspondence were presented, such as
the corner-to-corner pumping.

These three works [11,15,16] are the only experimen-
tal emulations of the 4D QHE to date, and many aspects
related to the effect remained unconfirmed. Certainly, an
experimental setup where both the spatial and frequency
domains can be simultaneously resolved is missing. Even
with the aperiodic principles at hand, the designs remained
challenging, perhaps because it is falsely assumed that
the models need to simulate the Hofstadter Hamiltonians
as close as possible. However, as pointed out by Apigo
et al. [13], no fine tuning is actually necessary to open
topological gaps. The latter only require strong aperi-
odicity and strong couplings between the resonators, as
well as a reliable strategy for the phason engineering that
produces the desired topological phases [14]. Guided by
these principles, we demonstrate here a robust design of a
quasiperiodic 2D acoustic crystal that hosts the 4D quan-
tum Hall physics. Reconfigurability and other advantages
of the experimental setup enables us to map the Weyl sin-
gularity predicted by the bulk-boundary correspondence
[10]. Furthermore, we demonstrate ways to control and
steer the boundary modes using the phason that are specific
only to the 4D QHE.

All the above rely on the concept of phason engineer-
ing. Using this strategy, the Hall physics from an arbitrarily
high dimension can be accessed from a physical space
of lower dimension d = 1, 2, 3. The high throughput of
large classes of topological models produced by phason
engineering will be essential for our understanding of
higher-dimensional bulk-boundary correspondence, of its
manifestation in metamaterials, and of its possible applica-
tions. Phason engineering relies on a specialized algorithm
to position the resonators relative to each other to pro-
duce phasons that live on arbitrary d′-dimensional tori.
Regardless of the particular couplings of the resonators,
the dynamical matrices that determine the collective res-
onant spectrum of the crystal are Galilean invariant. We
show that any such Galilean-invariant dynamical matrix is
just linear combinations and products of elementary opera-
tors that satisfy the commutation relations of the magnetic
translations in (d + d′) dimensions. As such, the spectral
gaps of the crystals carry higher Chern numbers and they
display a bulk-boundary correspondence specific to the

IQHE in higher dimensions [10]. Furthermore, to navigate
the complex topology of the states, we devise a K-theoretic
visual method to map the large number of topological
invariants associated with the bulk gaps, based on the gap
labeling technique [18,19].

II. EXPERIMENTAL SETUP AND RESULTS

Our experimental setup and main results are summa-
rized in Fig. 1. Photographs of our acoustic crystal can be
seen in Figs. 1(a) and 1(b). It consists of identical cylindri-
cal resonators with a geometry specified in Fig. 1(c). The
geometry is chosen to accommodate the microphone and
the speaker used for the measurements (see Sec. III), as
well as to ensure a good separation of the discrete reso-
nant modes, in the frequency domain we are interested in.
The latter ensures that only basic mode-to-mode couplings
occur. Figure 1(c) also shows the domain of the acoustic
wave propagation and, as one can see, the resonators are
connected through a thin domain, which we call the spacer.
It is highlighted in red in Fig. 1(a). By filling this spacer
with solid material, we can confine the wave propagation
and create a reconfigurable boundary, highlighted in red
in Fig. 1(b), to control the phason as explained below. It
is important to acknowledge that the use of a spacer as a
solution for resonator coupling, and not other complicated
means such as bridges, is one of the keys to our results.
The spacer, certainly, does not allow any fine tuning but it
does enable strong coupling; hence, it is of crucial impor-
tance that accessing the 4D Hall physics does not rely on
fine tuning [13]. Let us specify that, in order to tightly
pack the resonators and increase the strength of the cou-
pling, the nearest neighboring resonators have been placed
on opposite sides of the spacer.

The resonators are labeled by n = (n1, n2) ∈ Z
2 and the

(x, y) coordinates of their centers pn are such that

pn+(1,0) = pn + D{1 + ε sin[2π(φ1 + n1θ)], 0},
pn+(0,1) = pn + D{0, 1 + ε sin[2π(φ2 + n2θ)]}, (1)

with D = 17.0 mm and ε = 0.4. This pattern can be
thought of as a strongly perturbed ideal lattice with the
perturbation produced dynamically, via the specialized
algorithm illustrated in Fig. 1(d) and explained below.
Note that the pattern depends on the phason φ = (φ1, φ2),
which lives on a 2-torus. We place the boundaries along
the horizontal axis x = −D/2 and vertical axis y = −D/2;
hence, in between the rows and columns of the ideal
lattice. Now, if we keep the pattern in place and we
move the boundaries at x = (m1 − 1

