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1 Introduction single unit cell. This becomes particularly useful when dealing
with complex geometries, multiple resonators, and two-dimensional
(2D) and three-dimensional structures and has motivated the
designs of locally resonant metamaterials to be periodic. In fact,
many of the novel behaviors of locally resonant elastic metamater-
ials have been achieved using periodic systems. For example, neg-
ative refraction and super resolution have been achieved for square
[19] and hexagonal [20,21] periodic resonator arrays, and the phe-
nomenon of metadamping [16] was first shown for one-dimensional
(1D) periodic systems.

All these studies use the Bloch theorem for analysis, and this
theorem requires periodic coefficients in the equations of motion.
This is why the study of periodic locally resonant materials in all
the aforementioned references is limited to periodic systems with
lattice vectors in a Cartesian coordinate system (or alternatively,
in the far field of sources); it is for these lattice vectors that the equa-
tions of motion result in periodic coefficients when the system is
geometrically periodic (i.e., geometry is invariant to translations
along lattice vectors). On the contrary, when the material is invari-
ant to translation along lattice vectors in cylindrical or spherical
coordinates (or alternatively, in the near field of sources), the equa-
tions of motion that describe their behavior lack periodic coeffi-
cients and Bloch analysis cannot be applied [22-24]. In fact, most
studies that deal with PCs for cylindrical waves rely on analysis
of the finite structures [25-27] or far-field approximations [28,29].

When it comes to near-field vibrations, where wave fronts cannot
be approximated as plane, we must appeal to other solutions to be
- able to apply Bloch analysis and thus utilize typical well-studied
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Engineered periodic materials, usually referred to as phononic
crystals (PCs), allow for unprecedented ways of wave propagation
control [1,2]. PCs can be designed to obtain attenuation in selective
frequency ranges [3,4] or even to actively tune these ranges to
adjust to external stimuli on demand [5-7]. PCs can achieve nega-
tive refraction [8], break the diffraction limit [9], and even provide
robust topological wave guiding [10-13].

Since the functionality of PCs relies on the phenomenon of Bragg
scattering, the wavelengths at which PCs work are closely related to
the length scale of the system [14]. This becomes a limitation when
trying to control waves at low frequencies because it results in
impractically large systems or the need for extremely soft materials.
The introduction of locally resonant materials, typically referred to
as acoustic metamaterials, has provided a means of controlling
waves in the subwavelength regime [15]. This not only allowed
for low-frequency wave propagation control using relatively small
features but also introduced other interesting phenomena such as
negative effective properties [15] and enhanced damping [16].

Locally resonant materials do not need periodicity and even a
single resonator can display negative effective properties [17] or
provide vibration suppression [18]. However, involving periodicity
in these systems allows for the application of the Bloch theorem and
calculation of the band structure [14]. In this way, the behavior of
the infinite system can be understood through the analysis of a
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coefficients [23], resulting in high Q-factor Fabri-Perot-like reso-
nances. In elastic waves, the authors’ recent work proposed a combi-
nation of periodic plus isotropic radially varying material properties
that cause the equations of motion for radially propagating torsional
waves to be equivalent to those that describe wave propagation in a
Cartesian phononic material [22]. In this way, we extrapolated the
typical Bloch analysis in Cartesian systems to realize band gaps
and topological interface modes in cylindrical coordinates [22].
These materials are termed effective phononic crystals (EPCs),
since, even though they are not geometrically periodic, their equa-
tions of motion effectively describe a PC. However, both radial
wave crystals and EPCs are based on the Bragg scattering mechanism
(with the limitations this entails) and have not included nor analyzed
the effects of local resonances in the near field of sources.

In this article, we extend the concept of EPCs [22] to include
local resonances in what we term a locally resonant effective pho-
nonic crystal (LREPC). We present a method that enables proper-
ties of Cartesian periodic locally resonant systems to be realized
with cylindrical wave fronts that are present in the near field of
point sources in 2D. We show that by prescribing radially
varying material properties in the host medium and torsional local
resonances, we can reduce the equations of motion of radial tor-
sional waves to those of axial waves in strings [30] or bars [31]
with local resonances, allowing the calculation of band structures
based on methods already developed in these references. We
focus here on radial torsional waves, which are relevant in rotating
machinery such as turbines, compressors, and engines [32];
however, extrapolation to other polarizations can be done using
an equivalent analytical treatment [22]. In fact, even though tor-
sional vibrations are problematic in many mechanical systems,
the work on locally resonant materials for torsional waves is
limited to only a few studies [33,34], both of which deal with
plane wave propagation in Cartesian directions (i.e., torsional
waves propagating along a Cartesian axis).