2 )D and y = (m2 −
1
2 )D, then this move has the same effect as changing the
phason as φ �→ (φ1 + m1θ , φ2 + m2θ). As such, by hav-
ing an adjustable boundary, we can sample the phason
space with just one acoustic crystal. In the actual exper-
iments, we use four different acoustic crystals together
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FIG. 1. Four-dimensional topological quantum Hall effect. (a) Photograph of a fully assembled acoustic 2D sinusoidal pattern con-
sisting of top and bottom cylindrical resonators. The middle red bar indicates the presence of an inner chamber, which connects the
top and bottom resonators and is referred to as the spacer. (b) Photograph of the inner structure, with the spacer now fully visible.
(c) The wave propagation domain, together with relevant parameters. (d) Illustration of the algorithm that supplies the position of the
resonators. (e) COMSOL simulated bulk resonant spectrum against θ , together with labels for the topological and nontopological gaps.
(f) Left: COMSOL simulated resonant spectrum for hard wall termination, shown against the phason parameters φ1 and φ2. The Weyl
singularity is the spectral surface connecting the indicated bulk bands. Right: experimental measurement of the density of states, with
the phason space sampled in several directions. (g),(h) Comparison between the experimentally measured density of states and the
simulated spectrum (blue dots) for the traces φ1 = 0.5 and φ1 = φ2, respectively. The theoretical spectra have been stretched by a
small factor to overlay the experimental data. The bright dispersive modes on the left side are part of the spectral dome. The right side
displays the raw density of states data for the bulk, from where we read the edges of the bulk gap.

with the mobile boundary technique to sample 16 × 16
points of the phason space. Let us acknowledge that Eq. (1)
is just one example of a large class of patterns gener-
ated with the specialized algorithm illustrated in Fig. 1(d),
which gives access to the 4D quantum Hall physics (see
Sec. V).

The resonant spectrum of the acoustic crystal, as com-
puted with the finite-element based software COMSOL [20],
is reported in Fig. 1(e) as a function of θ . Since the sim-
ulations are for a finite crystal, some of the bulk gaps
are contaminated by the boundary spectrum. Additional
model calculations with periodic boundary conditions and
for larger crystals are reported in the Supplemental Mate-
rial [28]. At θ = 0, the crystal is periodic and, as expected,
the spectrum contains bands that evolve from the discrete
modes of the individual resonators. These bands do not
share any dynamical features; hence, the spectral gaps sep-
arating them are all trivial [see the label in Fig. 1(e)]. As
the parameter θ is turned on, the bands of the spectrum
become fragmented and a large number of spectral gaps
develop. Qualitatively, the spectra resemble the Hofstadter

butterfly [21] and, as we shall see below, the spectral gaps
carry second and first Chern numbers.

Experimentally, we are able to reproduce with high
fidelity the predicted spectra from Fig. 1(e), as demon-
strated in Fig. 2. Specifically, in Fig. 2(b), we report the
measured local density of states of the crystal, resolved
by frequency and resonator index (see Sec. III). The data
are collapsed on the frequency axis in Fig. 2(c) and two
clear spectral gaps are identified, which are well aligned
with those in the COMSOL simulated spectrum, shown again
in Fig. 2(a). The resonant spectrum in Fig. 2(a) does not
depend on φ1 and φ2. In the following, we fix θ at the
value identified in Fig. 2(a) and work with the first bulk
gap, counted from the top, which, as we shall see, carries a
second Chern number Ch2 = −1.

In Fig. 1(f), we report on the right the resonant spec-
trum of a finite crystal as a function of φ, as computed
with COMSOL in a finite frequency domain that covers the
bulk gap identified above. The dominant feature connect-
ing the indicated bulk bands of the spectrum is a spectral
dome that is hollow inside. A point inside this dome has no
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FIG. 2. Bulk measurements. (a) COMSOL simulated resonant
spectrum for the experimental setup from Fig. 1, with arrows
indicating the topological gaps. The vertical box identifies θ =
0.25, used in experiments. (b) Measured local density of states,
assembled from microphone readings on 42 bulk resonators.
(c) Collapse on the frequency axis of the intensity plot reported
in panel (b). Two spectral gaps can be clearly identified and seen
to be well aligned with the theoretical predictions.