To investigate LREPCs, we first construct their equations of
motion by describing them as radially dependent heterogeneous
material with distributed moments that account for the torsional
resonators. We then use the finite element method to solve the 1D
equation of motion of torsional waves propagating through a
finite LREPC and calculate its transmission. We show that the beha-
vior of the LREPC is independent of unit cell truncation and can be
predicted by the analytical band structure analysis. To show the
advantages of using LREPCs, we compare transmission of the
finite LREPCs with that of systems that are geometrically periodic
but not effectively periodic. We refer to the latter as the homoge-
nous system (HS) due to its independence of material properties
on radius. We present three different comparisons. For the first
two, we compare using the nondimensional parameters for stiffness,
moment of inertia, and frequency that are typically used for the
parametric analysis of locally resonant systems [30]. We first
compare transmission of the LREPC with an HS that has equivalent
stiffness and moment of inertia nondimensional parameters.
However, in this case, the resonators of the HS have different reso-
nant frequencies. Thus, we construct a second comparison between
an LREPC and an HS that has equal stiffness and frequency nondi-
mensional parameters. In both of these comparisons, imposing the
respective nondimensional parameters to be equal forces each of
the resonators of the HS to have different stiffness and moment
of inertia. Thus, we make a third comparison with an HS with reso-
nators that are all equal and the same as those of the LREPC. Since
the response of locally resonant material is strongly affected by its
overall stiffness, we set the static torsional stiffness of the finite
LREPC and HS to be the same in this comparison. Finally,
because many of the novel wave phenomena of locally resonant
systems arise from their negative effective properties [35], we cal-
culate the ranges of negative effective dynamic moment of inertia
for the LREPC and all three cases of HS. By comparing transmis-
sion and effective properties of the LREPC and the HS, we aim
to show the possible advantages of using an LREPC when
dealing with radial torsional waves.
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2 LREPC Derivation

To derive and analyze the LREPCs, we first derive the equations
of motion for a cylindrical torsional wave propagating through a
heterogeneous material with varying thickness and a distributed
external moment, the latter of which will ultimately capture the
effects of local resonances. Assuming small tangential displace-
ments independent of out-of-plane thickness and axisymmetric
wave propagation, the global equilibrium of an infinitesimal cylin-
drical element (Fig. 1(a)) results in,

&%0(r, 1) _oT(r, 1)

o or
where 0 is the angular displacement, / is the polar mass moment of
inertia of the ring around its center, 7 is the torque on the inner ring
of the infinitesimal element, and M(r, t) is a distributed external

moment (moment per unit radius). The torque can be expressed
as follows:

dr + M(r, tdr (1)

T(r, t) =2nrh(r)ro,o(r, t) 2)

where A(r) is the out-of-plane thickness and o,y is the shear stress.
Assuming a linear isotropic material, the stresses can be written
in terms of the tangential displacements as follows:

Oug(r,t) ug(r, t)
o r )
o0(r, t)
or
where u(r) is the material shear modulus and uy = 0 is the tangen-

tial displacement. Given that the polar mass moment of inertia of the
infinitesimal ring is

T(r, 1) = 271:r2h(r),u(r)(

=22 h(r)u(r) (3)

I = p(r)Qrrdr)h(r)r? 4)

we can combine Eqgs. (1), (3), and (4) to obtain the equations of
motion for radially propagating torsional waves,

0(r, o
2 <2nr3ﬂ(r)h(r)

o0(r, t)
or

271 p(r)h(r) > +M@r, 1) (5)
We add an infinite set of resonators of equal torsional stiffness, f,,
and equal polar mass moment of inertia, /,, periodically spaced a
distance Ar from each other (Fig. 1(b)) to Eq. (5), by considering
them as moments distributed along an infinitesimal ring and
adding an extra degree-of-freedom per resonator. Thus, the set of
equations that describes this system is

2
2o _ o (r3 AC) %) + Z B.(O(r, 1) — 00)8(r — r7)

3
rB =5
d*6,(r)
Ir7 =p,.(0;(t) — 0(r;, 1)

6)

where B(r) =2zp(r)h(r) is the matrix density function, A(r) = 2zu(r)
h(r) is the matrix stiffness function, §(r) is the Kronecker-Delta
function, 6; is the angular displacement of resonator i, r;=ro+
iAr is the location of resonator i, and ry is the internal radius
(Fig. 1(d)). Note that y, p, and h are the shear modulus, density,
and out-of-plane thickness of the material to which the resonators
are attached (light gray in Fig. 1), and they are assumed to be a func-
tion of the radius. For the remainder of this article, we refer to the
material to which resonators are attached as the matrix.

Inspection of Eq. (6) shows that periodic material properties and/
or thicknesses (i.e., periodic A(r) and B(r)) do not yield equations
with periodic coefficients. Neither will we have periodic coeffi-
cients if the material properties and thickness of the matrix are cons-
tant. This is different from the case of plane waves in for example
strings [30], bars [31], beams [36], shafts [34], or plates [37] with
local resonances. Generally, the Bloch theorem in our case cannot
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Fig.1 (a) Infinitesimal radial element with a distributed moment, (b) infinite LREPC with local
torsional resonances, (c) LREPC unit cell, and (d) finite four-unit cell LREPC with local

resonances

be applied, and the analysis used in these references becomes
invalid unless we find a way to force periodic coefficients in the
equations of motion. Thus, we define A(r) and B(r) not to be peri-
odic or constant, but to be such that the equations of motion are
periodic. We can do this by setting,

A
A ="3

IS ™
B(r)=—

)

where Ay and By are constants that scale the stiffness and density,
respectively, of the underlying media in the LREPC. Essentially,
to physically realize the LREPC, the products of the matrix
modulus and the matrix density with its thickness must be inversely
proportional to 7. For example, one way of physical realization is
to have a matrix made of a homogenous material and vary its thick-
ness with #~>. The equations of motion for this selection of A(r) and
B(r) reduce to

&0(r, 1) %0
Az =Aoog+ Zﬁ,(am, 1) = 0:())3(r — 1)

d%0,(t)
dr?

These equations are now invariant to translations of the form » —
r+iAr, and thus, we can apply the Bloch theorem. In fact, these
equations are equivalent to those of the systems in Refs.
[30,31,34,36], and thus, analysis therein is valid here as well
without parametric limitations. Note that the system we have devel-
oped does not have geometric periodicity (i.e., we cannot translate a
unit cell along its radial lattice vector to recover the full system), but
its equations of motion have periodic coefficients, and thus, its
behavior will mimic that of a Cartesian geometrically periodic
system. This system is effectively periodic and contains local reso-
nances, and thus, we refer to it as a LREPC.

The analysis of LREPCs is straightforward, since their equations
of motion are equivalent to the well-known one-dimensional Carte-
sian system with periodic local resonances. The dispersion relation
for this system can be obtained by applying the Bloch theorem
using an LREPC unit cell (Fig. 1(c)) [30]:

By

®)

I = ,(0:(t) — O(r1, 1))

cos (kAr) = cos (kAr) — gsin (kAr) (©)]

By
= —_—, d
K=w " an
Here, the definition of the unit cell is strictly

where k is the Bloch wave

_ @’1.p,

T Aok(f, — w2l
mathematical and in terms of the equations of motion. We define
the unit cell of the LREPC as the geometry that when tessellated
in space by its lattice vectors (in this case, Are,; see Fig. 1(b)),
keeps its equations of motion invariant. This is different from the
typical geometrical definition of unit cell, where tessellation of
the unit cell results in the entire geometry. Following the

number,
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normalization given in Ref. [30], we define the following set of non-
dimensional parameters for the LREPC,

I =" 10
LREPC = B0 (10)
- pAr
Sl (1n
Prrerc Ao
WLREPC = o 12)
()

T [Ap. . . .
where wy = A B_O is the Bragg frequency associated with the unit
r Y bo

cell and the overbar indicates a nondimensional parameter. Note
that the quasi-static torsional stiffness of the matrix material of a
. . A . L
unit cell of the LREPC is 3, . = A—O and its moment of inertia
r

Ly reee = BoAr (see Appendices A and B for the calculation of stiff-
ness and inertia of the matrix). Thus, we can interpret Eqgs. (10) and
(11) as inertia and stiffness ratios of resonators to the matrix mate-
rial, respectively. The dispersion relation can then be written in
terms of these nondimensional quantities as follows:

cos (kAr) = COS<£71'> - gsin(gﬂ) (13)
(o 2 ()
ILREPCT®] yppe (@] @)

where Q= . Note that firgpc does not

@ gepe = (@/wo)?
appear in this expression for the dispersion relation because only
two of the three nondimensional parameters in Eqgs. (10)—(12) are
independent. For example, algebraic manipulation results in
— _ 1 |Prrerc
WLREPC = =4[5

7 \ ILrePC
Prrepc instead of Tj repe. We introduce all three of these parameters
because they will later become useful when comparing the LREPC
with a noneffectively periodic system.

, and we could rewrite Eq. (13) in terms of

3 Comparisons Between LREPCs and Homogenous
Systems

To understand the advantages of using an LREPC, particularly
when it comes to near-field vibrations, we compare it to a material
whose matrix consists of constants u, p, and & (Eq. (6)):

Aps(r) = Aoy
Bus(r) = Boy

where A, and By, are stiffness and density constants, respec-
tively. We refer to this system as the HS. The HS has material prop-
erties that are independent of radius, and thus, we can define a unit
cell in the HS that results in the entire geometry when tessellated

(14)
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along the radial lattice vector, Are, (Fig. 1(c) with constant 4 and
matrix material properties). In this way, we can say the HS is a geo-
metrically periodic system. However, this system does not have peri-
odic coefficients in the equations of motion (Eq. (6)) and cannot be
analyzed using the Bloch theorem, and therefore, it is not effectively
periodic. Thus, it is not possible to obtain the behavior of the HS
based on a unit cell analysis and the response of the finite HS will
depend on how we decide to truncate the system [22]. To compare
the LREPC to the HS, we must do so in terms of the response of
their finite versions. Therefore, we compare the LREPC and the
HS by calculating the transmission of a four-unit cell system
(Fig. 1(d)) for different ratios of internal radius (ry) to periodicity
constant (Ar). We choose four-unit cells because (1) typical periodic
systems approximate the infinite behavior predicted from the band
structure and we expect a four-unit cell LREPC behavior to have
enough units to approximate the band structure prediction and (2)
when using a limited number of unit cells, most of the system
remains in the near field, where effective periodicity becomes most
important. We use a 1D finite element code programmed in
MATLAB to solve for the frequency response of the finite systems
(Eq. (6)) assuming material properties of Eqs. (7) and (14), for the
LREPC and HS, respectively. We calculate transmission as the
ratio of input to output angular displacements.

In locally resonant systems, the behavior is strongly influenced
by how stiff and dense the matrix material is compared to the stiff-
ness and moment of inertia of the resonators (Egs. (10)—(13)). Thus,
a fair comparison between LREPCs and HS is one where the rela-
tionship between stiffness and moment of inertia of the matrix mate-
rials and those of the resonators of the two systems are somehow
comparable. We can do this by using two different approaches:
(1) define a set of nondimensional parameters in Egs. (10)-(12)
for the HS and compare the LREPC to the HS with equal nondimen-
sional parameters and (2) compare the LREPC and HS with equal
torsional static stiffness and equal resonators. For all cases, we cal-
culate the transmission for different internal radii to periodicity
constant ratios, ro/Ar (Fig. 1(d)). The purpose of these case
studies is to show that the LREPC response is different than the
HS in the near field, i.e., at small ro/Ar, and gradually converges
to the HS in the far field, i.e., as ro/Ar increases.