escape path since it is completely surrounded by the spec-
trum. Furthermore, using model calculations, we observe
that this dome does not disappear or open up under con-
tinuous deformations of the crystal. This indicates that the
dome has a built-in topological protection, which we asso-
ciate with the second Chern bulk number and with the
Weyl physics expected at the surface of a 4D IQHE system.
Let us state that we are able to experimentally reproduce
with high fidelity this spectral dome. Indeed, the right-
hand side of Fig. 1(f) reports the experimentally measured
density of states (see Sec. III), with the phason space sam-
pled in several directions, and, as one can see, the outcome
reproduces the spectral dome. In Figs. 1(g) and 1(h) we
report two sections of these measurements showing quan-
titative agreement with the COMSOL simulations. The Weyl
singularity is further analyzed in Fig. 3. In particular, it
is shown there that the modes associated with that part of
the spectrum are localized on the boundary. Experimen-
tal measurements of the spatial profiles of these modes,
confirming the boundary localization, are reported in the
Supplemental Material [28].

The exactly solved 4D IQHE model in Sec. 2.2.4 of
Ref. [10] was isotropic in all four dimension and, in the
presence of a flat boundary, the dispersion was found to
display a Weyl singularity E(�k‖) = ±‖�k‖ − �k0‖, where �k‖
is the three quasimomenta parallel to the boundary and
�k0 is the coordinate of the Weyl singularity. Our acous-
tic crystal is highly isotropic and the Weyl singularity for
a flat boundary is collapsed, in the sense that the bound-
ary spectrum displays dispersion only with respect to φ1
if the boundary is cut perpendicular to the first spatial
direction. Nevertheless, the Weyl physics of the bound-
ary is still encoded (see Example 5.3.3 of Ref. [10]) in
the boundary topological invariant supplied by the three-
dimensional winding number of the gap unitary operator

(b)

(a)

1 20
11

6.00
5.95
5.90
5.85

6.00
5.95
5.90

Fr
eq

ue
nc

y 
(k

H
z)

5.85

1 =  
4

16

2 =  
3

16
5910.7 Hz

1 =  
8

16

2 =  
2

16
5911 Hz

1 =  
13

16

2 =  
4

16
5910.5 Hz

1 =  
14

16

2 =  
8

16
5909.3 Hz

1 =  12
16

2 =  
13

16
5909.2 Hz

1 = 8
16

2 =  
14

16
5910.4 Hz

1 =  3
16

2 =
12

16
5909.2 Hz

1 =  2
16

2 =  
8

16
5911 Hz

10
0

1

1

2

(b)

(1) (2) (3) (4)

(5) (6) (7) (8)

(c)

(1) (2) (3)

(4)

(5)(6)
(7)

(8)

FIG. 3. Weyl singularity and mode steering. (a) COMSOL sim-
ulated spectrum as a function of the phason φ = (φ1, φ2), reveal-
ing the Weyl singularity. (b) Cross section of the Weyl singularity
at 5910 Hz. (c) Acoustic pressure field distribution for the eight
phasons marked in panel (b), revealing circular mode steering
around the crystal’s boundary.

UG(φ) = eı2πg(Dφ), where Dφ is the dynamical matrix of
the crystal with a boundary and g is any continuous real-
valued function taking the value 0 or 1 above or below
the bulk gap, respectively. By construction, the spec-
tral decomposition of UG − I involves only the boundary
modes that are spatially localized at the edges of the sam-
ple. Now, our sample has four edges instead of just a flat
one; hence, for the sake of the argument, it is more appro-
priate to consider a disk-shaped sample of very large radius
R. Then the winding number is computed using the vari-
ables φ1, φ2 and the momentum k‖ parallel to the boundary,
with the latter treated with real-space methods [22]. Specif-
ically, the derivation ∂k‖(·) is replaced by the commutator
ı[·, Rφ̂3] and

∫
dk‖(·) is replaced by Tr(·)/(2πR), where

φ̂3 is the operator corresponding to the polar angle in the
plane of the sample. The radius R cancels out and the 3D
winding number takes the form

W3(UG) = �3

∑

σ∈S3

(−1)σ
∫

d3φ
∏

j

U−1
G ∂σj UG, (2)

where �3 is the standard normalization constant and S3 is
the permutation group of three objects. The bulk-boundary
correspondence (see Sec. 5.5 of Ref. [10]) ensures that this
boundary invariant equals the second Chern number of the
bulk gap projection [23] and, as such, a Weyl singularity is
expected if the modes are resolved by the φj . The dome
observed in Fig. 1(f) carries the boundary invariant (2)
and, for this reason, we proclaim that this spectral feature
is the manifestation of the Weyl physics expected at the
boundary of a 4D IQHE system. In particular, the spectral
dome cannot open in any spatial direction. Such a feature
is expected for more general boundaries and we have veri-
fied this statement for a sample shaped like an octagon (see
Fig. 6).
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Zilberberg et al. [16] injected light in a corner of the
ensemble of modulated wave guides and observed light
coming out of the opposite corner. It was inferred that their
observation is equivalent to adiabatic pumping along the
cycle mapped in Fig. 1(h) (see also Ref. [24]). We are
indeed able to reproduce this interesting corner-to-corner
pumping effect (see the Supplemental Material [28]), but
we point out that this type of pumping occurs through
the bulk states. In an actual pumping experiment, this will
inherently lead to leakage into the bulk modes. The Weyl
singularity, however, gives access to additional pumping
cycles that avoid the bulk spectrum. Indeed, one of the
special features of a strong topological invariant, such as
the second Chern number, is that boundary modes occur
regardless of the orientation of the boundary. This fea-
ture, together with full control over the phason, enables
a corner-to-corner mode steering that does not proceed
through the bulk states but rather goes around the Weyl
singularity, as well as around the edges of the sample. The
effect is illustrated in Fig. 3—a section of the Weyl singu-
larity is sampled at eight points in Fig. 3(b) and the spatial
profiles of the corresponding eigenmodes are mapped in
Fig. 3(c). As one can see, the mode is steered around the
boundary of the crystal and completes a full cycle as the
phason is cycled over the section of the Weyl singularity.

III. METHODS

A. Fabrication

Our fabrication process is modular and the acoustic crys-
tals are assembled from parts that are independently manu-
factured with different automated processes. This approach
enables a high throughput of acoustic crystals, which can
be disassembled and stored after use.

One leg of the process is the manufacturing of the sup-
porting bases, which are x-mm-thick acrylic plates with
through holes, laser cut with the Boss Laser-1630 Laser
Engraver. A specialized piece of computer code communi-
cates the pattern [see Eq. (5) below] and the radius of the
holes to the machine; hence, different phason designs can
be efficiently implemented. The nominal tolerance of the
laser cutter is 250 μm.

The resonators are manufactured using an Anycubic
Photon 3D printer, which uses UV resin and has 47 μm XY
resolution and 10 μm Z resolution. The thickness of their
walls is 2 mm, to ensure a good quality factor and to justify
rigid boundaries in our numerical simulations. The inner
dimensions of the resonators are supplied in Fig. 1. Iden-
tical resonators are printed in large quantities and made
ready for assembling.

The resonators are pushed through the holes of the base
plates until flush with the opposite side of the acrylic
plates. After the top and bottom parts are fully assembled,
they are pressed against the spacer, which is a 3-mm-thick
acrylic plate with a large opening cut out to accommodate a

total of 16 × 16 resonators. Let us specify that the top and
bottom parts accommodate a total of 23 × 23 resonators,
such that the spacer can be moved around and crystals
generated with different phasons, as explained in the main
text.

B. Experimental protocols

The protocol for the acoustic bulk and edge measure-
ments reported in Figs. 1(h) and 2 is as follows. Sinusoidal
signals of duration 1 s and amplitude 0.5 V are produced
with a Rigol DG 1022 function generator and applied on
a speaker placed in a porthole opened in a resonator in
the bottom row. A dbx RTA-M Reference Microphone
with Phantom Power used to acquire the acoustic signals
is inserted into a porthole opened in a resonator in the top
row. To account for the frequency-dependent response of
the components, several separate measurements are per-
formed with the structure removed but the speaker and
microphone kept at the same positions. All our microphone
readings are normalized by these reference measurements.
The signals are read by a custom LABVIEW code via a
National Instruments USB-6122 data acquisition box and
the data are stored on a computer for graphic renderings.