3.1 Comparison Between LREPC and Homogenous System
Based on Stiffness, Mass, and Frequency Ratios. To compare the
LREPC and HS with equal nondimensional parameters, we first
define these parameters for the HS. Equations (10) and (11) can be
interpreted in terms of resonator to matrix stiffness and inertia
ratios, respectively. Thus, we define the stiffness and inertia nondi-
mensional parameters of the HS based on this interpretation.

0 ﬁr IB)'
ﬂHS = 22 (15)
ﬂmHS nr
2805\ 5>
RN
L I
ys=7—=5g—"" (16)

where f3,, . and I,,; are quasi-static torsional stiffness and inertia of
the unit cell of the matrix of the HS (see Appendices A and B for
further details), ry =ro+ (n—1)Ar and r, =ry+nAr, where n is
the unit cell number. Finally, for @, we define an analogous wy

based on the matrix material properties,

_ @y @y
Dys = = a7
@ons T AOHS
Ar BOHS

Note that @y, is not the Bragg frequency of the HS, butitis defined in
an analogous way as wy. In fact, a Bragg frequency does not exist for
the HS since it is not effectively periodic. Both fyg and Ty are

031007-4 / Vol. 144, JUNE 2022

dependent on the radial location of the unit cell. This is a direct
result of the material not being effectively periodic. Furthermore,
they each have a different dependence on radius. Thus, forcing
these two parameters to be the same in all units changes the resonance
frequencies of the resonators, resulting in different @ygs for each unit
cell. Similarly, if we fix @ys and ﬁHs(or ITys) to be the same in all
units, then Iyg (or Bys) will vary. In summary, only two of these
three parameters can be fixed to be equal to those in the LREPC in
all units, and the other one must be allowed to vary.

Here, we analyze two cases: one where fyg and Iy are fixed to
be equal to those of the LREPC and @ys is allowed to vary, and one
where By and @y are fixed to be equal to those of the LREPC and
Iys is allowed to vary. Fixing Iys and @yg has an analogous result
to fixing g and @ys, and thus, we exclude it from this article since
it does not add any further understanding. For all comparisons, we
keep the shear wave speed of the matrix the same in the LREPC and

. Ao Agys
HS (i.e., B, = B,

), and thus, g, = wo.
HS

311 Pirepc =Pus and Tirepc =Ius. We first impose
Birerc = Pus and I repc = Iys in all units. To see the effect these
constants have on the LREPC and HS systems, we calculate the
band structure of the LREPC, &, and_transmission for both the
LREPC and HS for different values of fj ggpc and I repe (Fig. 2).
Forcing stiffness and inertia parameters to be equal in the LREPC and
HS imposes @ys # @1repc, Which is more pronounced at smaller ro/Ar
(Fig. 2(b)). Furthermore, @wys — @rrepc as the unit cell number
increases (Fig. 2()). Thus, the behavior of the last few units of the
HS should approach those of the LREPC. This will affect the effective
dynamic moment of inertias of each unit cell of the HS (Sec. 4).

As ro/Ar increases, ZHS _, CLREPC

Hs  ILrepc
of the HS converge to those of the LREPC (Fig. 2(b)). Thus, the
transmission response of the HS approaches that of the LREPC
(Figs. 2(c) and 2(d)). This is analogous to the far field of sources
where waves are approximately plane.

Transmission reduction of the LREPC (Figs. 2(c) and 2(d))
agrees well with the predicted band gaps from dispersion
(Fig. 2(a)) for all B; rrpc and Iirepc. As expected, as these nondi-
mensional parameters increase, the band gap width increases
(Fig. 2(a)), which is also reflected in the transmission curves
(Fig. 2(c)). We do not include the response of the LREPC for dif-
ferent ro/Ar in Figs. 2(c) and 2(d) because the response of the
LREPC is independent of this ratio since it is effectively periodic.
The varying material properties of the LREPC compensate for dif-
fraction typical of cylindrical waves, and thus, we see no reduction
in transmission outside the band gap region. Essentially, radial tor-
sional waves in the LREPC behave as plane waves, and thus, they
do not show fundamental features of cylindrical waves such as
complex acoustic impedance or spatial wave attenuation from dif-
fraction in the nondissipative system. The response of the LREPC
to torsional waves is equivalent to that of a Cartesian system with
periodic local resonances. Therefore, any properties of metamater-
ials that exist through periodic assumptions and band structure anal-
ysis apply to the LREPC in the near and far fields.

The behavior of the HS, on the other hand, strongly depends on
ro/Ar. In fact, the response of this system is quite different from that
of the LRPEC in the near field, i.e., small ro/Ar, for all B and ] (Figs.
2(c) and 2(d)). The detuning of resonators of the different unit cells
(Fig. 2(b)) results in a reduction in transmission that is not aligned
with the band gap predicted by the dispersion curve of the LREPC.
In fact, peaks followed by narrow dips are present in the lower fre-
quency range (Fig. 2(c)). These dips widen as the inertia and stift-
ness ratios increase (Figs. 2(ci)-2(ciii)) due to the larger resonator
masses. Interestingly, at large § and I, these peaks and dips widen
such that they overlap for the last three resonators (Fig. 2(diii)),
resulting in a rainbow-trapping like effect [38].

The reason for the differences found in this comparison is that the
HS does not have the same resonance frequency in all its resonators.

and the resonator resonances
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Fig. 2 (a) LREPC band structure, (b) dependence of @ on unit cell, (c) transmission, and
(d) zoom in of transmission close to the lower band gap edge of the LREPC. Parameters
for each row are as follows: (i) B repc = Bus = 0.01 and Iirepc = Ius =1, (ii) BLrerc =Bus =
0.1 and 'LREPC = IHS =10, and (iii) Prrerc =Pus =1 and ILREPC = IHS = 100. Black-dotted lines

indicate the resonance frequency of the LRPEC resonators.

The lack of effective periodicity of the HS system forces the reso-
nant frequencies of each of its resonators to be different enough
to considerably affect the response when keeping  and I constant
across its units.

3.1.2 ELREPC = BHS and @y rgpc = @ys. In this next case, we
set fus = Prrepc and oys = @i repc to understand what happens
when the resonance frequencies of resonators are all the same in
the HS. Note that since @ys is constant, all resonators of the HS
have the same resonance frequency (Eq. (17)). In addition, for fyg
to be constant, the resonators of the HS must have different stiffness
values, since f3,, . depends on radius (Eq. (15)). This forces each of
the resonators of the HS to also have different moments of inertia to
keep their resonance frequencies the same. The LREPC used for this
case is the same as for the case of B repc = Pus and I repc = Ins
(Sec. 3.1.1).

Keeping ﬁHs and @ys constant results in Iyyg that varies with radius
(Fig. 3(b)). Iys asymptotically approaches I} gepc as unit cell number
increases (Fig. 3(b)) and thus similar to the previous comparison, we
expect the last few units of the HS to behave more similarly to those
of LREPC compared to the first few units. As we shall see in Sec. 4,
this will affect the dynamic effective moment of inertia of each unit
cell of the HS. As ry/Ar increases, the difference in Iys and Iy gepc
becomes smaller (Fig. 3(b)). Thus, the HS response approaches
that of the LREPC as ry/Ar increases (Fig. 3(c)).

Journal of Vibration and Acoustics

In the near field, we observe a different response between the
LREPC and HS, even close to the resonator resonance frequency
(Figs. 3(c) and 3(d)). For all g and @&, we observe resonant peaks
of the HS inside the band gap range of the LREPC close to both
the upper and lower edges of the band gap (Figs. 3(c) and 3(d)).
These resonant peaks seem to penetrate further inside the band gap
as stiffness and inertia nondimensional parameters increase (Figs.
3(di)-3(diii)). For higher nondimensional parameters, there is a
peak in HS transmission in the neighborhood of the resonance fre-
quency of the resonator (Fig. (3diii)), which is not present for the
LREPC. This is clear evidence that the behaviors of the systems
are quite different even close to the resonance frequency of the reso-
nators, frequency ranges where these materials are typically designed
to work.

Both of these comparisons show that in the near field of sources,
the HS transmission is quite different from that of the LREPC.
Thus, typical properties of periodic locally resonant systems may
not be applicable for the HSs. These transmission results are evi-
dence that to replicate well-known phenomena in periodic locally
resonant systems in the near field of sources, one must use an
LREPC.

3.2 Comparison Between LRPEC and Homogenous System
With Equal Static Torsional Stiffness and Resonators. In both
previous comparisons (Sec. 3.1), the resonators of the HS are

JUNE 2022, Vol. 144 / 031007-5

220z Joquuiaidas 10 uo Jesn ubledweyd-eueqin sioull| Jo AisioAun Aq 1pd'200LE0 € il A/ FF698.9/L00LE0/E/7Y LAPA-Bj0IE/SOISNOSBUONEIGIA/BIO BWSE UONDS||00|e}BIPaWSE//:dNY WOl Papeojumod



| — LREPC — O HS(,/Ar=0.1) ==X HS(r,/Ar=10)
(@415 (b), (.15 : (@ 032
1
0.0319
0.1 =3 o 0.1 - 00318
3 k! 3 3
s 5, & 0.05 - 0.0317
0.0316
1 — 0.0315
0 05 1 0 0.5 1 -200 0 -100 0
kAr/m I Transmission[dB] Transmission[dB]
0.2 -+ 0.2 ] 0.035
|
0.15 0.15 A 0.034
) A ¥ 0.033
. = .
(i) 3 o1 P 3 o0l 3
3 g 3 3 0032
-2 o '
0.05 0.05 0.031
1 0.03
0 05 1 0 5 10 -200 0 -200 -100 0
kAr/m I Transmission[dB] Transmission[dB]
0.5 4 0.5
0.4 0.4 0.034
=3 O
i) 3 5 = 153 £ 0032
3 £ 3 3
0.2 0.2
-
2 = 0.03
0.1 0.1
1 028
0 05 1 0 50 100 -200 0 -200 -100 0O
kAr/w I Transmission[dB] Transmission[dB]

Fig. 3 (a) LREPC band structure, (b) dependence of I on unit cell, (c) transmission, and
(d) zoom in of transmission close to the lower band gap edge of the LREPC. Parameters for

each row are as follows: (i) S repc =Pus = 0.01

and @ repc = @ns = 0.032, (ii) frepc =Pus = 0.1

and @ repc = @ns = 0.032, and (iii) S grepc = Pus = 1 and @ repc = @ns = 0.032. Black-dotted lines
indicate the resonance frequency of the LRPEC resonators.

different in each unit cell. Thus, one might argue that differences in
behavior arise from differences in the resonators. In this new case,
we aim to compare an LREPC with an HS that has the same reso-
nators, i.e., each resonator has the same stiffness and moment of
inertia. To make an accurate comparison, we must somehow
relate the stiffnesses and densities of the matrix materials of the
LREPC and HS. To do this, we set the static torsional stiffness of
both finite systems equal to each other, a possible engineering
requirement in the application of these systems.