The local density of states reported in Fig. 2(b) is
acquired with the above protocol, which is repeated for
42 resonators located away from the boundary. For each
resonator, the frequency is swept over the shown range of
frequencies. According to the acoustic pressure field dis-
tribution of the upper and lower body modes of the topo-
logical gap in the COMSOL simulation, the microphones are
placed on 42 different resonators with measurable acous-
tic pressure. The speaker is placed on the nearest resonator
immediately below the microphone and, as a result, it is
moved between the bottom resonators.

The density of states reported in Figs. 1(g) and 1(h) is
obtain by integrating the local density of states acquired
from resonators close to the boundary. The same instru-
mentation is used, but the microphone is inserted into the
resonator along the boundary according to the acoustic
pressure distribution of the edge modes in the COMSOL sim-
ulation, and the speaker is placed on the nearest resonator
immediately above the microphone. In Fig. 1(g), from 0
to 0.5, the acoustic pressure field distribution of the edge
mode is concentrated on the right and upper boundary, and
from 0.5 to 1, the acoustic pressure field distribution of the
edge mode is concentrated on the left and lower boundary.
In Fig. 1(h), from 0 to 0.5, the acoustic pressure field dis-
tribution of the edge mode is concentrated on the right and
upper boundary and upper right corner, and from 0.5 to 1,
the acoustic pressure field distribution of the edge mode is
concentrated on the left and lower boundary and lower left
corner. The measurements are repeated with the change of
phason in steps of 1/16. For each measurement, the fre-
quency is scanned from 5800 to 6100 Hz in 10 Hz steps.
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The full map of the density of states reported in Fig. 1(f) is
obtained by assembling the data from Figs. 1(g) and 1(h)
and symmetry considerations to fill in the data for the two
additional directions shown in Fig. 1(f).

IV. SIMULATION

The simulations reported in Figs. 1, 2, and 3 are per-
formed with the COMSOL Multiphysics pressure acoustic
module. The domain shown in Fig. 1(c) is filled with
air with a mass density 1.3 kg/m3 and the sound’s speed
is fixed at 343 m/s, appropriate for room temperature.
Because of the huge acoustic impedance mismatch com-
pared with air, the 3D printing UV resin material is
considered a hard boundary.

The spectra reported in Fig. 5 are computed with the
stated model dynamical matrices, which are coded in
FORTRAN and exactly diagonalized using the standard
LAPACK library. The simulations assumed 101 × 101 res-
onators and θ is sampled as n/101 for panels (a) and (c)
and as

√
2n/101 for panel (b), n = 1, 101. This particular

sampling enabled us to impose boundary conditions.

V. PHASON ENGINEERING

We show here that, by using a specialized algorithm to
position the resonators relative to each other, we can engi-
neer phasons that live on arbitrary d′-dimensional tori. The
algorithm starts from a Bravais lattice L, generated by act-
ing on the origin p0 of the physical space R

d (d = 1, 2, 3)
with an abelian group of discrete translations

tnx = x +
∑

niai, n = (n1, . . . , nd) ∈ Z
d. (3)

The second ingredient is a virtual space R
d′

with d′ ≥ d
and with R

d canonically embedded in R
d′

. Lastly, L′ is
an independent Bravais lattice inside the virtual space R

d′
,

generated by a′
j , j = 1, d′. With these ingredients in hand,

we are going to produce a topologically ergodic dynamical
system, as that depicted in Fig. 1(d). For this, we form the
d′-torus T

d′ = R
d′
/L′ and let the abelian group Z

d act on
it via shifts

τn(φ) =
(

φ +
d∑

i=1

niai

)

modL′, φ ∈ T
d′

, (4)

exactly as in Fig. 1(d). Then, if F : T
d′ → R

d is any
continuous map, such as the projection in Fig. 1(d), we
generate the quasiperiodic pattern {pn(φ)}n∈Zd in R

d using
the algorithm

pn(φ) = tn{p0 + F[τn(φ)]}, φ ∈ T
d′

, n ∈ Z
d, (5)

which is graphically illustrated in Fig. 1(d). Note, for
example, that point p (1,1) in Fig. 1(d) can be reached

from the origin using many other different paths, such
as (0, 0) �→ (0, 1) �→ (1, 1). For the algorithm to be well
defined, all these many different paths must produce the
same point p(1,1). This is indeed ensured by the fact that
τ is a group action, that is, τnτm = τn+m. This property is
highly nontrivial as, for example, if one chooses to replace
the torus with a sphere, then one will find that there are no
natural actions of Z

d on such a space, besides the trivial
cyclic ones.