The objective of this comparison is to study the possible advan-
tages of LREPCs for vibration control applications. When design-
ing a component, there are usually requirements for loading
bearing capabilities, for example, a minimum static stiffness.
One limitation of locally resonant materials is that the larger the
stiffness of the matrix material (which is what carries the load in
these systems), the larger the resonator masses and stiffnesses
needed for a certain band gap width. This results in more
massive systems (in terms of their total mass, i.e., matrix plus reso-
nators) when larger matrix stiffnesses are required, which can be
undesirable for performance and cost. So for the final comparison,
we compare a four-unit cell LREPC with an HS that has the same
quasi-static torsional stiffness and the same resonators.

031007-6 / Vol. 144, JUNE 2022

The static torsional stiffnesses of the finite four-unit cell of the
LREPC and the HS are (see Appendix A for more details):

Ao
Pirepc=— (18)
Tout — 10
2A 2 2
ﬁHS — ZOHS rOuerO (19)
Tou — 1o

where 7o, = 1o+ 4Ar, is the outer radius of the finite system. Equat-
ing Eqgs. (18) and (19) results in,

Ao(Four + 10)

out

- (20)
Note that these equations only define values of A, but not those
of By, To define By,, we consider that in the limit as r — oo,
both systems should have the same response. This is true if
By, = BoAo,s /Ao, which is equivalent to setting the shear wave
speed of the matrix of the LREPC and HS to be the same.
Interestingly, there is an extra advantage, apart from dynamic
effects, of using the LREPC over the HS. For equal quasi-static
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sional stiffness and (b) static angular displacements of the LREPC and HS with boundary con-
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stiffness and internal radius, the LREPC has both a lower moment
of inertia and a lower mass compared to the HS (Fig. (4a)) (refer to
Appendices B and C for more details). This means that the LREPC
uses mass more efficiently. This can be explained by looking at the
solution to the quasi-static problem with a fixed internal radius and a
prescribed angular displacement on the external radius (Fig. (4D)).
In the HS, the angular displacements significantly increase with
radius at lower radii, while displacements are approximately cons-
tant at larger radii. This means that the deformation is concentrated
only at very small radii, and most of the material does not deform:
This indicates an inefficient distribution of the stiffness and thus of
the mass of the matrix of the HS. However, in the LREPC, the
angular displacement increases monotonically, meaning the defor-
mation is evenly distributed over the radius. This indicates an effi-
cient distribution of mass, resulting in a lighter system for equal
static torsional stiffness. Lower inertia and mass can be advanta-
geous in rotating systems that need to be accelerated and

decelerated since they require lower forces and thus lower power
to change angular speeds.

Transmissions of LREPC and HS based on this comparison are
shown in Fig. 5. As expected, the LREPC transmission has no
dependence on ro/Ar, and its transmission reduction region agrees
well with the one predicted from dispersion (Figs. 5(a) and 5(b)).
Even though all resonators of the HS and the LREPC are the
same, their response is still considerably different at lower ro/Ar
(Figs. 5(b) and 5(c)). At low ratios, there are large differences
close to the resonator resonance frequencies, where metamaterials
support band gaps. Like the HSs from Sec. 3.1, this HS cannot
support properties that stem from Bloch analysis. ~

To further understand the system behaviors, we calculate j, I, and
@ for the HS and the LREPC (Figs. 5(d)-5(f)). Since resonator fre-
quencies are the same, both systems have the same @; however, B and
1 are quite different. Contrary to comparisons with equal nondimen-
sional parameters (Sec. 3.1), for a fixed value of ro/Ar, s and Iys do

— LREPC — Q HS (r,/Ar=0.1)

—[]8s¢,/ar=1)

— X HS (r,/ Ar=10)
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Fig. 5 (a) LREPC band structure, (b) transmission, (c) zoom in of transmission close to the
lower band gap edge, (d) g, (e) I, and (f) @ for each unit cell. Black-dotted lines indicate
the resonance frequency of the LREPC and HS resonators. Dashed lines on (c) repre-
sent the response of the LREPC and HS system with rigidly attached resonators. For clarity,
these are plotted only for the LREPC and the HS with the lower ry/Ar.
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not asymptotically approximate f; ggpc and Iy repc, respectively, as
the unit cell number increases (Figs. 5(d) and 3(e)). This is
because the matrix of the HS becomes stiffer and more massive (in
terms of the moment of inertia) as radius increases (Eqs. (15) and
(16)). In fact, any HS with equal resonators on all its units will
have decreasing fs and Tys as unit cell increases. As shown in
Sec. 4, this will affect the effective dynamic properties of this HS
system. However, as ro/Ar increases, the HS transmission approxi-
mates that of the LRPEC (Fig. (5¢)). This is because as ro/Ar
increases, fys, Ius, and @ys approach B; repc» ILREPC, and @1 REpC,
respectively (Figs. 5(d) and 5(e)).

To understand the effect of the resonators on each system, we use
as reference the transmission for both HS and LREPC when resona-
tors are rigidly attached to the matrix (Fig. 5(c)—dashed lines). The
reason we do this is so we can normalize for the lower overall trans-
mission due to diffraction in the HS, which is compensated for in
the LREPC with the radially dependent matrix material properties.
At low ro/Ar, only a narrow range of frequencies show differences
in transmission of the HS (Fig. 5(c)). The effect of the resonators in
the transmission of the HS is narrowband compared to the LREPC.
This is because of two reasons: (1) the HS has more overall mass
and inertia (Fig. 4(a)), which is also reflected in I values
(Fig. 5(e)), and (2) the matrix of the HS is softer for low radii but
stiffer at larger radii (Fig. 4(b)) compared to the matrix of the
LREPC, thus, while for the first resonator fq > i repcs the other
three show By < B repc (Fig. 5(d)). Although the masses and stiff-
nesses of the resonators are the same for LREPC and HS, they
produce a smaller effect in the HS and are thus less efficient in
affecting response compared to the resonators in the LREPC.

Note that in the locally resonant case, even for ro/Ar as high as 1
(Fig. 5(b)), where our previous study on Bragg scattering-based
EPCs [22] have shown that the behavior of the EPCs to be quite
close to their homogenous counterparts, the transmission of the
LREPC and the HS is quite different. This is because the near-field
effects are more significant at lower frequencies and lower radii.
The Bragg scattering-based EPC requires large unit cells (i.e.,
larger radii) to obtain low-frequency band gaps. Even if band gaps
frequencies in EPCs were lower, most of the structure would still
be operating at large radii where near-field effects are not as signifi-
cant. Instead, in the LREPC, band gap frequencies depend on the
resonant frequencies of the resonators and are independent of unit
cell size. Thus, low-frequency band gaps can be obtained for meta-
materials with small radii where near-field effects are more signifi-
cant. Note that the band gaps of the LREPC presented here are
about 4% of the Bragg frequency (Fig. 5(a)).

4 Effective Dynamic Moment of Inertia

Capabilities of locally resonant materials such as negative refrac-
tion [20,39], mode conversion [20], and low-frequency vibration
absorption [15] arise from their negative effective dynamic

properties. Here, we compare the effective dynamic moments of
inertia (/) of the LREPC and HS as final evidence of how
LREPCs can be advantageous for novel wave propagation control
in the near field of sources.

L4 for a unit cell is numerically calculated by analyzing its
dynamic response to a unit harmonic displacement at its boundary
nodes [40]. Under the long wavelength assumption,

T(w)
—0?0,ys

Ly(@) = @1)

where T is the resultant torque on the boundary nodes of the unit
cell (calculated using Eq. (2)) and 6, is the average of the
angular displacements at the boundary nodes of the unit cell.
Figure 6 shows the frequency ranges of negative I 4 of each unit
cell of the LREPC and HS for each of the three comparisons (Sec.

3), taking % =0.1, /_}LREPC =0.01, and I; gepc = 1. Due to its effec-

tive periodicity, I,4 for all unit cells of the LREPC are the same.
Similar to a Cartesian periodic locally resonant system, e.g.,
Ref. [17], the frequency range of negative I of all units of the
LREPC align with the band gap frequency range. Because the
LREPC is effectively periodic, the negative I occurs in
the entire system and is independent of radius. On the contrary,
the HS equations of motion are not invariant to translations,
and thus, each of the HS units will have different dynamic effective
properties. In fact, the frequency ranges of negative I 4 are different
for all HSs studied. ~

For the case where s = Birepc and Tus = I repc (Sec. 3.1.1),
the resonators of the HS all have different resonance frequencies
(Fig. 2(b1)). The lower bounds of the range of negative I of this
HS are equal to the resonance frequency of the resonator of each
unit cell (Fig. 6(a)). As the unit cell number increases, the resonance
frequency of the resonators of the HS, and thus, its 1,4, approaches
that of the LREPC. The range of negative I 4 is different for each
unit cell, and there is no overlap of ranges between the first unit
and the other three units.

The HS where fys = Brrepc and @us = @prepc(Sec. 3.1.2) also
shows differences in the I of its unit cells (Fig. 6(b)). Since all
its resonators have the same resonance frequency (and equal to
that of the LREPC), the lower bound of the frequency range of neg-
ative I 4 for the HS is the same as that of the LREPC. However,
these ranges are smaller in the HS compared to the LREPC, partic-
ularly in the first few unit cells. This can be explained by looking at
the dependence of Tys on unit cell (Fig. 3(bi)). In the inner unit cells,
ITys are small compared to I; ggpc, and thus, the 1.4 becomes nega-
tive in a narrower frequency region. In the outer unit cells
(approaching the far field), Iys converges to I rgpc and thus so
do the I of LREPC and HS.

In the HS with equal static torsional stiffness and resonators
(Sec. 3.2), all resonators are the same (Fig. 5(f)), but the stiffness
and moment of inertias of the HS matrix increase with each unit

(a) 005 b) 005 () 005
3oO‘OS = 0.03 c>003 ——t—t—
2 3 0.032
3 3 3
0.02 0.02 172 Bana gap odges]. 02 LR
I HS
0.01 0.01 LREPC 0.01 0.0315 e
0 0 0
1 2 3 4 1 2 3 4 1 2 3 4
Unit cell Unit cell Unit cell

- - - . IR ¢ -
Fig. 6 Frequency ranges of negative effective moment of inertia with 0 -0.1 for (@) fus =

BLREPC =0.01 and THS = iLREPC =1,

(b) ﬁHS =BLREPC =0.01 and a_)HS = WLREPC = 0032, and

(c) equal static torsional stiffness and resonators with f_gpec = 0.01 and I gepc = 1. Inset on
(c) shows zoom in view in the neighborhood of the lower band gap edge of the LREPC.
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cell (Egs. (15) and (16)). Thus, Bus and Iys decrease as unit cell
increases (Figs. 5(d) and 5(e)), resulting in a frequency range of
negative Iz that decreases as the unit cell increases (Fig. 6(c)). In
fact, this range becomes almost negligible in the fourth and final
unit cells.

This analysis shows that negative effective properties of all the
HSs occur over a limited frequency range and also depend on
radius. On the contrary, the LREPC behavior is independent of
radius, and all its units show a negative effective moment of
inertia inside the frequency ranges predicted by its band structure,
just like Cartesian metamaterials.