The pattern we just designed in the physical space,
Pφ = {pn(φ)}n∈Zd , depends on the phason φ, which marks
the point where the algorithm is started. Furthermore, rigid
shifts of the pattern result in readjustments of the pha-
son, t−1

a Pφ = Pτaφ . Since rigid shifts do not change the
resonant spectrum of a crystal, we arrive at the crucial con-
clusion that the spectrum of the dynamical matrix Dφ is
independent of the phason, provided the orbit τaφ densely
fills the d′-torus. As it is well known, this is indeed the
case if the lattices L and L′ are incommensurate. To con-
clude, we just showed how to engineer a pattern with a
phason that lives on a d′-torus. The latter can be used as an
adiabatic parameter that keeps every single bulk spectral
gap open, regardless of how the phason is cycled over T

d′
.

This is paramount for the existence and protection of the
dispersive boundary modes.

For the acoustic crystal shown in Fig. 1, the center of
the resonators is positioned as in (5), with d = d′ = 2, p0
at the lower left corner and

F(φ) = − εD
2 sin(πθ)

[cos(2πφ1 + πθ), cos(2πφ2 + πθ)],

(6)

where φ = φ1a′
1 + φ2a′

2, φi ∈ [0, 1]. Also, L and L′ are
square lattices related as L = θL′. The 4D quantum Hall
physics, however, can be accessed with any other function
F or lattice L′. Figure 4 supplies such examples and, as
one can see, the texture of the pattern can change dras-
tically when such adjustments are considered. As we shall

(a) (b) (c)

FIG. 4. Dynamically generated patterns. (a) Same as the pat-
tern of resonators in Fig. 1 but with the simplified F(φ) =
εD[sin(2πφ1), sin(2πφ2)]. (b) Same as (a) but with the lattice L′
rotated by 45◦ relative to L. (c) Same as (a) but with F replaced
by G ◦ F with G(x, y) = (x + y, y − x). All three patterns are
generated with θ = 1/2

√
2.
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see below, as long as a bulk gap remains open, the topolog-
ical boundary spectrum shown in Fig. 1 cannot be removed
under smooth deformations of either F or L′.

VI. QHE VIA PHASON ENGINEERING

We now demonstrate how the quantum Hall physics
emerges in these systems. For mode-to-mode coupling,
we can focus on one spectral band at a time, say the kth
one. Then the dynamical matrix corresponding to a generic
pattern P of resonators takes the form

DP =
∑

m,n∈Zd

wm,n(P)|m〉〈n|, (7)

where |n〉 encodes the kth discrete resonant mode of the
resonator placed at position pn. As alluded to by the nota-
tion, the overlap parameters wm,n(P) must depend on the
pattern in a continuous fashion and they must obey the
constraints

wm,n(taP) = wm+a,n+a(P), a ∈ Z
2. (8)

It is important to acknowledge that there is no more gen-
eral expression than Eq. (7), because P encodes the entire
geometric data of the crystal. Also, Eq. (8) follows entirely
from the Galilean invariance. For our specific patterns, we
can pass from P to φ and use Eq. (8) to reduce

Dφ =
∑

q

Sq

( ∑

n

wq,0[τn(φ)] |n〉〈n|
)

, (9)

where Sq|n〉 = |n + q〉 is the shift operator. This shows
that any Galilean-invariant dynamical matrix over the pat-
tern Pφ is a combination of shift operators and diagonal
operators of the form

Tf =
∑

n

f [τn(φ)] |n〉〈n| (10)

for some continuous function f over the d′-torus. Further-
more, the following commutation relations are obvious:

Tf Sq = SqTf ◦τq , Tf Tg = TgTf = Tf ·g . (11)

Since every function over a torus can be Fourier decom-
posed, all the Tf are linear combinations and powers of d′
operators Tj corresponding to the elementary functions

uj (φ) = eı2πφj , ı = √−1, j = 1, . . . , d′, (12)

where the torus T
d′ = R

d/L′ is parameterized as φ =∑
φj a′

j , φj ∈ [0, 1]. The conclusion is that any Galilean
invariant Dφ belongs to the algebra generated by d′ + d
operators, which are the Tj mentioned above together with

the elementary shifts Td′+j = Sej , corresponding to the
generators ej of Z

d. These operators obey the commutation
relations

TiTj = eı2πθij Tj Ti (13)

with the matrix 
 = {θij } fully determined by the two
lattices L and L′. Specifically, if A is the transformation
matrix, aj = ∑d′

j =1 Ajia′
i, j = 1, d, then

θij = −θji = Aij , i = 1, d′, j = 1, d, (14)

and zero for the rest of the indices. In particular, for
the acoustic crystal from Fig. 1, we had ai = θa′

i; hence,
θ13 = −θ31 = θ24 = −θ42 = θ . This is also the case for
pattern (c) from Fig. 4, but the 
 matrix for pattern (b)
from Fig. 4 contain more entries. As a consequence, the
noncommutative 4-torus is not just a simple product of
two noncommutative 2-tori, as was the case in previous
experimental works [15,16].

VII. VISUALIZING THE TOPOLOGICAL
INVARIANTS

In Fig. 5 we illustrate the bulk spectrum of the generic
dynamical matrix

DP =
∑

x,y∈P
e−1.5|x−y|2 |x〉〈y|, (15)

evaluated on the three patterns shown in Fig. 4. The fractal
nature of the spectra is evident in Fig. 5. In the Supplemen-
tal Material [28], we demonstrate that model dynamical
matrices can indeed reproduce the resonant spectrum of
the crystal reported in Fig. 1. Here, just for illustrative pur-
poses, we choose to work with a model that opens larger
gaps. In Fig. 6, we report the resonant spectrum as com-
puted with open boundary conditions for two shapes, a

(a) (b) (c)

FIG. 5. Spectral butterflies. Panels (a), (b), and (c) corre-
spond to the patterns in Figs. 4(a)–4(c), respectively. The
spectra are computed with the model dynamical matrix DP =
∑

x,y∈P e−1.5|x−y|2 |x〉〈y|, with the distance measured in units of
D. The marked spectral gaps are related to bulk spectral gaps
mapped in the experiments.
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(a) (b)

(c) (d)

FIG. 6. Stability of the spectral dome. (a) A crystal cut as a
square and (b) its resonant energy spectrum. (c) A crystal cut as
an octagon and (d) its resonant energy spectrum. In both cases,
the spectra have been resolved by φ1 and φ2 and a spectral dome
can be clearly identified. The spectra are computed with model
(a) from Fig. 5.

square and an octagon. Spectral domes can be identified
in both cases.

The Chern numbers of the topological bulk gaps can
be evaluated directly using existing numerical techniques
developed for aperiodic systems [22]. However, due to

the large number of gaps in Fig. 5 and to the large num-
ber of (strong and weak) topological invariants per gap,
an alternative high-throughput method is needed. In fact,
the method based on the K-theoretic gap labels [18,19]
explained below enables us to visualize the complete set
of invariants associated with a gap. Besides the topological
invariants, this method supplies additional predictions that
can be tested against the numerical simulations and, as we
shall see, this confirms beyond any doubt that the algebra
of observables is indeed the noncommutative 4-torus.

In Figs. 7(a)–7(c), we report the integrated densi-
ties of states (IDS) as computed from the spectra in
Figs. 5(a)–5(c), respectively, using the usual definition

IDS(E) = # of eigenvalues below E
# of resonators

. (16)

The IDS is plotted as a function of θ and energy E, with
the latter along the axis coming out of the paper. Since the
view point for this graph is from above, we encode the
values of the energy in a color map. The abrupt changes
in color correspond to the cases when E resides inside
the bulk spectral gaps, because in that case the three-
dimensional graph of the IDS shoots straight out of the
paper. The striking observation is that these features are not
random. Perhaps even more striking is that the same pat-
terns are seen if one repeats the calculations with a different
dynamical matrix. The reason behind these observations is
that the features seen in the IDS plots are not determined

(a) (b) (c)

(d) (e) (f)