5 Conclusion

In this article, we extend the concept of EPCs [22] to include local
resonances, in what we term LREPCs. We show that by using radi-
ally varying matrix properties with attached resonators, we can
obtain a locally resonant material with equations of motions that
are invariant to translations. This allows the application of the
Bloch theorem, not only simplifying the analysis but also enabling
properties of periodic locally resonant systems in the near field of
sources, where plane wave assumptions are not valid.

We compare the behavior of the LREPC to three different HSs
that are not “effectively periodic” but instead have geometrically
periodic matrix material properties. Because of this, the equations
of motion of the HSs are not invariant to translations. For all
three cases, the transmission of the LREPC is quite different than
the HS, particularly in the near field. This shows that using the
LREPC is the only way to realize the typical properties of locally
resonant metamaterials for cylindrical wave fronts. To further
support this point, we show that the negative 4 of the HS strongly
depend on the radius and are limited to small frequency ranges, par-
ticularly in the near field. However, frequency ranges of negative I
of the LREPC are independent of radius and coincide with its band
gap frequencies, just like typical Cartesian locally resonant systems.

Interestingly, cylindrical and spherical waves are not the only
examples where geometrically periodic systems result in nonperio-
dic coefficients; for example, this is also the case in periodic
pendula. In fact, periodically architected pendula approximate a
periodic behavior if a large mass is added at its end, and recent
work has shown that a “pseudo” unit cell can be defined from the
dynamics of the finite system [41]. Even though there are differ-
ences in terms of mathematical approaches and compositions,
radial wave crystals [23], EPCs [22] and LREPCs, and periodically
architected pendula [41] all have a similar overarching concept:
moving away from geometric periodicity and instead defining a
mathematically periodic system, thus expanding the boundary of
where the Bloch theorem applies. In this way, these studies
broaden the concepts of PCs and metamaterials to a new range of
mechanical systems.

Our study considers torsional waves and axisymmetric wave
propagation, which has applications to rotational machinery or
microelectromechanical systems, opening opportunities to embed-
ded wave propagation control mechanisms in waves that propagate
outward from a central source or axis. However, similar mathemat-
ical treatment could extend these concepts to other wave polariza-
tions and nonaxisymmetric wave propagation. In this way, we
can further exploit the platform presented herein to address near-
field effects in metamaterials.
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Nomenclature

h = out-of-plane thickness

A = matrix stiffness function LREPC
B = matrix density function LREPC
I = polar mass moment of inertia
M = external moment
T = torque
I = moment of inertia nondimensional parameter
ro = inner radius
rout = outer radius
up = tangential displacements
Ao = matrix stiffness constant of LREPC
Apgs = matrix stiffness constant of HS
B, = matrix density constant of LREPC
Boys = matrix density constant of HS
Iy = effective dynamic moment of inertia
I, = polar mass moment of inertia of the resonators
Tus = moment of inertia nondimensional parameter of the HS
I repc = moment of inertia nondimensional parameter of the
LREPC
P, = torsional stiffness of resonators
Pus = static torsional stiffness of four-unit cell HS
PLrepc = static torsional stiffness of four-unit cell LREPC
_ f = stiffness nondimensional parameter
Pus = stiffness nondimensional parameter of the HS
Pirepc = stiffness nondimensional parameter of the LREPC
Ar = periodicity constant
6 = angular displacement
u = shear modulus
p = density
0,0 = shear stress
® = angular frequency

Appendix A: Static Stiffness of LREPC and Homogenous
System

Static torsional stiftness of LREPC and HS finite systems, as well
as their unit cells, are calculated by solving the boundary value
problem arising from Eq. (6), neglecting inertial effects and impos-
ing angular displacements in both inner and outer ring surfaces:

0 (4, 00\

H(rin) =0,
O(ou) = 02

We substitute material properties for the LREPC (Eq. (7)) and the
HS (Eq. (14)) and solve for O(r). We define the static torsional stift-
ness as follows:

(AD)

_ T(rout)
0, — 6,

where 7(r) is the moment as defined in Eq. (3). We replace r,,, and
rin by inner and outer radii of the unit cell, respectively, and by ry
and ry+ NAr for static stiffness of the unit cells and systems of N
unit cells, respectively.

B (A2)
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Appendix B: Polar Mass Moment of Inertia of LREPC
and Homogenous System

Moment of inertia of LREPC and HS systems as well as their unit
cells are calculated as follows:

Four 270 h(r) Tour
jp(r)rde = J J j p(r)r3drd9dz =2r j p(r)h(r)r3dr
Q Fiw 00 Fin
=2z J B(r)ridr (BI)

Fin

We substitute material properties for the LREPC (Eq. (7)) and the
HS (Eq. (14)) and replace r,, and r;, by inner and outer radii of the
unit cell and by ry and ry + NAr for the moment of inertia of the unit
cells and systems of N unit cells, respectively.

Appendix C: Mass of LREPC and Homogenous System
Mass of LREPC and HS systems are follows:

ro+NAr 2z h(r) ro+NAr
j p(rdV = j p(Nrdrdfdz =2x p(Nh(r)rdr
Q n 0 0 -
ro+NAr
=2 j B(ryrdr cn

o

We substitute material properties for the LREPC (Eq. (7)) and the
HS (Eq. (14)) and replace r,,,; and r;, by inner and outer radii of the
unit cell and by ry and ro+ NAr for the mass of the unit cells and
whole systems, respectively.
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