FIG. 7. Visualizing the topological invariants. (a),(b),(c) Integrated density of states (IDS) as computed from the spectra in
Figs. 5(a)–5(c), respectively. The IDS values inside the spectral gaps can be identified by the abrupt changes in color. (d),(e),(f)
Fittings of the IDS values inside the spectral gaps, seen in panels (a), (b), and (c), with Eq. (18). Each curve is determined by the six
topological invariants associated with each spectral gap. The marked curves correspond to the marked gaps in Fig. 5 and they can be
fitted with 1 − θ2, indicating n{1,2,3,4} = −1; hence, a second Chern number −1.
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by the dynamical matrix but rather by the K-theory of the
algebra of observables. Indeed, if PG represents the gap
projection for a gap G then IDS(G) can be equivalently
computed as the trace per area of PG, IDS(G) = T (PG).
K-theory for operator algebras [25] classifies these pro-
jections up to stable homotopy and organizes them as an
abelian group known as the K0-group (see the Supple-
mental Material [28]). For the noncommutative s-torus,
the K0-group is generated by 2s−1 projections [eJ ], where
J is a subset of indices drawn from {1, . . . , s} and the
cardinal of J is even. Now, the gap projection defines a
class inside the K0-group and we have the decomposition
[PG] = ∑

J nJ [eJ ] into the generators. The integer num-
bers nJ , known as the gap labels [18,19], represent the
complete set of topological invariants that can be associ-
ated with a gap projection. They are related to the weak
and strong Chern numbers (see the Supplemental Material
[28]), in particular, n{1,2,3,4} equals the second Chern num-
ber. Our task is to extract the gap labels for the patterned
acoustic crystals, information that is already contained in
Fig. 7. Indeed,

IDS(G) = T (PG) =
∑

J

nJT (eJ ), (17)

and, by using the value of the trace per area on the gen-
erators [26], we obtain the following prediction for the
features seen in Fig. 7:

IDS(G) =
∑

J⊆{1,...,s}
nJ Pfaffian(
J ), |J | = even.

(18)

Here 
J is the 
 matrix restricted to the set of indices J .
As demonstrated in Figs. 7(d)–7(f), this expression (with
s = d + d′) fits all the features seen in the IDS maps,
despite the vast difference between the textures of the cor-
responding patterns (see Fig. 4). This serves as our proof
that the dynamical matrices for the patterns in Fig. 4 indeed
belong to the noncommutative 4-torus and that we are
witnessing the 4D quantum Hall physics.

Using the fittings from Fig. 7, we are also able to extract
the topological invariants associated with the gaps seen in
the spectra from Fig. 5. Furthermore, using more optimized
discrete models (see the Supplemental Material [28]), we
are able to conclude that Ch2 = −1 for the spectral gap
analyzed experimentally.

VIII. DISCUSSION

We find that the boundary physics of aperiodic crystals
emulating the 4D IQHE is much more interesting and com-
plex than previously believed. While the bulk-boundary
correspondence for the virtual higher-dimensional systems
is well understood, its manifestation in the lower physi-
cal dimensions is not. The phason engineering introduced

in our work will be a very effective tool for this research
because it supplies a high throughput of topological sys-
tems, which is absolutely needed for a systematic inves-
tigation of the boundary Weyl physics of these systems.
The principles behind the emergence of the IQHE in these
systems are extremely general and robust, in particular,
they do not require fine tuning and so they can be eas-
ily implemented in laboratories or embedded in different
applications.

As demonstrated in Fig. 3, the higher-dimensional topo-
logical phases supply fundamental ways of topological
wave steering, whose possible applications remain to
be discovered. Nevertheless, we already envision radical
directions in mode steering, which can be useful for infor-
mation processing. Indeed, the phason trajectory reported
in Fig. 3 is special in two respects: it has nontrivial topol-
ogy and it occurs at constant frequency. As such, a coherent
drive of the phason along that trajectory will not only
steer the mode around the sample, as seen in Fig. 3, but
will also generate temporal dephasings that can be com-
puted as Berry phases. In fact, the bulk modes can also be
manipulated in a similar way, by driving the phason along
topologically distinct loops inside the phason space. As
already envisioned in Ref. [27], such controlled temporal
dephasings could be used for certain forms of information
processing.

We believe that the principles revealed in this work
exhaust the many ways one can engineer the phason
spaces. They show that, in principle, there is no limit to
how high in the virtual dimensions one can go. How-
ever, in practice, we expect actual laboratory designs to
become increasingly challenging and the quality of the
topological gaps to wear off as higher virtual dimen-
sions are conquered. Of course, the next in line is the
6D IQHE, which can be accessed with linear, planar,
or three-dimensional metamaterial structures. The latter
will require a straightforward generalization of the algo-
rithms used in the present work. Let us recall that the
bulk-boundary correspondence principle was worked out
in arbitrary dimensions in Ref. [10], where one can find
explicitly solved models as well as an explanation of
quantized physical responses.
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